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Summary. Modern analysis of incomplete longitudinal outcomes involves formulating

assumptions about the missingness mechanisms and then using a statistical method that

produces valid inferences under this assumption. In this manuscript, we de�ne missingness

strategies for analyzing randomized clinical trials (RCTs) based on plausible clinical sce-

narios. Penalties for drop-out are also introduced in an attempt to balance bene�ts against

risks. Some missingness mechanisms are assumed to be non-future dependent (NFD) which

is a subclass of missing-not-at-random. NFD stipulates that missingness depends on the

past and the present information, but not on the future. Missingness strategies are im-

plemented in the pattern-mixture modeling (PMM) framework using multiple imputation

(MI) and we show how to estimate the marginal treatment e�ect. Next, we outline that

MI can be used to investigate the impact of drop-out strategies in subgroups of interest.

Finally, we provide the reader with some points to consider when implementing PMM-MI

analyses in con�rmatory RCTs. The data set that motivated our investigation comes from

a placebo-controlled RCT design to assess the e�ect on pain of a new compound.

KEY WORDS : incomplete longitudinal outcome ; missing data ; MNAR ; non-future de-

pendence ; pattern-mixture model ; multiple imputation.
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1 Introduction

Clinical developers are becoming increasingly aware of the good practices in analy-

zing incomplete longitudinal outcomes in randomized clinical trials (RCTs). Their analysis

involves formulating assumptions about the missingness mechanisms and then using a sta-

tistical method that produces valid inferences under this assumption. Consequently, the

formulation of missingness assumptions in a transparent and interpretable manner has be-

come a key aspect. A major cause of missingness in RCTs is drop-out. Missingness is at

random (MAR) if drop-out occurrence is independent of missing outcome values, condi-

tionally on the observed ones. If the covariates are fully observed, additional dependence

on covariates is allowed for too. When MAR fails to hold, missingness is not at random

(MNAR). MNAR implies that drop-out occurrence depends on an outside variable not in

the model or is related to unobserved outcome values at the drop-out time and possibly

afterwards, even when conditioned on available information. The consequence of MNAR

is that missing outcome values cannot be reliably predicted using observed measurements

(i.e., covariates and outcome values).

Pattern-mixture modeling (PMM) is a framework that can be considered when mis-

singness is MNAR [1]. PMM strati�es the sample of subjects by missingness pattern and

formulates distinct models to estimate parameters within each pattern. In RCTs with mul-

tiple scheduled visits, time is often modeled as a �xed class e�ect and patterns are de�ned

based on drop-out at every visit. Whereas parameters are all identi�ed in completers (i.e.,

subjects who complete the trial until the last visit), some parameters are unidenti�ed in

the patterns of drop-out subjects. This can be overcome by setting unidenti�ed parameters

equal to functions of the parameters describing the distributions of other patterns.

The so-called identifying restrictions indicate in which patterns information is borrowed.

In Little's taxonomy [2], complete-case missing values (CCMV) stipulates that missing

information is borrowed from completers. In neighboring-case missing values (NCMV), the

closest neighboring pattern is used instead. NCMV implies that any unidenti�ed parameter

at a visit is estimated in the pattern of subjects having their last observed outcome value

at this visit. Available-case missing values (ACMV) o�ers a compromise between CCMV

and NCMV as all available patterns are used weighted by occurrence of each pattern.

ACMV has a particular status since this is the natural counterpart of MAR in the PMM

framework. In practice, analysis assuming MAR is often a point of departure for sensitivity

analyses assuming MNAR.
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Non-future missing values (NFMV) is another identifying restriction that o�ers ap-

pealing perspectives for sensitivity analysis since the user has full freedom to choose the

distribution of the �rst unobserved (or present) outcome value given previous measure-

ments. The appeal of NFMV is that missingness depends on the past and the present, but

not on future unobserved outcome values. In other words, missingness is non-future de-

pendent (NFD). This missingness mechanism is a sub-class of MNAR. The correspondence

between NFMV and NFD allows the formulation of comprehensible drop-out strategies

because mechanisms are directly characterized by the free distributions of present outcome

values. In this manuscript, we de�ne several drop-out strategies based on plausible clinical

scenarios but penalties for drop-out are also introduced in an attempt to balance bene�ts

against risks. These penalties are intended to re�ect the prejudice su�ered by subjects.

Drop-out strategies can be implemented in the pattern-mixture modeling (PMM) frame-

work using multiple imputation (MI). MI can be used to allow for MAR as well as MNAR

mechanisms. We show how to estimate the marginal treatment e�ect and results obtained

under drop-out strategies are contrasted. We attempt to overcome major drawbacks of well

known single-imputation concepts such as baseline-observation-carried-forward (BOCF)

and last-observation-carried-forward (LOCF) using appropriate NFD strategies. We also

question the choice of the �rst unobserved visit to characterize the present. Next, it is

known that MI o�ers a transparent way to represent the impact of drop-out strategies [3].

We study this impact in subgroups of drop-out subjects according to the cause of drop-out.

Finally, we provide the reader with some points to consider to carry-out PMM-MI analyses

in con�rmatory RCTs and we describe an implementation using an existing freely-available

SAS program [4].

To this end, we have re-analyzed a data set that comes from a placebo-controlled clinical

trial to assess the e�ect on pain of a new compound [5][6]. A continuous visual analogue

scale (VAS) was used to assess pain intensity and a binary outcome whose values indicate

clinical response or non-response was derived. The next section describes the case study

and outlines several points to consider during analysis preparation. Identifying restrictions

and drop-out strategies are laid out in Section 3. In Section 4, we describe PMM-MI

methods and we explain how to estimate the marginal treatment e�ect. Results obtained

under drop-out strategies are contrasted in Section 5 whereas Section 6 and Section 7

respectively contain the discussion and the concluding remarks. The appendix provides

technical information to implement analysis using software.
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2 Case study

2.1 Trial design and statistical objectives

The data set was collected in a multi-country European phase-III double-blind clinical

trial of which the objective was to compare the e�ect on pain intensity of a test product

(Test) versus placebo (PCB) in subjects su�ering from �bromyalgia. Four hundred thirty

three (433) subjects were randomized to receive Test versus 447 subjects to receive PCB,

that is 880 subjects in total.

After random assignment to either Test or PCB, subjects underwent a four-week esca-

lation dose period followed by three four-week periods under stable dose. All periods ended

at the scheduled visits that are visit 1 at the end of dose escalation and monthly visits 2�4

under stable dose. Subjects who discontinued were asked to undergo a speci�c visit at the

discontinuation date, termed the drop-out visit.

