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Abstract 

Objective We used log-linear and log-log exposure response (E-R) functions to model the association 

between PM2.5 exposure and non-elective hospitalizations for pneumonia, and estimated the attributable 

hospital costs by using the effect estimates obtained from both functions. 

Methods We used hospital discharge data on 3519 non-elective pneumonia admissions from UZ 

Brussels between 2007 and 2012 and we combined a case-crossover design with distributed lag models. 

The annual averted pneumonia hospitalization costs for a reduction in PM2.5 exposure from the mean 

(21.4 µg/m3) to the WHO guideline for annual mean PM2.5 (10 µg/m³) were estimated and extrapolated 

for Belgium.  

Results Non-elective hospitalizations for pneumonia were significantly associated with PM2.5 exposure 

in both models. Using a log-linear E-R function, the estimated risk reduction for pneumonia 

hospitalization associated with a decrease in mean PM2.5 exposure to 10 µg/m3 was 4.9%. The 

corresponding estimate for the log-log model was 10.7%. These estimates translate to an annual 

pneumonia hospital cost saving in Belgium of €15.5 million and almost €34 million for the log-linear 

and log-log E-R function, respectively.  

Discussion Although further research is required to assess the shape of the association between PM2.5 

exposure and pneumonia hospitalizations, we demonstrated that estimates for health effects and 

associated costs heavily depend on the assumed E-R function. These results are important for policy 

making, as supra-linear E-R associations imply that significant health benefits may still be obtained 

from additional pollution control measures in areas where PM levels have already been reduced.  
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1 Introduction 

Studies that provide estimates of the health effects of air pollution are necessary for evidence-based 

policy making in public health. Meaningful interpretations of air pollution effects require accurate 

knowledge on the shape of the exposure-response (E-R) functions linking air pollution exposures with 

adverse health outcomes. Traditionally, the association between air pollution and health outcomes is 

assumed to be linear (Atkinson et al., 2014; ExternE Project, Bickel & Friedrich, 2005). Consequently, 

with a rising level of pollution, the marginal harm to health will increase incrementally, implying that 

for a fixed change in the exposure there is a corresponding fixed change in the health outcome. As a 

result, current public policy often aims to clean up the most polluted regions first (Pope et al., 2015). 

Leading experts in the field recently cast doubt on the linearity of the E-R function of PM2.5 in relation 

to mortality (Pope et al., 2015; Smith & Peel, 2010). Recent research suggests that the E-R function 

between PM2.5 exposure and mortality is likely to be supralinear (i.e. the slope of the association is 

steepest at the lowest levels of exposure) for wide ranges that include very high levels of exposure (Pope 

et al., 2015; Goodkind et al., 2014). In studies on PM2.5 exposure from ambient air pollution, second-

hand smoke and active smoking, a flattening out of the slope at very high exposure levels has been 

observed for cardiovascular mortality (Pope et al., 2009; Pope et al., 2011; Burnett et al., 2014). Even 

at relatively low ambient concentrations (<30 µg/m3) in Canada and the United States, supralinearity in 

the association between PM2.5 and mortality has been suggested (Krewski et al., 2009; Crouse et al., 

2012). Supralinear associations with air pollution have also been observed for health outcomes such as 

adverse birth outcomes (Winckelmans et al., 2015), cardiovascular morbidity (Devos et al., 2015), 

pneumonia among children (Yu & Chien, 2015), white blood cell DNA adducts (Lewtas et el., 1997), 

respiratory epithelium integrity (Provost et al., 2014), as well as for other exposures (Vineis et al., 2000; 

Hertz-Picciotto & Smith, 1993).  

