
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Simulating Process Trees Using Discrete-Event Simulation

Peer-reviewed author version

JOUCK, Toon & DEPAIRE, Benoit (2017) Simulating Process Trees Using

Discrete-Event Simulation.

DOI: 10.13140/RG.2.2.25488.00009

Handle: http://hdl.handle.net/1942/23130

Simulating Process Trees Using Discrete-Event
Simulation

Toon Jouck and Benôıt Depaire

Hasselt University, Faculty of Business Economics,
Agoralaan Bldg D, 3590 Diepenbeek, Belgium

toon.jouck@uhasselt.be; benoit.depaire@uhasselt.be

Abstract. The Process Tree notation is an emerging language for mod-
eling block-structured processes. A Process Tree is inherently sound and
therefore proves to be the ideal input of a simulator as it can never dead-
lock. However, most business process simulation tools require a transla-
tion to Petri Nets. This technical paper proposes a simulation tool for
Process Trees based on the principles of discrete-event simulation (DES)
that accepts a Process Tree as input. The proposed implementation ben-
efits from the extensive work that has already been done on DES, in-
cluding software packages to execute DES simulation. The simulation
algorithms and implementations are free to download and use.

Keywords: artificial event logs; process trees; simulation

1 Introduction

Process mining techniques can be used to extract process-related information
based on event data stored in event logs [1]. In order to test and improve process
mining techniques, researchers need event logs [2]. One way to obtain event logs
is to create synthetic event logs by simulating process models. In contrast to
real event logs, the user has full control over the characteristics of the synthetic
event logs. As a result, a synthetic log is tailor-made for testing specific aspects
of a process mining technique.

Many tools exist for simulating business process models into event logs,
e.g. [3,4,5,2]. These implementations work with respectively Coloured Petri Nets,
BPMN, Petri Nets and Declare Models as language of the input models. How-
ever, none of the existing tools accepts a Process Tree as input. Process Trees are
an emerging language for modeling block-structured processes [6,7,8]. A Process
Tree is inherently sound and as a result is an ideal input for a simulator as it
can never deadlock.

The main contribution of this paper is a new simulation tool based on the
principles of discrete-event simulation (DES) that accepts a Process Tree as
input. The user can set the number of process instances and the amount of
noise in the final event logs. The format of the generated event logs conforms
to the XES standard [9]. The proposed tool focuses on simulating the control-
flow perspective of processes. As such, the generated event logs serve as input
of control-flow discovery techniques.

2 Toon Jouck, Benôıt Depaire

The paper starts with a section 2 on Process Trees, event logs and noise. In
the next section 3 the simulation algorithms are described. Section 4 discusses
the tool implementation. Finally, section 5 concludes the paper and discusses
future work.

2 Preliminaries

2.1 Process Trees

Definition 1 formalizes the Process Tree notation used in this paper. The def-
inition is adopted from [7] and extended with the parent (p) and probability
mapping (b) functions.

Definition 1 (Process Tree). Let A � A be a finite set of activities and PT
be a tree: PT � pN, r,m, c, p, s, bq, where:

– N is a non-empty set of nodes consisting of operator (NO) and leaf nodes
(NL) such that: NO XNL � H

– r P NO is the root node of the tree
– O � tÑ, �, ^, ö, _u are the base patterns: ’sequence’,’choice’,’parallel’,’loop’

and ’or’.
– m : N Ñ AYO is a mapping function mapping each node to an operator or

activity, with τ representing a silent activity:

mpnq �

#
a P AY tτu, if n P NL.

o P O, if n P NO.

– Let N� be the set of all finite sequences over N then c : N Ñ N� is the
child-relation function:
cpnq � xy if n P NL

cpnq P N� if n P NO

such that

 each node except the root node has exactly one parent:
@n P Nztru : Dp P NO : n P cppq ^ Eq P NO : p � q ^ n P cpqq;

 the root node has no parent:
En P N : r P cpnq;

 each node appears only once in the list of children of its parent:
@n P N : @1¤i j¤|cpnq| : cpnqi � cpnqj ;

 a node with a loop operator type has exactly three children:
@n P N : pmpnq �öq ñ |cpnq| � 3.

