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Abstract  

Background: Particulate matter (PM) exposure leads to premature death, mainly due to 

respiratory and cardiovascular diseases.  

Objectives: Identification of transcriptomic biomarkers of air pollution exposure and effect in 

a healthy adult population. 

Methods: Microarray analyses were performed in 98 healthy volunteers (48 men, 50 women). 

The expression of 8 sex-specific candidate biomarker genes (significantly associated with 

PM10 in the discovery cohort and with a reported link to air pollution-related disease) was 

measured with qPCR in an independent validation cohort (75 men, 94 women). Pathway 

analysis was performed using Gene Set Enrichment Analysis. Average daily PM2.5 and PM10 

exposures over 2-years were estimated for each participant’s residential address using 

spatiotemporal interpolation in combination with a dispersion model  

Results: Average long-term PM10 was 25.9 (± 5.4) and 23.7 (±2.3) µg/m3 in the discovery 

and validation cohorts, respectively. In discovery analysis, associations between PM10 and the 

expression of individual genes differed by sex. In the validation cohort, long-term PM10 was 

associated with the expression of DNAJB5 and EAPP in men and ARHGAP4 (p=0.053) in 

women. AKAP6 and LIMK1 were significantly associated with PM10 in women, although 

associations differed in direction between the discovery and validation cohorts. Expression of 

the 8 candidate genes in the discovery cohort differentiated between validation cohort 

participants with high vs low PM10 exposure (area under the receiver operating curve = 0.92; 

95% CI: 0.85, 1.00; p=0.0002) in men, 0.86; 95% CI: 0.76, 0.96; p=0.004 in women).  

Conclusions: Expression of the sex-specific candidate genes identified in the discovery 

population predicted PM10 exposure in an independent cohort of adults from the same area. 

Confirmation in other populations may further support this as a new approach for exposure 
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assessment, and may contribute to the discovery of molecular mechanisms for PM-induced 

health effects.  
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Background 

Particulate matter (PM) is a complex mixture of small particles and liquid droplets that 

contains a number of components, including acids, organic chemicals, metals, and soil or dust 

particles. PM exposure is known to increase overall mortality and morbidity, mainly due to its 

effect on the cardiorespiratory system (Alfaro-Moreno et al. 2007; Pope et al. 2004). 

Exposure to PM may disturb normal physiological pathways that maintain homeostasis and 

this may activate cellular processes that mediate the adverse effects of PM (Kleensang et al. 

2014). Gene expression changes play an important role in the activation of pathways of 

toxicity and gene signatures have the potential to serve as biomarkers of exposure (van 

Leeuwen et al. 2008; van Breda et al. 2015) and recent reports demonstrate their potential use 

as biomarkers of effect (La Rocca et al. 2014; Fink et al. 2014). As it has been shown 

previously that transcriptomic responses to diverse environmental stimuli (i.e. chemical 

exposure, smoking etc.) can be significantly different between men and women (De Coster et 

al. 2013; Paul and Amundson 2014), we have opted to perform a sex-specific analysis.  

Several studies have suggested that elevated oxidative stress may mediate toxic effects of air 

pollutants (Donaldson et al. 2005; Nel et al. 2001). The systemic inflammatory response 

following acute inhalation exposure to PM can induce leukocytosis and monocyte release 

from the bone marrow (Fujii et al. 2002). Controlled exposure studies of recent diesel exhaust 

exposure (Pettit et al. 2012) and recent exposure to ultra-fine particles (Huang et al. 2010) 

have reported evidence of altered gene expression in leukocytes but, to our knowledge, 

associations between patterns of gene expression and long-term particulate air pollution have 

not been studied in general populations.  

  

Materials and methods 

Study design 
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As our goal was to identify transcriptomic biomarkers of exposure and effect in a healthy 

adult population, we started by applying microarray analysis in a discovery cohort of 98 

adults for which we modelled particulate matter exposure. On the resulting dataset containing 

significantly modulated genes and pathways, we applied a literature and bio-informatics 

approach to identify potential exposure effect biomarkers. Subsequently, these were validated 

using qPCR analysis in an independent cohort with similar characteristics as the discovery 

population (Figure 1). Study protocols for the discovery and validation cohort were approved 

by the Institutional Review Board/Ethical Committee of Antwerp University, and informed 

consent was obtained from all participants. 

 

Study population 

Discovery cohort 

The original study population was described previously (van Leeuwen et al. 2008) and 

consisted of 398 subjects from eight different regions of residence in Flanders (Belgium), as 

part of the first Flemish Environment and Health Survey (FLEHS I) during the period 2001-

2006. Participants were recruited in several communities based on random sampling. 

Inclusion criteria were age 50–65 years, living in Flanders > 5 years, and being able to 

complete questionnaires in Dutch. Prior to blood collection, informed consent was obtained 

from all individuals. A subset of 98 samples was selected for microarray analysis based on 

previously measured exposure levels to several pollutants including cadmium, lead, PCBs 

(138, 153 and 180), dioxins, polycyclic aromatic hydrocarbons (PAHs) and benzene. The 

overall exposure to these pollutants was estimated using a z-score for each pollutant, and 

study subjects with both low and high exposure levels were chosen for inclusion. Z-scores 

were not correlated with long-term PM10 exposure (r2=0.0012). Smokers were excluded from 
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the study population. Paxgene tubes (PreAnalytiX GmbH, Hombrechtikon, Switzerland) were 

used for RNA collection. 

 
Validation cohort 

The qPCR validation study was performed in an independent cohort of 175 adults being part 

of the third Flemish Environment and Health Survey (FLEHS III) during the period 2012–

2015. Healthy volunteers between 50 and 65 years of age, living at the same residential 

address for at least 10 years and being able to complete questionnaires in Dutch were 

recruited through registers of general medical practices. Prior to blood collection, informed 

consent was obtained from all individuals. Participants completed a questionnaire covering 

age, sex, and smoking habits, among other items, they donated blood and urine samples and 

subclinical measurements including height, weight and blood pressure were determined. The 

sampling campaign lasted from May 2014 until the end of the year 2014. We used Paxgene 

tubes (PreAnalytiX GmbH, Hombrechtikon, Switzerland) to stabilize whole blood RNA for 

storage.  

