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Abstract

Obtaining reliable estimates about health outcomes for areas or domains
where only few to no samples are available is the goal of small area estimation
(SAE). Often, we rely on health surveys to obtain information about health
outcomes. Such surveys are often characterised by a complex design, strat-
ification, and unequal sampling weights as common features. Hierarchical
Bayesian models are well recognised in SAE as a spatial smoothing method,
but often ignore the sampling weights that reflect the complex sampling de-
sign. In this paper, we focus on data obtained from a health survey where
the sampling weights of the sampled individuals are the only information
available about the design. We develop a predictive model-based approach
to estimate the prevalence of a binary outcome for both the sampled and
non-sampled individuals, using hierarchical Bayesian models that take into
account the sampling weights. A simulation study is carried out to compare
the performance of our proposed method with other established methods.
The results indicate that our proposed method achieves great reductions in
mean squared error when compared with standard approaches. It performs
equally well or better when compared with more elaborate methods when
there is a relationship between the responses and the sampling weights. The
proposed method is applied to estimate asthma prevalence across districts.
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1. Introduction

In public health we are often interested in the question whether there
are disparities in illness, behavioural risk factors or health conditions across
areas. An increasing amount of information on individuals is collected in this
respect. Bayesian methods in disease mapping based on census or population
registry data are well developed and used in a fairly standard manner (see
e.g., Elliott et al., 2001; Waller and Gotway, 2004; Lawson, 2013 for a review
of the methods). Such population registry or census data obtains information
pertaining to each member of the population of an area. Historically, focus
was on the construction of cancer atlases and on mapping rare diseases based
on registry data (see e.g., Kemp et al., 1985; Mason, 1995).

Since it is nearly always impossible to measure the health outcome of in-
terest in every individual in the population, a survey is used to record infor-
mation from a random sample of individuals from the population (Cochran,
1977). Such surveys are often characterized by a complex design, with strati-
fication, clustering and unequal sampling weights as common features. Policy
makers are often interested in a specific characteristic, such as the total num-
ber of diseased cases or the prevalence, per area. In small area estimation
(SAE) one investigates how to obtain these area specific characteristics from
survey data covering more than only the area of interest by using spatial
smoothing methods.

In SAE, one needs to choose whether to base inference on design-based,
model-based or design-based model-assisted approaches. In design-based in-
ference the values of the health outcomes are assumed fixed, and inference
is based on the randomization distribution of the sample inclusion indica-
tors. Often a model is used in the construction of a design-based estimator
(known as design-based model-assisted approaches). A popular design-based
estimator is the Horvitz-Thompson (HT) estimator (1952) and its extensions
that weigh sampled individuals with the associated sampling weight. These
estimators play a dominant role in sample surveys, however, they often fail
in SAE because the sample size per area could be very small or even zero
inflating the mean squared error tremendously. This makes design-based
estimators unreliable or not feasible to use (Rao, 2011). Additionally, be-
cause of the spatial nature of the problem, understanding the geographical
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distribution of the health outcome is important. Model-based approaches
that perform spatial smoothing, both those based on empirical and hierar-
chical Bayesian methodology, have shown to be more relevant in the handling
of spatially correlated health survey data. In model-based approaches one
conditions on the selected sample and the inference is based on the underly-
ing model of the health outcome. Examples include Fay and Herriot (1979)
which proposed a linear empirical Bayes model to estimate the income for
small areas, while Datta and Ghosh (1991) considered a hierarchical Bayesian
formulation instead. A number of extensions have been made, see Rao (2003)
and Jiang and Lahiri (2006) for an overview. For binary data, MacGibbon
and Tomberlin (1989) developed an empirical Bayes model using a logistic
regression model with fixed and random effects. Stroud (1994), Ghosh et al.
(1998) and Farrell (2000) described hierarchical Bayesian approaches to es-
timate small area proportions.

While model-based SAE is conceptually appealing, complex survey de-
signs with the accompanying survey weights cause a difficulty in their prac-
tical implementation. Only relatively few approaches acknowledge the sur-
vey sampling mechanism and account for it in the model. Kott (1989) and
Prasad and Rao (1999) described a design-consistent model-based estima-
tor. Kott (1989) proposed an estimator which is a weighted combination
of the HT estimator and the sample means of the different areas. Prasad
and Rao (1999) proposed a pseudo-empirical best linear unbiased prediction
estimator for the small area mean based on area level data. You and Rao
(2002, 2003) used unit level data instead. Malec et al. (1997) described a
hierarchical Bayesian model for binary survey data. They examined the use
of sampling weights as a linear covariate in the model, after the inclusion of
several post-stratification variables. Chen et al. (2014) proposed the use of
a weight-adjusted Bayesian estimator that takes into account the effective
sample size. Mercer et al. (2014) described a simulation study in which sev-
eral methods for spatial smoothing in SAE, taking into account the sampling
weights, are compared.

In this article, we describe a spatial predictive model-based approach to
SAE for a binary health outcome in a complex survey with given sampling
weights. We assume that the sampling weights on the sampled individuals
are the only information available about the survey design. The goal is to es-
timate the prevalence of the health outcome for all small areas in the spatial
domain. A hierarchical Bayesian model is used in which the health outcomes
are regressed on the sampling weights. A non-parametric regression on the
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weights is used to minimise possible bias of the regression function. Addition-
ally, both unstructured and structured spatial random effects are introduced
to model the geographical distribution of the health outcomes. The pop-
ulation distribution of the sampling weights is unknown as well, hence we
must model the weights themselves to be able to perform predictions. Our
proposed method extends ideas described in Si et al. (2015) that are use-
ful for surveys outside the SAE context. We use integrated nested Laplace
approximations in R for model estimation (Rue et al., 2009). The methods
described in this article add a hierarchical Bayesian model-based prediction
approach for data with associated sampling weights to the SAE literature.

The structure of the paper is as follows. In Section 2 we introduce no-
tations and describe the traditional design-based approach to perform SAE
from a health survey. Several model-based approaches summarized in Mercer
et al. (2014) that are used here for comparison purposes in the simulation
study are also described in Section 2. We describe our proposed model-based
approach in Section 3, and provide some details on the implementation of
the models in standard software. A simulation study comparing our meth-
ods to other design- and model-based methods is provided in Section 4. In
Section 5, we analyse the 2001 Belgian Health Interview Survey to estimate
asthma prevalence across districts. We conclude the paper with a discussion
in Section 6.

2. Notation and Conventional Method of Analysis

2.1. Notation

Let Yik be a binary health outcome for individual i in small area k (i =
1, . . . , Nk and k = 1, . . . , K) with Nk the population size in area k. We
assume thatNk is known for each area. A sample of size nk is drawn from each
area k, where some of the nk could be zero. Denote the sampled values by
yik. Let N =

∑K
k=1Nk and n =

∑K
k=1 nk represent the total population and

sample size, respectively. We shall focus on estimating the true prevalence,
Pk, in each area k, namely

Pk =
1

Nk

Nk∑
i=1

Yik. (1)

Let Rik denote the binary variable indicating whether the ith individual in
area k is sampled (Rik = 1) or not (Rik = 0). We use sk to indicate the set
of sampled individuals in area k and s′k for those that are not sampled.
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Table 1: Structure of datasets used in this article.
Response Area Sample

Weight
y11 1 w11

y21 1 w21
...

...
...

y12 2 w12
...

...
...

To reflect the sampling design, weights wik are attached to each respon-
dent’s outcome. The weights are proportional to the inverse probability of
inclusion in the sample for unit i in area k. These weights can reflect both or
a combination of the complex survey design and post-stratification adjust-
ments. In this paper, we assume that the sampling weights on the sampled
individuals are the only information available on the design of the survey.
This assumption seems limited (e.g., one cannot adjust for cluster sampling)
but it is standard in publicly available datasets that only sampling weights
are available with few to no information on the survey design. We further
assume that all sampled individuals respond to the survey. A typical dataset
will have the structure as presented in Table 1. Throughout this article, we
use the normalized weights, denoted by w̃ik, defined by

w̃ik = nk
wik∑
i∈sk wik

. (2)

The weights are called normalized because they sum up to the sample size
nk in area k.