– p : N Ñ N is the parent relation function:
ppnq � k ô n P cpkq

– each node has a probability of being chosen:
b : N Ñ r0, 1s is a mapping function mapping a probability to each node n:

bpnq �

$'&
'%

1, if ppnq R N�

P r0, 1s, such that
kPcpppnqq°

k

bpkq � 1 if ppnq P N�.

Simulating PT with DES 3

– Let N� be the set of all finite sequences over N then s : N Ñ N� is the
subtree function, returning all nodes of n in a pre-order:

spnq �

#
n, if n P NL.

n � spcpnq1q � . . . � spcpnq|cpnq|q, if n P NO.

– A node n P N can be denoted in shorthand as follows: n � txn1, . . . , nky
where t � mpnq and xn1, . . . , nky � cpnq.

The process tree operator semantics in this paper are adopted from [7]. There
is a trace equivalent Petri Net (or BPMN) translation for each operator (see page
59 and 63 in [7]). Leaf nodes with a τ label represent invisible activities.

Figure 1a shows an example Process Tree with its trace equivalent BPMN
representation. The root node of the tree is a sequence node and therefore all of
its children will be executed from left to right. The process starts with activity
‘a’ followed by a choice that executes both ‘b’ and ‘c’ in parallel or activity ‘d’.
The choice node is balanced as the probabilities of the branches under the choice
are both 50%, i.e. each child branch is executed in 50% of the cases. After the
choice, there is a loop node that starts with activity ‘e’, which can be followed a
finite number of times by activity ‘f’ and then executing activity ‘e’ again. The
process ends with the execution of activity ‘g’.

(a) An example Process Tree

(b) Example Process Tree as BPMN model

Fig. 1: Example Process Tree and equivalent BPMN model

4 Toon Jouck, Benôıt Depaire

2.2 Event logs

Definition 2 formalizes a trace as a sequence of activities and an event log as a
multiset of traces.

Definition 2 (Trace, Event Log). Let A � A be a finite set of activities. A
trace σj P A� is a sequence of activities. A log L P BpA�q is a multiset of traces.
The size of the log is |L| � t.

De Medeiros [10] defines noise as low-frequent incorrect behavior in the log.
The following types of noise behavior are adopted from [11]: missing head, miss-
ing body, missing tail, swap tasks and remove task. Definition 3 describes each
of these noise types. None of the listed noise types can be applied to a trace with
only one activity.

Definition 3 (Noise Types). Assume a trace σj � xa1, . . . , an�1, any then:

– Missing head: removes all activities ai in σj with i P r1, n3 s
– Missing body: removes all activities ai in σj with i P rpn3 q � 1, 2n3 s
– Missing tail: removes all activities ai in σj with i P rp 2n3 q � 1, ns
– Swap tasks: interchanges two random activities ai and aj in σj with i � j

– Remove task: remove random activity ai in σj

3 Simulation Approach

3.1 Input Parameters

A process model is the main input of the simulator and can be seen as an
event log population. Therefore, an event log represents a random observation
from that population. The user can influence which observations can be drawn
from the population by setting simulation parameters. The presented simulation
approach focuses on the control-flow perspective. Therefore, the user can set the
parameters size and noise.

The size of the log |L| is equal to the number of traces t it contains. The
size equals the number of times the simulator will run from start to end through
the Process Tree, logging each of these runs as a separate trace σj . The amount
of noise in a log is another simulation parameter. The number of noisy traces
follows a binomial distribution, i.e. t1 � Binomialp|L|, ΠNoiseq with t1 ¤ t.
ΠNoise represents the probability to select a trace for noise insertion. A selected
trace will get a random type of noise behavior (see Definition 3) based on a
uniform distribution, i.e. each type has an equal probability. Traces with only
one activity are omitted from noise insertion.

Simulating PT with DES 5

3.2 Simulation Algorithm

This section introduces the algorithms to simulate Process Trees using DES. The
algorithm 1 describes all the steps in the approach, which are also visualized
in Fig. 2. DES models a process, here a Process Tree, as as series of events.
These events correspond to instants in time when a state-change in the process
occurs [12]. The simulator of the DES model jumps from one event to the next
in the series. Each of these events are logged to obtain an event log.