Exposure estimates 

 The PM10 and PM2.5 concentrations for participants’ residential addresses were calculated 

using a spatial temporal interpolation method (Kriging) that takes into account land cover data 

from satellite images (Corine land cover data set) for interpolating the measurement data of 

the monitoring stations from the Belgian telemetric air quality network as described 

previously (Maiheu B et al. 2013; Jacobs et al. 2010; Janssen et al. 2008). Validation statistics 

of the interpolation tool gave a temporal explained variance of more than 0.7 for hourly PM10 

averages as well as for annual mean PM10 (Maiheu et al. 2013). In combination with a 

dispersion model (IFDM) using emissions from line sources and point sources, the model 

chain provides daily PM10 and PM2.5 values on a 25X 25m receptor grid (Lefebvre et al. 

2013). Our model is based on input data from 38 monitoring stations in the study area. The 
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Initiative on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Use in 

Europe was the incentive for intensive model intercomparison. IFDM was thoroughly 

compared with other models currently in use for regulatory purposes in Europe (Olesen,1995; 

Maes et al. 1995; Cosemans et al. 1995; Mensink et al. 1996; Cosemans et al. 2001).  

Mean daily temperatures and relative humidity for the study region were provided by the 

Royal Meteorological Institute (Brussels, Belgium). Apparent temperature was calculated 

(Steadman 1979; Kalkstein and Valimont 1986).  

All our estimates were annual mean exposures over a 2 year-period because we were 

interested in developing biomarkers for long-term exposure. For the discovery cohort, annual 

means were based on 2011-2012 as these were the earliest years for which detailed 25 X 25 m 

grid information became available. Distribution patterns were used for the year 2008. We 

assumed that relative differences in annual mean concentrations of particulate matter were 

generally consistent from year to year. For the validation cohort, annual means were based on 

the 2 years prior to blood sampling (i.e. 2012-2013). 

RNA isolation 

Total RNA was isolated from 2.5 mL whole blood from Paxgene Blood RNA vacutainers 

using the Paxgene Blood RNA system (PreAnalytiX, Qiagen, Hilden, Germany), according to 

the manufacturer’s instructions. A globin reduction assay (GLOBINclear™ Kit by Ambion, 

Austin, USA) was performed in order to remove hemoglobin mRNA from samples that were 

submitted to microarray analysis. RNA integrity was assessed using the BioAnalyzer 

(Agilent, Palo Alto, USA) and purity was measured spectrophotometrically. Labeled samples 

were checked for specific activity and dye incorporation. 

Microarray preparation and hybridization 

0.2 µg total RNA from each sample was used to synthesize dye-labeled cRNA (Cy3) 

following the Agilent one-color Quick-Amp labeling protocol (Agilent Technologies). 
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Individual samples were hybridized on Agilent 4x44K Whole Human Genome microarrays 

(design ID 014850). 

Microarray data analysis 

Microarrays were scanned on an Agilent G2505C DNA Microarray Scanner (Agilent 

Technologies, Amstelveen, The Netherlands). Raw data on pixel intensities were extracted 

from the scan images using Agilent Feature Extraction Software (Version 10.7.3.1, Agilent 

Technologies, Amstelveen, The Netherlands), protocol GE1_107.sep09. Raw data were pre-

processed using an in-house developed quality control pipeline in R as follows: local 

background correction, flagging of bad spots, controls and spots with intensities below 

background, log2 transformation and quantile normalization. The R-scripts of the pipeline and 

additional information on the flagging can be found at https://github.com/BiGCAT-

UM/arrayQC_Module. From the processed data-files genes were omitted showing more than 

30% flagged data, after which the data-files were transferred to the Gene Expression Pattern 

Analysis Suite, GEPAS 2010 (Montaner et al. 2006) for further pre-processing, including 

merging replicate probes (based on median), and imputing missing values by means of K-

nearest neighbor imputation (K=15). Filtering for flat peaks was used with root mean square 

value 0.25. The filtered data, containing 28,786 genes were used for further statistical 

analyses. Microarray gene expression data were analyzed stratified for sex. In the original 

microarray data set initially 28,786 unique Agilent probe IDs (out of 43,376 Agilent probe 

IDs) were annotated to 22,390 EntrezGene IDs. In case of multiple replicates (i.e. multiple 

probes for the same gene), the replicate with highest interquartile range (IQR) in relative gene 

expression was selected. This resulted in 15,589 unique EntrezGene IDs.  

Gene expression analysis 

Using linear regression models adjusted for age, body mass index (BMI), socio-economic 

status (SES, classified in 3 groups: no high school degree, high school degree, or further 
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education degree), daytime and season of blood sampling we obtained estimates for each gene 

as the log2 fold change in gene expression for an increment of 5 µg/m3 in exposure. P-values 

<0.05 were considered statistically significant. P-values were corrected for multiplicity using 

the Benjamini-Hochberg false discovery rate (FDR) correction. P-values corrected for 

multiple testing are referred to as q-values. 

Pathway analysis 

Gene Set Enrichment Analysis was performed utilizing the online pathway analysis tool 

Consensus Pathway Data Base (CPDB) (http://consensuspathdb.org/). CPDB contains ~5,200 

pathways including protein complexes, metabolic, signaling and gene regulatory pathways as 

well as drug-target interactions. Data originate from 32 public resources curated from the 

literature (Kamburov et al. 2012). Gene Set Enrichment Analysis was performed in a sex-

specific manner using the log2 fold changes of the gene expression data for all genes analyzed 

at the gene expression level, without pre-selection. For every predefined gene set in each 

pathway, a Wilcoxon signed-rank test was calculated, testing the null hypothesis that the 

distribution of their fold changes was around zero. As input, all genes without a priori 

selection (EntrezGene IDs) were uploaded with their fold changes in their gene expression. 

We selected the biological processes using pathways as output. The p-values were corrected 

for multiplicity and were presented as q-values. We defined significant biological processes 

and pathways by a threshold on the adjusted p-value (q<0.05 or FDR 5%) and we included 

gene sets with a size between 5 and 100 members.  