2.2. Horvitz-Thompson Estimator

Design-based methods evaluate properties of estimators under the ran-
domization distribution and assume that the measurements are fixed values.
Inference is based on all possible samples that could be selected from the
target population of interest under the considered sampling design. A com-
mon design-based estimator in SAE is the Horvitz-Thompson (HT) estimator
(Horvitz and Thompson, 1952) given by

p̂HTk =

∑Nk

i=1Rikw̃ikyik∑Nk

i=1Rikw̃ik
=

1

nk

∑
i∈sk

w̃ikyik. (3)
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The variance of p̂HTk has the form

v̂ar(p̂HTk ) =
1

nk

(
1− nk

Nk

)
1

nk − 1

∑
i∈sk

w̃2
ik

(
yik − p̂HTk

)2
. (4)

The HT estimator is a design-unbiased estimator of Pk. It is a so-called direct
estimator because it uses only the responses from the area of interest (Rao,
2003). Most surveys are not designed to yield appropriate direct estimates for
all areas as the sample size in some areas can be too small to produce reliable
or stable estimates. Another disadvantage is that no estimate can be obtained
in those areas that are not included in the sample. In the next section, we
present indirect estimates that borrow strength across the different areas by
using the responses from all sampled areas.

Other design-based methods use a model for the construction of the esti-
mators. The synthetic estimator (Gonzalez, 1973), for example, uses a linear
model on several covariates fit by ordinary least squares to predict the mean
for a particular area. Pfeffermann (2013) gives an overview of commonly
used methods and new developments in the field of design-based small area
estimation.

2.3. Model-based methods

We now focus on several model-based methods described in Mercer et al.
(2014). The simplest approach, called naive binomial (NB), is to ignore the
design and use the model

yk|p̃k ∼ Binomial(nk, p̃k) and logit(p̃k) = β0 + uk + vk, (5)

where yk =
∑

i∈sk yik, β0 is an overall effect, uk ∼iid N (0, σ2
u) are independent

random effects taking into account extra heterogeneity amongst areas k, and
vk are spatially dependent random effects. It is assumed that vk follows the
commonly used intrinsic conditional autoregressive (ICAR) model (Rue and
Held, 2005)

vk|vk′ ∼ N

 1

mk

∑
k′ ∈ ne(k)

vk′ ,
σ2
v

mk

 , (6)

where ne(k) denotes the set of neighbours of area k and mk is the number of
neighbours. For identifiability reasons of the overall intercept β0, the sum of
the random effects vk is constrained to zero (Eberly and Carlin, 2000). In this
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article, we take the common approach to consider two areas as neighbours if
they share a common boundary.

In model (5), the design weights of the survey are ignored. To account
for the design, Mercer et al. (2014) proposed to model the empirical logistic
transform of p̂HTk , namely yLk = log

[
p̂HTk /(1− p̂HTk )

]
, using the model

yLk |p̃k ∼ N
(
logit(p̃k), σ

2
k

)
and logit(p̃k) = β0 + uk + vk, (7)

where the variance σ2
k is set equal to v̂ar(p̂HTk )/

[
p̂HTk (1− p̂HTk )

]2
. Model (7)

is further referred to as the logit-normal (LN) model.
As an alternative, Mercer et al. (2014) considered the arcsine square-root

transformation as proposed by Raghunathan et al. (2007). This transforma-
tion, yAk = sin−1(

√
p̂HTk ), is an approximate variance stabilizing transforma-

tion for binary data. The model, called the arcsine (AS) model, is

yAk |p̃k ∼ N
(

sin−1(
√
p̃k), σ

2
k

)
and sin−1(

√
p̃k) = β0 + uk + vk, (8)

where the variance σ2
k is equal to (4n∗k)

−1 with n∗k the so-called effective
sample size calculated as n∗k = p̂HTk (1− p̂HTk )/v̂ar(p̂HTk ).

Some authors proposed the use of a weighted likelihood to take into ac-
count the sampling design, also referred to as pseudo-likelihood (PL) (e.g.,
see Skinner, 1989 and Congdon and Lloyd, 2010). Mercer et al. (2014) also
considered a pseudo-likelihood approach by assuming that yPk =

∑
i∈sk w̃ikyik

has a binomial likelihood, namely

yPk |p̃k ∼ Binomial(nk, p̃k) and logit(p̃k) = β0 + uk + vk. (9)

Finally, Mercer et al. (2014) described a recent approach proposed by
Chen et al. (2014) that combines the pseudo-likelihood approach with the
effective sample size. The model, called the effective sample size (ES) model,
is

yEk |p̃k ∼ Binomial(n∗k, p̃k) and logit(p̃k) = β0 + uk + vk, (10)

where yEk = n∗kp̂
HT
k . The rationale behind this model is that both numerator

and denominator are adjusted for the sampling design.
For more details on the models described in this section, we refer to

Mercer et al. (2014). Models (5), (7), (8), (9) and (10), in which global and
local information is borrowed within the same model via independent and
ICAR random effects for each region, are called convolution models (Besag
et al., 1991).
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3. Proposed Methods

In this section, we propose a hierarchical model for the observed outcomes
yik (Section 3.1), and explain how to use this model to make predictions ŷik
for non-sampled individuals in order to obtain an estimator of Pk (Section
3.2).

3.1. Hierarchical Model

A predictive model-based approach proposed by Royall (1970) is used to
specify an estimator for Pk. The estimator is given by

p̂k =
1

Nk

∑
i∈sk

yik +
∑
i∈s′k

ŷik

 , (11)

where the first term sums outcome values of the sampled individuals, and the
second term is a sum of the predicted values over the non-sampled individuals
in area k. Royall (1970) argued that this model-based approach is more
efficient than the design-based approaches, when the model to predict ŷik is
correctly specified.

Several authors proposed the use of weight-smoothing models to predict
ŷik by modelling the health outcome as a smooth-varying function of the
survey weights (or probability of inclusion), and showed that these models
give better estimates as compared to the HT estimator. For continuous data,
Zheng and Little (2003, 2005) estimated the finite population total based on
a non-parametric regression as a function of the inclusion probabilities in the
likelihood framework. Chen et al. (2010) used a Bayesian p-spline predic-
tive estimator to estimate the finite population proportion. Their model is
a binary p-spline probit regression model with the inclusion probability as
covariate.

We extend these ideas to small area estimation. The normalized sampling
weights are used as a covariate in the model for the observed outcomes yik.
We employ Bayesian hierarchical models consisting of three stages. At the
first stage, the likelihood of the binary outcome is specified, namely

yik|p̃ik ∼ Bernoulli(p̃ik), (12)

logit(p̃ik) = ηik.

At the second stage, the latent process ηik is modelled as a function of
the sampling weights and allows for between-area variation by using both
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spatially independent and spatially dependent random effects (Besag et al.,
1991). Two versions are considered:

Model 1: ηik in (12) is modelled as

ηik = β0 + f(w̃ik) + uk + vk. (13)

Model 2: ηik in (12) is modelled as

ηik = β0 + f(πik) + uk + vk, (14)

where πik = 1/w̃ik. Similar as described in Section 2.3, β0 is an overall effect,
uk are independent random effects and vk are spatially dependent random
effects following the ICAR model.

Zheng and Little (2003, 2005) and Chen et al. (2010) used penalized
splines to construct the non-parametric function f(·) in (13) and (14). Si
et al. (2015) avoided parametric assumptions or specific functional forms for
the f(·) function and used a Gaussian process (GP) prior. To specify f(·), we
investigate both approaches, namely penalized splines using B-spline basis
functions and a GP prior using a random walk model of order one (RW1).