The pain intensity level was reported by subjects on a VAS that ranges from 0 (no

pain) to 100 (worst pain imaginable) using an electronic diary at each visit. The four

values of a continuous longitudinal outcome were derived as the pain intensity level at

randomisation (visit 0) minus the ones at visits 1�4. Thus, a positive value indicates a

decrease in pain intensity. For the drop-out subjects, the pain intensity level was assessed

at the drop-out visit, and the corresponding outcome value was repositioned to the next

scheduled visit for analysis. Then, the four values of a longitudinal binary outcome were

derived in terms of clinical response or non-response based on a minimum 30% improvement

from randomisation on the continuous outcome values. In chronic pain diseases, including

�bromyalgia, this gain is regarded as clinically relevant.

The estimation of treatment e�ect at visit 4 was the primary objective of the trial. The

original analyses, as mentioned in the trial protocol, were based on BOCF and LOCF prin-

ciples to impute missing outcome values. The continuous outcome values were �tted using a

covariance analysis model and the binary outcome values were �tted using a logistic regres-

sion model. Pain level at randomization was a pre-speci�ed key covariate whereas country

was a pre-speci�ed stratum factor. The objective of analyses described in this manuscript

is to assess the treatment e�ects adjusted on the same covariate and stratum factor at visit

4 on the continuous and the binary outcomes under a set of drop-out strategies. Analyses

are conducted on all randomized subjects.
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2.2 Causes of missingness

Out of the 880 randomized subjects, 77/447 subjects (17.2%) in the PCB group and

126/433 subjects (29.1%) in the Test group dropped out from the trial. In our case study,

drop-out from the trial also means drop-out from the follow-up even if treatment intake

had stopped earlier. Three subjects who dropped out very early have no assessment after

randomization. All the other drop-out subjects have completed their drop-out visit and

reported their pain intensity level. There are only two `intermittent' missing assessments

(i.e., missing assessments not due to drop-out). The �rst occurred at the randomization

visit because of a technical problem with the electronic diary whereas the second occurred

at visit 3 and was caused by the absence of a subject from home.

The distribution of subjects by drop-out cause by treatment group is given in Table 1.

Table 1 � Frequencies (percentages) of subjects by drop-out cause by treatment group

Causes PCB Test

Adverse event (AE) 44 (9.8) 96 (22.2)

Serious AE due to treat. 1 (0.2) 3 (0.7)

AE due to treatment 30 (6.7) 89 (20.6)

Serious AE not due to treat. 3 (0.7) 0 (_)

AE not due to treatment 10 (2.2) 4 (0.9)

Other than AE 33 (7.4) 30 (7.0)

Patients's decision 11 (2.5) 11 (2.5)

Investigator's decision 0 4 (0.9)

Therapeutic failure 18 (4.0) 10 (2.3)

Other reasons 4 (0.9) 5 (1.2)

Total 77 (17.2) 126 (29.1)

The main cause of drop-out was adverse event (AE). The higher drop-out rate for Test

was caused by a higher occurrence of AEs in this group. Particularly, there are three times

more subjects who dropped out for AE due to Test (20.6%) than to PCB (6.7%). Conver-

sely, subjects who dropped out for other causes than AE are similarly distributed in the

two groups with 7.4% for PCB and 7.0% for Test. In this category, therapeutic failure

concerns twice less subjects under Test (2.3%) than under PCB (4.0%). Further investiga-

tions (not shown in Table 1) reveal that the earlier the drop-out, the greater the occurrence

of drop-out caused by AE (from 77.8% if drop-out occurs between randomization and visit

1 to 40.6% between visit 3 and visit 4). The distribution of drop-out causes in our case

study is classical of many clinical trials in chronic pain.
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2.3 Characteristics of patterns

Patterns are de�ned based on drop-out at every visit. Accordingly, patterns 0�4 res-

pectively consist of subjects with 0 to 4 observed outcome values. Pattern 0 contains the

subjects without assessment at randomisation and the three subjects without assessment

after randomization. However, pattern 4 doesn't allow distinguishing between drop-out

subjects and completers. Indeed, subjects who dropped out after visit 3 have a complete

outcome pro�le because of the repositioning of the drop-out visit to visit 4. To clarify this,

we de�ne pattern 5 which contains completers whereas pattern 4 keeps the subjects who

dropped out after visit 3. This separation does not contradict the pattern de�nition given

here-above since one may consider that completers actually dropped out at a virtual visit

5 after the end of the trial follow-up.

Figure 1 displays the unadjusted mean pro�les per pattern by treatment group.
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Figure 1 � Unadjusted mean pro�les and frequencies per pattern by treatment group.

The mean pro�les of early drop-out patterns decline immediately whereas the mean

pro�les of the drop-out subjects who stay longer in the trial show a stagnation and then

a decline. Patterns 4 shows a huge di�erence between treatment groups. This di�erence

is partly explained by the causes of drop-out which are less related to AE, and probably

more to e�cacy, than in the other drop-out patterns. The patterns of completers exhibit

sustained improvements until visit 4. The di�erence in mean pro�les between pattern 4

and pattern 5 supports the decision of separation.
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2.4 Pattern sizes by stratum

Pattern sizes by stratum is an important point to consider before implementing a strati-

�ed PMM analysis. The reason is that parameter estimation can fail if a minimum number

of values are not available. In our case study, pattern 0 is treated separately since this

pattern is not used for parameter estimation and is pooled with pattern 1 for imputation

(see Section 4.2.2 for further information). The imputation models incorporate the pre-

speci�ed stratum factor country and a full group-by-time interaction for �xed e�ects, and

unstructured error covariance matrix. In this setting, parameter estimation would require

a minimum of three available outcome values per pattern by country by treatment group.

As the trial was conducted in twelve European countries, this pre-requisite is not reached

and a tricky pooling of countries must be done.

The trial was conducted in the Czech republic (CZ ; n =55), Denmark (DK ; n =17),

Finland (FI ; n =60), France (FR ; n =184), Germany (GE ; n =42), Italy (IT ; n =101),

Norway (NO ; n =53), Poland (PL ; n =31), Portugal (PT ; n =16), Romania (RO ; n =59),

Spain (ES ; n =111), and Sweden (SE ; n =151). A �rst pooling of countries into four

regions was done based on their geographical proximity. These regions are central Europe

(CZ, GE, PL, RO), southern Europe (ES, IT, PT), France (FR) and the Nordic countries

(DK, FI, NO, SE). Then, central and southern Europe were pooled into the same region

to reach the minimum pattern size. The consequence of this pooling is that the stratum

factor country is replaced by the three-class factor region in the imputation model.

The pattern sizes by region by treatment group are provided in Table 2.

