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Abstract

In longitudinal studies of biomarkers, an outcome of interest is the time at which
a biomarker reaches a particular threshold. The CD4 count is a widely used marker
of human immunodeficiency virus (HIV) progression. Due to the inherent variability of
this marker, a single CD4 count below a relevant threshold should be interpreted with
caution. Several studies have applied persistence criteria, designating the outcome as the
time to the occurrence of two consecutive measurements less than the threshold. In this
paper we propose a method to estimate the time to attainment of two consecutive CD4
counts less than a meaningful threshold, which takes into account the patient-specific
trajectory and measurement error. An expression for the expected time to threshold is
presented, which is a function of the fixed effects, random effects, and residual variance.
We present an application to HIV positive individuals from a seroprevalent cohort in
Durban, South Africa. Two thresholds are examined and 95% bootstrap confidence
intervals are presented for the estimated time to threshold. Sensitivity analysis revealed
that results are robust to truncation of the series, and variation in the number of
visits considered for most patients. Caution should be exercised when interpreting the
estimated times for patients who exhibit very slow rates of decline and patients who
have less than three measurements. We also discuss the relevance of the methodology
to the study of other diseases and present such applications. We demonstrate that the
method proposed is computationally efficient and offers more flexibility than existing
frameworks.

Some Keywords: Threshold, prediction, HIV progression, CD4 count, persistence
criteria, seroprevalent cohort.
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1 Introduction

Biomarkers are widely used in the screening, diagnosis and monitoring of several diseases. In

screening programmes, cohort studies, and clinical trials where interest lies in a repeatedly

measured biomarker, the outcome of interest may be the time at which a biomarker reaches

a particular threshold. Biomarkers for clinical events are particularly useful in the study of the

human immunodeficiency virus (HIV) progression due to the long natural history of the disease.

CD4 cells, which are lymphocyte cells responsible for immune response to infections, are the

primary target of the virus and are cited as a relevant predictor of acquired immunodeficiency

syndrome (AIDS) related illness and death [1]. A comprehensive review of CD4 count as a

surrogate marker for AIDS defining illnesses and death can be found in Burzykowski et al. [2].

Another relevant biomarker is viral load, which quantifies the level of HIV in blood. Viral load

is used as a surrogate marker for treatment efficacy, AIDS defining illnesses, and death [3].

The World Health Organization (WHO) guidelines recommend treatment for all HIV positive

patients, but emphasize treatment as a priority for patients with CD4 counts less than 350

cells/mm3 or WHO stage 3 or 4 symptoms [4]. Hence, in the absence of clinical manifestations,

the urgency of treatment initiation is based on a single CD4 count measurement less than 350

cells/mm3. The time to reach a relevant CD4 count threshold is also used as an endpoint in

HIV/AIDS clinical trials as a marker of treatment success and in cohort studies where interest

is in examining HIV progression.

A study of variability of CD4 count in patients enrolled in the ACTG trial revealed that

measurements taken eight weeks apart differed by 20 percent [5]. Malone et al. [6] and Crowe

et al. [7] attribute this variability in CD4 counts to several factors including diurnal variation,

measurement error, psychological and physical stress, diet and the menstrual cycle. Owing to

the inherent variability of this marker, a single CD4 count below a relevant threshold should

be interpreted with caution.
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1.1 Current approaches to time to threshold modelling

1.1.1 Standard approaches

The time to CD4 threshold has been analysed as an outcome in several recent studies. The

convention in such studies is to first extract the time of the event, which is analysed in a

second stage within the survival analysis framework. Cardeal da Silva et al. [8] analysed the

time to first CD4 count less than 350 cells/mm3 as the primary outcome in their study, which

compared the rate of HIV progression pre and post the introduction of antiretroviral therapy

(ART). In a recent application, Zhang [9] examined the effect of the rs12252-C genotype on

HIV progression, which was defined as the time of the first CD4 count less than 350 cells/mm3.

Amornkul et al. [10] studied a cohort of recently infected individuals where the effect of HIV

subtype on HIV progression was examined. In this study, immunologic progression was defined

as time from seroconversion to the first of two consecutive CD4 cell counts less than or

equal to 350 cells/mm3. Imposing persistence criteria such as a ‘two consecutive’ rule is an

improvement on basing clinical decisions on a single CD4 count, but can be unreliable when

the time between visits is large. In addition, patients who enter the study with a CD4 count

already below the relevant threshold, typically are excluded in modelling time to threshold.