For notational convenience, let w̃[δ] = (w̃δ1 , . . . , w̃δL) denote the sorted set
of unique values of all observed weights w̃ik in the sample, where L is the
number of unique values. A RW1 model is a smoothing model constructed by
assuming that the increments, 4w̃δl = w̃δl − w̃δl−1

, follow a multivariate nor-
mal distribution with mean zero. The distribution of w̃[δ] is thus proportional
to

exp

{
− 1

2σ2
w

L∑
l=2

(w̃δl − w̃δl−1
)2

}
, (15)

with variance parameter σ2
w. For 1 < l < L, the conditional distribution of

the (l + 1)th normalized weight w̃δl+1
depends only on w̃δl and w̃δl+2

, while
the boundary weights w̃δ1 and w̃δL depend on their only neighbour point. To
specify the RW1 model in (14) one simply replaces w̃ik by πik in (15).

In the penalized spline case, the function f(·) is of the form

f(w̃ik) =
B∑
b=1

θbBb(w̃ik), (16)

where B1(·), . . . , BB(·) are the B-spline basis functions of degree d (Eilers and
Marx, 1996). The smoothness of f(·) is achieved by imposing a penalty on
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the regression coefficients θ of the form λθTDT
qDqθ, where λ is a smoothing

parameter and Dq is the q-th order differencing matrix (Eilers and Marx,
1996). For a detailed description of B-splines, see for example Hastie et al.
(2001) and Ruppert et al. (2003). We implement B-spline basis functions of
degree two (d = 2) with a second order difference penalty (q = 2). We choose
B = 20 to ensure enough flexibility and we use quantile-based knots. For
fitting purposes, the penalized spline in (16) is expressed in general linear
mixed model representation (Ruppert et al., 2003):

f(w̃ik) = w̃ikβw +
B′∑
b=1

αbzb(w̃ik), (17)

where βw is an unknown coefficient, zb(·) is a transformed spline basis of the
B-spline basis functions and αb ∼ N (0, σ2

α) (see the Supplementary Materials
for more information).

In the last stage one needs to assign proper hyperprior distributions for
the unknown parameters in stage 2, namely for β0, σ

2
u, σ

2
v , σ

2
w and σ2

α. Vague
priors are used for all parameters. A normal prior with large variance is
used for β0. Similar as Mercer et al. (2014) and Chen et al. (2014), we
assign Gamma(0.5, 0.008) priors on the precision parameters σ−2u and σ−2v .
This gives a 95% range on the σu and σv scale of (0.056, 4.036). It is well-
known that by taking both these hyperpriors to be vague, only the sum of the
random effects (ui+vi) and not their individual values are identified (Gelfand
et al., 2010). A common choice for the prior on the precisions σ−2w and σ−2α is
Gamma(0.001, 0.001). However, as discussed in Wakefield (2009) this prior
puts most of the prior mass of σw and σα to the right of the prior distribution
and is therefore not recommended. To avoid this and as recommended by
Wakefield (2009), we use Gamma(1, 0.01) priors for both precisions σ−2w and
σ−2α . These priors yield a 95% range on the σw and σα scale of (0.052, 0.628).
We investigate in Sections 4 and 5 the sensitivity of our results to other prior
distributions.

3.2. Prediction of Health Outcome for Non-sampled Individuals

Once estimates of β0, uk, vk and f(w̃ik) for model 1 are obtained, p̃ik in
(12) is estimated by

p̂ik =
{

1 + exp(−(β̂0 + f̂(w̃ik) + ûk + v̂k))
}−1

, (18)
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with a similar expression used for model 2 (replacing w̃ik) with πik. However,
note that for the non-sampled individuals no information on wik, or equiva-
lently on w̃ik, is available, and thus it is not possible to obtain estimates of
p̂ik for individuals in s′k. In this section, we propose (i) a method to estimate
weights w̃ik for the non-sampled individuals i in sampled area k; and (ii) a
method to estimate Pk for non-sampled areas k.

In previous work of Zheng and Little (2003, 2005) and Chen et al. (2010) it
was assumed that the inclusion probabilities (sampling weights) were known
for all units in the population. These three papers assumed a probability-
proportional-to-size sampling in which the inclusion probability is propor-
tional to a size variable (e.g., dwelling size) measured for all population units.
Alternatively, Si et al. (2015) proposed to model the sampling process by a
Bayesian model to obtain weights w̃ik for non-sampled individuals.

In each area k, we map the unique values of the observed weights wik
to form Lk strata, where Lk is the number of unique wik values in area k.
Si et al. (2015) referred to these strata as poststratification cells since they
are constructed based on the weights in the sample. It is assumed that
the Lk poststratification cells observed in the sample in area k are the only
possible strata in the population of this area. Si et al. (2015) argued that this
assumption is generally not correct (for example, if weights are constructed
by multiplying factors for different demographic variables, there may be some
empty cells in the sample corresponding to unique products of factors that
would appear in the population but not in the sample) but it allows one to
proceed with (18) without additional knowledge of the process by which the
weights were constructed.

For each k, let nlk denote the sample size in poststratification cell l
(l = 1, . . . , Lk) in area k. It is assumed that the supplied weights wik are
proportional to the inverse of the inclusion probabilities. Assuming indepen-
dent sampling, the sampling process probabilities for an individual i in area
k is given by a Bernoulli process, with probability

P (Rik = 1) = ck/wik, (19)

where ck is a positive normalizing constant to ensure that the expected num-
ber of observed individuals corresponds with the actual sample size nk. De-
note by Nlk the (unknown) population size in stratum l and area k. Since
all individuals i in stratum l have the same weight, wik ≡ w(l)k, the expected

value of nlk is E(nlk) = ckNlk/w(l)k. Because nk =
∑Lk

l=1 nlk, it follows that
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ck = nk
1∑Lk

l=1Nlk/w(l)k

, and as a result E(nlk) = nk
Nlk/w(l)k∑Lk
l=1Nlk/w(l)k

. Therefore,

it is assumed that the vector (n1k, ..., nLkk) in area k follows a multinomial
distribution conditional on nk,

(n1k, ..., nLkk) ∼ Multinom

(
nk;

N1k/w(1)k∑Lk

l=1Nlk/w(l)k

, ...,
NLkk/w(Lk)k∑Lk

l=1Nlk/w(l)k

)
, (20)

for each k, where the Nlk are unknown parameters. Because the Nlk are
unnormalized in the above parametrization, we normalize them after fitting
such that they sum to the population size in area k:

Ñlk =
Nlk∑Lk

l=1Nlk

Nk. (21)

Knowledge of Ñlk can be used in (11), which can be written as

p̂k =
1

Nk

{
Lk∑
l=1

nlkȳl +

Lk∑
l=1

(
Ñlk − nlk

)
p̂lk

}
, (22)

where ȳl =
∑

i∈l yik/nlk and p̂lk is obtained from (18) with weight w̃(l)k. Equa-
tion (22) is the point estimate of Pk. The contributions of the Lk different
cells to the estimation of Pk is clear from (22).

Inference of p̂k is based on the posterior distribution of p̂k. The posterior
is obtained by drawing B posterior samples from the posterior distributions
of p̂lk and Ñlk for l = 1, . . . , Lk. Substituting these samples in (22) yields B
posterior draws of p̂k. The Bayesian 100× (1−α)% credible interval (CI) of
p̂k is constructed by taking the α/2 and 1 − α/2 quantiles of the posterior
distribution.

Finally, we propose a procedure to estimate Pk in those areas where no
individuals have been sampled (the so-called off-sample areas). Consider an
area k∗ that has not been sampled and thus has no observations available.
To obtain estimates of plk∗ , we consider all unique weights that are observed
in the sample, w̃[δ] = (w̃δ1 , . . . , w̃δL). These weights are used in (18) to get
estimates of plk∗ and the estimate of Pk∗ is of the form

p̂∗k =
1∑L

l=1 Ñlk

L∑
l=1

Ñlkp̂lk∗ . (23)
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3.3. Implementation

The Bayesian hierarchical model for the outcomes (12) - (17) and the
multinomial model (20) described in Sections 3.1 and 3.2 are fitted using the
integrated nested Laplace approximations (INLA) approach by Rue et al.
(2009). INLA yields a computationally convenient alternative to Markov
chain Monte Carlo (MCMC) techniques. This method combines Laplace ap-
proximations and numerical integration in a very efficient manner to carry
out a Bayesian analysis. A multinomial likelihood, needed to fit the multi-
nomial model (20), is not directly available in INLA. Instead, we employ the
multinomial-Poisson transformation of Baker (1994) to fit model (20). The
sum-to-zero constraint of the random effects vk is default when using INLA.
Sampling using this constraint is achieved by considering the intrinsic Gaus-
sian Markov random field representation of the ICAR model for which, in
addition, a linear constraint is assumed (Rue and Held, 2005 and Rue et al.,
2009; See the Supplementary Materials for more detailed information).