Selection of potential exposure/effect biomarker genes 

We used a modified version of the meet-in-the-middle approach for biomarker identification 

in relation to clinical relevance, (Vineis et al. 2013) a schematic representation is shown in 

Figure 1. We first identified the top 50 genes associated with PM10 (i.e., with the smallest 

uncorrected p-values) in men and women, respectively, then performed a literature search 
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using PubMed and ScienceDirect to identify genes within each sex-specific set that have been 

associated with air pollution-related health outcomes. Specifically, we searched for the name 

of each gene in combination with any of the following diseases or processes: allergy 

(Magnussen et al. 1993), chronic obstructive pulmonary disease (COPD) (Ko et al. 2007), 

asthma (Bowatte et al. 2015), lung cancer (Raaschou-Nielsen et al. 2011), cardiovascular 

disease (CVD) (Mills et al. 2009), cerebrovascular disease (CeVD) (Johnson et al. 2010), 

Alzheimer’s disease (Finkelstein and Jerrett) and cognition (Dadvand et al. 2015). Genes with 

lowest p-values and proven link to AP-related disease were chosen for validation. For men, 

DNAJB5, RAC3, EAPP, HDLBP, PRG2, PER1, PIK3R1 and SLA2 were selected for 

validation whereas for women the gene list for validation included genes AKAP6, LIMK1, 

SIRT7, ARHPGAP4, ATG16L2, TPM3, 5-HTR1B and PYGO2. 

Validation of candidate biomarker genes by qPCR 

qPCR 

Total RNA was reverse transcribed into cDNA by means of the GoScript Reverse 

Transcription System (Promega, Madison, WI, USA) using a Veriti 96 well Thermal cycler 

(TC-5000, Techne, Burlington, NJ, USA). A maximum of 3 µg of total RNA was used as 

input and we used the protocol with an equal amount of oligo(dT) and random hexamer 

primers according to the manufacturer’s instructions. cDNA was stored at -20°C until further 

measurements. A quantitative real-time polymerase chain reaction (qPCR) was set up by 

adding 2 µL of a 10 ng/µL dilution of cDNA together with TaqMan Fast Advanced Master 

Mix (Life Technologies, Foster City, CA, USA) and PrimeTimeTM assay (Integrated DNA 

Technologies, Coralville, IA, USA), in a final reaction volume of 10 µL. Standard cycling 

conditions were used to analyze samples in a 7900HT Fast Real-Time PCR system (Life 

Technologies, Foster City, CA, USA). Expression of 8 candidate biomarker genes for each 

gender was studied and Cq values were collected with SDS 2.3 software. Minimum 
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Information on qPCR Experiments (MIQE) guidelines were taken into account. (Bustin et al. 

2009) Amplification efficiencies were between 90-110% for all assays. Raw data were 

processed to normalized relative gene expression values with qBase plus (Biogazelle, 

Zwijnaarde, Belgium) (Hellemans et al. 2007). Triplicates were run for all samples; technical 

replicates were included when the difference in Cq value was < 0.5. A set of three genes was 

used for data normalization, namely Hypoxanthine Phosphoribosyltransferase 1 (HPRT), 

Importine 8 (IPO8) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 

protein, zeta (YWHAZ).  

Data analysis 

Statistical analyses were carried out using SAS software (version 9.3, SAS Institute Inc., 

Cary, NC, USA). Continuous data were presented as mean ± standard deviation (SD) and 

categorical data as percentages (%) and frequencies. Models were adjusted for age, body mass 

index (BMI), SES, smoking (categorized as smokers, former smokers and never smokers), 

white blood cell counts (absolute number of leukocytes and percentage of neutrophils),  time 

of day (<12pm, 12–3pm, 3–6pm, >8pm) and season (October–March or April–September) of 

blood sampling. P-values <0.05 were considered statistically significant, p-values corrected 

for multiple testing referred to as q-values. We plotted residuals for each gene to check 

whether significance was driven by outliers, these were removed were appropriate. To 

indicate significance of selected biomarker genes for each gender, we included an interaction 

term for gender in our main analysis. P-values for the interaction term gender were calculated 

for all genes under study, not only those that were significant. 

In validation analysis, we examined the association between gene expression and PM10 

exposure, stratified by sex using linear regression models for the 8 selected genes for each 

gender. 

ROC Curves exposure prediction 
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We calculated the ability to predict PM10 exposure based on expression of the set of 8 

validated genes significantly associated with PM10 exposure in the discovery cohort for each 

gender. For this purpose, we estimated sensitivity and specificity of the prediction using 

receiver operating characteristic (ROC) plots. Subjects were stratified according to their long-

term PM10 exposure levels with the 75th percentile as cut-off point (25.7 µg/m3 annual mean 

for women, 24.5 µg/m3 for men). All analyses were repeated similarly using long-term PM2.5 

exposure levels, the cut-off point for long-term PM2.5 exposure, or the 75th percentile of 

exposure was 16.0 µg/m³ for both men and women.  

 

Results 

Population characteristics 

Table 1 lists the characteristics of the study cohorts. All participants were of European origin. 

Distribution of sex, SES, age and BMI as well as exposure did not differ between the 

discovery and validation cohort. Both cohorts included just less than 50% men and age 

averaged (SD) 57.9 (4.3) years. Season of sampling differed between both cohorts, with 

sampling for the discovery phase of the study mainly occurring throughout the warm months 

of the year, whereas sampling for the validation study was mainly performed during the cold 

season. However, since we are working with average annual exposures over a 2-year period, 

this approach in itself corrects for the differences across seasons. Blood sampling was done 

≤3 pm for all discovery cohort participants, while most validation cohort participants had 

samples drawn after 3pm. The discovery cohort consistent only of non-smokers, whereas the 

validation cohort included smokers (n=21).  

 

Gene level analysis 
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Table 2 displays the 20 top genes for PM10 and PM2.5 exposure in men and women. Excel File 

Tables S1–S4 display the extended top 50 lists for each exposure/gender combination. An 

overview on the total number of significant genes identified in our analysis, indicating the 

overlap between men and women, is given in Figure 2. For 199 gene transcripts we noticed 

significant sex by particulate matter exposure (PM10) interactions (data not shown). The 

corresponding number of gene transcripts for PM2.5 with a significant sex by exposure 

interaction was 601 (data not shown). In men, there were significant associations between 47 

genes and PM10 only, 149 genes and PM2.5 only, and there were 92 genes associated with both 

exposures. In women there were significant associations between 91 genes and PM10 only, 

1067 genes and PM2.5 only, and there were 498 genes associated with both exposures. We 

identified two genes in common between long-term PM10 exposure in men and women, 

namely RAC3 and DNAJB5, respectively ranked as the 290th and 331th gene most significant 

genes with PM10 exposure in women (out of 592 genes). Furthermore RAC3 was also 

significantly associated with long-term PM2.5 exposure in men and DNAJB5 with long-term 

PM2.5 exposure in women. We did not observe any significant FDR-corrected q-values in the 

discovery phase of our study. 