Mapping First, we need to map the given Process Tree onto the general
DES model components: process (system), entities, simulation activities and
events [13]. The Process Tree represents the process or system to be simulated.
The entities are process instances, i.e. a run from start to end through the Pro-
cess Tree. Simulation activities represent leaf and operator nodes. Each leaf node
n has one corresponding simulation activity denoted as φactn . Each operator node
n, except type ’sequence’, has two simulation activities: one split activity φsplitn

and one join activity φjoinn . The start and end of a simulation activity constitutes
one or more events. A simulation activity of a leaf node has exactly one start
and one end event. A split activity has one start event and multiple end events,
one end event for each outgoing branch of the corresponding operator node. A
join activity has multiple start events, one start event for each outgoing branch
of the corresponding operator node, and one end event.

On line 8 Algorithm 1 starts iterating over all nodes of the tree. For each
leaf node it adds the simulation activity φactn to the set of simulation activities.
The simulation activity φactn has a property end which points to the end event
of that activity. For an operator node that is not of the sequence type, the
algorithm adds a split activity φsplitn and one join activity φjoinn to the set of
simulation activities. The split activity saves pointers to as much end events as
its corresponding operator node has children. The join activity has a pointer to
its single end event.

Linking nodes After the traversal of the tree, Algorithm 1 is going to link the
events together to form a simulation series of events. The algorithm on line 23-25
sets the start event(s) of an activity φmn1 equal to the end event(s) of previous
activities φmn . In this way, if an end event of an activity φmn happened, it will
start another activity φmn1 .

Algorithm 2 determines to which end event(s) the start event of activity φmn
will be linked. The start event of split and leaf node simulation activities depend
on the operator semantics of the parent. If the parent is a ‘sequence’, the start
event is the end of the previous child or the parent in case of the first child. If the
parent is a ‘choice’, ‘parallel’ or ‘or’, the start event is one of the parent split end
events. If the parent is a ‘loop’, the first child starts with the join of the ‘loop’,
the second and third child start with one of the ‘loop’ split end events. Join
activities start with the end events of all the incoming branches. The activities
linked to the root node of the tree get the arrival as a (one of) the start event(s).

6 Toon Jouck, Benôıt Depaire

Execute simulation model Once all the simulation activities are linked to
each other, Algorithm 1 simulates t entities on lines 26-28. For each entity,
the algorithm first executes the simulation activity that starts right after the
arrival of the entity, i.e. event e0. To determine that simulation activity, it uses
the Match function, that given an event, retrieves the simulation activity with
that event as start event. The Execute function will process the simulation
activity according to the semantics of the corresponding node type. A ‘choice’
split activity executes only one of its child branches. A ‘parallel’ split activity
executes all of its child branches concurrently. An ‘or’ split activity executes one
or more of its child branches concurrently. A ‘loop’ split activity executes either
the second (redo) or third (exit) child branch. Because each split activity has a
matching join of the same type, the join activity merges each of the executed
child branches. The execution of activities linked to visible leaf nodes in the tree
are logged, i.e. the label of the activity is added to the current trace.

Finally, Algorithm 1 will add noise to the traces if the noise probability
ΠNoise is higher than zero. Only traces with more than one activity can be
selected for noise insertion. The inserted noise is of a random type: remove head,
remove body, remove tail, swap activities and remove activities (see Definition 3).
The algorithm returns the final log with t traces.

Example To illustrate the simulation algorithm (see Algorithm 1) described
above, consider the Process Tree PT1 in Fig. 3. The first step maps all of the tree
nodes to simulation activities and connects these activities to (an) end event(s).
The output of the first step is shown in the first three columns of Table 1. The
root node is a sequence node which has no corresponding simulation activity.
For each of the leaf nodes a, b, c, d, e, f, g, h, i, j, k a simulation activity with one
end event is added. For example, leaf node ‘a’ leads to the simulation activity
φacta with end event eenda . Each of the remaining operator nodes ^,�,ö,_ leads
to two simulation activities, one for the split and one for the join. The split
simulation activity of node ^, for example, has two end events teend^1

, eend^2
u, one

for each outgoing branch. The join simulation activity has a single end event
eend^join

.
The second step links the simulation activities to each other by determining

the start events for each activity. The output of this step can be seen in column
4 of Table 1. The process starts with activity ‘a’, i.e. the start event of φacta is
the arrival of an entity e0. The split simulation activity φsplit^ directly follows
activity ‘a’ and therefore has eenda as its start event. After the split, activity ‘b’
and ‘c’ are executed in parallel and synchronized by the join eend^join

that has the

end of both activities as start events, i.e. teendb , eendc u. Note that the loop differs
from the other operator nodes. A loop starts with a join that merges the end
of the choice join and the end of activity ‘h’ teend�join

, eendh u. Then activity ‘g’ is

executed, followed by the loop split φsplitö . After the loop split, either the second
or third child can start.