We used R version 3.2 to fit the models using the INLA package (Martino
and Rue, 2009). Sampling from the posterior distributions obtained from
INLA is done via the inla.posterior.sample() function. More details on the
implementation and example code are given in the Supplementary Materials.
In the Supplementary Materials, an R script to perform the analyses and a
simulated dataset are attached.

4. Simulation Study

4.1. Simulation Setup

In this section we describe the setup of the simulation study to evaluate
the performance of the different small area estimators described in this ar-
ticle. As geography, we took the administrative district division of Belgium
(see Figure 1 and Section 5). The total region consists out of 43 districts.
Population sizes stratified by five-year age-groups and gender (yielding a to-
tal of J=36 strata) at each district are available. The total population size is
around ten million. Let xa denote the indicator for the different age-groups
(xa = 1 for ages 0-4, xa = 2 for ages 5-9,. . .,xa = 18 for ages 85+). Let xg
be a gender indicator taking the values 0 or 1. Let Yi(j)k denote the response
value of the ith individual belonging to the jth stratum in district k.

In each district k and for i = 1, . . . , Nk, binary outcomes were simulated,
namely Yi(j)k ∼ Bin(pjk) where pjk = Pr(Yi(j)k = 1) is the prevalence of a
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Figure 1: Map of Belgium divided in the 43 administrative districts with accompanying
population size in each district.

certain health outcome for individuals belonging to stratum j in area k. The
following six models were considered for the prevalences pjk:

(P1) pjk = 0.20,

(P2) logit(pjk) = logit(0.10) + 0.15xa,i(j)k,

(P3) logit(pjk) = logit(0.10) + 0.15xa,i(j)k − 0.50xg,i(j)k,

(P4) logit(pjk) = logit(0.20) + uk + vk,

(P5) logit(pjk) = logit(0.10) + 0.15xa,i(j)k + uk + vk,

(P6) logit(pjk) = logit(0.10) + 0.15xa,i(j)k − 0.50xg,i(j)k + uk + vk.

The effects uk ∼ N (0, 0.10) are spatially unstructured effects. The vk are spa-
tially correlated effects that are sampled from a zero mean ICAR model with
a variance of 0.20. The random effects of this ICAR model were generated
using INLA. In (P1) the prevalence is constant over all strata and districts.
In (P2) the prevalence increases with age and is spatially independent. In
(P3) the prevalence also increases with age and is spatially independent, but
women have a smaller prevalence than men. Models (P4), (P5) and (P6)
additionally assume that the prevalences vary across districts.

A survey sample was taken from the simulated population by the follow-
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Table 2: Different scenarios presenting the hypothetical sampling proportions for different
age and gender groups. These sampling proportions are used to construct probabilities
qjk used for the sampling of individuals from the generated population (see text). SRS:
simple random sampling.

Scenario [0-20[ y. [20-35[ y. [35-50[ y. [50-65[ y. 65+ y.
Male (S1) SRS SRS SRS SRS SRS

(S2) 0.20 0.12 0.10 0.06 0.02
(S3) 0.16 0.12 0.12 0.06 0.04
(S4) 0.15 0.12 0.07 0.06 0.10

Female (S1) SRS SRS SRS SRS SRS
(S2) 0.20 0.12 0.10 0.06 0.02
(S3) 0.16 0.12 0.12 0.06 0.04
(S4) 0.15 0.12 0.07 0.06 0.10

ing procedure:
(1) Select districts from which samples are drawn. First, we simulated a ran-
dom number, narea, from the set {39, 40, 41, 42, 43}. Next, we sampled narea
from the 43 districts with probability-proportional-to-size sampling where
the size variables are the population sizes of the districts. In this manner,
districts with a large population size were sampled with probability one,
whereas districts with a small population size had a probability smaller than
one. Note that a small number of off-sample areas were created in this man-
ner.
(2) The total sample size was randomly sampled by drawing a random num-
ber from the set {4000, 4001, . . . , 6000}. Next, a multinomial distribution
with probabilities proportional to the district population size was used to
draw sample sizes in each selected district, denoted by nk.
(3) The sample sizes in the J strata of area k, denoted by njk, were generated
from a multinomial distribution with total sample size nk and probabilities
qjk. Four scenarios were considered and the probabilities qjk were constructed
using the hypothetical sampling proportions in different age groups as pre-
sented in Table 2. In scenario (S1) simple random sampling (SRS) is per-
formed which implies that qjk = Njk/Nk. In scenario (S2), the hypothetical
sampling proportion of the [0-20[ year-old males is 0.20. In this [0-20[ year-
old males subgroup simple random sampling is performed which implies that
qjk = 0.20× Njk

N
(male,[0−20[ y.)
k

for the strata j belonging to this subgroup, where

N
(male,[0−20[ y.)
k is the population size in district k of the [0-20[ year-old males

subgroup. For the other subgroups in Table 2, the probabilities qjk were cal-
culated in a similar manner. Finally, we randomly sampled njk individuals
in strata j in area k from the simulated population.
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For a simulated sample, the survey design weight of a sampled individual
i of area k, wdik, is equal to the inverse of the probability of inclusion πik of
this individual in the sample. The calculation of the probabilities of inclusion
is presented in the Supplementary Materials. The survey design weights were
adjusted with a post-stratification factor fps to form the final weights used in
the analysis, namely wik = wdik×fps, with the strata of the post-stratification
defined by the age-groups [0-10[, [10-20[, [20-30[, [30-40[, [40-50[, [50-60[, [60-
70[, [70-80[, 85+ and gender.

In sampling scenario (S1) there is no relationship between the values of
the weights wik and age. In scenarios (S2) and (S3) the values of the weights
wik increase with the age groups considered in Table 2 and the weights in
scenario (S2) are more dispersed than in scenario (S3). In scenario (S4)
lower weights are obtained for the age groups [0-20[, [20-35[ and 65+, and
higher weights for the age groups [35-50[ and [50-65[. Plots of the distribution
of the generated weights wik are given in the Supplementary Materials.

For each combination of a prevalence model and a sampling scenario (6×4
combinations) we ran S times through steps (1) - (3) to obtain S simulated
datasets. Each simulated dataset contains only the outcome, the area indi-
cator and the final weight wik. Two direct and nine indirect estimators were
used to estimate the small-area prevalences from the simulated datasets. As
direct estimators we used the unweighted mean (UM) and the HT estimator
given in (3). The five indirect estimators described in Section 2.3 were used,
namely the NB-estimator in (5), the LN-estimator in (7), the AS-estimator
in (8), the PL-estimator in (9) and the ES-estimator in (10). Finally, we
calculated the prevalence using the indirect estimator (11), or equivalently
(22), using the models presented in (13) and (14), respectively further re-
ferred to as model-based model 1 (M1) and model-based model 2 (M2). We
then further used a random walk model (RW1) or penalized splines (PS).
For all indirect estimators we included both independent and spatial ICAR
random effects into the model.

To evaluate the different estimates we compared two statistics: the esti-
mated squared bias and the estimated mean squared error (MSE). Denote
by Pk the true proportion in area k (which stays constant across the simu-

lations) and denote by p̂
(s)
k the estimated proportion from the sth simulated
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Table 3: The average squared bias and mean squared error for 11 estimators based on 100
simulated datasets using the prevalence models (P1), (P2), (P3) and the four sampling
scenarios. Figures in bold denote the row minimum.

