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Abstract

There are various settings in which researchers are interested in the

assessment of the correlation between repeated measurements that are

taken within the same subject (i.e., reliability). For example, the same

rating scale may be used to assess the symptom severity of the same

patients by multiple physicians, or the same outcome may be measured

repeatedly over time in the same patients.

Reliability can be estimated in various ways, e.g., using the classical

Pearson correlation or the intra-class correlation in clustered data.

However, contemporary data often have a complex structure that goes

well beyond the restrictive assumptions that are needed with the more

conventional methods to estimate reliability.

In the current paper, we propose a general and �exible modeling

approach that allows for the derivation of reliability estimates, stan-

dard errors, and con�dence intervals � appropriately taking hierarchies

and covariates in the data into account. Our methodology is developed

for continuous outcomes together with covariates of an arbitrary type.

The methodology is illustrated in a case study, and a Web Ap-

pendix is provided which details the computations using the R package

CorrMixed and the SAS software.
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1 Introduction

Reliability essentially refers to the reproducibility (or, predictability) of out-1

comes that are repeatedly measured within the same individuals. In particu-2

lar, this metric quanti�es the extent to which a repetition of a measurement3

under the same general conditions leads to the same result.4

Conventional methods to estimate reliability The concept of relia-5

bility is grounded in the so-called classical test theory [1]. In this paradigm,6

the outcome of a measurement procedure is modeled as X = τ + ε, where7

X is the observed score of a subject, τ is the unobserved (latent) true score8

of this person, and ε is the measurement error. In classical test theory, it9

is assumed (i) that the measurement errors are mutually uncorrelated, and10

(ii) that the measurement errors are uncorrelated with the true scores. Un-11

der these assumptions, Var(X) = Var(τ) + Var(ε) and the reliability of the12

measurement (R) is de�ned as13

R =
Var(τ)

Var(X)
=

Var(τ)

Var(τ)+Var(ε)
. (1)

Eq. (1) is intuitively appealing because it de�nes reliability as the fraction of14

the observed test score variance that is attributable to the true score variance.15

If a test is perfectly reliable, the true score and observed score variances are16

equal and thus R = 1. Unfortunately, reliability cannot be directly estimated17

based on Eq. (1) because τ cannot be observed. Instead, reliability will have18

to be estimated indirectly. A classical solution to the problem is to introduce19

the concept of parallel tests [2]. Parallel tests are tests that have the same20

true score for each subject and equal error variances. For example, suppose21

that we have two measurements X1 and X2 for the same subjects that are22

assessed at two instances of time with a short lag (such that τ does not23

change), or that are obtained from two raters at the same point in time.24

Then X1 = τ + ε1 and X2 = τ + ε2 with Var(X1)=Var(X2)=Var(X) and25

Var(ε1)=Var(ε2)=Var(ε), i.e., X1 and X2 are parallel measurements. The26

covariance of the two measurements then equals27

Cov(X1, X2) = Cov(τ + ε1, τ + ε2)

= Var(τ) + Cov(τ, ε1) + Cov(τ, ε2) + Cov(ε1, ε2)

= Var(τ),

2



and the correlation between X1 and X2 can be written as28

Corr(X1, X2) =
Cov(X1, X2)√

Var(X1)
√
Var(X2)

=
Var(τ)

Var(τ) + Var(ε)
= R. (2)

Limitations of the conventional methods Eq. (2) provides a conve-29

nient and straightforward way to compute reliability, but it is important30

to stress that the assumption that the measurements are parallel is crucial.31

This assumption is often violated in practice [3]. For example, it seems im-32

plausible to assume that patients in a clinical trial or in medical practice33

do not exhibit a systematic change over time as a result of their treatment.34

Another limitation of Eq. (2) is that only two measurements can be consid-35

ered, and these measurements should have the same test-retest interval for36

all subjects. In practice, data may be available for more than two measure-37

ment moments and/or with di�erent test-retest intervals. Further, the use of38

Eq. (2) is less-than-ideal when data are missing, because subjects who have a39

missing observation for either X1 or X2 are discarded from the analysis. This40

approach does not only lead to a loss of information, but it also ignores the41

missing data generating mechanism. Basically, to obtain unbiased estimates42

for R using Eq. (2), the assumption that the data are missing completely at43

random (MCAR) should be valid. This means that the missingness should44

not depend on the observed or the unobserved outcomes [4, 5]. This is a45

strong and often unrealistic assumption, e.g., in a clinical trial setting it is46