The aim of this study was to juxtapose log-linear and log-log E-R functions to model the association 

between PM2.5 and non-elective hospitalizations for pneumonia. Estimates derived from these models 

were used to calculate hospital cost savings for pneumonia associated with a reduction in mean PM2.5 

exposure to the WHO guideline for annual mean PM2.5 (10µg/m3). In a secondary analysis, we focused 
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on non-elective pneumonia hospitalizations among children (younger than 16 years), which are known 

to be particularly vulnerable for air pollution. 
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2 Methods 

2.1 Data 

2.1.1 Health and hospital cost data 

The study population was recruited from UZ Brussels (University Hospital Brussels, Belgium). Hospital 

discharge data on non-elective pneumonia hospitalizations (ICD-9-CM 480 - 486) from January 1st 2007 

until July 1st 2012 were obtained. Non-elective hospitalizations were selected in order to focus on acute 

events only. For the identified patients at interest, following variables were extracted from the Minimal 

Clinical Dataset: length of stay, date of admission, and patient characteristics such as gender, age, and 

zip code of residence (municipality). Ethical approval for the study was obtained by the Ethics 

Committee of UZ Brussels (B.U.N.143201215726). 

Hospital costs considered in this study included individual-level emergency and hospital claims. These 

are registered in the Minimal Financial Dataset and contain all claims charged to patients (co-payments), 

health insurances, and/or other insurances. Additionally, a fixed day price was added to calculate the 

total hospital cost of the included patients (Devos et al., 2015). For each day a patient stays in the 

hospital, Belgian hospitals receive an additional lump sum from the public health insurance funds  to 

finance non-medical hospital activities such as capital expenditures and investments for housing and 

medico-technical facilities, hotel function, and nursing care. This day price was initially not included in 

the claim database. For this study the weighted average per diem price across Belgian hospitals was used 

(Cleemput et al., 2012). All costs were converted into 2012 euros using the Belgian health care inflation 

rates published by the Belgian Directorate-General Statistics and Economic information.  

2.1.2 Exposure and meteorological data  

Daily average PM2.5 concentrations were obtained from the Belgian Interregional Environment Agency. 

In Belgium (33,990 km2) there are 38 monitoring stations for PM2.5. Data from monitoring stations are 

combined with land cover data obtained from satellite images (Corine land cover data set) in a spatial 

temporal interpolation method (Kriging) described by Janssen et al. (2008). This provides interpolated 

PM2.5 estimates on a 4 x 4 km2 grid, which are then used to calculate population-weighted averages per 



5 
 

municipality. PM2.5 estimates are linked to hospitalization data through the postal code of the patient’s 

residency.  

Because temperature is a known confounder of the association between air pollution and health (Huynen 

et al., 2001; Nawrot et al., 2007), daily mean air temperature and relative humidity measured at the 

station in Uccle (Brussels, Belgium) provided by the Belgian Royal Meteorological Institute were 

considered in the models. To adjust for the potential confounding effect of influenza episodes, we 

obtained data on weekly consultation rates for influenza-like illnesses from the representative Belgian 

Sentinel General Practitioner network, coordinated by the WIV-ISP (Scientific Institute of Public 

Health) (Van Casteren et al., 2010). Influenza epidemics were defined as weeks (Monday to Sunday) 

with an incidence above the threshold of 141 cases per 100,000 inhabitants (Van Casteren et al., 2010). 

2.2 Statistical Analyses 

2.2.1 Modelling the exposure-response associations 

The association between PM2.5 and non-elective hospitalizations for pneumonia was investigated by 

using a case-crossover design, which is widely used for short-term exposures and acute outcomes 

(Mittleman et al., 1993; Nawrot et al.; 2011, Devos et al.; 2015). In a case-crossover design each case 

subject (patient with a non-elective pneumonia admission) acts as its own control (Maclure, 1991). 

Therefore, the study design inherently adjusts for known and unknown time-invariant confounders. The 

case-crossover design compares each patient's exposure in a time period just before the admission (the 

hazard period) with that patient's exposure in the corresponding time periods before the selected control 

days (the control periods). We used the bidirectional time-stratified design to avoid selection bias (Levy 

et al., 2001): control days were selected within the same month and year as the case day, both before 

and after the case day. This way, season and long-term trends are controlled for by design. Cases and 

controls were additionally matched by day of the week to control for any weekly patterns in pneumonia 

hospitalizations or pollution levels. 