UM HT NB LN AS PL ES M1 M2 M1 M2
RW1 RW1 PS PS

Bias2 (×103)
(P1) (S1) 0.02 0.03 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
(P1) (S2) 0.04 0.05 0.00 0.04 0.01 0.00 0.01 0.00 0.01 0.00 0.00
(P1) (S3) 0.04 0.05 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00
(P1) (S4) 0.02 0.02 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
(P2) (S1) 0.03 0.03 0.03 0.04 0.02 0.03 0.03 0.02 0.02 0.02 0.02
(P2) (S2) 4.01 0.09 4.06 0.04 0.04 0.03 0.03 0.66 0.22 0.14 0.13
(P2) (S3) 1.76 0.05 1.75 0.04 0.02 0.02 0.02 0.15 0.07 0.05 0.05
(P2) (S4) 0.26 0.06 0.21 0.03 0.02 0.02 0.02 0.10 0.09 0.12 0.12
(P3) (S1) 0.04 0.04 0.03 0.04 0.02 0.03 0.03 0.02 0.02 0.02 0.02
(P3) (S2) 3.05 0.10 3.13 0.04 0.02 0.02 0.02 0.57 0.22 0.11 0.09
(P3) (S3) 1.32 0.05 1.33 0.04 0.01 0.02 0.02 0.13 0.07 0.05 0.04
(P3) (S4) 0.17 0.05 0.12 0.03 0.01 0.02 0.02 0.07 0.07 0.08 0.08
MSE (×103)
(P1) (S1) 2.81 2.82 0.09 0.09 0.48 0.09 0.09 0.09 0.09 0.09 0.09
(P1) (S2) 2.72 3.95 0.09 0.29 0.79 0.28 0.27 0.15 0.23 0.11 0.11
(P1) (S3) 2.55 3.01 0.08 0.12 0.53 0.12 0.12 0.16 0.16 0.10 0.10
(P1) (S4) 2.81 3.09 0.09 0.11 0.52 0.10 0.10 0.16 0.15 0.09 0.09
(P2) (S1) 3.66 3.68 0.17 0.16 0.63 0.17 0.16 0.40 0.40 0.37 0.37
(P2) (S2) 7.18 6.44 4.17 0.65 1.59 0.73 0.75 1.18 0.88 0.44 0.41
(P2) (S3) 4.90 4.56 1.88 0.30 0.96 0.31 0.33 0.54 0.47 0.29 0.28
(P2) (S4) 3.71 4.04 0.34 0.20 0.74 0.21 0.21 0.63 0.62 0.60 0.60
(P3) (S1) 3.22 3.24 0.14 0.14 0.54 0.14 0.13 0.34 0.34 0.31 0.32
(P3) (S2) 5.81 5.84 3.23 0.61 1.47 0.64 0.69 1.07 0.78 0.35 0.32
(P3) (S3) 4.09 4.12 1.42 0.26 0.85 0.25 0.27 0.49 0.38 0.23 0.22
(P3) (S4) 3.41 3.74 0.24 0.13 0.67 0.18 0.18 0.51 0.48 0.46 0.45

dataset. The statistics were calculated as:

Bias2 =
1

K

K∑
k=1

(p̄k − Pk)2 , where p̄k =
1

S

S∑
s=1

p̂
(s)
k

MSE =
1

K

K∑
k=1

(
1

S

S∑
s=1

(p̂
(s)
k − Pk)

2

)
.

We also calculated the nominal coverage and the average length of the 95%
credible intervals of the prevalence estimates.

4.2. Simulation Results

The squared bias and mean squared error results are presented in Table 3
and Table 4 with all results based on one hundred simulations (S=100).

We first discuss the results of the scenarios in which the small area preva-
lences are not spatially varying (Table 3). For scenario (P1) all estimators
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Table 4: The average squared bias and mean squared error for 11 estimators based on 100
simulated datasets using the prevalence models (P4), (P5), (P6) and the four sampling
scenarios. Figures in bold denote the row minimum.

UM HT NB LN AS PL ES M1 M2 M1 M2
RW1 RW1 PS PS

Bias2 (×103)
(P4) (S1) 0.03 0.03 0.52 0.71 0.41 0.52 0.55 0.52 0.52 0.52 0.52
(P4) (S2) 0.04 0.04 0.58 0.79 0.43 0.48 0.58 1.37 1.35 0.58 0.58
(P4) (S3) 0.03 0.04 0.56 0.74 0.41 0.52 0.57 1.02 0.81 0.56 0.56
(P4) (S4) 0.02 0.02 0.50 0.69 0.37 0.48 0.52 0.62 0.66 0.50 0.50
(P5) (S1) 0.03 0.03 0.73 0.92 0.56 0.73 0.75 0.65 0.65 0.69 0.69
(P5) (S2) 4.08 0.12 4.74 0.91 0.59 0.73 0.74 3.58 2.30 0.94 0.91
(P5) (S3) 1.93 0.06 2.59 0.90 0.58 0.76 0.74 3.09 1.65 0.81 0.81
(P5) (S4) 0.28 0.04 1.03 0.91 0.54 0.70 0.73 1.43 1.29 0.76 0.76
(P6) (S1) 0.02 0.02 0.65 0.86 0.50 0.65 0.68 0.58 0.58 0.61 0.61
(P6) (S2) 3.27 0.08 3.92 0.81 0.50 0.62 0.63 2.90 1.89 0.80 0.77
(P6) (S3) 1.54 0.06 2.19 0.81 0.52 0.68 0.66 2.69 1.32 0.72 0.72
(P6) (S4) 0.23 0.06 0.89 0.81 0.47 0.60 0.64 1.26 1.04 0.67 0.67
MSE (×103)
(P4) (S1) 2.65 2.66 1.49 1.57 1.50 1.49 1.50 1.49 1.49 1.48 1.49
(P4) (S2) 2.60 3.75 1.56 2.11 2.01 2.04 2.03 2.23 2.34 1.56 1.56
(P4) (S3) 2.46 2.86 1.50 1.73 1.63 1.66 1.65 2.01 1.91 1.51 1.51
(P4) (S4) 2.55 2.80 1.45 1.62 1.54 1.54 1.54 1.77 1.74 1.45 1.44
(P5) (S1) 3.47 3.49 2.12 2.18 2.15 2.12 2.12 2.24 2.24 2.23 2.23
(P5) (S2) 6.98 5.71 5.81 3.13 3.28 3.20 3.14 4.69 3.89 2.56 2.57
(P5) (S3) 4.80 4.18 3.70 2.48 2.56 2.49 2.47 4.04 3.30 2.27 2.28
(P5) (S4) 3.52 3.67 2.29 2.27 2.25 2.22 2.21 3.15 2.95 2.30 2.30
(P6) (S1) 3.08 3.09 1.82 1.90 1.86 1.82 1.82 1.92 1.92 1.92 1.92
(P6) (S2) 5.93 5.57 4.86 2.99 3.12 3.05 3.02 4.03 3.55 2.25 2.25
(P6) (S3) 4.27 3.94 3.18 2.19 2.27 2.20 2.18 3.47 2.89 2.03 2.04
(P6) (S4) 3.30 3.49 2.01 2.01 1.98 1.94 1.94 2.71 2.60 2.01 2.01

have a low squared bias. The MSE of the two direct estimators is large due
to the increased variance associated with these estimators. The variance and
thus the MSE of the indirect estimators is smaller, showing the benefit of
spatial smoothing methods. For the prevalence model (P2) and (P3), except
in the SRS case (S1), the unweighted mean and the naive binomial - methods
ignoring the survey weights - have a large squared bias. Again, the MSE of
the direct estimators is large. For sampling scenarios (S2) and (S3), it is ob-
served that the proposed model-based approach using the penalized splines
performs best in terms of MSE. This can be expected, since these scenarios
imply a relationship between the design weights and the responses, namely
both the prevalences and the values of the weights increase with age, and
models (13) and (14) exploit that relationship. For (S4), on the contrary,
our proposed methods perform less good than the methods LN, PL and ES.
In this scenario there is no clear relationship between the design weights and
the responses and thus using a model of the form (13) or (14) has no benefit
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Table 5: The nominal coverage and length of the 95% credible intervals for 11 estimators
based on 100 simulated datasets using the prevalence models (P4), (P5), (P6) and the
four sampling scenarios. The results are averaged over all districts.