Removing these patients from the analysis results in left truncation and biased inferences.

1.1.2 General model-based approaches

A criticism of the standard approach discussed above is that it ignores the inherent subject-

specific CD4 count trajectory, and assumes that the event times are observed without error.

Model-based approaches to the time to threshold of a biomarker have recently emerged. One

such approach is inverse estimation or calibration. Sweeting and Thompson [11] examined the

time for subjects enrolled in the ’Multicentre aneurysm screening study’ to reach an aneurysm

diameter of 55 mm. The researchers used the method of inverse estimation in linear and

quadratic subject-specific curves from a Bayesian hierarchical model. The estimated times to

threshold were found to be too imprecise to be used in practice. In cases where the interest lies

in modeling the time to threshold of an ordinal variable, continuous time Markov models have
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proven to be useful. This involves forming a distinct set of states and computing the mean

first hitting time to a particular state. Mandel [12] added to this methodology by studying

the first hitting time to a state followed by a fixed duration of stay in the state. This was

applied to a study on multiple sclerosis where sustained progression based on a disability scale

was of interest. When the outcome of interest is a continuous biomarker, the construction of

discrete states is somewhat arbitrary. Furthermore, due to the high degree of variability of the

biomarker, reverse transitions and transitions that skip intermediate states are often observed

[13].

1.1.3 Contribution and organization of this paper

In this paper we propose an approach to time to threshold modelling that involves two stages.

In the first stage, a linear mixed model is fitted to the longitudinal measurements, resulting

in patient-specific predicted values that are a function of the fixed-effects and empirical Bayes

estimates. In the second stage, the probability of experiencing two consecutive measurements

less than a relevant threshold k at each time point is computed and substituted into the

expression for the expected time to threshold. The methodology underlying our proposed

method is presented in Section 2 and the Appendix. This approach, which was motivated

by time to threshold modelling in the HIV setting, is applied in Section 3 to data emanating

from a cohort of HIV positive individuals in South Africa. For ease of presentation, we draw

attention to the estimated time to threshold for four selected patients, each of whom exhibits

a different CD4 count evolution. We assess the sensitivity of results to changes in the time

points considered, and present these results in Section 3.4. In addition to the HIV application,

in Section 4 we discuss the relevance of the methodology to the study of other diseases and

present three specific applications. In Section 5 we discuss the performance and flexibility of

our proposed approach and present areas of further work.
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2 Methodology

2.1 Expected time to attain threshold

We propose a method to estimate the time to attain two consecutive CD4 counts less than

or equal to the relevant threshold k. For readability, we will refer to the attainment of two

consecutive CD4 counts less than the threshold, as the event of interest. In the approach we

propose, we consider the individual ‘at risk’ for the event both prior to and post enrolment.

Letting Yij denote the CD4 count observed on individual i at time point j, where j = 1 corre-

sponds to an occasion at which one starts considering the individual as possibly seroconverting,

the time to event Ti can be expressed as:

Ti = min{j ≥ 2 : Yij−1 ≤ k, Yij ≤ k}. (1)

It follows that the expected time for individual i to attain two consecutive CD4 counts less

than the threshold k can be expressed as follows:

E(Ti) = ti2P (Yi1 ≤ k, Yi2 ≤ k) + ti3P (Yi1 > k, Yi2 ≤ k, Yi3 ≤ k)

+ti4 {P (Yi1 > k, Yi2 > k, Yi3 ≤ k, Yi4 ≤ k) + P (Yi1 ≤ k, Yi2 > k, Yi3 ≤ k, Yi4 ≤ k)}

+ . . .

=
∞∑
j=2

tijSij, (2)

where tij represents the time corresponding to the jth visit for individual i, and Sij denotes the

probability of individual i experiencing the event, or ‘stopping’, at tij. In practice the infinite

series may be truncated at a time point considered relevant to the specific application at hand.