In the third step, the simulation runs for t times, each time generating one
trace. Algorithm 1 starts by executing the simulation activity φacta that starts

Simulating PT with DES 7

parameters start

another
node?

get n P N

n P NL? n P NOzNÑ?

assign
end event

assign end
events

split/join

add activity
add split and
join activity

add start
events

another
trace?

process
arrival

ΠNoise ¡
0 and

|trace| ¡ 1

add noise

stop

yes

no

yes yes

no

no

yes

no

yes

no

Fig. 2: Flowchart of Simulation Algorithm

8 Toon Jouck, Benôıt Depaire

Algorithm 1 : Simulate Process Tree into event log

1: Input:
2: PT : Process Tree
3: t: the number of traces
4: ΠNoise: the amount of noise
5: Output:
6: L: event log
7: Φ � tu �set of simulation activities
8: for n P PT do �create a simulation activity for each node
9: if n P NL then

10: φact
n .endÐ eend

n �create simulation activity and assign end event
11: ΦÐ ΦY φact

n �add activity to set of simulation activities
12: else if n P NOztNÑu then
13: if n P Nö then
14: φsplit

n .endÐ teend
nredo

, eend
nexit

u �create simulation split activity and
assign end events

15: else
16: φsplit

n .endÐ teend
ni

|i P r1, |cpnq|su �create simulation split activity and
assign end events

17: end if
18: ΦÐ ΦY φsplit

n �add split to set of simulation activities
19: φjoin

n .endÐ eend
njoin

�create simulation join activity and assign end event

20: ΦÐ ΦY φjoin
n �add join to set of simulation activities

21: end if
22: end for
23: for φm

n P Φ do
24: φm

n .startÐ GetStartEventpn,mq �determine start event(s) of simulation
activity

25: end for
26: for i P r1, ts do �create t entities
27: σi Ð xy �start with an empty trace
28: ExecutepMatchpe0, Φq, E, σiq �process arrival of entity i
29: if ΠNoise ¡ 0 then
30: xÐ randomp0, 1q
31: if |σi| ¡ 1 and x ΠNoise then �exclude traces of length one
32: type Ð random(head,body,tail,swap,remove)
33: add noise type to σi �see Definition 3
34: end if
35: end if
36: LÐ LY σi �add trace of entity i to the log
37: end for
38: return L

Simulating PT with DES 9

Algorithm 2 : Get start event

1: Input:
2: n: node in Process Tree
3: m: type in act, split, join
4: Start GetStartEvent(n,m)
5: start Ð tu
6: if n � r then �if the node is the root
7: if m � join and n R Nö then
8: startÐ tGetEndEventpcpnq1, . . . , GetEndEventpcpnq|cpnq|qu
9: else if m � join and n P Nö then

10: startÐ te0, GetEndEventpcpnq2qu
11: else if m � split and n P Nö then
12: startÐ GetEndEventpcpnq1q
13: else
14: startÐ e0 �e0: arrival of an entity
15: end if
16: else if m � join and n R Nö then �for all joins except joins in loops
17: startÐ tGetEndEventpcpnq1, . . . , GetEndEventpcpnq|cpnq|qu
18: else if m � split and n P Nö then
19: startÐ GetEndEventpcpnq1q
20: else if ppnq P NÑ then �parent is a sequence
21: if n � cpppnqq1 then �first child in a sequence
22: if m � join and n P Nö then
23: startÐ tGetStartEventpppnqq, GetEndEventpcpnq2qu
24: else
25: startÐ GetStartEventpppnqq
26: end if
27: else �second or further child in a sequence
28: if m � join and n P Nö then
29: startÐ tGetEndEventpcpppnqqi�1q, GetEndEventpcpnq2qu
30: else
31: startÐ GetEndEventpcpppnqqi�1q �start event equals the end event