UM HT NB LN AS PL ES M1 M2 M1 M2
RW1 RW1 PS PS

Nominal coverage
(P4) (S1) 0.96 0.96 0.95 0.94 0.96 0.95 0.95 0.95 0.95 0.95 0.95
(P4) (S2) 0.96 0.94 0.94 0.89 0.92 0.91 0.90 0.80 0.80 0.94 0.94
(P4) (S3) 0.95 0.95 0.94 0.92 0.95 0.93 0.93 0.85 0.88 0.94 0.94
(P4) (S4) 0.96 0.96 0.95 0.94 0.95 0.94 0.94 0.91 0.92 0.95 0.95
(P5) (S1) 0.95 0.95 0.95 0.94 0.96 0.95 0.95 0.95 0.95 0.95 0.94
(P5) (S2) 0.70 0.95 0.63 0.88 0.88 0.89 0.88 0.64 0.78 0.96 0.96
(P5) (S3) 0.84 0.95 0.80 0.92 0.92 0.92 0.92 0.72 0.85 0.96 0.95
(P5) (S4) 0.94 0.95 0.92 0.94 0.95 0.94 0.94 0.84 0.87 0.94 0.94
(P6) (S1) 0.95 0.95 0.94 0.94 0.96 0.94 0.94 0.94 0.94 0.94 0.94
(P6) (S2) 0.73 0.93 0.66 0.87 0.86 0.87 0.86 0.65 0.78 0.95 0.96
(P6) (S3) 0.86 0.95 0.81 0.92 0.92 0.92 0.92 0.72 0.85 0.95 0.95
(P6) (S4) 0.94 0.95 0.92 0.93 0.95 0.94 0.94 0.85 0.87 0.94 0.94
Average length
(P4) (S1) 0.18 0.18 0.15 0.15 0.16 0.15 0.15 0.15 0.15 0.15 0.15
(P4) (S2) 0.18 0.21 0.15 0.16 0.16 0.15 0.15 0.13 0.14 0.15 0.15
(P4) (S3) 0.18 0.19 0.15 0.15 0.16 0.15 0.15 0.14 0.15 0.15 0.15
(P4) (S4) 0.18 0.19 0.15 0.15 0.16 0.15 0.15 0.15 0.15 0.15 0.15
(P5) (S1) 0.20 0.20 0.17 0.18 0.18 0.17 0.17 0.18 0.18 0.18 0.18
(P5) (S2) 0.19 0.25 0.16 0.18 0.18 0.18 0.17 0.14 0.17 0.20 0.20
(P5) (S3) 0.19 0.22 0.16 0.17 0.18 0.17 0.17 0.15 0.17 0.19 0.19
(P5) (S4) 0.20 0.21 0.17 0.18 0.18 0.17 0.17 0.17 0.17 0.18 0.18
(P6) (S1) 0.19 0.19 0.16 0.17 0.17 0.16 0.16 0.17 0.17 0.17 0.17
(P6) (S2) 0.18 0.24 0.15 0.17 0.17 0.17 0.16 0.14 0.17 0.19 0.19
(P6) (S3) 0.19 0.22 0.15 0.16 0.17 0.16 0.16 0.13 0.17 0.18 0.18
(P6) (S4) 0.19 0.20 0.16 0.17 0.17 0.16 0.16 0.15 0.16 0.17 0.17

above the other indirect methods. We further observed a small decrease in
the mean squared error between sampling scenarios (S2) and (S3) due to the
influence of the less dispersed weights of the latter scenario.

The results with spatially varying prevalences are summarized in Table 4.
It is observed that the HT estimator has a small bias over all scenarios.
The unweighted mean is unbiased for (P4) and in the SRS scenarios (S1).
The indirect estimators have a larger squared bias than the HT estimator
since these methods shrink the small area prevalences towards the overall
population prevalences through the spatial random effects. The estimators
ignoring the survey weights, UM and NB, have larger bias for (S2), (S3) and
(S4). In terms of MSE, the naive binomial and the proposed model-based
approach using the penalized splines perform the best for (P4). For (P5)
and (P6) again the proposed model-based approach performs well. Whereas
for (S4) the methods PL and ES perform somewhat better.

The results of the nominal coverage and average length of the 95% credible
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intervals are shown in Table 5. We only present the results of settings (P4),
(P5) and (P6) here. Results for (P1), (P2) and (P3) are qualitatively similar
(Supplementary Material). The HT estimator has a nominal coverage around
95% for all scenarios. The unweighted mean and naive binomial have poor
coverages for the combinations (P5) and (P6) with (S2) and (S3) due to the
bias of the estimators in these settings. The nominal coverage of the LN, AS,
PL and ES methods have an undercoverage in some scenarios. The proposed
model-based approach using the random walk does not perform well. The
model-based approach using the penalized splines, on the other hand, has a
coverage around 95% in all scenarios. The average length of the CIs of the
indirect estimators is smaller than the length of the HT estimator CIs.

In general, the two methods ignoring the sampling weights (unweighted
mean and naive binomial) produce poor estimates due to the bias of these
methods. The HT estimator is unbiased but has a large variance, making
it unsuitable for practical usage. The indirect estimators accounting for the
weights produce estimates with both small bias and small mean squared
errors. The model-based approach using the penalized splines described in
Section 3 is preferred when there is a relationship between the survey weights
and the responses, otherwise, the LN, PL and ES methods are preferable.
The performance of the penalized splines is better than the random walk
models. For the penalized spline model-based approach the difference in
performance between models (13) and (14) is negligible.

In the Supplementary Material, we present the results with respect to
the sensitivity of the results to other prior distributions. It was observed
that the obtained results are insensitive to other (vague) prior distribution
choices. In addition, we also present in the Supplementary Material the
results with respect to the off-sample areas separately. These results are
presented separately to be able to evaluate the described approaches with
respect to the estimation and prediction in areas where no data is available.
The conclusions from this off-sample analysis are similar as the conclusions
discussed above.
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5. Application to Belgian Health Interview Survey

Next, we focus our attention on empirical data measuring the prevalence
of asthma across the 43 districts shown in Figure 1 using the 2001 Belgian
Health Interview Survey (HIS). Data were collected in response to the ques-
tion “Have you experienced asthma in the previous year?”. In total, 12,003
individuals responded to this question. The number of respondents per dis-
trict varied between 50 and 2,949, and 4 districts were not selected in the
survey. In total 612 (5.1 %) individuals responded positive to the question.
The 2.5% and 97.5% quantiles of normalized weights calculated via (2) are
0.35 and 2.49, respectively. The minimum and maximum normalized weights
are 0.06 and 10.49, respectively.

We calculated the small areas prevalences of asthma using the eleven
estimators that were considered in the simulation study in Section 4. Fig-
ure 2 presents the violin plots of the predicted prevalences of asthma by
district using the different estimators. It is clear that the direct estimators
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Figure 2: Violin plot of the predicted prevalence estimates of asthma, using various ap-
proaches, across the 43 districts in Belgium estimated from the Health Interview Survey
of 2001.
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(unweighted mean and HT estimator) have a large amount of heterogeneity
amongst the districts with predicted asthma prevalences ranging from 0.0
to 0.10. This variability is substantially reduced by using the nine indirect
approaches that use Bayesian hierarchical models. The shape and location of
the violin plots are similar for the indirect estimators with the arcsin square
root transformation and pseudo-likelihood binomial approach showing the
most heterogeneity amongst districts. The results of the model-based ap-
proaches are fairly similar. In the Supplementary Materials, we give the
point estimates and associated CI per district.