conceivable that subjects who have lower scores at the �rst measurement in47

time (poorer health) are more likely to drop out of the study at the second48

measurement in time (missing value for X2).49

Importance of reliability It is important to carefully consider the relia-50

bility of a measurement procedure, for example in the context of designing51

a clinical trial. Obviously, in particular in explorative or experimental small52

population group studies, serial measurements are gathered to understand53

the nature of the disease. However, unreliable measurement methods might54

lead to serious misinterpretation of the disease process. Indeed, even the55

most elegant study design will not overcome the damage that is caused by56

the use of unreliable measurement procedures [6]. For example, biased sam-57

ple selection may occur when patients are selected based on an unreliable58

measurement procedure, and the sample size that is required to detect an59
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important treatment di�erence (δ) may increase substantially when the out-60

come of interest is quanti�ed using an unreliable measurement procedure. As61

an illustration of the latter issue, consider a situation where a t-test is used62

to evaluate the treatment e�ect on the primary endpoint in a clinical trial63

with two treatment groups. When the measurement procedure that is used64

to quantify the primary endpoint has perfect reliability (i.e., R = 1), the65

required sample size to detect δ equals n∗. However, when this measurement66

procedure has a less-than-perfect reliability (i.e., R < 1), the required sample67

size becomes n = n∗

R
(for details, see [6]). Thus, for example, when R = 0.50,68

the required sample size to detect δ doubles compared to what would have69

been needed when R = 1. Clearly, an increase in the required sample size is70

an issue in nearly all clinical studies (e.g., increased study duration and cost)71

� and it may even make the conduct of the study infeasible (e.g., clinical72

trials in rare diseases).73

Aim and organization of the paper The main aim of the present pa-74

per is to illustrate how reliability can be estimated in a �exible way using75

linear mixed-e�ects models (LMMs). As will be detailed below, LMMs can76

separate the mean and the variance structures in the data � which allows77

for relaxing the strong assumptions that are needed to apply the conven-78

tional methods to estimate reliability. Further, LMMs can deal with data79

structures where di�erent subjects have a di�erent number of repeated mea-80

surements (2 or more) � which may or may not be regularly spaced. Finally,81

LMMs are so-called likelihood based methods that provide valid results when82

the missingness mechanism is missing at random (MAR) [7]. MAR means83

that the missingness may depend on the observed outcomes (e.g., the �rst84

measurement X1) but not on unobserved outcomes. MAR is a substantially85

less restrictive assumption than MCAR, and is thus more likely to hold in86

practice [4].87

The remainder of the paper is organized in the following way. In Section88

2, a case study is introduced that will be used throughout this paper to89

illustrate the methodology. In Section 3, an exploratory analysis of the case90

study is conducted. In Section 4, the LMM-based approach to estimate91

reliability is detailed. Section 5 discusses the results. A Web Appendix is92

also provided in which additional materials are presented. In particular, it93

details all the required computations using the newly developed R software94

package CorrMixed and SAS.95

4



2 Case study96

Pikkemaat et al. [8] performed an experiment where the cardiac output97

and stroke volume of N = 14 pigs was changed by increasing positive end-98

expiratory pressure (PEEP) levels (0, 5, 10, 15, 20, and 25 cm H2O). The99

number of times that a particular PEEP level was used varied from animal100

to animal. For each PEEP level, stroke volume was measured by the contin-101

uous approximately normally distributed variable Electrical Impedance To-102

mography (ZSV). In each animal, four identical experiments were conducted103

(referred to as Cycles 1 to 4). The number of repeated ZSV measurements104

across PEEP levels and cycles in an animal ranged between 9 and 47. In the105

analyses below, it is assumed that all the measurements are equally spaced.106

Pikkemaat et al. [8] were interested in estimating the levels of association107

between the repeatedly measured ZSV and SVTTD (transpulmonary ther-108

modilution) outcomes within an animal. As detailed in the Introduction, it109

is also worthwhile to evaluate the reliability of these repeated measurements.110