Table 2 � Pattern sizes by region by treatment group

central + south France nordic countries All Countries

Patterns 0+1 PCB 1+11 9 1+9 2+29

Test 1+28 10 1+23 2+61

Pattern 2 PCB 9 4 8 21

Test 11 5 11 27

Pattern 3 PCB 4 4 4 12

Test 3 7 7 17

Pattern 4 PCB 4 3 6 13

Test 11 3 5 19

Pattern 5 PCB 187 70 113 370

Test 145 69 93 307

All Patterns PCB 216 90 141 447

Test 199 94 140 433

All Groups 415 184 281 880
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3 Identifying restrictions and drop-out strategies

3.1 Description of identifying restrictions

The basis of pattern-mixture modeling results from a particular decomposition of the

joint distribution of the outcome variable together with the drop-out indicator. The pattern-

mixture distribution of the values y1, . . . , yT of complete outcomes is given by :

f(y1, . . . , yT ) =

T∑
t=1

αtft(y1, . . . , yT ), (1)

where αt denotes the proportion of pattern t and ft(y1, . . . , yT ) stands for f(y1, . . . , yT |t).

In our case study, patterns are de�ned based on drop-out at every visit. More precisely,

if the tth outcome value is the last observed one and subject drops out after that, this

subject belongs to pattern t, t = 1, . . . , T . In (1), the distribution of the whole population

is expressed in terms of a mixture of the distributions of pattern populations. These, in

turn can be decomposed as :

ft(y1, . . . , yT ) = ft(y1, . . . , yt)ft(yt+1, . . . , yT |y1, . . . , yt)

= ft(y1, . . . , yt)
T∏

s=t+1

ft(ys|y1, . . . , ys−1). (2)

The �rst component in (2) is identi�ed from the observed outcome values. The second is a

product of conditional pattern distributions, which are unidenti�ed since the values of ys

are unobserved in these patterns. This can be overcome by setting unidenti�ed parameters

equal to functions of the parameters describing the distributions of other patterns. The

identifying restrictions, informally introduced in Section 1, are used to this e�ect.

Under CCMV, identi�cation is based on pattern T , the pattern of completers. This can

be formalized by :

ft(ys|y1, . . . , ys−1) = fT (ys|y1, . . . , ys−1), s = t+ 1, . . . , T. (3)

Under NCMV, the neighboring pattern is used instead :

ft(ys|y1, . . . , ys−1) = fs(ys|y1, . . . , ys−1), s = t+ 1, . . . , T. (4)

Identi�cation can also be based on all identi�ed patterns as speci�ed in the formulation :

ft(ys|y1, . . . , ys−1) =

T∑
j=s

ωsjfj(ys|y1, . . . , ys−1), s = t+ 1, . . . , T. (5)
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Every convex set of ωsj 's that sums to 1 provides a valid identi�cation scheme. In [8], the

ωsj 's are determined such that (5) corresponds with ACMV.

Alternatively, NFMV o�ers the appealing characteristic that the distributions of present

outcome values, that we denote gt for the sake of clarity, are left unconstrained [9]. In our

analysis, we set the gt's equal to their ft+1 counterparts, in the spirit of NCMV, with a

possibility to shift the mean by a value ∆. Formally, this can be expressed by :

gt(yt+1|y1, . . . , yt) = ft+1(yt+1+∆|y1, . . . , yt). (6)

In our case study, the closest neighboring patterns involved in NCMV and NFMV

identi�cations are all drop-out patterns. Indeed, pattern 5 is never used for identi�cation

given that pattern 4 contains complete outcome pro�les. Of note, the alternative choice of

basing NFMV identi�cation on the pattern of completers, in the spirit of CCMV, would

have been inappropriately optimistic. As described in Figure 1, the mean pro�les of drop-

out patterns show a stagnation and then decline at the drop-out visits, whereas the pattern

of completers shows regular improvements in the two treatment groups. Moreover, the large

size of patterns 5 would impose an inappropriately low uncertainty to parameter estimates.

The correspondence of NFMV to NFD allows formally relating drop-out occurrence to

the gt's. Through (6), we state that drop-out is caused by, or associated with, a mean

decrease by △ of present values relative to the values observed in subjects who dropped

out at this visit, without other possible causes, or associations, involving future values.

3.2 Description of drop-out strategies

Although MAR is impossible to demonstrate [10], primary analyses in RCTs often relies

on this assumption. As laid out in [7], MAR is compatible with de jure (or per-protocol)

analysis of which an objective is to estimate the treatment e�ect as if drop-out subject conti-

nued the trial under the same conditions until the last scheduled visit. The consequence

on PMM analysis under ACMV, which is the counterpart of MAR, is that imputation is

based on subject's treatment group. We keep this imputation rule in PMM analyses under

CCMV and NCMV, which are often used to study the e�ect of a certain departure from

MAR. These three identifying restrictions de�ne the de jure analyses.

Alternatively, a de facto (or intention-to-treat) analysis aims at re�ecting the e�ect of

the initially assigned treatment as well as the impact of the treatment withdrawal sub-

sequent to drop-out. In our case study, a de facto analysis can be implemented considering

that subjects under PCB continue on PCB after drop-out and subjects under Test switch
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to PCB. The consequence on PMM analysis is that imputation is based on PCB in all

subjects whatever their treatment group. This approach is referred to as reference-based

imputation in earlier works [11].

The de facto analyses are de�ned by the following drop-out strategies, all based on

the NFD assumption. We �rst introduce N-LOCF which is intended to overcome a major

drawback of LOCF, i.e., single imputation, by allowing an appropriate degree of uncer-

tainty. Under N-LOCF, the present values are imputed without shifting the distribution

mean (i.e., △ = 0). In our case study, N-LOCF is more conservative than MAR since

N-LOCF maintains the pain intensity level in present values even though the mean pro�les

by treatment group tend to separate over time. Another reason is that N-LOCF impu-

tation is based on PCB whereas ACMV imputation is based on the subject's treatment

group. In the same vein, we de�ne N-BOCF which resumes the concept of BOCF single

imputation. Under N-BOCF, we set the values of △ equal to the individual gains observed

from randomization to the last visit.

The following drop-out strategies rely on clinical rationales. Under N-DO5, any drop-

out is associated with a penalty on present outcome values in terms of pain intensity

which is set to △=−5. This value was discussed and approved by clinical experts for its

meaningfulness in chronic pain. This also corresponds to minus the expected treatment

e�ect under the alternative in the trial protocol.