of previous child
32: end if
33: end if
34: else if ppnq P NO where o P t�,^,_u then
35: if m � join and n P Nö then
36: startÐ teend

ppnqsplitÑnjoin
, GetEndEventpcpnq2qu

37: else
38: startÐ eend

ppnqsplitÑn �specific end event of split parent operator
39: end if
40: else �parent is a loop
41: if n � cpppnqq1 then �first child in a loop
42: if m � join and n P Nö then
43: startÐ teend

ppnqjoinÑnjoin
, GetEndEventpcpnq2qu

44: else
45: startÐ eend

ppnqjoin

46: end if
47: else �second or third child in a loop
48: if m � join and n P Nö then
49: startÐ teend

ppnqsplitÑnjoin
, GetEndEventpcpnq2qu

50: else
51: startÐ eend

ppnqsplitÑn �specific end event of split parent loop
52: end if
53: end if
54: end if
55: return start

10 Toon Jouck, Benôıt Depaire

Algorithm 3 : Get end event

1: Input:
2: n: node in Process Tree
3: Output:
4: end: end event of node n
5: Start GetEndEvent(n)
6: if n P NL then
7: endÐ eend

n

8: else
9: if n P NÑ then

10: endÐ GetEndEventpcpnq|cpnq|q �end event of last child
11: else if n P NO where o P t�,^,_u then
12: endÐ eend

njoinÑppnq �join of the parent operator
13: else �node has type loop
14: endÐ GetEndEventpcpnq3q �end event of last child loop
15: end if
16: end if
17: return end

Algorithm 4 : Match simulation activity

1: Input:
2: e: event
3: Φ: list of simulation activities
4: Output:
5: φm

n : simulation activity
6: Start Match(e,Φ)
7: for φm

n P Φ do
8: if e P φm

n .start then
9: return φm

n

10: end if
11: end for

Simulating PT with DES 11

Algorithm 5 : Execute simulation activity

1: Input:
2: φm

n : simulation activity
3: E: events that happened
4: trace: trace to log
5: Output:
6: trace: trace to log
7: Start Execute(φm

n ,E,trace)
8: if m � split then
9: if n P N� then

10: iÐ randomp1, |cpnq|q
11: ExecutepMatchpeend

ni
, Φq, E, traceq

12: E Ð E Y eend
ni

13: else if n P N^ then
14: for i P r1, |cpnq|s do
15: ExecutepMatchpeend

ni
, Φq, E, traceq

16: E Ð E Y eend
ni

17: end for
18: else if n P N_ then
19: j Ð randomp1, |cpnq|q
20: for i P r1, js do
21: ExecutepMatchpeend

ni
, Φq, E, traceq

22: E Ð E Y eend
ni

23: end for
24: else if n P Nö then
25: iÐ randomp2, 3q
26: ExecutepMatchpeend

ni
, Φq, E, traceq

27: E Ð E Y eend
ni

28: end if
29: else if m � join then
30: if n P tN� YNöu then
31: ExecutepMatchpeend

njoin
, Φq, E, traceq

32: else if n P N^ then
33: if φm

n .start � E then
34: ExecutepMatchpeend

njoin
, Φq, E, traceq

35: end if
36: else if n P N_ then
37: if @i P r1, js : pestartni

q P E then
38: ExecutepMatchpeend

njoin
, Φq, E, traceq

39: end if
40: end if
41: E Ð E Y eend

njoin

42: else if m �act then
43: if n � τ then
44: traceÐ trace �mpnq �add label of node n to trace
45: ExecutepMatchpeend

n , Φq, E, traceq
46: end if
47: E Ð E Y eend

n

48: end if
49: return trace

12 Toon Jouck, Benôıt Depaire

at the arrival of an entity. Activity ‘a’ is added to the current trace. Next, the
Match function will retrieve the simulation activity φsplit^ that starts when a
has ended. The execution of φsplit^ activates both φactb and φactc in random order.
After both, activities ‘b’ and ‘c’ have ended, the join φjoin^ synchronizes the

parallel flows and triggers the choice split φsplit� . An example execution is shown
in Table 2.