We combined the case-crossover design with distributed lag non-linear models (DLNM) (Gasparrini, 

2014) to investigate potential non-linear and delayed effects of PM2.5 exposure on pneumonia 
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hospitalizations. The DLNM is defined through a “cross-basis” function, which allows the simultaneous 

estimation of a non-linear E-R association and non-linear effects across lags, the latter termed lag-

response association. We used a recent extension of the DLNM methodology beyond aggregated time 

series data by implementing it in a conditional logistic regression model on individual-level data 

(Gasparrini, 2014). The maximum lag was set to 1 week, so the hazard period contains up to 6 days 

before the case day and each of the control periods contains up to 6 days before the control day. We 

fitted both log-linear and log-log E-R associations by applying linear functions to untransformed and 

log-transformed PM2.5 exposures respectively. The latter can be achieved by specifying a user-defined 

function [f(x) = log(x + 1)] that can be used directly in the cross-basis definition (Gasparrini, 2014). The 

lag structure was modelled with a natural cubic spline with 3 degrees of freedom (df). The knots in the 

lag space were set at equally spaced values in the log scale of lags to allow more flexible lag effects at 

shorter delays (Gasparrini, 2011). 

To capture (potentially delayed) effects of heat and cold on non-elective pneumonia hospitalizations, 

we also included a cross-basis for mean temperature in the model with a maximum lag of 25 days. We 

used a natural cubic spline with 5 df for the temperature–response function and a natural cubic spline 

with 6 df (with knots at equally spaced values in the log scale) for the lag-response function. Spline 

knots for temperature were placed at equally spaced values of the actual temperature range to allow 

enough flexibility in the two ends of the temperature distribution. Models were additionally adjusted for 

same-day (lag 0) humidity, using a natural cubic spline with 3 df, and for indicator variables for public 

holidays and influenza epidemics. Model fit was assessed based on the Akaike Information Criterion 

(AIC). We estimated relative risks (RR) of pneumonia hospitalizations associated with PM2.5 exposure 

using the WHO guideline for annual mean PM2.5 (10 µg/m3) as reference value (RR=1). Cumulative 

effects were computed by summing the log RRs over the lags of interest. Final estimates are presented 

as the percent change in pneumonia hospitalizations for a decrease in PM2.5 from the mean exposure 

among patients (21.4 µg/m3) to the value of 10 µg/m3 [100*(1–RR)]. DLNM analyses were performed 

with the statistical software R (R Foundation for Statistical Computing, Vienna, Austria) using the 

“dlnm” package (Gasparrini, 2011).  
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In a secondary analysis, we investigated effect modification by age. We ran separate models for three 

age categories: 0-15 years, 16-60 years, and >60 years old. We further examined the E-R shape as well 

by using a piecewise linear DLNM model, allowing for a change in slope above a certain breakpoint. 

We searched for the breakpoint that minimized the AIC of the model by testing all integers of the PM2.5 

range. 

2.2.2 Hospital cost calculation 

A bottom-up cost calculation was used to estimate the average cost of non-elective hospitalizations for 

pneumonia. Because of the skewness of the cost data, non-parametric bootstrapping was used to generate 

95% bias-corrected confidence intervals (95% CI BC) of the mean costs (Barber & Thompson, 2000; 

Nixon et al., 2010). Cost analyses were conducted using Stata/MP (version 12.1). Results were 

expressed as the hospital cost averted for non-elective pneumonia hospitalizations associated with a 

reduction in mean PM2.5 exposure to 10µg/m³.  

We extrapolated the hospital costs to the total Belgian population (11 million inhabitants) based on the 

national number of non-elective hospitalizations with pneumonia as main diagnosis in 2011 (N=33,695) 

provided by the Belgian Federal Public Service Health, Food Chain Safety and Environment (FPS 

Health). In the secondary analyses by age group, the extrapolation was based on the national number of 

pneumonia hospitalizations in the age groups 0-15 years (N=6,931), 16-60 years (N=7,275), and >60 

years (N=19,489). 



8 
 

3 Results 

3.1 Data description 

3,553 patients with non-elective hospitalizations for pneumonia were identified in the database of UZ 

Brussels. 20 patients with an extreme length of stay of more than 100 days and 14 patients with an 

invalid or missing ZIP code were excluded, so the final study population consisted of 3,519 patients. 