Such analyses (not considered in [8]) will be the focus of the current paper.111

Given the complex design of the study, it is recommended to use a �exible112

LMM-based technique to estimate reliability (see Section 4) � rather than113

the conventional techniques that were discussed in the Introduction.114

As noted above, the study included a total of 14 pigs. However, the data115

of n = 2 animals could not be evaluated due to technical reasons and these116

animals were thus excluded from the analyses. Further, there were n = 2117

animals who appeared to have a `clinically deviating' pro�le (as judged by118

the experimenters). These animals were kept in the current analyses, but a119

sensitivity analysis showed that the estimated reliabilities were not substan-120

tially a�ected by the in- or exclusion of these animals (see Web Appendix121

Part II). Note that the data for PEEP level 25 were included in the current122

analysis, as well as in the Pikkemaat et al. [8] study, although they were not123

explicitly mentioned in the latter.124

3 Exploratory data analysis125

Figure 1 shows the individual pro�les (grey lines) of ZSV as a function of126

measurement moment. As can be seen, there is substantial between- as well127

as within-animal variability. Further, drop-out is substantial, i.e., there are128

less observations at later measurement moments compared to earlier mea-129
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surement moments. This is more clearly depicted in Figure 2, where the130

number of available observations at each of the di�erent measurement mo-131

ments are shown.132

Figure 1 also shows that the average evolution over time (solid black line)133

exhibits a rather complex shape that cannot be modeled in a straightforward134

way by using linear or quadratic polynomials. Therefore, it is useful to con-135

sider a more general family of parametric models that are based on so-called136

fractional polynomial functions [9].137

138

� Figures 1 and 2 about here �139

Fractional polynomials The idea is to �t regression models withm terms140

of the form tp, where the exponents p are selected from a small prede�ned set141

S of both integer and non-integer values. The linear predictor for a fractional142

polynomial of order M for covariate t (here: measurement point in time) on143

the mean ZSV is then de�ned as:144

β0 +
M∑

m=1

βmt
pm . (3)

Each power pm is chosen from a restricted set, typically S = {−2, −1, −0.5, 0, 0.5, 1, 2, 3}.145

Note that when M = 2 and p1 = p2, the linear predictor (3) becomes146

β0 + β1t
p1 + β2t

p1 log(t). Also, when p = 0, this is taken to refer to log(t) [9].147

In practice, all possible models of degree 1 to M are �tted. Thus for M = 1,148

each of the 8 values of S are used for the predictor tp1 , for M = 2 each of the149

36 combinations of powers are used for the predictors tp1 and tp2 , and so on.150

Subsequently, the `best' �tting model is selected. This choice can be made151

in an informal way (i) based on Akaike's Information Criterion (AIC, where152

a lower value is indicative of a better model �t) and/or (ii) by graphically153

evaluating the �t of the model with the observed data. The AIC adds the154

number of model parameters as a penalty to the log likelihood of the model,155

which may help to avoid over-�tting (even though one still may want to be156

careful not to select an overly complex model, in particular when a large157

number of candidate powers is considered). The main advantage of using158

fractional polynomials (rather than regular polynomials) is that they allow159

for a much more �exible parametrization, i.e., a large number of di�erent160

shapes of curves can be captured by even a relatively small M .161
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Application to the case study In the analysis of the case study, frac-162

tional polynomials of order M = 1 to M = 5 were considered using the163

standard set S = {−2, −1, −0.5, 0, 0.5, 1, 2, 3} for the powers pm. Note164

that it is possible to use a more extensive set of values for S if the original set165

does not provide an adequate result, but the number of models that have to166

be �tted (and thus also the required computational time) increases sharply167

when the number of elements in S increases. For example, when the set S168

includes 8 elements (the standard set), a total of 792 fractional polynomials169

of degree 5 can be made. However, when the set S = {−3, −2.75, ..., 3}170

is used (25 elements), a total of 118, 755 fractional polynomials of degree 5171

can be made. Similarly, M can be increased but this will again yield a sharp172

increase in the number of models to be evaluated.173

Thus, regression models that included linear predictors for fractional poly-174

nomials of order M = 1 to M = 5 (see Eq. (3)) were �tted to the data of175

the case study. Table 1 shows the powers pm of the models of order 1 to 5176

that had the lowest AIC values. As can be seen, the model with M = 3 had177

the lowest overall AIC value. Figure 3 shows the predicted mean ZSV as a178

function of measurement moment for this model.179

Based on these results, the fractional polynomial of degree 3 was retained180

as the `best' model for the subsequent analyses. Thus, in the LMM analyses181

detailed below, the relation between time of measurement t and the mean182

ZSV will be modeled as β1t
2 + β2t

2 log(t) + β3t
3.183

184

� Table 1 about here �185

� Figure 3 about here �186

4 Estimating reliability using mixed-e�ects mod-187

els188

In this section the reliability of the ZSV will be estimated using a �exible189

approach that is based on LMMs. The LMM is brie�y introduced in Section190

4.1 (for more details, see e.g., [7, 10, 11]), and the LMM-based approach to191

estimate reliability is applied to the case study in Section 4.2. For conciseness,192

