
PTandLogGenerator: a Generator for Artificial
Event Data

Toon Jouck and Benôıt Depaire

Hasselt University, Agoralaan Bldg D, 3590 Diepenbeek, Belgium
toon.jouck@uhasselt.be; benoit.depaire@uhasselt.be

Abstract. The empirical analysis of process discovery algorithms has
recently gained more attention. An important step within such an anal-
ysis is the acquisition of the appropriate test event data, i.e. event logs
and reference models. This requires an implemented framework that sup-
ports the random and automated generation of event data based on user
specifications. This paper presents a tool for generating artificial process
trees and event logs that can be used to study and compare the empir-
ical workings of process discovery algorithms. It extends current tools
by giving users full control over an extensive set of process control-flow
constructs included in the final models and event logs. Additionally, it is
integrated within the ProM framework that offers a plethora of process
discovery algorithms and evaluation metrics which are required during
empirical analysis.

Keywords: artificial event logs; process simulation; process discovery

1 Generating Event Data for Algorithm Evaluation

Process discovery techniques are concerned with discovering the control-flow
of a process directly from an event log. During the last decade many process
discovery techniques have been developed (see [2] for an overview). Currently
new techniques are developed to outperform others in term of model quality
measures. This has led to an increasing importance of evaluating and comparing
existing algorithms empirically [2]. In order to perform such an evaluation, a set
of appropriate test event data, i.e. event logs and reference models, is required.

Generally, three requirements with regard to test data must hold while doing
empirical analysis of process discovery algorithms. Firstly, a researcher should
have full control over the control-flow characteristics of the event data generated.
A second requirement is randomness to prevent wrong generalizations based
on non-random event data. Finally, the final event logs and reference models
should be in the standard format1 to ensure their compatibility with tools that
implement process discovery algorithms and evaluation metrics.

1 Event logs should conform to the XES standard: http://www.xes-standard.org

Copyright c© 2016 for this paper by its authors. Copying permitted for pri-
vate and academic purposes.

http://www.xes-standard.org


24 Jouck and Depaire

The presented tool PTandLogGenerator fulfills all the requirements stated
above as it enables the random and automated generation of process trees and
event logs based on user-defined control-flow specifications. It applies a generic
two-step approach: generate a process tree, then simulate this tree into an event
log described in [4]. Firstly, the user specifies the control-flow constructs, defined
as meaningful process blocks that will be included in the generated process trees.
In the second step, the trees are simulated into event logs.

The idea of implementing an artificial data generator is not new. However,
the existing tools still have some limitations with regard to the requirements
stated above. The most advanced tool, PLG2 [1], allows for control of the ba-
sic workflow patterns, but does not allow for more complex constructs such as
duplicate activity labels or long-term dependencies. Moreover, PLG2 is not di-
rectly integrated within the ProM framework, which is a disadvantage when
doing empirical process discovery evaluation.

The remainder of this paper describes how to use the PTandLogGenerator
tool in the case of comparing two process discovery algorithms.

2 Walkthrough of the Process Tree and Log Generator

The PTandLogGenerator tool is available as a package in the open-source frame-
work ProM2. This section will describe the different steps of generating a sample
of event logs needed to evaluate two process discovery algorithms. Consider the
comparison of the α++ miner [6] and the Inductive Miner [5] on logs including
long-term dependencies, i.e. causal dependencies between tasks in different exclu-
sive choice constructs. Consequently, one needs a set of event logs containing such
long-term dependencies, while controlling for other control-flow constructs. The
following paragraphs show how these can be created using the PTandLogGenera-
tor, see https://drive.google.com/file/d/0B9nT4OtWjscVOV94VDEwb3I4V2s/
view?usp=sharing for a screencast.

A Population of Process Trees The starting point is the definition of a pro-
cess tree population. These process trees contain a combination of control-flow
constructs (CFC), i.e. process tree building blocks, that are used as popula-
tion parameters to describe the population. The user can assign probabilities to
each of the CFC to express the probability that these constructs are added to
a tree within the population. We distinguish between three types of constructs:
activities, workflow patterns and complex constructs:

– Activities (see area 1 in Fig. 1): users can influence the size of the trees
included in the population by specifying the triangular distribution of the
number of activities by assigning a minimum, a mode and a maximum.
Each time a process tree is generated, i.e. drawn from the population, a
random number for the number of activities is taken from that triangular
distribution.

2 Available in the ProM nightly builds at http://www.promtools.org/

https://drive.google.com/file/d/0B9nT4OtWjscVOV94VDEwb3I4V2s/view?usp=sharing
https://drive.google.com/file/d/0B9nT4OtWjscVOV94VDEwb3I4V2s/view?usp=sharing
http://www.promtools.org/


PTandLogGenerator: a Generator for Artificial Event Data 25

– Workflow control-flow patterns (see area 2 in Fig. 1): basic fundamental
patterns common to all business processes. These patterns include sequence,
exclusive choice, multi-choice, concurrent behavior and loops, represented by
the following operator nodes in Process trees: →,×,∨,∧ and 	.

– Complex constructs (see area 3 in Fig. 1): more complex control-flow con-
structs include silent activities, reoccurring activities (i.e. duplicate labels),
long-term dependencies and infrequent paths. The last construct assigns un-
equal branch probabilities to each of the outgoing branches of an exclusive
choice in order to make some paths less frequent in the process.