The catchment area for UZ Brussel was widely spread over Belgium, with included patients living in 

different Belgian regions. 

Table 1 provides a brief overview of the demographic characteristics of the included patients and their 

hospital costs. Women and men were almost equally affected and their hospital costs were similar. The 

majority of patients were either children (younger than 16 years) or elderly (76 years or older), 

representing 39% and 32% of the study population respectively. Persons of 45 years or younger had the 

lowest mean hospital cost (<8000 €), whereas the age group 61-75 years old generated the highest mean 

hospital cost (12,535 €, 95% CI BC: 11,519 € – 13,631 €). The average cost of a non-elective pneumonia 

hospitalization in our study population was 9,404 € (95% CI BC 9,122 € - 9,743 €).  

Table 1: Demographic characteristics of the study population 

Characteristic N (%) Mean hospital cost, € (P5 – P95) 95% CI BC, € 

Gender    

Male 1,868 (53) 9,402 (2,243 – 27,812) 

 

8,977 – 9,817 

Female 1651 (47) 

 

9,407 (2,189 – 27,802) 

 

8,964 – 9,870 

Age category    

0-15 years 1,357 (39) 

 

6,529 (2,588 – 17,625) 

 

6,193 - 6,886  

16-30 years  94 (3) 

 

6,812 (1,251 – 21,434) 

 

5,660 – 8,585 

31-45 years 186 (5) 

 

7,738 (2,189 – 26,479) 

 

6,506 – 9,061 

46-60 years 280 (8) 

 

11,725 (2,583 – 36,666) 

 

10,428 – 13,092 

61-75 years 473 (13) 

 

12,535 (2,636 – 33,705) 

 

11,519 – 13,631 

76-90 years 973 (28) 

 

11,689 (2,206 – 31,090) 

 

11,081 – 12,300 

>90 years 156 (4) 10,052 (1,379 – 28,936) 8,654 – 11,899 
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Abbreviations: P5 = 5th percentile; P95= 95th percentile; 95% CI BC = 95% bias-corrected confidence interval 

The mean (range) PM2.5 exposure of patients on the day of the hospitalization (lag 0) was 21.4 µg/m³ 

(3.4 – 99.7 µg/m3). The 5th, 25th, 75th, and 95th percentiles of the PM2.5 distribution were 7.3, 11.9, 27.1, 

and 48.6 µg/m³, respectively. We used the mean PM2.5 exposure of all patients (21.4 µg/m3) to calculate 

RRs in both the main and the secondary analyses, as the mean (range) exposure in subpopulations was 

very similar, e.g. 21.6 µg/m3 (3.9 – 97.7 µg/m3) for children younger than 16 years. 

3.2 Main analysis 

Both the log-linear and log-log DLNM model showed increased RRs of pneumonia hospitalizations 

associated with same-day (lag 0) and previous-day (lag 1) PM2.5 exposure (Figure 1). Because RRs were 

close to 1 at later lags, the cumulative lag 0–1 estimates were used in further analyses.  

Figure 1. Exposure-lag-response surfaces for the association between pneumonia hospital admissions 

and PM2.5 exposure (µg/m3), estimated by DLNM models with a log-linear (left panel) and a log-log 

(right panel) E-R function. RRs are relative to the reference value of 10 µg/m3 (WHO guideline for 

annual mean PM2.5; bold line). 

 

 

  

Total 3,519 9,404 (2,303 – 27,812) 9,122 - 9,743 



10 
 

Figure 2 shows the log-linear and log-log E-R shapes for the cumulative lag 0–1 effect. RRs from the 

log-log model were higher than those from the log-linear model for PM2.5 levels between 10 µg/m3 and 

75 µg/m3, roughly corresponding to the 25th and 99th percentiles of the observed PM2.5 range. The AIC 

of the log-linear model was equal to 10,407, whereas the AIC of the log-log model was equal to 10,404.   

Figure 2. Cumulative (lag 0–1) log-linear (red) and log-log (blue) E-R functions for the association 

between pneumonia hospitalizations and PM2.5 exposure (µg/m3). Relative risks (RR) are relative to the 

reference value of 10 µg/m3 (WHO guideline for annual mean PM2.5).The vertical dotted line represents 

the 99th percentile of the PM2.5 distribution of our study population (76.3 µg/m³). 