Possible options for the time at which the series is truncated are the expected lifetime of an

individual, or the end of the incubation period of a particular disease. We specify a linear

mixed model, which satisfies

Y i = Xiβ + Zibi + εi, (3)

bi ∼ N(0, D),

εi ∼ N(0,Σi),
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where b1, . . . , bN , εi, . . . , εN are independent. β and bi represent the fixed and random effects,

respectively [14]. It follows that

Y i|bi ∼ N(Xiβ + Zibi,Σi).

As presented in (2), Sij is the sum of several joint probabilities, each of which represents a

distinct combination of the values of Yij that may yield the event at time point j. Assuming

conditional independence in (3) such that Σi = σ2Ini
, the joint probabilities that form Sij

reduce to the product of the individual probabilities. Hence, Sij may be simplified as follows:

Sij(Xi, Zi, bi,β) = Cij−3P (Yij−2 > k)P (Yij−1 ≤ k)P (Yij ≤ k)

= Cij−3[1− Φ̃ij−2(k)][Φ̃ij−1(k)][Φ̃ij(k)],

where Cij−3 denotes the ‘continuation probability’ at time tij−3 and Φ̃ij(k) is a cumulative

normal distribution with mean x′ijβ + z′ijbi and variance σ2. It follows that Φ̃ij(k) can be

expressed as a simple function of the standard univariate normal distribution:

Φ̃ij(k) = Φ

(
k − x′ijβ − z′ijbi

σ

)
. (4)

Therefore, the estimated individual probability Φ̃ij(k) is a function of the fixed-effects esti-

mates, empirical Bayes estimates, and measurement error. For a model with a strictly decreas-

ing trend in tij, at a fixed threshold k, one would expect the probability in (4) to decrease with

increasing j. The assumption of conditional independence in (3) and the recursive relation-

ship of continuation probabilities simplify the computation of E(Ti), but may be extended to

accommodate correlated residuals. Admittedly, more complex multivariate normal probability

manipulation will then be necessary.

The continuation probability Cij can also be interpreted in the survival analysis framework as

the probability of individual i being at risk for the event after time tij. That is, the probability

that individual i has not experienced two consecutive low CD4 counts at, or prior to time point

j. It should be evident that as j increases the computation of Cij will become increasingly

complex due to the number of combinations considered. Careful examination of the pattern

governing the number of combinations that result in continuation at each time point, revealed
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the recursive relationship

Cij = Cj−2[1− Φij−1(k)][Φij(k)] + Cj−1[1− Φij(k)]. (5)

Further details regarding the proof of (5) and its computation can be found in the Appendix.

2.2 Estimation and inference

It follows from Section 2.1 that E(Ti) is a function of the parameters β, bi, and σ. Hence

T̂i, the estimate of E(Ti), can be computed by substituting each unknown parameter by its

corresponding estimate. Further details on inference for fixed effects and empirical Bayes

prediction of the random effects in a linear mixed model can be found in [14]. In principle, the

Delta method may be used to compute standard errors and 95% confidence intervals for T̂i.

However, the bootstrap offers a more feasible alternative. We propose a conditional version

of the non-parametric bootstrap to compute 95% confidence intervals for T̂i as follows:

Step 1. Individual i is removed from the full dataset resulting in N − 1 cases

Step 2. Sample N − 1 subjects with replacement from the dataset in Step 1

Step 3. Append the data of individual i to the bootstrap sample

Step 4. Compute T̂i

This process is repeated 1000 times.

3 Application: Repeated CD4 count measurements from a cohort of

HIV infected individuals

3.1 Study population

The Sinikithemba cohort comprises 450 HIV-1 subtype C chronically infected adults enrolled

at the McCord Hospital (Durban, South Africa) between August 2003 and 2008. Sociode-

mographic characteristics, plasma viral load and CD4 count measurements were obtained at

baseline. The CD4 count and viral load were measured every 3 and 6 months, respectively,
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from enrollment. Viral loads were determined using the automated CobasAmplicor HIV-1

Monitor test (version 1.5; Roche Diagnostics). CD4 cells were enumerated using the Mul-

titest kit (CD4/CD3/CD8/CD45) on a FACSCalibur flow cytometer (Becton Dickinson). In

accordance with the national HIV treatment guidelines implemented during the study period,

patients were recommended to start ART upon reaching a CD4 count less than 200 cells/mm3

or WHO stage 3 or 4 symptoms [15]. For the purposes of this particular application, 114 pa-

tients who had not returned for a subsequent CD4 count measurement after enrolment or who

were not confirmed ARV-naive at study entry were excluded from the analysis, resulting in a

cohort of 336 patients. The median CD4 count at enrollment was 357 (Inter-quartile range:

259-509) cells/mm3 and the mean viral load was 4.7 log copies/ml. The overall mean age at

enrolment was 33 years and 80% of the patients were female.