In the final step Algorithm 1 adds noise to the generated trace. Consider the
trace xa, c, b, f, g, h, g, i, jy as shown in the last row of Table 2. The swap task
noise type would swap two random activities, e.g. ‘b’ and ‘f’ resulting in the
noisy trace xa, c, f, b, g, h, g, i, jy.

Tree node Simulation activity End event(s) Start event(s)

Ñ / / /

a φact
a eend

a e0 (arrival)

^
φsplit
^ teend

^1
, eend
^2

u eend
a

φjoin
^ eend

^join
teend

b , eend
c u

b φact
b eend

b eend
^1

c φact
c eend

c eend
^2

�
φsplit
� teend

�1
, eend
�2

, eend
�3

u eend
^join

φjoin
� eend

�join
teend

d , eend
e , eend

f u

d φact
d eend

d eend
�1

e φact
e eend

e eend
�2

f φact
f eend

f eend
�3

ö
φsplit
ö teend

öredo
, eend
öexit

u eend
g

φjoin
ö eend

öjoin
teend
�join

, eend
h u

g φact
g eend

g eend
öjoin

h φact
h eend

h eend
öredo

i φact
i eend

i eend
öexit

_
φsplit
_ teend

_1
, eend
_2

u eend
i

φjoin
_ eend

_join
teend

j , eend
k u

j φact
j eend

j eend
_1

k φact
k eend

k eend
_2

Table 1: Output of mapping and linking steps

Simulating PT with DES 13

Fig. 3: Process Tree PT1

Step Simulation activity Trace

1 φact
a xay

2 φsplit
^ xay

3 φact
c xa, cy

4 φact
b xa, c, by

5 φjoin
^ xa, c, by

6 φsplit
� xa, c, by

7 φact
f xa, c, b, fy

8 φjoin
� xa, c, b, fy

9 φjoin
ö xa, c, b, fy

10 φact
g xa, c, b, f, gy

11 φsplit
ö xa, c, b, f, gy

12 φact
h xa, c, b, f, g, hy

13 φjoin
ö xa, c, b, f, g, hy

14 φact
g xa, c, b, f, g, h, gy

15 φsplit
ö xa, c, b, f, g, h, gy

16 φact
i xa, c, b, f, g, h, g, iy

17 φsplit
_ xa, c, b, f, g, h, g, iy

18 φact
j xa, c, b, f, g, h, g, i, jy

19 φjoin
_ xa, c, b, f, g, h, g, i, jy

Table 2: Example execution of PT1

14 Toon Jouck, Benôıt Depaire

4 Implementation

The simulation of the DES model built in Section 3 is implemented using the
SimPy simulation library [14]. The implementation is available as a Python ap-
plication (see https://github.com/tjouck/PTandLogGenerator) and a ProM
plugin [15].

4.1 Python Application

The Python application generate logs.py is callable from commandline. It
generates logs from given Process Trees in batches. The user can specify 5 argu-
ments:

– size: the size of the event log in terms of number of traces t

– noise: the probability to add noise to a trace ΠNoise P r0, 1s
– input folder: the location where the Process Trees are stored

– timestamps: whether to include timestamps for each activity

– format: generate a log in XES or CSV format

The first two arguments are mandatory, the last three are optional. The input
folder is by default the ’../data/trees/’ folder in the project. The trees in this
folder should be in the newick tree format.1 The timestamps option indicates
whether timestamps are logged for each activity. By default each activity has a
duration from a random uniform distribution. As a result the event will contain
two events for each executed activity: one start event and one end event, each
with a timestamp. Finally, with the format option the user can opt to generate
events logs in CSV format rather than the standard XES format [9] (default
setting).

Fig. 4 shows the help option of the generate logs.py application that shows
how to use it and lists all the arguments with help information.

4.2 ProM Plugin

The ProM ‘PTandLogGenerator’ package contains the plugin Generate Log

Collection (with noise) from Process Trees. This plugin takes as input
a Newick Tree Collection, which is a list of Process Trees.2 Before the actual
simulation the plugin asks the user to specify the input parameters: the size of
the generated logs t and the percentage of noise ΠNoise P r0, 1s (see Fig. 5). The
plugin returns a set of event logs in XES format in the workspace (see Figure 6).