 

For a decrease in PM2.5 exposure from 24.1 µg/m3 (mean exposure of patients) to 10 µg/m³, the 2-day 

(lag 0–1) decrease in pneumonia hospitalizations estimated by the log-linear model was 4.9% (95% CI: 

0.4% - 9.6%), whereas the corresponding estimate from the log-log model was 10.7% (95% CI: 3.0% - 

19.0%) (Table 2). This corresponded to a total of 172 and 377 averted cases in our study population for 

the log-linear and log-log model, respectively. With a mean cost of 9,404 € per hospital stay, the estimate 

from the log-linear model translated to a pneumonia related hospital cost saving of 1,617,488 € and the 

estimate from the log-log model translated to a pneumonia related hospital cost saving of 3,545,308 €. 

Extrapolated to the 33,695 non-elective pneumonia hospitalizations in Belgium in 2011, the estimates 
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from the log-linear and log-log models corresponded to 1,651 and 3,605 avoided hospitalizations and a 

pneumonia related hospital cost saving of 15,526,004 € and 33,901,420 €, respectively.  

Table 2: Percent change in pneumonia hospitalizations attributable to a reduction in lag 0–1 PM2.5 

exposure from 24.1 µg/m³ to 10 µg/m³ and the associated costs averted within the study population and 

extrapolated for Belgium. 

 Log-Linear E-R function Log-Log E-R function 

% Change in hospitalizations (95 % CI) -4.9% (- 9.6% ; -0.4) -10.7% (- 19.0% ; -3.0%;) 

Akaike Information Criterion 10,407 10,404 

Mean cost per hospitalization (95% BC 

CI) 

9,404 € (9,122 € ; 9,743 €) 9,404 € (9,122 € ; 9,743 €) 

Study Population   

Number of hospitalizations averted 172 377 

Averted costs (95% BC CI) 1,617,488 € 

(1,568,984 € ; 1,675,796 €) 

3,545,308 € 

(3,438,994 € ; 3,673,111€) 

Belgium   

Number of hospitalizations averted 1,651 3,605 

Annual averted costs (95% BC CI) 15,526,004 € 

(15,060,422 € ; 16,085,693€) 

33,901,420 € 

(32,884,810 € ; 35,123,51€) 

 

3.3 Secondary analyses 

The analysis by age group showed a trend of decreasing health effect estimates for increasing age, with 

no evidence for an effect among elderly (>60 years). The decrease in pneumonia hospitalizations for a 

reduction in mean PM2.5 to 10 µg/m3 estimated by the log-linear model was 10.7% (95% CI: 3.0% to 

18.9%), 9.2% (95% CI: -2.6% to 22.4%), and -0.3% (95% CI: -6.6% to 6.5%) for the age groups <16, 

16-60, and >60 years, respectively (Supplementary Table S1). Corresponding estimates from the log-

log model were 23.1% (95% CI: 9.6% to 38.2%), 19.5% (95% CI: -0.9% to 44.1%), and -1.0% (95% 

CI: -11.0% to 10.1%), respectively. The AIC showed a better fit for the log-log model than for the log-

linear model in the age groups <16 years (4,027 vs. 4,032) and 16-60 years (1,683 vs. 1,686), whereas 

the AIC of both models was nearly identical in the age group >60 years (4,758). 



12 
 

Among children younger than 16 years, a reduction in PM2.5 to 10 µg/m3 would result in a national-level 

pneumonia-related hospital cost saving of €4.8 million within the log-linear scenario and €10.5 million 

within the log-log scenario. 

Table 3: Percent change in pneumonia hospitalizations among children (<16 years old) attributable to a 

reduction in lag 0–1 PM2.5 exposure from 24.1 µg/m³ to 10 µg/m³ and the associated costs averted within 

the study population and extrapolated for Belgium. 