In our example use case, we want to evaluate two algorithms on long-term
dependencies. Therefore we define a population of process trees with 50% prob-
ability of inserting long-term probabilities. The definition of this population can
be configured using the settings wizard shown in Fig. 1.

Fig. 1: The Population of Process Trees in the Ex-
ample

Generating a Random
Sample of Trees The
next step involves draw-
ing a random sample, i.e.
generating random pro-
cess trees, from the pre-
viously specified popula-
tion. The size of this sam-
ple can be specified in the
tree generator settings as
can be seen in area 4 of
Fig. 1. For the example
use case we generate a
random sample of size 10.
The algorithm described
in [4] is implemented to
build each process tree in
a stepwise manner. It uses
the probabilities specified
in the population as input
parameters to randomly
add nodes to the tree.

The output of this
step is a set of process trees in the standard PTML-format. In this way the
complete toolbox for import/export, analysis and visualization of process trees
integrated into ProM is available to the user. The screenshot in Fig. 2 shows
the visualization pane for tree number 3 in the sample. The annotations on
the branches represent their execution probabilities. The tree shown in Fig. 2
contains a long-term dependency between the activity h and c expressing the
causal relationship that if h is executed, c can never follow later on. For further



26 Jouck and Depaire

information, the reader is referred to the tree generating algorithm described
in [4].

Fig. 2: A process tree from the random sample visualized

Simulating Trees Into Event Logs Then in the third step the tool enables
users to generate (an) event log(s) for each process tree in the sample. Each
process tree can be seen as a population of event logs: an event log is a multiset
of traces simulated from that process tree. The tool allows users to specify the
number of traces that the final event log(s) will contain as shown in Fig. 3a.
In the example case we generate one event log with 1000 traces for each tree.
The resulting event logs are in the standard XES-format providing all the log
functionalities provided in ProM. Fig. 3b shows the log view for the event log
generated from the tree in Fig. 2.

(a) The Number of Traces in the
Generated Event Logs

(b) Log View of the Generated Event Log

Fig. 3: Log Generator

Evaluating Process Discovery Techniques Once the event logs are gen-
erated, the empirical analysis of the evaluation of process discovery technique



PTandLogGenerator: a Generator for Artificial Event Data 27

is enabled. In the running case we apply the α++ miner [6] and the Inductive
Miner [5] in ProM and calculate quality metrics for each discovered model. In
the running case the discovered models of the inductive miner have an average
fitness value of 100% and a precision value of 58.5%, whereas the models dis-
covered by α++ miner have a lower average fitness value of 32.1% and a higher
average precision value of 77.9%. These results are used to demonstrate the pos-
sible use cases of the tool. A more thorough empirical analysis would need more
observations which is outside the scope of this paper.

3 Maturity and Use Cases

The tool has reached a high level of maturity which enables its use in large
scientific experiments. This has been proven by the successful application of the
tool in the large scale empirical assessments in [3]. Furthermore, the organizers of
the first process discovery contest3 have chosen this tool to create the benchmark
event logs as it allows users the full control over an extensive range of control-flow
constructs.

Acknowledgements

Special thanks to Alfredo Bolt and dr. Massimiliano de Leoni for their help on
implementing and improving this tool.

References

1. Burattin, A.: PLG2: Multiperspective Processes Randomization and Simulation for
Online and Offline Settings. ArXiv e-prints (1506.08415) (Jun 2015)

2. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-
life event logs. Information Systems 37(7), 654–676 (Nov 2012), http://www.

sciencedirect.com/science/article/pii/S0306437912000464
3. Janssenswillen, G., Jouck, T., Creemers, M., Depaire, B.: Measuring the quality

of models with respect to the underlying system: An empirical study. In: Business
Process Management 2016. Springer (accepted)

4. Jouck, T., Depaire, B.: Generating Artificial Data for Empirical Analysis of Process
Discovery Algorithms: a Process Tree and Log Generator. Technical Report, Uni-
versiteit Hasselt, Universiteit Hasselt (Mar 2016), http://hdl.handle.net/1942/
20818

5. Leemans, S.J., Fahland, D., van der Aalst, W.M.: Discovering block-structured pro-
cess models from event logs containing infrequent behaviour. In: Business Process
Management Workshops. pp. 66–78. Springer (2014), http://link.springer.com/
chapter/10.1007/978-3-319-06257-0_6

6. Wen, L., van der Aalst, W.M., Wang, J., Sun, J.: Mining process models with
non-free-choice constructs. Data Mining and Knowledge Discovery 15(2), 145–180
(2007), http://link.springer.com/article/10.1007/s10618-007-0065-y

3 http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_discovery_

contest

http://www.sciencedirect.com/science/article/pii/S0306437912000464
http://www.sciencedirect.com/science/article/pii/S0306437912000464
http://hdl.handle.net/1942/20818
http://hdl.handle.net/1942/20818
http://link.springer.com/chapter/10.1007/978-3-319-06257-0_6
http://link.springer.com/chapter/10.1007/978-3-319-06257-0_6
http://link.springer.com/article/10.1007/s10618-007-0065-y
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_discovery_contest
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_discovery_contest

	PTandLogGenerator: a Generator for Artificial Event Data
	Generating Event Data for Algorithm Evaluation
	Walkthrough of the Process Tree and Log Generator
	A Population of Process Trees
	Generating a Random Sample of Trees
	Simulating Trees Into Event Logs
	Evaluating Process Discovery Techniques


	Maturity and Use Cases