3.1.1 Follow-up and censoring

Patients were followed for a median of 2.48 years (Inter-quartile range: 0.61–4.78 years) and

had a median of 8 CD4 count measurements (Inter-quartile range: 3–17 visits). A total of

136 (40%) patients were removed from the study at varying times due to initiation of ART,

6 of whom were pregnant women. The study ended in 2011 and the followup of 124 patients

who were still under observation and had not yet initiated ART, was terminated. There were

76 (23%) patients who dropped out of the study prematurely. Individuals whose CD4 count

measurements were terminated due to study end, can be considered to exhibit a dropout

pattern that is completely at random [16]. Since ART was recommended at the time of first

CD4 count less than 200 cells/mm3, the reason for removal from the study for these patients

can be considered to be at random given that it was based on the observed measurements.

The reasons for dropout in the 76 patients was unknown except for five patients who declared

relocation as their reason for leaving the study. In this paper, we assume ignorability and

conduct likelihood-based analysis. We comment further on explicit modelling of the dropout

mechanism in the discussion.
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3.1.2 Additional assumptions

Because this is a seroprevalent cohort, the date of the last negative HIV test result is unknown

and hence the date of seroconversion cannot be estimated without the analysis of additional

patients with known dates of infection. For this particular analysis we have examined two

possible timescales: date of first contact as time zero and time on study, which is expressed

as the difference between the enrollment date and the date at which the study commenced

(1 August 2003). As stated by [11], different timescales in hierarchical models can have a

strong impact on the predicted random effects due to the shrinkage effect. We allow a 10-year

window prior to enrollment where we consider an individual as having the potential to have

experienced the threshold. The rationale for this decision is based on the estimated time from

seroconversion to death in ART nave patients which was reported to be approximately 10

years in Sub-Saharan Africa [17, 18].

3.2 Linear mixed model

A variance stabilizing square root transformation was applied to the CD4 count responses.

The observed CD4 count trajectories for 8 selected patients is presented in Figure 1. This

figure clearly depicts the high degree of between and within individual variability. To explore

the relationship between baseline viral load and rate of CD4 decline, baseline viral load (VL)

was categorized into approximate tertiles as follows: VL ≤ 15, 000, 15, 000 < VL ≤ 100, 000,

and VL > 100, 000 log copies/ml, which represent low, intermediate, and high viral load,

respectively.

There were 92 (27%), 117 (35%), and 127 (38%) patients in the low, intermediate, and

high viral load categories, respectively. We applied the ‘General guidelines for model building’

recommended in [14], commencing with an elaborate mean structure, which included age,

gender, baseline viral load, and interaction terms as covariates. Although the subject-specific

plots and reduced AIC indicated that a quadratic or cubic model may provide a better fit to

the observed data than the linear model, these models would result in implausible predicted

trajectories outside of the observation period. By comparing nested models using the likelihood
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ratio test, the inclusion of age and gender did not significantly improve the model fit (p =

0.150). The reduced model was of the form:

Yij =


β0,L + b0i + β1,Ltij + b1itij + εij if ‘low’ viral load,

β0,M + b0i + β1,M tij + b1itij + εij if ‘intermediate’ viral load,

β0,H + b0i + β1,Htij + b1itij + εij if ‘high’ viral load.

The REML estimates with standard errors for each of the timescales are presented in Table 1.

As expected, the model with the time origin as 1 August 2003 resulted in a higher variance

of the random intercepts. Through comparison of the AIC and BIC for the two models it

is clear that the model with time since enrollment as the timescale provided a better fit to

the data. All further analysis was therefore conducted in this timescale, which also facilitates

interpretation of the estimated times as times relative to enrollment in the study. We found an

overall significant difference in intercepts and slopes between viral load categories (p < 0.0001

and 0.0053 respectively). Patients with high viral load displayed a significantly higher rate of

decline in CD4 count than patients with low viral load (p < 0.0001). More rapid decline in

patients with high viral load compared to intermediate viral load was observed; this result was

not statistically significant (p = 0.115).