In Figure 3, we display maps of the predicted prevalences calculated using
the unweighted mean, the HT estimator, the naive binomial approach and the
proposed model-based approaches as described in Section 3 (lower panels). It
is observed that the naive binomial approach yields quite similar results as the
proposed model-based approaches. We expected this result, since the goal of
the sampling design of the HIS (Demarest et al., 2001) is to obtain a sample
which is as close as possible to simple random sampling. The estimated
prevalences are highest in the districts of Nivelles and Soignies, with predicted
prevalences (using the model-based model 1 with PS estimator) of 7.04%
[95% CI: 5.00 - 9.98] and 6.25% [95% CI: 4.23 - 9.50], respectively. Figure 4
presents the estimated cell probabilities obtained via model (13) with PS (left
panel) and the estimated cell size proportions (right panel) for the district of
Nivelles. The 95% credible intervals of p̂ik are calculated using (18) with the
parameter estimates replaced by their posterior samples. It is observed that
the relationship between the normalized weights and probability on asthma
is non-linear. The credible intervals of p̂ik are somewhat inflated near the
boundary values of w̃ik since the variability of f̂(w̃ik) is inflated near the
boundary. In the Supplementary Materials we also present the estimated
cell size proportions obtained via model (13) with RW1. It can be observed
that the PS approach is better able to capture a non-linear trend. Under
RW1 the estimated probabilities p̂ik are smaller than PS for small weights
and approach a constant probability around 0.07 after a small initial drop.
The strata size proportions Ñlk/Nk depend on the normalized weights in an
irregular structure since the sample sizes in the strata are different. Figure 5
presents prevalence maps where the results are obtained via four spatial
smoothing methods that account for the spatial weights that are described
in Mercer et al. (2014). There are no important differences between these
maps and the maps produced by the model-based approaches (Figure 3)
as described in Section 3. The results of the model-based approaches are
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Figure 3: Predicted asthma prevalences by district in Belgium using the 2001 Belgian
Health Interview Survey. The obtained estimates are the unweighted mean (top left), the
Horvitz-Thompson estimator (middle left), the naive binomial approach (middle right),
the model-based approach using model (13) with RW1 (bottom left) and the model-based
approach using model (13) with PS (bottom right).
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Figure 4: Estimated cell probabilities obtained via (13) with PS together with the 95%
credible intervals (left panel) and cell size proportions obtained via (20) (right panel)
for the district of Nivelles using the model-based approach. In the right panel, the dots
indicate the posterior mean and the black vertical lines are the 95% credible intervals.

not influenced by the choice of the prior distributions (see Supplementary
Materials).

6. Discussion

We have presented a predictive model-based approach for the estimation
of small area estimates from a health survey in which the survey weights
of the sampled individuals are the only information available on the sur-
vey design. Our approach uses a hierarchical Bayesian model in which the
health outcomes are regressed via a non-parametric function on the normal-
ized survey weights to obtain predictions of the outcome for the non-sampled
individuals. The hierarchical model accounts for the spatial distribution by
using both spatially unstructured and spatially structured random effects.
Simultaneously, the survey weights themselves are modelled to estimate the
survey weights of the non-sampled individuals. In the simulation study, the
benefits of using indirect methods that account for the survey weights based
on hierarchical models are clearly observable. The simulation study indicates
that our proposed model-based approach performs well, especially when there
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Figure 5: Predicted asthma prevalences by district in Belgium using the 2001 Belgian
Health Interview Survey. The obtained estimates are obtained via four estimators de-
scribed in the overview paper of Mercer et al. (2014): the logit normal estimator (top
left), the arcsin square root transformation estimator (top right), the pseudo-likelihood
binomial estimator (botom left) and the effective sample size adjusted estimator (bottom
right).

is a relationship between the responses and the sampling weights. The 95%
credible intervals of the described model-based approach provide good nom-
inal coverage results with short average interval lengths. The results are not
sensitive to different choices of prior distributions for the hyperparameters.
The proposed methodology is based on Si et al. (2015) describing similar ap-
proaches to estimate the finite population mean from a survey. We extended
their work to the context of small area estimation.

Both a first-order random walk and a penalized spline were considered
for the regression of the health outcome on the survey weights. A first-
order random walk can be seen as the Bayesian counterpart of P-splines in
which abrupt jumps between two successive spline parameters βm−βm−1 are
penalized (Brezger and Lang, 2008). A first-order random walk was preferred
over a second-order random walk since it was observed that the second-order
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random walk yielded unstable results for some datasets in the simulation
study. Overall, we observed in the simulation study that the penalized spline
approach outperforms the random walk. Knot selection for the penalized
spline, both in terms of number of knots and placement of the knots, is
out of the scope of the manuscript. Techniques described in, for example,
Ruppert et al. (2003) could be used for this purpose. A sensitivity analysis
(results not shown) indicated that our choice of B = 20 was sufficient for the
analyses presented here.

To implement our methods we used the inla package within the R com-
puting environment. In this paper, we have observed that inla is very accu-
rate and yields trustworthy results. However, in general we advise researchers
to check their results carefully, especially for rare binary events and small
sample sizes, since inla can produce inaccurate results in these cases (Fong
et al., 2010). The procedure to obtain estimates for off-sample areas is eas-
ily implemented in inla by extending the data with the appropriate set of
weights and treat the response data as missing. In this manner, predictions
for these responses are done as part of the model fitting. We opted for im-
plementing the estimation for the mean and the distribution estimation for
the weights separately to make sure that we can make use of standard inla

functions. Part of the uncertainty is not accounted for in this manner, how-
ever, from the simulation study we observed that the nominal coverage of
the 95% credible intervals of the proposed methods are satisfactory.

This paper presented methodology for binary distributed health out-
comes. Generalization to other distributions of the health outcome could
be done without much effort. The model is also easily extended to include
additional predictors. In addition, this proposed methodology can also be
used for surveys in which the variables on which the sampling design is based
are known. Suppose for example that the survey design selects people ac-
cording to age, gender and educational level. It seems unlikely that census
data per small area which is fully cross-classified over these three variables
is available (only marginals but no full cross-classifications). The proposed
approaches described in the paper are useful in this example by modelling
the health outcome on these three variables and simultaneously making infer-
ence about the unknown population sizes in the cross-classified cells. This is
a topic that is currently under investigation. Investigating how the proposed
models can be used and how they perform for the calculation of subgroup
means is another interesting topic of future research.

Another possible extension is replacing the spatially structured random
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effects by a smooth, non-parametrically specified trend. This was first pro-
posed by Opsomer et al. (2008). This would be useful when more specific
information on the spatial locations (more specific than the small area of
interest) of the sampled individuals is available.

The hierarchical model approaches described in this paper borrow strength
from neighbouring areas. These models are useful to detect hot spot clus-
tering. However, their ability to detect localized hot spots (clusters) is ques-
tionable because the models include a global smoothing mechanism (Lawson
and Denison, 2002). In the literature, some authors described Bayesian ap-
proaches addressing the hot spot (cluster) identification problem. We refer
to Lawson and Denison (2002) for an overview.

The described approaches assume that all unique values of the weights
have been observed. Si et al. (2015) argued that this is a possible concern
of the proposed methods when it is known that some large weights in the
population have not occurred in the sample. In this case, this should be taken
into account in the setup of the model. A second concern arises in multi-
purpose health surveys in which many health outcomes are of interest. Our
proposed methods should be repeated separately for each outcome. This
is computationally intensive, however, we believe that in the modern era
where cluster and parallel computing is available this should not be a major
obstacle.

Acknowledgements

Support from a doctoral grant of Hasselt University is acknowledged
(BOF11D04FAEC to YV). Support from the National Institutes of Health is
acknowledged [award number R01CA172805 to CF]. Support from the Uni-
versity of Antwerp scientific chair in Evidence-Based Vaccinology, financed in
2009–2015 by a gift from Pfizer, is acknowledged [to NH]. Support from the
IAP Research Network P7/06 of the Belgian State (Belgian Science Policy)
is gratefully acknowledged. This research is supported in part by funding
under grant NIH R01CA172805 [CF, RK, AL].

Supplementary Materials

The reader is referred to the Supplementary Materials for more informa-
tion on the implementation of the described models, additional results of the
simulation study, and additional results for the application study.

27



References

Baker, S. G., 1994. The multinomial-Poisson transformation. The Statistician
43 (4), 495–504.

Besag, J., York, J. C., Mollie, A., 1991. Bayesian image restoration, with
two applications in spatial statistics. Annals of the Institute of Statistical
Mathematics 43, 1–59.

Brezger, A., Lang, S., 2008. Simultaneous probability statements for Bayesian
P-splines. Statistical Modeling 8, 141–186.