The drop-out strategy N-AE5 re�nes N-DO5 by incorporating information about the

cause of drop-out in an attempt to balance bene�ts against risks. The penalty rule is

supposed to re�ect the prejudice su�ered by subjects because of drop-out. Under N-AE5,

missing outcome values are imputed, assuming :

1. NFD(△=−5) if a subject drops out for AE due to the treatment,

2. NFD(△=−10) if a subject drops out for serious AE due to the treatment,

3. N-LOCF or NFD(△ = 0) if a subject drops out for AE not due to the treatment,

4. MAR if a subject drops out for other reasons than AE.

In our case study, the lower the value of △, the greater the conservatism introduced by

NFMV imputation into the analysis because of the greater drop-out rate in the Test group.

The next two drop-out strategies aim at measuring the impact of the penalty value in

N-AE5. The value is brought to △ = −10 in N-AE10 and △ = −15 in N-AE15 in subjects

who dropped out for AE due to the treatment. The other rules, i.e., the doubling of the ∆

value if the AE is serious and the zeroing if AE is not due to the treatment, are kept.
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In another set of de facto analyses, we question our implementation of NFD strategies for

which the present is characterized by the �rst unobserved visit whereas the distributions of

present values are based on the drop-out visits in the closest neighboring patterns. Indeed,

the drop-out visits are repositioned to the next scheduled visit for analysis so that the

present may be likened to a (near) future. Moreover, the in�uence of the cause of drop-out,

such as an AE, on a patient's assessment is not well characterized. So, we cannot rule out

that the outcome value at the drop-out visit combines e�cacy and safety. In an attempt to

address this, we introduce N-AE5-L, N-AE10-L, and N-AE15-L, which resume the penalty

rules applied in N-AE5, N-AE10, and N-AE15, respectively. However, the drop-out visits

are removed in the subjects who dropped out for AE and are kept otherwise.

Results of de jure and de facto analyses in the PMM framework will be contrasted to

those obtained after BOCF and LOCF single imputations, as well as, in completers and in

subjects with complete outcome pro�les (i.e., in subjects who drop out after visit 3). To

facilitate the comparison, all analyses will be conducted using the same statistical model,

which is described in the next section. For BOCF and LOCF analyses speci�cally, the three

subjects of pattern 0 without assessment under treatment are imputed with a 0 value for

the continuous outcome and are clinically non-responders. The fourth subject of pattern 0

without assessment at randomization is excluded from analyses.

Table 3 sums up the drop-out strategies de�ned in this section.

Table 3 � Description of drop-out strategies

Type of Drop-out Missingness Type of Parameter Data set

analysis strategy mechanisms imputation estimation

_ BOCF Unknown Single _ All visits

_ LOCF Unknown Single _ All visits

_ Complete _ _ _ Complete pro�les

_ Completers _ _ _ Completers

de jure NCMV Unknown Multiple By group All visits

de jure ACMV MAR Multiple By group All visits

de jure CCMV Unknown Multiple By group All visits

de facto N-BOCF NFD Multiple PCB All visits

de facto N-LOCF NFD Multiple PCB All visits

de facto N-DO5 NFD Multiple PCB All visits

de facto N-AE5 NFD/MAR Multiple PCB All visits

de facto N-AE5-L NFD/MAR Multiple PCB Scheduled visits

de facto N-AE10 NFD/MAR Multiple PCB All visits

de facto N-AE10-L NFD/MAR Multiple PCB Scheduled visits

de facto N-AE15 NFD/MAR Multiple PCB All visits

de facto N-AE15-L NFD/MAR Multiple PCB Scheduled visits
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4 Implementation of PMM analysis using MI

4.1 General features

The PMM analyses are implemented following the standard MI approach, as described

in [12], which includes pattern parameters estimation, missing values imputation, and

pooled analysis. Some other basic features follow general recommendations for MI analysis

of continuous and derived binary outcomes which are stated, justi�ed, and exempli�ed in

[6]. These are :

1. MI in the original scale followed by analysis of the desired derived outcome is a more

informed strategy than direct analysis of the derived outcome ;

2. Analysis at the desired timepoint provides valid inferences if all the e�ects are pro-

perly �tted by imputation models ;

3. MI o�ers a transparent way to represent the impact of drop-out strategies.

In our case study, missing outcome values are imputed on the continuous scale in ac-

cordance with recommendation 1. Then, we derive the values of the binary outcome in

terms of clinical response or non-response, by subject and by imputation. In this way, all

MI analyses are based on the same complete data sets for the continuous outcome.

Analysis of the outcome values at visit 4 is based on the original statistical models, as

mentioned in the trial protocol. The continuous outcome is analyzed using a covariance

analysis model whereas the binary outcome is analyzed using a logistic regression model.

The pain level at randomization is a covariate and the three-class stratum factor region a

stratum factor. According to recommendation 2, the analysis of the outcome values at visit

4 provides valid treatment-e�ect inferences, like any longitudinal model if the covariate

and class-factors are properly �tted by the imputation models. The imputation models

used are mixed models for repeated measures (MMRM) with the factor region and the

full baseline-by-visit and group-by-visit interactions for the �xed e�ects and unstructured

error covariance matrix.

We implement recommendation 3 using summary outcome values by subject directly

obtained from the complete data sets. The summary continuous values are simply the

means by subject over imputations. For the summary binary values, the clinical responses

or non-responses are �rst derived by subject and by imputation. The subject is declared

as clinical responder if at least half of these binary values correspond to clinical responses.
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Next, we re-use the covariance analysis and the logistic regression models here-above to

analyze the summary outcome values in the subgroups of subjects who dropped out for AE

and those who dropped out for other reasons. We also provide raw frequencies of clinical

responders based on the summary binary values, for illustrative purposes.

An analysis of the summary outcome values ignores between-imputation variance unlike

pooled analysis in Rubin's method. The relative increase of variance due to missing data,

introduced by Rubin [12], depends on the ratio of the between-imputation to the total

variance. In our case study, the maximum value obtained for this criterion was 0.17. This

indicates that the magnitude of ignored variance information is moderate. It also supports

the use of the summary outcome values to illustrate the impact of drop-out strategies.

4.2 Estimation of the marginal treatment e�ect

In this section, we describe a procedure in three stages to estimate the marginal treat-

ment e�ect in a PMM-MI analysis. It is important to recall that the original Rubin's

method provides inferences that are conditional on patterns by construction. To analyze

the marginal treatment e�ect, the pattern-speci�c e�ects must be combined into a pattern-

average e�ect. Some aspects of the procedure are further detailed in [13]. A complement of

information to implement analysis using a SAS program which combine R functionalities

is available in the Appendix.