 Log-Linear E-R function Log-Log E-R function 

% Change in hospitalizations (95 % CI) -10.7% (- 18.9% ; -3.0%;) -23.1% (-38.2% ; -9.6%;) 

Akaike Information Criterion 4,032 4,027 

Mean cost per hospitalization (95% BC 

CI) (95% BC CI) 

6,529 € (6,193 € ; 6,886 €) 

 

6.529 € (6,193 € ; 6,886 €) 

 

Study population   

Number of hospitalizations averted 145 313 

Averted costs (95% BC CI) 946,705 €  

(897,985 € ; 998,470 €)  

2,043,577 € 

(1,938,409 € ; 2,155,318 €)  

Belgium   

Number of hospitalizations averted 742 1601 

Annual averted costs (95% BC CI) 4,844,518 € 

(4,595,206 € ; 5,109,412 €) 

10,452,929 € 

(9,914,993 €; 11,024,486 €) 

 

The breakpoint producing the best fit in the piecewise linear model was 15 µg/m3, with (despite the 

higher number of model parameters) a slightly lower AIC (10,406.9) compared to the log-linear model 

(10,407.2). At PM2.5 concentrations below 15 µg/m3, the estimated increase in the risk of pneumonia 

hospitalization for each unit increase in PM2.5 was 2.7% (95% CI: 0.8% to 4.6%), with no evidence for 

a further increase in risk at PM2.5 levels above 15 µg/m3 (0.2%, 95% CI: -0.3 to 0.6 for each unit 

increase). The estimate for the decrease in pneumonia hospitalizations associated with a reduction in 

mean PM2.5 to 10 µg/m3 (15.6%, 95% CI: 4.8% to 27.6%) was higher than those from the log-linear and 

log-log model. 
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4 Discussion 

Recent research disclosed a discussion on the shape of the association between fine particulate matter 

exposure and adverse health effects. In this study we used log-linear and log-log E-R functions to 

estimate the reduction in pneumonia hospitalizations associated with a decrease in two-day (lag 0-1) 

PM2.5 exposure from the mean (21.4 µg/m3) to the WHO guideline for annual mean (10 µg/m3). The 

impact of the used E-R function was substantial: the estimated reduction in pneumonia hospitalizations 

was 4.9% for the log-linear function and 10.7% for the log-log function. This corresponds to an 

estimated hospital cost saving for pneumonia in Belgium of almost €15.5 million per year (1.42 € per 

inhabitant) for the log-linear function, whereas the estimate obtained from the log-log model was more 

than double this amount, i.e. more than €33.9 million (3.10 € per inhabitant). 

The change in pneumonia hospitalizations estimated by the log-linear E-R function (4.9% for an increase 

in PM2.5 of 14.1 µg/m3) is in line with that from previous studies assuming a log-linear association. For 

an increase in PM2.5 of 17.2 µg/m3 in Boston (USA), Zanobetti et al. (2006) reported a same-day increase 

in pneumonia hospital admissions of 6.5%. Estimates from a study in Shijiazhuang (China) were 

smaller: a 10 µg/m3 increase in PM2.5 was associated with a same-day increase in pneumonia 

hospitalizations of 1.1% (Duan et al., 2015). Also our estimate for children (10.7% for an increase in 

PM2.5 of 14.1 µg/m3) is similar to that from other studies. In Santiago (Chili), the estimated change in 

pneumonia emergency visits among children younger than 15 years was 12.5% for an increase in weekly 

mean PM2.5 of 13.1 µg/m3 during warm months, and 7.0% for an increase in weekly mean PM2.5 of 30.6 

µg/m3 during cold months (Ilabaca et al., 1999). The estimated increase in hospital admissions for 

pneumonia among children up to the age of 18 years in California was smaller: 4.9% for an increase in 

previous-day PM2.5 of 14.6 µg/m3 (Ostro et al., 2009). To the best of our knowledge, only one previous 

study allowed for a nonlinear association between PM2.5 and pneumonia. Yu and Chien (2015) found an 

association between PM2.5 and same-day clinic visits for pneumonia and influenza among school 

children (6-14 years) in Taipei (Taiwan): health risks increased with increasing PM2.5 at relatively low 

concentrations up to 7.5 µg/m3, but not at higher levels (except at extremely high concentrations above 