Chen, C., Wakefield, J., Lumley, T., 2014. The use of sample weights in
Bayesian hierarchical models for small area estimation. Spatial and Spatio-
temporal Epidemiology 11, 33–43.

Chen, Q., Elliott, M. R., Little, R. J. A., 2010. Bayesian penalized spline
model-based inference for finite population proportion in unequal proba-
bility sampling. Survey Methodology 36 (1), 23–34.

Cochran, W. G., 1977. Sampling techniques. Hoboken: John Wiley & Sons,
Inc.

Congdon, P., Lloyd, P., 2010. Estimating small area diabetes prevalence in
the US using the behavioral risk factor surveillance system. Journal of
Data Science 8, 235–252.

Datta, G. S., Ghosh, M., 1991. Bayesian prediction in linear models: Appli-
cations to small area estimation. Annals of Statistics 19, 1748–1770.

Demarest, S., Tafforeau, J., Van Oyen, H., Bruckers, L., Molenberghs, G.,
Tibaldi, F., Van Steen, K., 2001. Health Interview Survey 2001: Protocol
for the sampling design. Brussel, Wetenschappelijk Instituut Volksgezond-
heid, Afdeling Epidemiologie.

Eberly, L. E., Carlin, B. P., 2000. Identifiability and convergence issues for
Markov chain Monte Carlo fitting of spatial models. Statistics in Medicine
19, 2279–2294.

Eilers, P. H. C., Marx, B. D., 1996. Flexible smoothing with B-splines and
penalties (with discussion). Statistical Science 11, 89–121.

28



Elliott, P., Wakefield, J., Best, N., Briggs, D. (Eds.), 2001. Spatial epidemi-
ology: Methods and applications. Oxford: Oxford University Press.

Farrell, P. J., 2000. Bayesian inference for small area proportions. The Indian
Journal of Statistics 62, 402–416.

Fay, R. E., Herriot, R. A., 1979. Estimates of income for small places: An
application of James-Stein procedures to census data. Journal of the Amer-
ican Statistical Association 74 (366), 269–277.

Fong, Y., Rue, H., Wakefield, J., 2010. Bayesian inference for generalized
linear mixed models. Biostatistics 11 (3), 397–412.

Gelfand, A. E., Diggle, P. J., Fuentes, M., Guttorp, P. (Eds.), 2010. Hand-
book of Spatial Statistics. Boca Raton: Chapman & Hall/CRC.

Ghosh, M., Natarajan, K., Stroud, T., Carlin, B., 1998. Generalized lin-
ear models for small-area estmation. Journal of the American Statistical
Association 93 (441), 55–93.

Gonzalez, M. E., 1973. Use and evaluation of synthetic estimators. In: Pro-
ceedings of the Social Statistics Section. American Statistical Association,
Washington, D.C., pp. 33–36.

Hastie, T., Tibshirani, R., Friedman, J., 2001. The Elements of Statistical
Learning. New York: Springer-Verlag.

Horvitz, D. G., Thompson, D. J., 1952. A generalization of sampling without
replacement from a finite universe. Journal of the American Statistical
Association 47, 663–685.

Jiang, J., Lahiri, P., 2006. Mixed model prediction and small area estimation.
Test 1, 1–96.

Kemp, I., Boyle, P., Smans, M., Muir, C. S., 1985. Atlas of cancer in Scot-
land, 1975-1980: Incidence and epidemiological perspective. Lyon, IARC
publication no 72.

Kott, P., 1989. Robust small domain estimation using random effects mod-
elling. Survey Methodology 9, 1–12.

29



Lawson, A. B., 2013. Bayesian disease mapping: Hierarchical modeling in
spatial epidemiology, second edition. Boca Raton: Chapman & Hall/CRC.

Lawson, A. B., Denison, D. G. T., 2002. Spatial Cluster Modelling. Boca
Raton: Chapman & Hall/CRC.

MacGibbon, B., Tomberlin, T. J., 1989. Small area estimates of proportions
via empirical Bayes techniques. Survey Methodology 15, 237–252.

Malec, D., Sedransk, J., Moriarity, C. L., LeClere, F. B., 1997. Small area
inference for binary variables in the National Health Interview Survey.
Journal of the American Statistical Association 92 (439), 815–826.

Martino, S., Rue, H., 2009. Implementing approximate Bayesian inference
using integrated nested Laplace approximation: A manual for the INLA
program. Available from: http://www.r-inla.org/download.

Mason, T. J., 1995. The development of the series of U.S. cancer atlases:
Implications for future epidemiologic research. Statistics in Medicine 14,
473–479.

Mercer, L., Wakefield, J., Chen, C., Lumley, T., 2014. A comparison of spa-
tial smoothing methods for small area estimation with sampling weights.
Spatial Statistics 8, 69–85.

Opsomer, J., Claeskens, G., Ranalli, M. G., Kauermann, G., Breidt, F. J.,
2008. Non-parametric small area estimation using penalized spline regres-
sion. Journal of the Royal Statistical Society. Series B 70, 265–286.

Pfeffermann, D., 2013. New important developments in small area estimation.
Statistical Science 28, 40–68.

Prasad, N. G. N., Rao, J. N. K., 1999. On robust small area estimation using
a simple random effects model. Survey Methodology 25, 67–72.

R Core Team, 2014. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.
URL http://www.R-project.org

Raghunathan, T., Xie, D., Schenker, N., Parsons, V., Davis, W., Dood,
K., Feuer, E., 2007. Combining information from two surveys to estimate

30



county-level prevalence rates of cancer risk factors and screening. Journal
of the American Statistical Association 102, 474–486.

Rao, J. N. K., 2003. Small Area Estimation. Hoboken: John Wiley & Sons,
Inc.

Rao, J. N. K., 2011. Impact of frequentist and Bayesian methods on survey
sampling practice: A selective appraisal. Statistical Science 26, 240–256.

Royall, R. M., 1970. On finite population sampling theory under certain
linear regression models. Biometrika 57, 377–387.

Rue, H., Held, L., 2005. Gaussian Markov Random Fields. Boca Ratton:
Chapman and Hall/CRC Press.

Rue, H., Martino, S., Chopin, N., 2009. Approximate Bayesian inference
for latent Gaussian models by using integrated nested Laplace approxima-
tions. Journal of the Royal Statistical Society: Series B 71, 1–35.

Ruppert, D., Wand, M. P., Carroll, R. J., 2003. Semiparametric Regression.
Cambridge: University Press.

Schrödle, B., Held, L., 2011. Spatio-temporal disease mapping using INLA.
Environmetrics 22, 725–734.

Si, Y., Pillai, N. S., Gelman, A., 2015. Bayesian nonparametric weighted
sampling inference. Bayesian Analysis 10, 605–625.

Skinner, C., 1989. Analysis of complex surveys. Wiley, Chichester, Ch. Do-
main means, regression and multivariate analysis, pp. 59–87.

Stroud, T., 1994. Bayesian inference from categorical survey data. Canadian
Journal of Statistics 22, 33–45.

Wakefield, J., 2009. Multi-level modelling, the ecologic fallacy, and hybrid
study designs. International Journal of Epidemiology 38, 330–336.

Waller, I. A., Gotway, C. A., 2004. Applied spatial statistics for public health
data. Hoboken: John Wiley & Sons, Inc.

You, Y., Rao, J. N. K., 2002. A pseudo-empirical best linear unbiased predic-
tion approach to small area estimation using survey weights. The Canadian
Journal of Statistics 30, 431–439.

31



You, Y., Rao, J. N. K., 2003. Pseudo hierarchical Bayes small area estima-
tion combining unit level models and survey weights. Journal of Statistical
Planning and Inference 111, 197–208.

Zheng, H., Little, R. J. A., 2003. Penalized spline model-based estimation of
finite population total from probability-proportional-to-size samples. Jour-
nal of Official Statistics 19, 99–117.

Zheng, H., Little, R. J. A., 2005. Inference for the population total from
probability-proportional-to-size samples based on predictions from a pe-
nalized spline nonparametric model. Journal of Official Statistics 21, 1–20.

32