4.2.1 Pattern parameter estimation

Distinct models are formulated within each pattern. Let us denote byYi = (yi,1, . . . , yi,T )

the complete outcome vector in the ith subject of pattern t and Yi,obs = (yi,1, . . . , yi,t) its

observed part. The MMRMs per pattern can be expressed as :

Yi,obs = Xiβt + ϵi, (7)

where ϵi ∼N(0,Σt), Σt is unstructured, and the ϵi's are independent. The matrix Xi

contains the known subject covariates whereas βt contains the unknown �xed e�ects. This

�rst stage is aimed at estimating the pattern parameters βt and Σt, whose estimators are

denoted β̂t and Σ̂t in what follows.

4.2.2 Imputation

Missing values imputation is conducted sequentially by value. We describe here-below

how to obtain a run of M imputed values of yi,t+1. Multiple imputation of yi,t+2, . . . , yi,T
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follows the same process by considering the previous imputed values as observed ones. The

identifying restriction chosen determines which patterns are used for imputation. Whereas

imputations under CCMV (3) and NCMV (4) use unique patterns, imputations under

ACMV and NFMV (5) is based on several patterns.

In our illustration, we suppose that yi,t+1 is imputed from pattern r (t+1≤r≤T ). Let

us introduce µi,r the mean of Yi, which is µi,r = Xiβr. Based on appropriate parts of µi,r

and Σr, we further de�ne the distributions of the components of Yi, which are Yi,obs ∼

N(µi,r,1,Σr,11) and yi,t+1 ∼ N(µi,r,2,Σr,22). Their covariances are denoted Σr,12 and Σr,21.

Using 2|1 as notation for yi,t+1|yi,1, . . . , yi,t, the conditional pattern distribution of yi,t+1

given yi,1, . . . , yi,t is described by :

fr(yi,t+1|yi,1, . . . , yi,t) ∼ N(µi,r,2|1,Σr,2|1),

where

µi,r,2|1 = µi,r,2 +Σr,21[Σr,11]
−1(Yi,obs − µi,r,1),

Σr,2|1 = Σr,22 − Σr,21[Σr,11]
−1Σr,12.

(8)

Uncertainty pertaining to the pattern parameters βr and Σr is incorporated through

Bayesian distributions. On the basis of non-informative Je�reys' priors in the Gaussian

context, the values of β̂
(m)

r and Σ̂
(m)
r , m = 1, . . . ,M, are randomly drawn from their

respective posterior predictive distributions. After the derivation of µ̂
(m)
i,r , the imputed

values of yi,t+1 are drawn from the conditional pattern distributions, which are expressed

by :

f (m)
r (yi,t+1|yi,1, . . . , yi,t) ∼ N(µ̂

(m)
i,r,2|1, Σ̂

(m)
r,2|1), m = 1, . . . ,M. (9)

This stage requires the covariate and the outcome value at visit 1 to be available. In

pattern 0, these missing values are multiply imputed to begin with. Missing covariates

are imputed from the conditional bivariate normal distribution of both variables given

the �rst outcome value. Missing �rst outcome values are imputed from the conditional

bivariate normal distribution of both variables given the covariate in pattern 1 under

NCMV, the whole sample under ACMV, and pattern 5 under CCMV. Next, the only

intermittent missing value at visit 3 is multiply imputed from the conditional multivariate

normal distribution of all outcome values given the observed ones in pattern 5, which is

the subject's pattern.
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4.2.3 Pooled analysis

The outcome values at visit 4 are analysed per pattern and by imputation. Let us denote

theMT -dimensional vector of treatment-e�ect estimates by δ=(δ̂
(1)
1 ,. . .,δ̂

(M)
1 ,. . .,δ̂

(1)
T ,. . .,δ̂

(M)
T ),

where δ̂
(m)
t is the estimate in pattern t and imputation m.

We �rst derive the vector of pooled estimates per pattern which is noted δ∗=(δ∗1 ,. . .,δ
∗
T ).

According to Rubin's rule, the δ∗t 's are the means of the δ̂
(m)
t 's per pattern and the T×T -

dimensional total covariance matrix of δ∗ is given by :

V ∗ = W ∗ +

(
M + 1

M

)
B∗,

where W ∗ is the within-imputation covariance matrix and B∗ is the between-imputation

covariance matrix. W ∗ is a diagonal matrix whose coe�cients are the means of the δ∗t 's

standard errors and B∗ is the correlation matrix of δ∗.

Then, the pattern-speci�c information is combined with respect to pattern probabilities.

To this end, we use Rubin's rule a second time to derive the pattern-average parameters

which are denoted δ†, W †, and B†, respectiely in what follows. Let us de�ne the vector Π

that contains the overall pattern probabilities regardless of treatment groups. We estimate

the marginal treatment e�ect using δ† = Π′δ∗. The total variance is given by :

V † = W † +

(
T + 1

T

)
B†,

where W †=Π′W ∗Π+δ∗
′
Var(Π)δ∗ is the within-pattern variance and B†=Π′B∗Π the

between-pattern variance. These formulas were derived and justi�ed in [13]. Then, the

treatment e�ect is tested using a Student t-statistic with the freedom degree (T −1)∗{1+

W †/[(1 + 1/T ) ∗B†)]2} given in Rubin [12].

It is important to realize that the formulaes described here-above assume that pattern

probabilities are equal in the two groups. Whereas this assumption is necessary, and accep-

table, to derive an analytic approximation of the total variance, the treatment e�ect can

be estimated by dispensing with it. This is all the more necessary in our case study where

Figure 1 yields the pattern probabilities vectors Π̂
′
P =(.065, .047, .027, .029, .831) for PCB

and Π̂
′
T = (.141, .063, .039, .044, .712) for Test and the classical χ2 to test homogeneity

between groups provides p<0.01. To tackle this, it is quite possible to use the treatment-

e�ect estimate provided by direct pooled analysis which is the average of the estimates by

imputation regardless of patterns. This estimate is conditional on patterns but consistent.

So, our implementation of PMM-MI analysis combines the estimate obtained from direct

pooled analysis and the total variance of the pattern-average e�ect.
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5 Results

5.1 Continuous outcome analysis

Figure 2 displays treatment-e�ect inferences obtained with the continuous outcome at

visit 4 under the drop-out strategies speci�ed in Table 3. We provide the di�erences between

treatment groups with their 95% con�dence limits and p-values. Results by treatment group

are expressed in terms of adjusted means with standard errors.

As expected, owing to the greater drop-out rate in the Test group, the treatment e�ect

estimated after LOCF imputation [4.30 (1.41) p=0.002] lies between that obtained after

BOCF imputation [2.85 (1.37) p=0.038] and in subjects with complete outcome [5.87 (1.61)

p<.0001]. Relative to BOCF, LOCF increases the means by treatment group by 0.1 for PCB

and 1.6 for Test, suggesting that drop-out subjects under Test bene�t from the treatment.