 

Pathway analysis 

There were 1,251 and 966 pathways significantly associated with PM10 and PM2.5, 

respectively, in men, and 280 and 182 pathways significantly associated with PM10 and 

PM2.5 in women, based on uncorrected p-values. The top 5 identified pathways for each 

indicator of exposure are summarized in Table 3. 

Long-term PM10 exposure in men is associated with response to elevated platelet cytosolic 

Ca2+, the prolactin signaling pathway and platelet degranulation. The 5th top significant 

pathway in association with PM10 exposure in men is signaling by insulin receptor, which 



Environ Health Perspect DOI: 10.1289/EHP370 
Advance Publication: Not Copyedited 

 

15 
 

ranks 4th when analyzing long-term PM2.5 exposure. Other pathways associated with PM2.5 

exposure in men are cell-cell communication and signaling by Type 1 Insulin-like Growth 

Factor and Insulin receptor signaling cascade. For women, long-term PM10 exposure was 

associated with, in descending order of significance, respiratory electron transport, packaging 

of telomere ends, electron transport chain, respiratory electron transport and telomere 

maintenance. PM2.5 exposure was associated with respiratory electron transport, and the 

proteasome in women (Table 3).  

  

 

Transcriptome signature in relation to long-term exposure 

We selected 8 genes that were significantly (p<0.05) associated with long-term PM10 

exposure in the microarray study and have a published link with air pollution-related disease 

(Table 4) for validation in an independent cohort. Of these we could confirm (i.e. they were 

also significantly associated with PM10 in the validation cohort based on uncorrected p-values, 

and associations were in the same direction as in the discovery cohort) 2 out of 8 genes for 

men [DnaJ homolog, subfamily B, member 5 (DNAJB5), and E2F associated phosphoprotein 

(EAPP)] and 1 out of 8 genes for women to be [Rho GTPase Activating protein 4 

(ARHGAP4) borderline significantly (p=0.0535) associated with PM10 exposure (Table 4). 

AKAP6 (p = 0.02) and LIMK1 (p = 0.006) were significantly associated with PM10 in women 

in the validation cohort, albeit with significantly lower expression instead of higher 

expression as in the discovery cohort. We also tested the same sets of 8 genes for each sex for 

associations with PM2·5 exposure in the validation cohort, since all but one of the candidate 

genes (PYG02 in women, which also was not significant for PM10 in the discovery cohort) 

were significantly associated with long-term PM2·5 exposure in the discovery cohort. For 

PM2.5 exposure, we could confirm 2 out of 8 genes [DNAJB5 (borderline significant, p=0.059) 
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and EAPP] for men and 4 out of 8 genes for women [ARHGAP4, PYGO2, sirtuin 7 (SIRT7) 

and Autophagy related 16-like 2 (ATG16L2)] (see Supplemental Material, Table S1). 

Excluding 21 current smokers (14 of 94 women and 7 of 75 men) from the validation cohort 

did not alter our conclusions, based on the similarity in the effect estimates,  apart for 

expression of ARHGAP4 in association with long-term PM10 exposure (Supplemental 

Material, Table S2). 

Validation set 

To determine whether gene expression candidate biomarkers identified in the discovery 

cohort were robust exposure markers, we performed ROC curve analysis with long-term PM10 

exposure level 24.5 µg/m3 (75th percentile) as cut-off point in men. Figure 3. A shows the 

sensitivity and 1 minus specificity (false positive ratio) of PM10 exposure levels for men in 

association with the candidate biomarker genes. The model including the 8 genes in men had 

an area under the curve (AUC) value of 0.92 (95% CI: 0.85, 1.00; p=0.0002) . In women the 

model including the 8 genes had an AUC of 0.86 (95% CI: 0.76, 0.96; p=0.004) (Figure 3, 

panel B, cut-off point 25.7 µg/m3). The combined geneset perfomed better both in men and 

women than the individual genes. Similarly, for PM2.5 exposure prediction, the model for men 

had an AUC of 0.91 (95% CI: 0.83, 0.97; p=0.007) (Figure 3, panel C), the model for women 

had an AUC of 0.90 (95 % CI: 0.81, 0.98; p=0.0002) (Figure 3, panel D). 

 

Discussion  

We identified and validated transcriptome signatures that are associated with long-term 

exposure to particulate air pollution in apparently healthy men and women. These sets of 8 

gender-specific genes were predictive of exposure in the validation cohort, and including all 8 

genes in one model provided a better prediction than the 8 genes individually. We found 

DNAJB5 and EAPP in men and ARHGAP4 in women based on a discovery set and a 
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validation analysis to be significantly associated with PM10 exposure. When analyzing PM2.5 

exposure, for women, besides ARHGAP4 we identified PYGO2, SIRT7 and ATG16L2 as 

significantly associated with particulate matter exposure. However, we cannot assume these 

associations indicate causal relations due to the observational nature of our study. ROC 

analysis revealed excellent separation between individuals with high and low exposure to 

long-term particulate air pollution using the genes selected for validation. We believe gene 

expression levels have potential to be used as biomarker of exposure and effect with high 

specificity to link particulate air pollution to its health consequences, as these can be 

measured at the personal level rather than be obtained through exposure modelling at the 

population level. Further studies looking at different age and ethnic groups are warranted to 

explore the capabilities of gene expression levels as predictors in more depth. Longitudinal 

studies that monitor disease incidence, exposure and gene expression over time would be 

excellent to provide more insights. 

We observed different transcriptomic expression levels in association with particulate air 

pollution exposure in men and women. Sex-specific differences may be explained by 

differences in inflammatory responses between men and women. Immunologic differences 

between men and women have been reported based on gene expression profiles in blood 

between smokers and non-smokers, where women seem to have a more specific (involving 

less extensive pathways) immunologic response to smoking than men (Faner et al. 2014). 