90 µg/m3). Contrary to findings from a study in Michigan (Detroit) (Ito et al., 2003), we did not find 
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evidence for an association between PM2.5 and pneumonia hospitalizations among elderly. As has been 

observed for other health outcomes (Schwartz, 2004), effect estimates were highest for children, which 

may be due to higher exposure levels as well as a higher susceptibility. Children spend more time being 

active outside than adults and they breathe more rapidly. Previous research also demonstrated that 

particles are likely to hamper the ability of children’s immature immune system to clear bacteria and 

other pathogens from the lung, which makes them at a higher risk to develop severe pneumonia requiring 

hospitalization (Dietert et al., 2000). Furthermore, Gauderman et al. (2004) showed that PM2.5 is strongly 

associated with decreased lung function attainment in school children resulting in compromised lung 

development.  

Deciding on the true shape of association between PM2.5 and pneumonia hospitalizations was outside 

the scope of this study and requires further research in different study populations. The AIC suggested 

that the log-log model fitted the data slightly better than the log-linear model, but the difference in AIC 

was small. Although it may be difficult to pick up non-linearity by comparing models based on AIC 

(Roberts & Martin, 2006), a comparison of AIC values suggested that the shape of the association 

between PM2.5 and pneumonia hospital admissions was concave-downward. Supralinearity was 

confirmed in analyses by age group and is further supported by results from the piecewise-linear model. 

The latter suggested a steep increase in the risk of pneumonia hospitalizations at PM2.5 levels below 15 

µg/m3, corresponding to the 40th percentile of the PM2.5 distribution of patients, but no further increase 

in risk at higher concentrations. A levelling-off of relative risks at high exposure levels may reflect 

different underlying mechanisms, including exposure misclassification at higher concentrations, 

competing risks between diseases, and saturation of underlying biochemical and cellular processes 

(Vineis et al., 2000; Smith & Peel 2010; Amrose & Barua, 2004). Attenuation of E-R functions at high 

concentrations has also been observed in studies on occupational exposures (Stayner et al., 2003). 

Saturation of enzyme activity, or induction of DNA repair processes or detoxification enzymes at high 

doses have been suggested as potential mechanisms for a supralinear association between polycyclic 

aromatic hydrocarbon exposure and DNA adducts in white blood cells and lung tissue (Lewtas et al., 

1997). Using serum lung club cell secretory protein (Clara) as a biomarker for respiratory epithelium 
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integrity, a recent study suggests that short-term exposure to particulate matter may lead to increased 

epithelial barrier permeability in the lungs of adolescents. Interestingly, the authors observed a flattening 

out of the slope at weekly mean PM10 levels above 37 μg/m3 (Provost et al., 2014).   

It should be stressed that research endeavors to determine a the shape of the association between PM2.5 

and adverse health effects remain highly important from a policy perspective. A supralinear E-R 

function implies that a given reduction in PM2.5 would yield a greater per capita health gain as the initial 

baseline becomes cleaner, providing an incentive to further clean places that already have relatively low 

pollution levels. However, the relationship between emission reductions and subsequent changes in 

exposure and health impact also depends on factors such as population density, urban form, 

meteorology, and atmospheric chemistry. Whereas the per capita health risk reduction may be greater 

in clean areas, the aggregate health benefit will be highest in more populated locations, which typically 

have higher pollution levels. Moreover, policy makers should also take into account the marginal costs 

of air pollution reduction. The marginal cost of air pollution reduction considered here are the costs 

related to each additional unit of decrease of air pollution exposure. It is reasonable that a further 

reduction of exposure in the low-polluted regions is extremely expensive (due to for example complex 

technology) compared to cleaning up the high-polluted regions. In conclusion, assuming a log-log E-R 

function, policy makers could prioritize to clean up the low-polluted regions, but only given that the 

higher marginal cost of cleaning up the low polluted metropolitan region is not overcompensating the 

higher health gains.  