in the latter section only a summary of the main results is given and no193

reference to software tools that can be used to obtain the results is made.194

However, full details can be found in the Web Appendix Parts I�V.195
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4.1 The linear mixed-e�ects model196

A LMM can be written as197

Yi = Xiβ + Zibi + εi, (4)

where Yi is the response vector for subject i (with i = 1, 2, ..., n subjects198

in the study), Xi and Zi are the known design matrices for the �xed and199

random e�ects, β is the vector that contains the �xed e�ects, bi is the vector200

that contains the random e�ects, and εi is the vector that contains the mea-201

surement error (with bi ∼ N (0, D) and εi ∼ N (0, Σi), where D and Σi202

are general variance-covariance matrices). Model (4) thus assumes that the203

vector of repeated measurements for each subject follows a linear regression204

model where some of the parameters are population-speci�c (that is, param-205

eters that are the same for all subjects in the population; the �xed e�ects)206

and other parameters are subject-speci�c (that is, parameters that di�er for207

all subjects; the random e�ects).208

The residual component εi is often further decomposed as εi = ε(1)i +209

ε(2)i. Here, ε(2)i is a component of serial correlation and ε(1)i is a component210

of measurement error. Serial correlation results from the fact that within211

a subject, the (residuals of) observations that are closer in time are often212

`more similar' (i.e., more strongly correlated) than observations that are more213

distant in time. It is assumed that ε(1)i ∼ N(0, σ2Ini
) (with Ini

an identity214

matrix of dimension ni = the number of repeated measurements in a subject)215

and ε(2)i ∼ N(0, τ 2Hi) (with Hi the serial correlation matrix that only216

depends on i through the number of repeated measurements ni and the time217

points j and k at which the measurements are taken). The (j, k) element hijk218

of Hi can then be modeled as hijk = g (| tij − tik |) for a decreasing function g.219

Two frequently used functions are the exponential and Gaussian correlation220

functions, de�ned as g (uj, k) = exp (−φuj, k) and g (uj, k) = exp
(
−φu2j, k

)
,221

respectively.222

4.2 Case study analysis223

The mean structure of the model The LMMs that will be �tted to224

the case study dataset include an intercept, measurement moment, PEEP,225

and Cycle as �xed e�ects. PEEP and Cycle are dummy-coded with 5 and226

3 dummies, respectively. The relation between measurement point and the227

8



ZSV outcome is modeled as β1t
3+β2t

2+β3t
2 log(t) (see the Fractional poly-228

nomial section).229

The covariance (correlation) structure of the model In the analy-230

ses below, three LMMs with the same �xed-e�ect structure (see previous231

paragraph) but di�erent variance structures will be considered.232

Model 1 is a random intercept model, i.e., a LMM that only contains a233

random intercept in the random part of the model:234

Yij = µij + b0i + εij, (5)

where Yij is the observed endpoint at measurement time j for subject i, µij235

is the mean as a function of the �xed e�ects, b0i is the random intercept,236

and εij is the residual. Based on this model, the reliability of the repeated237

observations taken at measurement times tk and tj can be estimated as (for238

details, see [12]):239

R (tj, tk) = R =
d

d+ σ2
, (6)

where d is the variance of the random intercept and σ2 is the residual variance.240

As can be seen in Eq. (6), the random intercept model assumes that any two241

observations measured at di�erent times have the same R. This assumption is242

often not realistic when repeated measures are considered, i.e., measurements243

that are closer in time can be expected to be more strongly correlated than244

measurements that are more distant in time.245

Therefore, Model 2 extends Model 1 by adding a serial correlation com-246

ponent:247

Yij = µij + b0i + ε(1)ij + ε(2)ij, (7)

where µij, b0i are the same as in Model 1 and ε(1)ij, ε(2)ij are measurement248

error and serial correlation components, respectively. Based on Model 2, the249

reliability of the repeated observations taken at measurement times tk and250

tj can be estimated as (for details, see [12]):251

R (tj, tk) = R (ujk) =

d+ τ 2 exp

(−u2jk
ρ2

)
d+ τ 2 + σ2

, (8)

where ujk = tk − tj, σ
2 = Var

(
ε(1)i

)
and τ 2 = Var

(
ε(2)i

)
. Model 2 thus252

no longer assumes that R remains constant for all pairs of measurements.253
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Instead, it models R as a function of the time lag ujk between two measure-254

ments. As can be seen, a stronger serial e�ect (ρ2) leads to a faster decreasing255