Furthermore, sex-specific associations were also reported for microarray expression profiles 

in relation to environmental exposure to diverse compounds such as polychlorinated 

biphenyls, dioxin, benzene and PAHs (De Coster et al. 2013). The sex-specific associations 

between PM and gene expression that we observed are in line with previous reports of sex-

specific associations with other exposures. As such, prenatal exposure to bisphenol A (BPA) 

led to differential responses in murine placentae of female and male embryos. (Imanishi et al. 
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2003) Prenatal stress exposure in rats was associated with sex-specific differences in gene 

expression and behavioral effects in male and female offspring (Van den Hove et al. 2013). 

This study clearly shows the same biological exposure (i.e. prenatal stress) leads to a highly 

differential response in male and female offspring. 

To date, limited human data is available on microarray gene expression profiling in response 

to air pollution exposure. However, in an attempt to study the effects of in utero carcinogenic 

exposures, gene expression profiles in cord blood from 111 babies participating in the 

Norwegian BraMat cohort were assessed and correlation analyses of gene expression levels 

with biomarkers of exposure measured showed variable numbers of significantly correlating 

genes. Overall, separate analyses for male and female newborns resulted in higher numbers of 

significantly correlating genes per gender with low overlap of similarly expressed genes 

between the 2 sexes, thus indicating a clear gender-specific toxicogenomic response. More 

specifically, the authors reported only 1 gene in common between girls (39 significant genes) 

and boys (331 significant genes) for dioxin exposure (Hochstenbach et al. 2012).  

 Given evidence of the differential responses to PM exposure both at the gene and pathway 

levels between men and women, we hypothesize that different pathways could lead to the 

same disease outcome in both genders. Recently, it was reported that the same personal 

exposure (i.e. smoking) could lead to disease in a differential manner in men and women. As 

such, Paul et al. (2014) described microarray analysis in smokers and non-smoking men and 

women. They utilized a population of 24 middle-aged smoking men (n=12) and women 

(n=12) and an equal number of non-smoking controls. The gene set correlated with smoking 

in men was incapable of separating female smokers from non-smokers and vice versa. They 

identified a large number of oncogenic pathway gene-sets that were significantly different in 

female smokers compared to male smokers with Gene Set Enrichment Analysis of microarray 

data. In addition, functional annotation with Ingenuity Pathway Analysis (IPA) identified 
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smoking-correlated genes associated with biological functions in male and female smokers 

that are directly relevant to well-known smoking related pathologies. However, these relevant 

biological functions were overrepresented in female smokers compared to male smokers. 

Identified pathway categories in women were xenobiotic metabolism signaling, actin 

metabolism signaling, clathrin-mediated signaling, eicosanoid signaling, thrombin signaling, 

tight junction signaling, molecular mechanism of cancer and natural killer cell signaling (Paul 

and Amundson 2014).  

The expression of ARHGAP4 was borderline significantly associated with long-term PM10 

exposure in women in the discovery cohort, and borderline significant (p=0.0535) in the 

validation cohort. ARHGAP4, SIRT7 and ATG16L2 were furthermore significantly associated 

with long-term PM2.5 exposure in women in the discovery cohort and validation cohort.  

ARHGAP4 is a RhoGAP that regulates the cytoskeletal dynamics that controls cell motility 

and axon outgrowth (Vogt et al. 2007). Pygosus 2 (PYGO2) is a component of the Wnt 

signaling pathway required for β-catenin/T-cell factor (TCF)-dependent transcription and has 

been shown to be upregulated in lung cancer both in vitro in non-small cell lung cancer cell 

lines and in vivo in human primary tumor tissue samples (Zhou et al. 2014).  

In vitro experiments using hematopoietic stem cells from sirtuin 7 (SIRT7) knockout mice 

have shown SIRT7 regulates mitochondrial activity and its inactivation causes reduced 

quiescence, increased mitochondrial protein folding stress, and compromised regenerative 

capacity of hematopoietic stem cells (Mohrin et al. 2015),(Liu and Chen 2015). Mitochondrial 

DNA and function have been shown to be associated with chronic air pollution exposure in 

populations of newborns (Janssen et al. 2012) and elderly men (Zhong et al. 2016), hence 

NAD-dependent deacetylase SIRT7 might provide insight into a molecular mechanism 

underlying the mitochondrial damage following air pollution exposure. Autophagy related 16-

like 2 (ATG16L2) is a core autophagy gene. Previously, we found in newborns epigenetic 
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modifications in the mitochondrial genome, in association with PM2.5 exposure during 

gestation and placental mtDNA content, which could reflect signs of mitophagy and 

mitochondrial death (Janssen et al. 2012). 

The expression of the genes DNAJB5 and EAPP were significantly associated with PM10 air 

pollution exposure in men, in the discovery cohort and validation cohort. DNAJB5 is a 

member of the evolutionarily conserved DNAJ/HSP40 family of proteins, which regulate 

molecular chaperone activity by stimulating ATPase activity (Ohtsuka and Hata 2000). 

DNAJB5 contains a cysteine-rich domain which renders the protein sensitive to ROS. The 

protein forms a multiprotein complex together with Trx1 and class II histone deacetylases 

(HDACs) that functions as a master negative regulator of cardiac hypertrophy (Ago et al. 

2008). E2F-associated phospho-protein (EAPP) is a nuclear phosphoprotein that interacts with 

the activating members of the E2F transcription factor family. In vitro overexpression of 

EAPP increased the fraction of G1 cells and led to heightened resistance against DNA 

damage. EAPP itself becomes upregulated after DNA damage and stimulates the expression 

of p21 independently of p53 (Andorfer and Rotheneder 2011). 

In pathway analyses, we identified several respiratory chain related pathways significantly 

associated with long-term PM10 and PM2.5 exposure in women. Rossner et al. (Rossner et al. 

2015) reported deregulation of expression of respiratory chain, oxidative phosphorylation and 

mitochondrial membrane pathways when comparing gene expression profiles in adult non-

smoking men from a heavily polluted area versus a control region in the Czech Republic 

across different seasons (winter and summer 209 and winter 2010).  