3.3 Expected time to threshold

As stated in Section 2, we consider an individual to be at risk of obtaining two consecutive

values lower than the threshold k up to a maximum of 10 years prior to, and post enrollment.

The discrete times that fall outside of the observation period were created in accordance with

the study design of three monthly visits. The series was truncated at the visit at which the

predicted CD4 count Ŷij dropped to zero. Similarly, time ti1 was defined as the minimum

time at which Ŷij < 1500 cells/mm3, which is the upper limit of the CD4 count range for

HIV infected individuals. We estimated the time to obtain two consecutive measurements less

than the threshold values 200 and 350 cells/mm3, respectively. For ease of presentation, we

have chosen to draw attention to the estimation for four specific patients (Figure 2). The

estimated probabilities of a single measurement being below the threshold was computed using
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the estimates from the linear mixed model presented in Section 3.2 and expression (4), which

was introduced in Section 2.

Patient A entered the study with a CD4 count substantially above the 200 and 350 cells/mm3

thresholds and declined at a very slow rate. This is captured by the fitted probabilities where

the probability of Patient A obtaining a CD4 count less than 200 cells/mm3 is zero throughout

the period considered. The probability of Patient A experiencing a CD4 count less than 350

cells/mm3 increases at five years. The estimated time to two consecutive measurements less

than the 200 and 350 cells/mm3 threshold is presented in Table 2.

Patient B, who entered the study with a CD4 count above the 350 cells/mm3 threshold,

exhibited a more rapid rate of CD4 count decline than Patient A. The estimated time for

Patient B to reach a threshold of 350 and 200 cells/mm3 was 2.3 and 4.3 years, respectively.

Patients C and D both entered the study with CD4 counts less than 350 but declined at different

rates. This is captured by the predicted probabilities in Figure 3. Patient C was estimated to

have reached the 200 cells/mm3 threshold 0.38 years post enrollment, and the 350 threshold

3.26 years prior to enrollment. The confidence intervals for the estimated times for patient

C reveal that poorer precision is obtained when analyzing individuals with few measurements.

Caution should be exercised when interpreting the estimated times for patients who start at

a high CD4 count and exhibit a very slow rate of decline. Probabilities of low CD4 count

that are zero throughout the period of observation do not pose a problem, but probabilities

that increase to greater than zero later in the period can result in estimated times which are

sensitive to the frequency and timing of unobserved measurements which are considered. This

is discussed further in Section 3.4. Several possible analyses using the estimated times can be

conducted. We have elected to focus on the estimated probabilities and times themselves as

they draw attention to several current issues in the treatment and monitoring of HIV positive

patients. There were 30 individuals who had a zero probability of obtaining a single CD4 count

less than 200 cells/mm3 throughout the period considered. These individuals are referred to as

long term non-progressors. This contributes additional evidence to the proposition that there

are individuals who, possibly due to genetics, are able to control the virus. In addition, the

estimated times draw attention to a serious public health concern, namely late presentation
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for HIV testing. Excluding the individuals who were long term non-progressors, the percentiles

of the estimated times were computed. 15% of these patients had already attained a CD4

count less than 200 cells/mm3 more than six months prior to first presentation at the clinic.

Hence, patients were choosing to have an HIV test when they were already in the advanced

stages of HIV. The ARV treatment guideline in effect during the study recommended treatment

initiation at a CD4 count less than 200 cells/mm3. Therefore, an additional interpretation is

that 15% of the patients deviated from the recommended timing of treatment initiation by

more than six months. After 2011, the treatment initiation cutoff was raised to 350 cells/mm3.

During our study period, we found that 35% of patients had already attained two consecutive

CD4 counts less than 350 cells/mm3 more than two years prior to enrollment. It is clear that,

unless patients present at the clinic earlier for testing, changing treatment guidelines may not

have the desired effect. It would be interesting to examine whether health seeking behaviour

has changed over time, by studying individuals who first presented at the clinic after 2011.