R (ujk).256

Finally, Model 3 further extends Model 2 by including a random slope for257

measurement moment:258

Yij = µij + b0i + b1itj + ε(1)ij + ε(2)ij, (9)

where µij, b0i, ε(1)ij, ε(2)ij are the same as in Models 1 and 2, and b1i is the259

random slope for measurement moment. Based on Model 3, the reliability of260

the repeated observations measured at times tk and tj can be estimated as261

(for details, see [12]):262

R (tj, tk) =

zjDz
′

k + τ 2 exp

(−u2jk
ρ2

)
√

zjDz
′
j + τ 2 + σ2

√
zkDz

′
k + τ 2 + σ2

, (10)

where ujk = tk − tj, and zj, zk are the design rows in Z corresponding to263

time j and k, respectively. As can be seen in Eq. (10), Model 3 no longer264

assumes that measurements taken at di�erent time points but with the same265

time lag have the same R. Instead, it provides estimates of reliability for all266

pairs of measurements.267

Table 2 summarizes the covariance structures that are used in the di�er-268

ent models and their impact on the estimated R.269

270

� Table 2 about here �271

4.2.1 Model 1: random intercept model272

When Model 1 was �tted to the case study dataset, it was obtained that d̂ =273

1901.611 and σ̂2 = 2413.022, yielding R̂ = 0.441 (see Eq. (6)). A CI around R̂274

can be computed by using a (non-parametric) bootstrap or the Delta method275

(for details, see the Web Appendix Part VI). The bootstrap-based 95% CI276

(using 500 bootstrap samples) equaled [0.198; 0.618]. The Delta method-277

based CI was similar and largely overlapped, i.e., [0.189; 0.636]. Figure 4278

(top left) illustrates the results (the bootstrap-based CI is shown).279

Overall, it can be concluded that R̂ is moderate and that there is sub-280

stantial uncertainty in R̂ (which is not surprising given the small number of281
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animals in the study).282

283

� Figure 4 about here �284

4.2.2 Model 2: random intercept and serial correlation285

When Model 2 was �tted to the data of the case study, the estimated co-286

variance parameters were d̂ = 1349.650, τ̂ 2 = 2489.351, ρ̂ = 3.581, and287

σ̂2 = 382.795. Thus, after correction for the �xed e�ects, the covariance288

parameter estimates showed considerable remaining serial components.289

Figure 4 (top right) shows the estimated R (ujk) (see Eq. (8)) and their290

95% CIs based on a bootstrap (the Delta method-based CIs were similar; data291

are shown in the Web Appendix Part I). As can be seen, the estimated R were292

high for small time lags (e.g., R̂ (ujk = 0) = 0.865 and R̂ (ujk = 1) = 0.751)293

and subsequently decreased until they remained essentially constant at R̂ ≈294

0.320 for measurements with time lags of about ujk = 10 and higher. It can295

also be observed that the CIs around R̂ (ujk) were narrower for measurements296

with smaller time lags (e.g., for time lags ujk = 0 and ujk = 1, the CI95% =297

[0.817, 0.906] and CI95% = [0.654, 0.836], respectively) and subsequently298

widened until they remained stable around time lag ujk = 10 with CI95% =299

[0.045, 0.530].300

4.2.3 Model 3: random intercept, slope, and serial correlation301

When Model 3 was �tted to the data of the case study, the estimated covari-302

ance parameters were τ̂ 2 = 1952.970, ρ̂ = 3.290, σ̂2 = 373.043, and303

D̂ =

(
3219.869 −77.377
−77.377 3.686

)
.