Although sex-related differences have been observed for different environmental pollutions, 

to our knowledge, this is the first study on microarray gene expression profiles in association 

with long-term air pollution exposure among middle aged men and women.  
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Our study has strengths and limitations. We did our investigations in two independent cohorts 

for discovery and validation, using the same exposure modeling and used the gold standard 

qPCR as validation tool (Canales et al. 2006). Although sample size for the discovery cohort 

was limited, we believe validation in an independent cohort based on a reliable method such 

as qPCR indicates the robustness of our analyses. Our study also has its limitations inherent to 

the cross-sectional nature of our study. We used 2010–12 air pollution data to develop our 

high-resolution exposure models, which we applied to the participants’ baseline addresses 

(2004). Studies in the Netherlands (Brauer et al. 2003), Italy (Rome) (Rosenlund et al. 2008), 

the UK (Briggs et al. 2000), and Canada (Vancouver) (Henderson et al. 2007) have shown 

that during periods of about 10 years and longer, existing land use regression models 

predicted historic spatial contrasts well. The use of a relatively homogenous population limits 

the potential generalizability of our study to populations with different ages, races/ethnicities 

or locations. Lastly, our study design did not allow to control for cell counts in the discovery 

phase of the study. As cell counts were not performed on the samples for microarray analysis, 

and there is no good means for imputation of these values for Agilent 4X44K arrays during 

data analysis, we were not able to control for this. 

This is the first time levels of gene expression of candidate genes have been used to 

accurately predict air pollution exposure levels (PM10, PM2.5). For this purpose, we have 

established ROC curves based on the genes selected for validation in an independent cohort, 

and were able to separate low (<75th percentile) from high (>75th percentile) exposed 

individuals. ROC curves are commonly used to compare the diagnostic performance of two or 

more tests, as they give a good indication of both the sensitivity and specificity of the studied 

test (Greiner et al. 2000). As such, it has been demonstrated that gene expression signatures 

can predict survival for instance in pancreatic (Newhook et al. 2014) or non-small cell lung 

cancer (Lu et al. 2006). In 2009, this technique was applied for the first time in an 
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environmental epidemiology setting, showing that specific DNA methylation patterns could 

accurately predict the relationship between exposure to airborne PAHs and childhood asthma 

incidence. Perera et al (2009) investigated PAH levels in cord blood samples from 20 

newborns and replicated the association between PAH levels and candidate region 

methylation in 56 other newborns from the CCCEH cohort that recruits nonsmoking 

Dominican and African American women and their children residing in different areas of 

New York, USA (Perera et al. 2009). However, the application of this approach to the field of 

gene expression data in association with air pollution exposure is novel. 

In ROC curve analysis, an AUC of 0.80 is considered a ROC curve with good separation 

characteristics, and an AUC of 0.90 is considered excellent, in its ability to distinguish 

between true- and false positives. We have identified sex-specific gene-sets that fulfill these 

criteria for PM10 and PM2.5 exposure. However, we must interpret the current set within the 

context of its limitations inherent to its cross-sectional nature of our study.  

 

Conclusions 

In conclusion, microarray analysis has identified different gene expression levels in response 

to long-term air pollution in men and women. From gene-level analysis, candidate biomarker 

genes with a reported link to AP-related disease were selected and validated (i.e. significantly 

associated with PM exposure with the same direction of regulation of expression) in an 

independent cohort. For men, we propose DNAJB5 and EAPP as biomarkers of exposure. For 

women we identified ARHGAP4, PYGO2, SIRT7 and ATG16L2 as biomarker genes of 

exposure. ROC analysis revealed that the genes were able to predict high or low PM10 

exposure accurately. Prospective studies in other populations are needed to confirm our 

findings with regard to sex-specific expression of these genes in association with PM 

exposure. Furthermore, it would be highly relevant to analyze the gene expression of these 
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gender-specific gene-sets in cohorts with higher PM exposure as well as in subjects at 

different stages of life, including the more vulnerable stages such as early childhood and 

puberty.  
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Table 1: Study population and exposure characteristics. 

Characteristics Discovery cohort Validation cohort Discovery 
cohort

Validation cohort

 Men (n= 48) Men (n= 75) Women (n=50) Women (n=94)
Personal     
Age, Years 58.0±4.5 58.0±4.1 57.8±4.2 58.1±4.0 
Body Mass Index, kg/m² 27.4±3.5 26.1±3.8 25.8±3.7 25.5±4.7 
Socio-economic status     
  Low 20 (41.7) 14 (18.7) 28 (56.0) 23 (24.5) 
  Medium 15 (31.3) 26 (34.7) 7 (14.0) 16 (17.0) 
  High 13 (27.1) 35 (46.7) 15 (30.0) 55 (58.5) 
Smoking status     
  Non-smokers 48 (100.0) 

- 
25 (33.3) 50 (100.0) 49 (52.1) 

  Former smoker 43 (57.3) - 31 (33) 
  Current smoker - 7 (9.3) - 14 (14.9) 
Season of blood sampling     
  Cold (October-March) 40 (83.3)  27 (36.0) 40 (80.0) 40 (42.6)) 
  Warm (April-September) 8 (16.7) 48 (64.0) 10 (20.0) 54 (57.4)) 
Time of blood sampling     
  <12pm 41 (85.4) 0 (0.0) 44 (88.0) 7 (7.5) 
  12pm-3pm 7 (14.6) 20 (26.7) 6 (12.0) 25 (26.6) 
  3pm-6pm 0 (0.0) 32 (42.7) 0 (0.0) 43 (45.7) 
  >8pm 0 (0.0) 23 (30.7) 0 (0.0) 19 (20.2) 
White blood cell count      
Leukocytes (#/µL) - 6981.5±1632.1 - 6981.5±1632.1 
Neutrophils (%) - 56.8±8.1 - 56.8±8.1 
Exposure (µg/m3)   
PM10 long-term 25.8 (21.5-30.4) 23.1 (20.3-27.4) 26.0 (20.5-35.3) 24.2 (20.4-28.2) 
PM2.5 long-term 17.7 (15.5-20.8) 15.5 (14.5-17.6) 17.8 (15.4-20.9) 16.0 (14.7-18.3) 

Data are mean±SE or number (%), exposure data are mean (5-95th percentile) 
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Table 2: Top 20 significant genes in association with 5 µg/m3 increase in long-term PM10 and PM2.5 exposure for men and women.  