3.4 Sensitivity to variation in observation frequency

In Section 3.3, we considered an individual to be at risk of experiencing a CD4 count below

the thresholds of interest, 10 years prior to and post enrolment, and generated regular three

monthly visits for the unobserved period. In this section, we assess the sensitivity of the esti-

mated time to threshold to truncation and the regularity and frequency of visits by simulation.

The following scenarios were considered:

Scenario 1. A period of 10 years prior to and post enrolment was considered, and visits

outside the observed period occurred at regular three monthly intervals.

Scenario 2. A period of 5 years prior to and post enrolment was considered. Visits outside

the observed period occurred at regular three monthly intervals.

Scenario 3. A period of 10 years prior to and post enrolment was considered and 10% of

visits outside the observation period occurred one month later than expected.

Scenario 4. A period of 10 years prior to and post enrolment was considered and 25% of

visits outside the observation period occurred one month later than expected.
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Scenario 5. A period of 10 years prior to and post enrolment was considered and 10% of

visits outside the observation period were missed.

Scenario 6. A period of 10 years prior to and post enrolment was considered and 20% of

visits outside the observation period were missed.

From Table 3, it is clear that the number of visits considered has an impact on the estimated

time to threshold for individuals who enter the study with a high CD4 count and exhibit slow

decline. Truncation of the series at 5 years results in an estimated time to threshold of 0.005

years, whereas truncation at 10 years results in an estimated value of 3.155 years for Patient

A. Similarly, the number of visits considered outside the period of observation also has an

effect for this type of patient. This is evident from the estimate for Patient A under the

assumption of 20% of visits being missed. We found that results were far less sensitive for

patients experiencing moderate to rapid decline in CD4 count. As expected, in individuals

who are likely to reach the threshold of interest during the observed period, the estimated

time is robust to truncation or variation in the time points considered. In all patients studied,

results were robust to variation in the timing of visits. Hence, the estimated time to threshold

is sensitive to the number of time points for specific patients, but not to the actual values of

those time points.

4 Other areas of application

The methodology presented in Section 2 was motivated by the specific problem of estimating

the time to CD4 count decline in the presence of persistence criteria, but is not limited to this

specific application. Within the HIV context, the methodology is also well suited to prediction

of the time to HIV treatment failure, which is defined as the time at which two consecutive

viral load measurements greater than 400 copies/ml are observed [19]. In settings where less

sensitive viral load tests are available, the cutoff of interest is 1000 copies/ml [20, 21]. More

generally, the time to reach two consecutive biomarker measurements lower than or exceeding

a threshold is also of interest in the study of non-communicable diseases such as cancer,

cardiovascular disease and diabetes. Hence, the methodology presented in Section 2 is well
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suited to several applications, some of which are briefly discussed below.

4.1 Diabetes screening

The glycohemoglobin (HbA1C) test, which measures blood glucose levels over time, is one

of the tests which are used to diagnose diabetes. Diabetes is diagnosed when an HbA1C

level greater than or equal to 6.5% is observed. As recommended in NIH [22], unless clear

symptoms of diabetes exist, diagnosis should only be confirmed when a second measurement

of 6.5% or greater is observed. Prediction of the time from screening to diagnosis of diabetes

can assist with the development of more efficient monitoring intervals for national screening

programs.

4.2 Recurrence of prostate cancer

According to the European Association of Urology (EAU) guidelines for prostate cancer, the

diagnosis of treatment failure after radical prostatectomy is defined by two consecutive values

of prostate-specific antigen (PSA) greater than 0.20 ng/ml [23]. Several studies have examined

risk factors for prostate cancer recurrence using standard approaches, which fail to take into

account the inherent trend of PSA and measurement error.