Next, the treatment e�ect estimated in completers [5.14 (1.66) p=0.002] is lower than that

obtained in subjects with complete outcome. This results was expected since the set of

subjects with complete outcome is composed of the subjects of pattern 4 and the subjects

of pattern 5 (i.e., the completers). Moreover, Figure 1 exhibits a huge di�erence between

treatment groups in pattern 4.

Among PMM analyses, the per-protocol analyses exhibit moderate divergences. As ex-

pected, CCMV which uses the pattern of completers for imputation produces larger means

by treatment group (11.9 for PCB and 16.9 for Test) than ACMV which uses all available

patterns (11.7 for PCB and 16.4 for Test) and NCMV which uses the closest neighboring

patterns (10.7 for PCB and 15.6 for Test). CCMV also produces larger treatment e�ect

[5.03 (1.63) p=0.002] than ACMV [4.78 (1.63) p=0.004] and NCMV [4.85 (1.67) p=0.004].

The de facto analyses exhibit greater divergences. The treatment e�ect estimated under

N-LOCF [3.92 (1.72) p=0.024] is related to that obtained with the single-imputation coun-

terpart LOCF whereas N-BOCF [1.52 (1.89) p=0.424] provides a lower estimate than that

obtained with BOCF. The allowance for appropriate uncertainty in the NFD strategies

increases standard errors and p-values. Unlike BOCF, the treatment e�ect under N-BOCF

is not statistically signi�cant.

Because of the greater drop-out rate in the Test group, the penalty ∆ = −5 applied

to drop-out subjects decreases the treatment e�ect under N-DO5 [3.21 (1.78) p=0.073] by

0.71 relative to N-LOCF which involves ∆ = 0. The inferences produced by N-AE5 [3.13

(1.74) p=0.0073] are very close to that of N-DO5 although the penalty is zeroed if subjects

drop out for other reasons than AE. Indeed, these subjects are similarly distributed in
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Figure 2 � Treatment-e�ect estimates obtained with the continuous outcome at visit 4.

the two groups (7.4% for PCB and 7.0% for Test based on Table 1). Consequently, the

means by treatment group increase similarly. As a global rule in the N-AEx strategy class,

the increase of penalty value makes the treatment-e�ect estimate decreasing, as observed

under N-AE10 [2.21 (1.80) p=0.222] and N-AE15 [1.23 (1.90) p=0.520], since twice more

subjects dropped out for AE in the Test group compared to PCB.

In the N-AEx-L strategy class, the removal of the last visit if drop-out is caused by an AE

increases the means by treatment group relative to the corresponding N-AEx counterparts.

This impact was expected since Figure 1 exhibits mean outcome pro�les in the drop-out

patterns, which decline at the last visit. The removal of the last visit also increases the

separation between treatment groups under N-AE5-L [3.58 (1.73) p=0.040], N-AE10-L

[2.82 (1.76) p=0.111], and N-AE15-L [2.04 (1.80) p=0.259] relative to the respective N-

AEx counterparts.

The search of a penalty value applicable to drop-out subjects at which conclusions

change from being favorable for Test to being unfavorable was suggested by authors in

di�erent contexts [14]. In our case study, we have conducted such investigation under the
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strategies N-AEx and N-AEx-L. The limit values which zero the treatment e�ect (i.e., no

di�erence between treatment groups) are ∆ = −21 under N-AEx and ∆ = −30 under N-

AEx-L. In the same vein, the limit values for statistical non-signi�cance (i.e., p=0.05) are

∆ = −3 under N-AEx and ∆ = −6 under N-AEx-L. These limit values can be interpreted

as the maximum price to pay for drop-out so that Test remains bene�cial to subjects in

the trial. If the penalty is below these limit values, the risks for subjects do not balance

the bene�ts of Test. Of note, several authors have suggested to introduce conservatism by

deliberately penalizing subjects of the Test group, such as in the δ-method (see, e.g., [15]).

In our analysis, penalties are applied to drop-out subjects whatever their treatment groups.

Ultimately, this allows a sensible representation of true treatment e�ects, undermining a

main trial objective [16].

5.2 Binary outcome analysis

Figure 3 displays treatment-e�ect estimates obtained with the binary outcome at visit

4 under the drop-out strategies speci�ed in Table 3. We provide odds-ratios with their 95%

con�dence limits and p-values. Results by treatment group are described with frequencies

and percentages of clinical responders based on the summary binary values.

The inferences obtained after BOCF [1.37 (0.15) p=0.029] and LOCF [1.53 (0.14)

p=0.003] imputations con�rm the major trends observed with the continuous outcome.

The greater odds-ratio obtained after LOCF imputation relative to BOCF is caused by 16

additional clinical responders for Test against 5 for PCB. Despite the change of outcome

scale, the p-values obtained after BOCF and LOCF imputations, as well as in subjects

with complete outcome [1.74 (0.16) p<0.001] and in completers [1.63 (0.16) p=0.002], are

surprisingly identical to those obtained with the continuous outcome.

The per-protocol analyses now exhibit a moderate divergence between CCMV [1.63

(0.18) p=0.006], ACMV [1.58 (0.18) p=0.011], and NCMV [1.46 (0.20) p=0.061]. Parti-

cularly, the treatment e�ect under NCMV is not statistically signi�cant. Among de facto

analyses, the treatment e�ect estimated under N-LOCF [1.52 (0.19) p=0.027] is still grea-

ter than that estimated under N-BOCF [1.39 (0.21) p=0.117]. The di�erence is caused

by 13 additional clinical responders for Test against 3 for PCB. As with the continuous

outcome, N-DO5 [1.48 (0.21) p=0.059] and N-AE5 [1.47 (0.19) p=0.047] provide similar

treatment-e�ect estimates although only N-AE5 is statistically signi�cant. Of note, both

strategies produce treatment e�ects on the edge of the statistical signi�cance.
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Figure 3 � Treatment-e�ect estimates obtained with the binary outcome at visit 4.

Whereas treatment-e�ect inferences obtained so far with the binary outcome remain

coherent with the continuous case, the N-AEx strategies exhibit a divergence. The increase

of the ∆ value only implies a slight decrease of the odds-ratio as observed under N-AE10

[1.45 (0.20) p=0.070] and N-AE15 [1.43 (0.21) p=0.090] relative to N-AE5. However, this

impact combined with a slight increase of standard error makes the p-values obtained under

N-AE10 and N-AE15 non statistically signi�cant, unlike under N-AE5. The slightness of the

impact on treatment e�ect is caused by a �oor e�ect on the numbers of clinical responders.