 
Men  Women 

 

 PM10 PM2.5 PM10 PM2.5 

Rank no.  
gene  

Gene FC (95% CI) Gene FC (95% CI) Gene FC (95% CI) Gene FC (95% CI) 

1 EAPP 1.15 (1.07 ,1.24) ISL2 2.45 (1.58 ,3.78) ATG16L2 0.81 (0.73 ,0.90) EFNB1 0.64 (0.53 ,0.77) 
2 DCTN6 1.23 (1.10 ,1.38) HDLBP 1.31 (1.14 ,1.50) EFNB1 0.79 (0.69 ,0.89) SLC6A7 1.52 (1.25 ,1.86) 
3 DNAJB5 1.36 (1.14 ,1.63) B3GNT3 1.42 (1.18 ,1.70) SYTL1 0.86 (0.79 ,0.93) FXN 0.73 (0.62 ,0.85) 
4 ISL2 1.55 (1.17 ,2.06) RNF144 1.83 (1.28 ,2.62) SMG5 0.84 (0.76 ,0.92) SFPQ 1.41 (1.18 ,1.67) 
5 KIAA1914 1.23 (1.07 ,1.42) ATOH8 2.24 (1.37 ,3.66) TBC1D10C 0.85 (0.78 ,0.93) NACAL 0.69 (0.58 ,0.84) 
6 HDLBP 1.14 (1.04 ,1.24) RAC3 1.62 (1.21 ,2.18) NACAL 0.81 (0.72 ,0.91) ATG16L2 0.72 (0.61 ,0.86)
7 B3GNT3 1.19 (1.06 ,1.34) ADCK1 1.49 (1.17 ,1.91) NFKBIE 0.85 (0.78 ,0.93) SLC24A2 1.73 (1.28 ,2.32) 
8 ATOH8 1.55 (1.14 ,2.10) DNAJB5 1.62 (1.20 ,2.18) CEMP1 0.80 (0.70 ,0.91) THEX1 0.34 (0.19 ,0.62) 
9 LSM12 0.86 (0.77 ,0.95) ALX3 1.40 (1.13 ,1.73) DCUN1D2 0.84 (0.76 ,0.93) TBC1D13 0.78 (0.68 ,0.90) 
10 ZNF187 1.16 (1.04 ,1.28) MAN2A2 1.39 (1.13 ,1.72) SLC6A7 1.25 (1.10 ,1.43) VAPB 1.21 (1.09 ,1.35) 
11 ARHGAP25 1.11 (1.03 ,1.20) DCTN6 1.35 (1.11 ,1.64) DHRSX 1.21 (1.08 ,1.36) TPM3 0.44 (0.28 ,0.70) 
12 SERF1B 0.83 (0.72 ,0.95) DAK 1.34 (1.10 ,1.64) TBC1D13 0.86 (0.79 ,0.94) CYB5D1 0.39 (0.23 ,0.67) 
13 ANXA1 1.19 (1.05 ,1.36) PER1 1.37 (1.11 ,1.69) SFPQ 1.21 (1.08 ,1.35) ZNF77 0.61 (0.46 ,0.81) 
14 TKTL1 1.36 (1.09 ,1.71) GUCA2B 1.78 (1.20 ,2.62) MAPK3 1.19 (1.07 ,1.32) GABRD 0.40 (0.24 ,0.67) 
15 PRG2 1.29 (1.07 ,1.56) ATXN7L3 1.30 (1.09 ,1.55) ZFYVE27 0.91 (0.86 ,0.96) NFKBIE 0.78 (0.68 ,0.90) 
16 PER1 1.19 (1.05 ,1.36) LSM12 0.77 (0.64 ,0.92) SLC39A2 1.32 (1.11 ,1.55) CEACAM3 1.67 (1.24 ,2.23) 
17 GUCA2B 1.38 (1.09 ,1.75) PRG2 1.57 (1.15 ,2.13) TSPAN4 1.37 (1.13 ,1.65) TSPAN4 1.69 (1.25 ,2.28) 
18 ST14 1.20 (1.05 ,1.37) ABL2 1.40 (1.11 ,1.78) DNAJC5 0.87 (0.81 ,0.95) GPR137 0.64 (0.50 ,0.83) 
19 CDV3 0.84 (0.73 ,0.96) MAST3 1.27 (1.07 ,1.49) MIA 0.82 (0.73 ,0.93) DNAJC5 0.80 (0.70 ,0.91) 
20 TTC30B 1.20 (1.04 ,1.37) PIK3R1 1.46 (1.12 ,1.89) CES2 1.16 (1.06 ,1.28) HSF1 0.85 (0.77 ,0.93) 
         

FC= fold change. Rank no. gene indicates its hierarchy for that particular exposure and gender based on level of significance of the identified association, so gene ranked as 
no. 1 has the lowest P-value. 
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Table 3. The top 5 significant pathways defined by gene set enrichment analysis for each 
indicator of exposure.  

Exposure Pathway Q-value #measured/# genes in pathway 
Men   
PM10   
 Response to elevated platelet cytosolic 

Ca2+ 
3·11E-07 76/87 

 Prolactin signaling pathway  5·78E-07 61/72 
 Platelet degranulation  5·90E-07 71/82 
 Leukocyte transendothelial migration 1·25E-06 98/118 
 Signaling by Insulin receptor 5·18E-06 89/109 
PM2·5   

 Cell-Cell communication 1·35E-08 95/130 
 Chagas disease (American 

trypanosomiasis)  1·40E-06 92/104 
 Signaling by Type 1 Insulin-like Growth 

Factor 1 Receptor (IGF1R) 1·40E-06 76/96 
 Signaling by Insulin receptor 1·93E-06 96/120 
 Insulin receptor signaling cascade 2·33E-06 74/76 
Women   
PM10   
 Respiratory electron transport, ATP 

synthesis by chemiosmotic coupling, and 
heat production by uncoupling proteins 

2·08E-04 89/97 

 Packaging Of Telomere Ends 3·98E-04 46/53 
 Electron Transport Chain 8·11E-04 94/103 
 Respiratory electron transport 9·59E-04 71/76 
 Telomere Maintenance 1·50E-03 72/81 
PM2·5   
 Respiratory electron transport 9·07E-04 81/92 
 Respiratory electron transport, ATP 

synthesis by chemiosmotic coupling, and 
heat production by uncoupling proteins 1·77E-03 99/113 

 Packaging Of Telomere Ends 4·54E-03 45/52 
 Proteasome  4·93E-03 41/44 
 Transcriptional regulation by small 

RNAs 4·93E-03 95/106 
 

Pathways were identified using the Gene Set Enrichment Analysis Tool from the online 
Consensus Pathway Data Base.
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Table 4. Selection of biomarker candidate genes, and their fold changes for an increase of 5 µg/m3 long-term PM10 exposure.  
 