4.3 Abnormal aortic aneurysm screening

In abnormal aortic aneurysm screening studies, surgery is recommended to patients when the

diameter of the aneurysm exceeds 55 mm [11]. Due to the high degree of within patient

variability in aortic diameter measurements [24], it is of interest to examine the effect of

applying persistence criteria in this setting. Estimation of the expected time to threshold for

each patient, would enable clinicians to identify patients who may be in need of surgery in the

near future, and target interventions accordingly.
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5 Concluding Remarks

In this paper, we have proposed and applied a novel approach to estimation of the time to

attain two consecutive CD4 counts less than two relevant thresholds. This approach takes

into account the estimated patient-specific trajectories and measurement error. Through

identification of a recursive relationship of the continuation probabilities at each time point,

we have displayed that the computation of the expected times is simple, efficient, and can

be implemented using existing software packages. The method we have proposed can also

accommodate complex functions of time, such as quadratic or cubic terms, in contrast to

the inverse estimation framework. Additional flexibility in the definition of the event can be

achieved by considering the sequences that result in a continuation or ‘stop’ under the newly

defined ‘stopping’ rule. For example, if the time to the attainment of three consecutive low

CD4 counts is of interest, the stopping sequence can be decomposed into a continuation

sequence at time point j − 4 followed by an outcome sequence {0, 1, 1, 1}.

Sensitivity analysis revealed that the estimated times are sensitive to the number of visits

considered and the time at which the series is truncated, for patients who exhibit a very slow

decline. For other patients, however, we found that results were less sensitive to the number

of visits considered and truncation. Hence, caution should be exercised when interpreting the

estimated times for patients who exhibit very slow rates of decline. Another strong assump-

tion that was made for the specific application presented, was that visits prior to enrollment

and post dropout occurred at regular, equally spaced time points. In the sensitivity analysis

conducted, we found that results were robust to deviation from the regular observation times

for all patients. The data we have examined is a combination of coarse data due to miss-

ing observations and augmented data through the inclusion of random effects. Verbeke and

Molenberghs [25] refer to the union of coarsening and augmentation as enrichment. Hence,

the prediction of the expected time is dependent on several unverifiable assumptions regard-

ing the random effects structure and missing data mechanism. This raises the importance of

conducting sensitivity analysis to gauge the impact of deviations from the assumptions made

[16]. Local influence analysis may also be undertaken to determine whether there are specific

individuals who have a large impact on the model fit, and hence on prediction. The primary
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objective of this paper is to present and apply the proposed methodology to HIV biomarker

data. Therefore, local influence analysis and missing data models will be conducted as further

work.

To appropriately handle the issue of ‘left censored’ event times due to the study design, we

considered an individual to be at risk of the event of CD4 count decline prior to enrollment.

This was achieved by using the date of first contact as the time origin. One may also analyze

the data on the timescale of time since seroconversion if additional data from a recently infected

cohort is available. This approach would involve imputation of the time of infection via back

calculation [26] or inverse estimation. The proposed methodology rests on the assumption that

the residual variability is pure measurement error, which may be violated in certain settings.

A simulation study that was conducted by [28] to investigate the robustness of fixed effects

estimates from a linear mixed model to a misspecified error distribution, revealed that inference

is robust when errors are non-gaussian or heteroscedastic, but may be impaired when errors

are correlated. In this latter case, the authors found that the model including a random

slope in addition to the random intercept was more robust than the random intercept model.

As discussed by Rizopoulos [27], extending a linear mixed model proposed by including a

more elaborate random effects structure is computationally simpler to implement and can

produce practically indistinguishable fits to the data when compared to a model that includes

a serial correlation term. In some cases, extensive knowledge of the true underlying process

which generates the data, may necessitate the inclusion of serial correlation in the model.

Although more computationally intensive, it is possible to relax the assumption of conditional

independence in the methodology we have proposed. As a starting point, viewing the process as

a first order Markov chain, and applying the rules of conditional probability and Bayes theorem,

we are able to express the stopping probability as the product of conditional probabilities.

Assuming dependence on the most recently observed value, these conditional probabilities

may be expressed as a function of the bivariate and univariate cumulative normal distribution.
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Appendix

For ease of notation, the index i is suppressed in the equations that follow. We introduce Ej

which denotes the outcome indicator at time point j such that

Ej =

 0 if Yj > k

1 if Yj ≤ k.

Continuation after j visits can be defined in terms of the combination of outcomes observed,

such that the event of two consecutive low CD4 count outcomes {1, 1} has not occurred at,

or prior to the jth visit. The possible combinations which lead to continuation after 2, 3, and 4

visits, respectively, are presented in Table 4. There are 3, 5, and 8 combinations of outcomes

that lead to continuation after time points 2, 3, and 4, respectively.