From N-AE5 to N-AE15, these numbers vary from 134 to 133 for PCB and from 163 to

162 for Test. A second consequence of the �oor e�ect is the lack of divergences between N-

AE5-L [1.50 (0.19) p=0.033], N-AE10-L [1.45 (0.20) p=0.059], and N-AE15-L [1.42 (0.21)

p=0.097], and with their respective N-AE counterparts. A third consequence is that the

treatment-e�ect magnitude remains in favor of Test (i.e., odds-ratio>1) under the N-AEx

and N-AEx-L strategies, whatever the penalty value. As for the rest, the limit values for

statistical non-signi�cance are ∆ = −6 under N-AE and ∆ = −8 under N-AEx-L.
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5.3 Subgroup analysis

Table 4 provides the treatment-e�ect estimates obtained with the continuous and the

binary outcomes at visit 4 in the subgroups of subjects who dropped out for AE (DOAE)

and other reasons than AE (DOnotAE) under the drop-out strategies speci�ed in Table 3.

Table 4 � Treatment-e�ect estimates at visit 4 in the subgroups of subjects who dropped out for

AE and other reasons than AE († indicates a treatment e�ect in favor of PCB).

Subgroups Drop-out Mean Di� (se) p Freq (%) OR (se) p

strategies PCB Test PCB Test

DOAE BOCF -.10 2.2 2.3 (1.4) 0.098 0/44 (0.0) 4/96 (4.2) 5.23 (1.37) 0.228

LOCF 5.0 7.6 2.6 (2.9) 0.372 5/44 (11.4) 18/96 (18.7) 1.9 (0.56) 0.257

CCMV 9.1 13.2 4.0 (2.7) 0.130 7/44 (15.9) 26/96 (27.1) 1.74 (0.47) 0.234

ACMV 7.9 11.4 3.5 (2.5) 0.172 7/44 (15.9) 24/96 (25.0) 1.57 (0.47) 0.335

NCMV .45 8.5 8.1 (2.1) <.001 5/44 (11.4) 10/96 (10.4) 0.85 (0.56) 0.768 †
N-BOCF -1.4 -2.4 -1.0 (2.8) 0.722 3/44 (6.8) 4/96 (4.2) 0.59 (0.72) 0.460 †
N-LOCF 3.4 6.2 2.8 (2.7) 0.308 6/44 (13.6) 15/96 (15.6) 1.10 (0.51) 0.854

N-DO5 -1.9 .36 2.3 (2.8) 0.418 5/44 (11.4) 12/96 (12.5) 1.02 (0.55) 0.966

N-AE5 -.64 .62 1.3 (2.9) 0.667 5/44 (11.4) 12/96 (12.5) 1.02 (0.55) 0.966

N-AE10 -4.9 -5.3 -.38 (3.2) 0.907 † 5/44 (11.4) 11/96 (11.5) 0.93 (0.55) 0.903 †
N-AE15 -9.6 -12.0 -2.1 (3.7) 0.576 † 4/44 (9.1) 11/96 (11.5) 1.19 (0.59) 0.770

N-AE5-L 5.7 5.2 -.47 (2.1) 0.822 † 5/44 (11.4) 13/96 (13.5) 1.07 (0.54) 0.902

N-AE10-L 1.8 .07 -1.7 (2.2) 0.431 † 4/44 (9.1) 8/96 (8.3) 0.83 (0.61) 0.755 †
N-AE15-L -2.2 -5.1 -2.9 (2.3) 0.206 † 4/44 (9.1) 6/96 (6.3) 0.63 (0.63) 0.467 †

DOnotAE BOCF -1.0 6.7 7.7 (2.7) 0.006 1/33 (3.0) 7/30 (23.3) 9.0 (0.95) 0.021

LOCF -5.7 12.3 18.1 (3.6) <.001 1/33 (3.0) 9/30 (30.0) 17.7 (1.02) 0.005

CCMV -2.2 15.8 18.0 (2.6) <.001 2/33 (6.0) 11/30 (36.7) 8.71 (0.78) 0.006

ACMV -3.3 14.8 18.1 (3.3) <.001 2/33 (6.0) 11/30 (36.7) 8.71 (0.78) 0.006

NCMV -5.8 12.0 17.8 (2.3) <.001 1/33 (3.0) 9/30 (30.0) 12.7 (0.96) 0.008

N-BOCF -.89 .54 1.43 (4.4) 0.747 1/33 (3.0) 7/30 (23.3) 7.10 (0.92) 0.034

N-LOCF -5.1 11.1 16.2 (3.5) <.001 1/33 (3.0) 9/30 (30.0) 12.7 (0.96) 0.008

N-DO5 -9.5 7.25 16.7 (3.7) <.001 1/33 (3.0) 9/30 (30.0) 12.7 (0.96) 0.008

N-AEx -3.3 14.3 17.7 (3.5) <.001 2/33 (6.0) 10/30 (33.3) 7.62 (0.79) 0.010

N-AEx-L -2.8 14.6 17.4 (3.5) <.001 2/33 (6.0) 10/30 (33.3) 7.62 (0.79) 0.010

An overall look at results in the subgroup DOAE reveals that only NCMV on the

continuous scale yields a statistically signi�cant e�ect of Test. In this subgroup, the other

drop-out strategies produce treatment e�ects that are either moderate or counterbalanced

by penalties for drop-out in the N-AEx and N-AEx-L strategies. The subgroup DOnotAE

exhibits opposite results since all the drop-out strategies, except N-BOCF on the continuous

scale, yield statistically signi�cant e�ects of Test. In this subgroup, the continuous outcome

means by treatment group are all positive for Test and negative for PCB, whereas the rates
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of clinical responders are always greater for Test. These results indicate that there is no

evidence of treatment e�ect in the subjects who dropped out for AE whereas the subjects

who dropped out for other reasons unambiguously bene�ted from Test.

Further attention is needed to interpret the results after BOCF imputation, which ex-

hibit non-null continuous outcome means by treatment group and some clinical responders

although BOCF assigns a 0 value and a non-clinical response if visit 4 is missing. In fact, all

subjects in Table 4 dropped out but the subjects of pattern 4 dropped out after visit 3 and

have their drop-out visit repositioned to visit 4 for analysis. So, the non-null continuous

outcome values and the clinical responses come from this pattern.

Results obtained under NCMV in the subgroup DOAE also deserve explanations since

the e�ect of Test is statistically signi�cant with the continuous outcome [8.1 (2.1) p<.001]

whereas analysis on the binary scale yields a slight advantage in favor of PCB [OR=0.85

(0.56) p=0.768]. Relative to CCMV, the means by treatment group decrease by -8.6 for

PCB and -4.7 for Test. Such impact was expected from Figure 1, which exhibits a marked

divergence between the drop-out patterns 1�4 used in NCMV and pattern 5 of completers

used in CCMV. In parallel, the numbers of clinical responders decrease by −2/44 (−4.5%)

for PCB and −15/96 (−15.6%) for Test. This contradictory result is only caused by a scale

e�ect. The substantial gain for PCB with the continuous outcome corresponds to a few

additional clinical responders because the threshold of 30% improvement is not reached.