1 All nodes have names and distances.
2 The ‘PTandLogGenerator’ package also contains a plugin to convert a regular Pro-

cess Tree object into a Newick Tree Collection.

https://github.com/tjouck/PTandLogGenerator

Simulating PT with DES 15

Fig. 4: Help information of the generate logs.py application

5 Conclusions and Future Work

Synthetic event logs are needed to test and fine-tune process mining techniques.
Many simulation tools exist, but none of the current tools supports the input of
Process Trees. Yet, Process Trees are an ideal input of a simulator as they are
inherently sound and, as a result, never deadlock.

This paper introduced a simulation tool for Process Trees. It allows users
to influence the resulting log characteristics by setting the number of process
instances and the amount of noise in the final event log. The generated event logs
are in the XES standard format. Moreover, the tool has been integrated within
the ProM framework and therefore makes it suitable for conducting automated
experiments on control-flow discovery techniques.

The current version of the tool is limited to the control-flow perspective of
processes. Possible extensions of the simulation tool regard the inclusion of other
process perspectives such as time and resources.

References

1. van der Aalst, W.: Process Mining: Data Science in Action. Springer (2016)
2. Di Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Generating event logs

through the simulation of Declare models. In: Workshop on Enterprise and Orga-
nizational Modeling and Simulation, Springer (2015) 20–36

3. De Medeiros, A.A., Gnther, C.W.: Process mining: Using CPN tools to create test
logs for mining algorithms. In: Proceedings of the sixth workshop on the practical
use of coloured Petri nets and CPN tools (CPN 2005). Volume 576. (2005)

16 Toon Jouck, Benôıt Depaire

Fig. 5: The input dialog of the Generate Log Collection (with noise) from

Process Trees plugin

Simulating PT with DES 17

Fig. 6: The generated event logs in the workspace

18 Toon Jouck, Benôıt Depaire

4. Burattin, A.: PLG2: Multiperspective Processes Randomization and Simulation
for Online and Offline Settings. Technical Report 1506.08415 (June 2015)

5. Vanden Broucke, S.K., Vanthienen, J., Baesens, B.: Straightforward Petri Net-
based Event Log Generation in ProM. Available at SSRN 2489051 (2014)

6. van der Aalst, W., Buijs, J., Van Dongen, B.: Towards improving the represen-
tational bias of process mining. In: Data-Driven Process Discovery and Analysis.
Springer (2012) 39–54 PM101 - 1.

7. Buijs, J.C.A.M.: Flexible Evolutionary Algorithms for Mining Structured Process
Models. PhD thesis, Technische Universiteit Eindhoven, Eindhoven (2014)

8. Leemans, S.J., Fahland, D., van der Aalst, W.M.: Discovering block-structured
process models from event logs-a constructive approach. In: Application and The-
ory of Petri Nets and Concurrency. Springer (2013) 311–329

9. Verbeek, H.M.W., Buijs, J.C.A.M., Van Dongen, B.F., Van Der Aalst, W.M.P.:
Xes, xesame, and prom 6. In Soffer, P., Proper, E., eds.: Information Systems
Evolution, Springer (2011) 60–75

10. de Medeiros, A.K.A., Weijters, A.J., van der Aalst, W.M.: Genetic process mining:
an experimental evaluation. Data Mining and Knowledge Discovery 14(2) (2007)
245–304

11. Maruster, L.: A machine learning approach to understand business processes. PhD
thesis, Technische Universiteit Eindhoven, Eindhoven (2003)

12. Robinson, S.: Simulation: the practice of model development and use. Palgrave
Macmillan (2014)

13. Shannon, R.E.: Introduction to simulation languages. In: Proceedings of the 9th
conference on Winter simulation-Volume 1, Winter Simulation Conference (1977)
14–20

14. Matloff, N.: Introduction to discrete-event simulation and the simpy language.
Davis, CA. Dept of Computer Science. University of California at Davis. Retrieved
on August 2 (2008) 2009

15. Jouck, T., Depaire, B.: PTandLogGenerator: a Generator for Artificial Event Data.
In: Proceedings of the Demo Session of the 14th International Conference on Busi-
ness Process Management (BPM 2016), Rio de Janeiro, Springer (2016)