As noted earlier, based on Model 3 the estimated R (tk, tj) are di�erent for304

all pairs of measurements (see Eq. (10)). Figure 4 (bottom) shows the re-305

sults graphically. In this �gure, the utmost left line (marked with t1) depicts306

the estimated R (t1, tj), i.e., the estimated reliabilities of ZSV taken at mea-307

surement times 1 and 2�45. The line next to that one shows the estimated308

R (t2, tj), etc. The �gure shows that R̂ (tk, tj) is high when the time lag u is309

small and �attens out for longer time lags. Further, depending on the partic-310

ular pair of measurement moments (tk, tj) that is considered, the slope and311

amount of decline in R̂ (tk, tj) as a function of time lag di�ers. For example,312
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when considering R̂ (t1, tj), it can be seen that the estimated reliabilities313

decline particularly strong for the �rst few subsequent measurements (say,314

until about t8) and continue to decline for all tj afterwards at a slower pace.315

Instead, for R̂ (t20, tj) there is only a substantial decline in the estimated316

reliabilities for the �rst few subsequent measurements (say, until about t25)317

after which the estimated reliabilities remain essentially constant.318

Based on Model 3, estimates of reliability are provided for each pair of319

measurements, and the same obviously holds for the CIs. To avoid cluttered320

�gures, no CIs were added to Figure 4 (bottom). By means of illustration,321

Figure 5 provides 95% bootstrap-based CIs for R̂ (t1, tj) (left) and R̂ (t20, tj)322

(right). As can be seen, the CIs increase as a function of time and tend to323

be wider for R̂ (t20, tj) than for R̂ (t1, tj) (as expected).324

325

� Figure 5 about here �326

4.2.4 Selecting the most appropriate model327

Based on the likelihood ratio (LR) test statistic G2, the �t of Models 1�3328

can be formally compared (for details, see [7]). G2 is equal to −2 times329

the di�erence of the log likelihoods of the models being compared. Before330

discussing the results for the case study, some general remarks are useful.331

First, when interest is in testing the need for including random e�ects in the332

model, the usual procedure where the test statistic G2 is compared to a χ2
333

distribution with the number of degrees of freedom equal to the di�erence334

in the model parameters to be estimated is no longer valid. For example,335

consider the situation where interest is in testing whether one or two random336

e�ects are needed (Model 2 versus Model 3). This corresponds to testing337

that d12 = d21 = d22 = 0. To test this hypothesis, a mixture with equal338

weights 0.5 for χ2
1 and χ

2
2 is needed (denoted by χ2

1:2), because the variance339

d22 cannot be negative and thus the hypothesis test of interest is on the340

boundary of the parameter space (for details, see [7]). Second, the results of341

the LR tests should be interpreted with caution because of the small sample342

size in the case study. Alternative testing procedures that are based on343

permutation tests (see e.g., [13]) could provide a more viable alternative, but344

these methods are beyond the scope of the present paper. Third, the valid345

use of LR tests typically requires that the models are �tted using Maximum346

Likelihood estimation. The results provided above used Restricted Maximum347

Likelihood (REML), but valid LR tests for comparing nested models with348
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di�erent covariance structures can still be obtained under REML estimation349

when the models that are compared have the same mean structure [7] � which350

was the case here, see above.351

The log likelihood values for Models 1�3 are shown in Table 3. As can352

be seen, the random intercept model with serial correlation (Model 2) �tted353

the data signi�cantly better than the random intercept model with no serial354

correlation (Model 1), p < 0.001. This test thus rejects the null hypothesis355

that there is no serial correlation process, i.e., it can be concluded that ob-356

servations that are closer in time are stronger correlated than observations357

that are more distant in time. Further, adding a random slope to the random358

intercept model with serial correlation (Model 3 versus Model 2) signi�cantly359

improves the model �t, p = 0.015 � though the gain was quite modest.360

Model 3 is the model with the largest likelihood. It would be preferred361

if we would solely rely on statistical arguments. However, from an applied362

perspective � i.e., also considering the practical usefulness of the results for363

a clinician or researcher � Model 2 is arguably to be preferred over Model364

3 because the former leads to reliability estimates that only depend on the365

time lag between two measurements. In contrast, Model 3 yields di�erent366

reliability estimates for all possible pairs of measurements. Model 2 thus367

provides a much more parsimonious result compared to Model 3 � whilst the368

�t of both models is roughly comparable. Notice that the likelihood ratio369

tests identify the best �tting model among the models that were under con-370

sideration. However, when a model has been selected, the question remains371

whether this model �ts the data su�ciently well. Residuals and in�uence372

diagnostics are useful in this respect. In Part VII of the Supplementary Ma-373

terials, a residual analysis is conducted and the extent to which particular374

animals exert a strong in�uence on the results (i.e., the REML distances of375

the models, the estimated �xed-e�ects parameters, the estimated covariance376

components, and the estimated reliability coe�cients) is evaluated. Overall,377

the impact of excluding an animal on the results was relatively small for378

Models 2�3. For Model 1, the impact of deleting an animal on the results379

was more substantial. Further, the residual analysis showed that there were380

no major departures of normality.381

382

383

� Table 3 about here �384
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5 Discussion385