The number of combinations which result in continuation after each visit follows a Fibonacci

sequence {1, 1, 2, 3, 5, 8, 13, . . .}, where each term is defined as the sum of its two predecessors.

Specifically, the number of outcome combinations that result in continuation after a sequence

of j visits is the j + 1th Fibonacci number, fj+1. Continuation at visit j can be expressed

as a function of continuation at visit j − 1 and j − 2. A continuation sequence should end

in either (A): {0}, which is the union of {0,0} and {1,0} or (B): {0,1}. This implies that

a continuation sequence of length j can be constructed uniquely from (A): a continuation

sequence of length j − 1, followed by {0} and (B): a continuation sequence of length j − 2,

followed by {0, 1}. Letting Cj denote the continuation probability at visit j, and assuming

that the outcomes at each visit are independent, this recursive relationship can be presented

as follows:

Cj = Cj−2 × P (Ej−1 = 0)× P (Ej = 1) + Cj−1 × P (Ej = 0).

This relationship is illustrated in Table 4 for j = 4. Assuming that the process ‘stops’ when

two consecutive {1, 1} outcomes are observed for the first time, the number of combinations

which result in a ‘stop’ at sequence of j visits is fj−2. For a ‘stop’ to be observed at any j ≥ 3,

the last three outcomes in the sequence are confined to be of the form {0, 1, 1}. Hence, the

stopping probability Sj is

Sj = Cj−3 × P (Ej−2 = 0)× P (Ej−1 = 1)× P (Ej = 1).
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Table 1: HIV cohort Data. Parameter estimates (standard errors) for the fitted models on
each timescale

Effect Parameter Time-enrolment Time-calendar origin

Fixed effects estimates (s.e.)
Intercept β0,L 21.2405 (0.4708) 22.0000 (0.5513)

β0,M 19.4469 (0.4190) 20.6554 (0.4978)
β0,H 16.2821 (0.4057) 17.5021 (0.4909)

Time β1,L -0.5744 (0.1206) -0.5658 (0.1171)
β1,M -1.0160 (0.1137) -0.9454 (0.1102)
β1,H -1.3839 (0.1400) -1.1066 (0.1331)

Covariance parameter estimates (s.e.)
var(b0i) d11 19.5555 (1.6080) 25.5456(2.2716)
cov(b0i, b1i) d12 -0.4944 (0.3821) -2.1611 (0.4703)
var(b1i) d22 0.9941 (0.1421) 0.9438 (0.1303)
Measurement error σ2 3.1923 (0.0810) 3.2135 (0.0814)

Fit statistics
AIC 17185.3 17225.9
BIC 17200.5 17241.1
-2 REML log-likelihood 17177.3 17217.9
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Table 2: Estimated time to threshold for patients A, B, C, and D

≤ 200 cells/mm3 ≤ 350 cells/mm3

Patient VL Baseline CD4 T̂i 95% CI T̂i 95% CI

A Low 783 2.92× 10−5 (8.88× 10−6, 8.24× 10−5) 3.1552 (2.4946, 3.7362)
B Low 478 4.2858 (4.2343, 4.3843) 2.3046 (2.2887, 2.3169)
C High 204 0.3758 (0.0267, 0.5319) -3.2608 (-5.0051, -2.2874)
D High 261 2.3335 (2.3005, 2.3763) -0.2043 (-0.4039, -0.0642)
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Table 3: Estimated time to two consecutive measurements less than 350 cells/mm3 under
various scenarios

Patient Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

A 3.1552 0.0050 3.0734 3.1271 3.0219 2.5941
B 2.3046 2.3046 2.2926 2.2926 2.2926 2.2926
C -3.2608 -3.2056 -3.2056 -3.2073 -3.2119 -2.9572
D -0.2043 -0.2043 -0.2030 -0.2097 -0.1432 0.0208
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Table 4: Possible combinations of outcomes which result in continuation after 2, 3, and 4
visits

E1 E2 E3 E4

j ≤ 2

1 0
0 1
0 0

j ≤ 3

1 0 1
1 0 0
0 1 0
0 0 1
0 0 0

j ≤ 4

1 0 0 1
0 1 0 1
0 0 0 1
1 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
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