Gene name Gene description Gene function Link to disease Discovery cohort FC 
(95% CI) 

p-value Validation cohort 
FC (95% CI) 

p-value q-value 

Men         

DNAJB5 DnaJ (Hsp40) homolog, 
subfamily B, member 5 

Heat shock protein 
40 

CVD (Ago, 2008) 1.36 (1.14, 1.63) 0.0014 1.64 (1.20, 2.23) 0.0026 0.02 

RAC3 ras-related C3 botulinum 
toxin substrate 3 (rho family, 
small GTP binding protein 
Rac3) 

Regulation of 
cellular responses 
(cell growth) 

Lung cancer (Liu, 
2015b) 

1.25 (1.04, 1.51) 0.024 1.26 (0.94, 1.96) 0.10 0.18 

EAPP E2F associated 
phosphoprotein 

Cell 
cycle/Apoptosis 

Lung cancer 
(DeMuth, 1998) 

1.15 (1.0, 1.24) 0.00055 1.18 (1.02, 1.38) 0.028 0.12 

HDLBP high density lipoprotein 
binding protein (vigilin) 

Sterol metabolism CVD (Husten, 
1998) 

1.14 (1.04, 1.24) 0.0065 1.02 (0.88, 1.19) 0.75 0.86 

PRG2 Proteoglycan 2 Eosinophil major 
basic protein 

CVD (Melchior, 
2013), asthma 
(Li, 2006) 

1.29 (1.07, 1.56) 0.012 1. 29 (0.98, 1.71) 0.066 0.18 

PER1 period homolog 1 
(Drosophila) 

Circadian rhythm 
 

CVD (Young, 
2001) 

1.19 (1.05, 1.36) 0.012 0.95 (0.74, 1.23) 0.72 0.86 

PIK3R1 phosphoinositide-3-kinase, 
regulatory subunit 1 (p85 
alpha) 

Insulin metabolism Lung cancer  (Lu, 
2006) 

1.22 (1.03, 1.43) 0.023 1.01 (0.82, 1.26) 0.91 0.91 

SLA2 Src-like adaptor 2 SLAP adapter 
protein 

CVD [73](Cosin-
Sales, 2004) 

1.22 (1.03, 1.44) 0.027 1.16 (0.97, 1.39) 0.11 0.18 

Women         

AKAP6 A kinase (PRKA) anchor 
protein 6 

Regulatory subunit 
of protein kinase A 

CVD (Oti, 2006) 1.21 (1.07, 1.36) 0.0036 0.72 (0.55‐0.94) 0.017 0.05 

LIMK1 LIM domain kinase 1 Regulation of actin 
filament dynamics 

Lung cancer 
(Chen, 2013) 
Alzheimer’s 
(Heredia, 2006)

1.28 (1.06, 1.55) 0.01 0.75 (0.61‐0.91) 0.0057 0.03 
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Models adjusted for age, BMI, SES, smoking (validation cohort), leukocyte and neutrophil count, daytime of blood sampling and season. P-values corrected for multiple 
testing are represented as q-values. 
 
 

SIRT7 sirtuin (silent mating type 
information regulation 2 
homolog) 7 (S. cerevisiae) 

Transcription 
repressor 

CVD  (
Vakhrusheva, 
2007) 

0.89 (0.82, 0.96) 0.0038 0.80 (0.6‐1.07) 0.14 0.22 

ARHGAP4 Rho GTPase Activating 
protein 4 

regulation of small 
GTP-binding 
proteins from the 
RAS superfamily 

cognition (Huang, 
2012) 

0.88 (0.81, 0.95) 0.0035 0.62 (0.38‐1.00) 0.054 0.11 

ATG16L2 autophagy related 16-like 2 
(S. cerevisiae) 

Autophagy CVD (Magne, 
2015) 

0.81 (0.73, 0.90) 0.00028 0.81 (0.59‐1.11) 0.19 0.25 

TPM3 Tropomyosin 3 Actin-binding 
protein 

Lung cancer 
(Rostila, 2012) 

0.65 (0.48, 0.88) 0.0086 1.02 (0.83‐1.26) 0.85 0.85 

5-HTR1B 5-hydroxytryptamine 
(serotonin) receptor 1B 

Neurotransmitter/ 
vasoconstriction  

CVD (
Iwabayashi 
2012) 

1.31 (1.08, 1.59) 0.0097 1.28 (0.49‐3.34) 0.62 0.71 

PYGO2 Pygophus homolog 2 Related to Wnt 
signaling 

Lung cancer (Liu, 
2013) 

0.93 (0.85, 1.01) 0.097 0.75 (0.61‐0.92) 0.0078 0.03  
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Legends to the figures 

Figure 1. Schematic representation of the application of the modified version of the meet-in-

the middle approach to identify biomarkers of disease. CVD= cardiovascular disease, CeVD= 

cerebrovascular disease, COPD= chronic obstructive pulmonary disease. 

Figure 2: Venn diagram showing the overlap of all genes significantly associated with long-

term PM10 and PM2.5 exposure in men and women in the discovery cohort . 

Figure 3. Receiver operating characteristics (ROC) curve for leukocyte gene expression of 

gene sets distinguishing between high and low long-term PM10 or PM2.5 exposure 

respectively, based on the 8 genes selected for validation for each gender. (A) performance of 

geneset consisting of DNAJB5, RAC3, SLA2, HDLBP, PRG2, PER1, PIK3R1, and EAPP to 

dinstinguish between high and low PM10 exposure in men (above 75th percentile 

corresponding to: 24.5 µg/m³) and low (<24.5 µg/m³) and (B) performance of geneset 

consisting of ARHGAP4, AKAP6, PYGO2, HTR1B, ATG16L2, SIRT7, TPM3 and LIMK1 in 

women to distinguish between high (above 75th percentile corresponding to: 25.7 µg/m³) and 

low (<25.7 µg/m³) long-term residential PM10 exposure. (C) performance of same male-

specific geneset in men and (D) and female-specific geneset in women to distinguish between 

high (above 75th percentile corresponding to: 16.0 µg/m³) and low (<16.0 µg/m³) long-term 

residential PM2.5 exposure.  
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