The conventional methods to estimate reliability (e.g., the well-known Pear-386

son correlation coe�cient) require assumptions that are often not met in387

real-life studies (e.g., parallel measurements, equally spaced test-retest inter-388

vals, etc.). The main aim of the current paper was to present a general and389

�exible approach to estimate reliability that is based on LMMs. It was shown390

that this approach can be successfully applied even in a `challenging' dataset391

like in the presented case study � where the number of independent subjects392

is low, di�erent subjects have a di�erent number of repeated observations,393

and several covariates have to be taken into account. Overall, the analysis394

of the case study suggested that the reliability of ZSV was high (and its CIs395

narrow) when the time lag was small. For larger time lags, the reliability396

estimates decreased and their CIs widened.397

Some critical remarks are in place. First, despite the major di�erences be-398

tween the conventional and the LMM-based methods to estimate reliability,399

there are also some obvious similarities. For example, the expressions to esti-400

mate reliability based on Model 1 (see Eq. (6)) and the conventional approach401

(see Eq. (2)) are very similar (i.e., both are ratios of variances). However,402

a fundamental di�erence between both methods is that the LMM-based ap-403

proach does not require the parallel measurement assumption. The reason404

for this is that the mean and variance structures can be clearly separated in405

LMMs (see above). For example, when the means at di�erent time points406

are di�erent (as was observed in the case study, see Figure 1), systematic407

e�ects of time and other covariates can be taken into account by including408

them into the �xed-e�ect part of the model (as was done here). In essence,409

the main di�erence between the conventional and LMM-based approaches410

to estimate reliability is that the former requires a set of assumptions that411

are taken care of in the study design, whereas the latter takes care of these412

assumptions through modelling at the analysis stage [3]. There is however a413

price to pay for the increased �exibility of the LMM-based approach, i.e., it414

requires substantially more complex statistical analyses compared to the con-415

ventional methods to estimate reliability. We tried to circumvent this issue416

by developing an R package (CorrMixed) that allows for obtaining reliability417

estimates based on Models 1�3 in a relatively straightforward way. The Web418

Appendix (Parts IV and V) provides full details on how the analyses can be419

conducted in practice.420

Second, in the present paper the focus was entirely on the random e�ect421
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structure of the models because we were interested in estimating the reliabil-422

ity of the outcomes. Apart from estimating reliability, medical practitioners423

are also often interested in obtaining so-called normative data. Normative424

data are used to convert a patient's `raw' outcomes into relative measures425

that re�ect the proportion of demographically-matched healthy controls in426

the population who have a lower outcome value compared to this patient.427

A well-known example are growth curves of young children. Such normative428

data (nomograms) for repeated measurements can be obtained without any429

substantial additional e�ort using the same type of models that were �tted430

in the present paper. The only di�erence is that the focus will then be on the431

�xed-e�ect part of the model � rather than on the random e�ect structure432

(for details, see [14]).433

Third, the outcome that was considered in the case study was a normally434

distributed (Gaussian) variable. One may also be interested in estimating the435

reliability of repeated measurements of outcomes of a di�erent distributional436

nature, e.g., binary (yes/no, health/sick) or categorical ordered outcomes.437

Such extensions are possible, but not trivial. The interested reader is referred438

to Vangeneugden et al. [15].439

Fourth, in the analysis of the case study, the �xed-e�ect structures were440

kept constant for Models 1 to 3 (because we were primarily interested in441

evaluating the impact of di�erent random-e�ect structures on the estimated442

reliabilities). In the Web Appendix (Part III), a sensitivity analysis is con-443

ducted where the impact of using di�erent plausible �xed-e�ect structures444

on the estimated reliabilities is evaluated. Overall, the analyses indicated445

that the estimated reliabilities are not sensitive to the �xed-e�ect part of the446