These results in the subgroup DOAE explain the slight divergence observed in analysis

under NCMV in the whole sample. The treatment e�ect is statistically signi�cant on the

continuous scale and not on the binary scale whereas results obtained with both outcomes

are perfectly in line under CCMV and ACMV.

Under the N-AEx and N-AEx-L strategies, the impact of the penalty applied to subjects

who dropped out for AE is unsurprisingly quasi-linear on the continuous scale in the

subgroup DOAE. This trend is not observed with the binary outcome because of the �oor

e�ect. In the subgroup DOnotAE, the penalty has no impact since subjects are imputed

assuming MAR. Of note, the results obtained under ACMV and N-AEx correspond in the

PCB group with 2/33 clinical responders and di�er in the Test group with respectively

11/33 and 10/33 clinical responders. The reason is that ACMV imputation is based on the

treatment group whereas N-AEx imputation is based on PCB only.
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6 Discussion

Planning PMM-MI analysis requires to question and address all the aspects of imple-

mentation. Some characteristics of patterns like the pattern sizes (e.g., majority completer

versus spread over many patterns) and the proximity between patterns (e.g., are there

major jumps in mean and/or variance structure from one pattern to the neighboring one)

should be cautiously examined as they provide a valuable information on the impact of

drop-out strategies. In some cases, the use of the pattern of completers for imputation

contributes to unduly over-estimate the treatment e�ect and imposes inappropriately low

uncertainty. In our case study, imputation in de facto analyses is based on the drop-out

patterns in the PCB group. These patterns have homogeneous sizes and their mean pro-

�les exhibit stable trends over time. The consequence is that, outside the e�ect of the

free distribution of present values in NFD, drop-out strategies have a moderate impact on

treatment-e�ect estimate while some amount of uncertainty is allowed.

Other aspects of implementation are speci�c to NFD strategies. In practice, the present

often corresponds to the �rst unobserved visit. We also de�ne the distributions of present

values relative to the drop-out visits in the closest neighboring patterns. Therefore, it is

important to assess the impact of these options in sensitivity analyses. This is all the more

necessary that the drop-out visits are repositioned to the next scheduled ones for analysis

and we cannot rule out that the assessments at these visits combine other aspects than

e�cacy. In our case study, the exclusion of the drop-out visits when drop-out is caused by

an AE from analysis implies a moderate increase of treatment-e�ect estimate. This impact

was expected from the description of patterns which exhibits mean pro�les which decline

at the drop-out visits. Based on this clinical argument and the absence of strong divergence

between analyses, we considered that drop-out visits do not bias e�cacy evaluation and,

on the contrary, provide valuable information for treatment-e�ect estimation.

7 Concluding remarks

As already stated and exempli�ed in [17], PMM-MI methods permit relevant and acces-

sible assumptions on drop-out mechanisms. Among them, NFD o�ers an appealing setting

to formalize beliefs in analyzing RCTs. Drop-out strategies can easily be tailored according

to plausible clinical scenarii. We show that NFD implementation via PMM-MI methods of-

fers powerful solutions to tackle major drawbacks of well known single-imputation concepts
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such as BOCF and LOCF. We also show how the ratio of risks to bene�ts can be investi-

gated with the introduction of penalties for drop-out. Last, we highlight the importance of

a thorough investigation of the impact of drop-out strategies. To this end, MI can be used

to analyze subgroups of interest.

Our implementation of PMM-MI methods allows valid inferences of the marginal treat-

ment e�ect, which is compatible with analysis of con�rmatory RCTs. Patterns are de�ned

based on every visit and outcome values are �tted using MMRMs with full group-by-visit

interaction. However, any candidate method implies the possibility to plan all the aspects

of analysis before breaking the blind. In this manuscript, we highlight several points to

consider that can be addressed during analysis preparation. We also show that software

implementation is very feasible using a freely available existing program. Accordingly, there

is now no reason not to consider NFD assumption and PMM-MI methods for primary and

sensitivity analyses in con�rmatory RCTs.
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Appendix : Implementation using software

This appendix provides the reader with additional information to implement mar-

ginal treatment-e�ect estimation in PMM-MI analysis. We base implementation on an

existing SAS program which combines R functionalities, available at the [4] publica-

tion web-site. This program provides pooled treatment-e�ect estimates under NCMV,

ACMV, NCMV, and NFMV using the three-stage Rubin's method. Minimal know-

ledges in SAS and R are needed to implement additional functionalities.

In the existing program, parameters estimation and pooled analysis are performed

in SAS whereas MI is entirely carried out under R. A �rst limitation to implement
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our case study is that MI is conducted under the same identifying restrictions in all

subjects. The reason is that the program structure does not allow for individual impu-

tation schemes as MI parameters, including the speci�cation of identifying restriction,

are entered in the SAS program and are then exported to R to perform MI in all

subjects. To correct this, the loop for subjects in the MI procedure must be transfered

from the R script into the SAS program. Of note, this transfert causes much more

calls of R from SAS when running the program since the R script is now nested in the

loop.

Next, the existing program does not impute missing covariates and �rst outcome

values. This functionality must be inserted in the R script using a syntax similar to

that used for imputation of the other missing values. Another modi�cation in the R

script concerns the numberings of patterns and last visits which match by default. In

our case study, subjects with complete outcome pro�les may pertain to patterns 4 and

5 although visit 4 is the last visit in both patterns. Information on how to decouple

the patterns and the last visit numbers is available in Section 7.4 in [4].

To conclude, analysis of the marginal treatment e�ect requires to replace the syntax

to perform the direct pooled analysis in the SAS program by syntax to perform pooled

analyses per pattern and then average treatment e�ects accross patterns. Using the

notation in Section 4.2.3, we suggest the following algorithm :

1. Use SAS Proc MIXED or SAS Proc LOGISTIC to �t outcome values at visit 4

per pattern by imputation and estimate δ and standard errors ;

2. Use SAS Proc FREQ to estimate the pattern probabilities in Π ;

3. Use SAS Proc MIANALYZE to estimate δ∗ and W ∗ which contain pooled treat-

ment e�ects and within-imputation standard errors per pattern ;

4. Use SAS Proc CORR to estimate the between-imputation covariance matrix B∗ ;

5. Use R or SAS to calculate the pattern-averaged parameters W †, B†, V † and

produce inferential results.
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