Wiener (2004) indicated that the shape of the E-R function is not only important for setting priorities, 

but also in selecting policy instruments to regulate air pollution reduction. According to welfare 

economics, the existence of externalities such as air pollution from human activities result in a non-

Pareto optimal allocation. It presents a source of market failure, because in that case market prices do 

not reflect marginal social costs or marginal social benefits, and profitability from an individual’s point 

of view does not necessarily reflect net social benefits (Schmidtchen et al., 2009). Consequently, 

government intervention in the domain of air pollution control could yield considerable societal benefits 

by implementing command-and-control approaches (e.g. environmental norms for vehicles) or market-
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based policy instruments inspired by the economic theoretical concept of marginal social cost pricing 

(e.g. emissions taxes or tradable emissions allowances). A first example to regulate pollutants by policy 

are (fixed) emissions taxes. These should be based on marginal costs and in an ideal world, the tax 

amount should be set there were marginal benefits equal marginal abatement costs, i.c. the social 

optimum. However, the social optimal point will differ depending on the assumed shape of the E-R 

function, demonstrating the importance to unravel the E-R function that approximates reality most. 

Wiener himself (2004) gave the example of tradable emission allowances. He demonstrated that under 

a linear E-R function bunching (buying of allowances and thus creating higher emissions in certain 

locations) and draining (selling of allowances and thus lowering emissions in certain locations) would 

not increase the total harm to the population (under the assumption of identical exposure rates for all 

locations). However, with a log-log E-R function, trading could be beneficial if buying (bunching) and 

selling (draining) deviate from the average. This way, draining should occur where the E-R function is 

rising steeply and bunching should occur where the E-R function is flattening out. However, trading 

would be harmful if buyers and sellers converge towards the average of the log-log E-R function, i.e. 

when buying occurs where the E-R function is rising steeply and draining occurs where the E-R function 

is flattening out. This demonstrates that, in case of tradable emissions, wrong assumptions on the shape 

of the E-R function could result in undesirable and adverse effects.  

There are several limitations in this study. Firstly, we used local pollutant concentrations at municipality 

level that might not be representative for personal exposure. However, the majority of the study 

population were school children (39% under 16 years old) and retired persons (45% older than 60 years). 

For these age groups we expect that they spend most time at school in their municipalities, or at home. 

A second limitation is the simplified extrapolation of estimates for one Brussels hospital to the total of 

Belgium. Although the study population included patients from different (urban and rural) locations in 

Belgium, the magnitude of the estimated effect on averted hospitalizations based on the E-R function 

may not be generalizable to the total country because of differences in PM2.5 concentration and/or 

composition, as well as differences in patient characteristics (Supplementary Table S1). Compared to 

the national-level hospitalizations for pneumonia in 2011, children below the age of 16 were 
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overrepresented in our study population, resulting in a potential overestimation of hospital cost savings 

in this age category. As third limitation, only the hospitalizations costs for one disease and for one air 

pollutant (PM2.5) were estimated, as a demonstration to quantify differences in averted hospitalizations 

and costs when using different E-R functions. We discussed with this simple example on pneumonia 

hospitalizations the important role of E-R functions for policy-decision making regarding marginal 

costs, the social optimum, air pollution control measures, and setting priorities among different regions. 

It should be acknowledged that in this study we did not aim to calculate the total burden of air pollution 

related pneumonia hospitalizations. Long-term medical care use of pneumonia patients are not 

considered in our calculations, neither are productivity losses or intangible costs (common costs in 

health economic evaluations). Including these costs could have resulted in a more complete picture of 

the total economic burden of air pollution related pneumonia hospitalizations, but the ratio of the effects 

when comparing log-linear vs. log-log E-R functions would remain the same. 

In this study, we demonstrated that public health is affected by outdoor PM2.5 air pollution, even well 

below the actual EU air quality guidelines (annual mean of 25 µg/m3). Furthermore, we showed that the 

use of log-linear and log-log E-R functions to model the association between PM2.5 exposure and 

pneumonia hospitalizations resulted in substantial differences in estimated health effects and associated 

averted hospital costs, indicating that special precaution is required when specific E-R functions are 

used in policy making. As long as there is no unanimity of a given E-R association, health effect 

estimates of different E-R functions should be compared and presented in a sensitivity analysis.  
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