model (provided that the mean structure of the model is supported by the447

data).448

Finally, in the present paper no time-varying covariates (other than mea-449

surement occasion itself) were considered, but depending on the study at450

hand it may be useful to include such covariates. For example, consider a451

setting where one is interested in estimating the reliability of a psychiatric452

rating scale that was scored by di�erent physicians at the di�erent mea-453

surement moments. When only a limited number of raters are involved in454

the study, the methodology that was proposed above can still be used in a455

straightforward way. Indeed, one can then simply include rater as a (dummy-456

coded) �xed-e�ect in the mean structure of the model. On the other hand,457

when the number of raters is large, it is more sensible to include rater in the458

random-e�ect part of the model. Such a model cannot be �tted in the cur-459
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rent version of the CorrMixed package, but it is straightforward to �t such460

a model using SAS.461

On a related note, in the present paper interest was primarily in the es-462

timation of the reliability of a single outcome that was repeatedly measured463

within the same subject. It might also be of interest to estimate how strongly464

the vectors of two outcomes are correlated with each other. For example,465

consider a setting where two raters assess all patients at all measurement466

moments. Here, it would be natural to study the correlation between the467

vectors of scores to evaluate the level of agreement between the two raters.468

Or, as another example, consider a setting where there are two alternative469

measurement procedures for the same latent variable. When one of the two470

measurement procedures is more `di�cult' to conduct (e.g., is more expen-471

sive, more painful for the patient, requires more time to obtain the test472

results, etc), it may be of interest to estimate the correlation between the473

measurements obtained by both procedures. Indeed, when it can be shown474

that there is a high correlation between the vectors of outcomes, the `easier'475

measurement procedure may replace the more di�cult one � in the same476

spirit as is done when a surrogate endpoint is used to replace the true end-477

point in a clinical trial (individual-level surrogacy; for details see [16]). The478

quanti�cation of the correlation between two vectors of outcomes is however479

beyond the scope of the present paper, as di�erent statistical techniques are480

needed to estimate this quantity (see e.g., [17]).481
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Web Appendix

A Web Appendix is available that contains (i) the Delta method-based 95%
CIs of the estimated reliability coe�cients for ZSV, (ii) a sensitivity analysis
where the impact of 2 clinically deviating animals on the results is examined,
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structure on the results is examined, (iv) details on how the newly developed
R package CorrMixed can be used to estimate reliability, (v) details on how
reliability can be estimated using SAS, (vi) details on the computation of the

Delta method-based CIs for R̂, and, (vii) the results of a residual analysis.
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Tables

Table 1: Fractional polynomial results.
M power pm AIC
1 −0.5 3788.703
2 0.5, 0.5 3786.096
3 2, 2, 3 3775.281
4 0.5, 1, 2, 2 3776.389
5 −2, −2, 0, 2, 3 3778.221
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Table 2: Summary of the covariance structures used in Models 1�3, and the
impact on the estimated reliabilities.
Model Estimated reliabilities R
Model 1: Random Intercept

R̂ is identical for all pairs (tj, tk)

Model 2: Random intercept
R̂ only depends on the time lag ujk = tk − tjand serial component

Model 3: Random intercept,
R̂ is di�erent for all pairs (tj, tk)slope, and serial component

Note. tj = measurement at time j.
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Table 3: Fit indices of the di�erent models for the ZSV outcome.
# Pars. logL G2 Test p

Rand. Ser.
Model 1 1 0 −2328.910
Model 2 1 2 −2125.135 407.551 Model 2 vs. 1: χ2

2 < 0.001
Model 3 3 2 −2121.399 7.472 Model 3 vs. 2: χ2

1:2 0.015

Note. logL = log likelihood, G2 = −2 the di�erence of two log likelihood
values. Rand. = random e�ect parameters, ser. = serial components.
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Figure 1: Individual pro�les (grey lines) and mean values (black line) of the
ZSV outcome as a function of time of measurement.
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Figure 2: Number of observations for the ZSV outcome as a function of time
of measurement.
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Figure 3: Observed means as a function of time of measurement (solid line)
and �tted fractional polynomial of degree m = 3 (dashed line).
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Figure 5: R̂ (t1, tj) (left) and R̂ (t20, tj) (right) based on Model 3 and their
95% Con�dence Intervals for the ZSV outcome.
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