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Optimal Broadcasting Strategies for Conjunctive

Queries over Distributed Data

Bas Ketsman∗ Frank Neven

Abstract

In a distributed context where data is dispersed over many com-
puting nodes, monotone queries can be evaluated in an eventually
consistent and coordination-free manner through a simple but naive
broadcasting strategy which makes all data available on every comput-
ing node. In this paper, we investigate more economical broadcasting
strategies for full conjunctive queries without self-joins that only trans-
mit a part of the local data necessary to evaluate the query at hand.
We consider oblivious broadcasting strategies which determine which
local facts to broadcast independent of the data at other computing
nodes. We introduce the notion of broadcast dependency set (BDS) as
a sound and complete formalism to represent locally optimal oblivious
broadcasting functions. We provide algorithms to construct a BDS for
a given conjunctive query and study the complexity of various decision
problems related to these algorithms.

1 Introduction

We assume the setting introduced in the context of declarative networking [6,
14], where queries are specified on a logical level over a global schema and
are evaluated by multiple computing nodes over which the input database is
distributed. These nodes can perform local computations and communicate
asynchronously with each other via messages. The model then operates
under the assumption that messages can never be lost but can be arbitrarily
delayed.

It is known that every monotone query can be evaluated in an eventu-
ally consistent and coordination-free manner through a naive broadcasting
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strategy that makes all data available to all nodes [14].1 Indeed, every com-
puting node sends all its local data to every other node and reevaluates the
query every time new data arrives. This evaluation is eventually consistent
as, because of monotonicity, no facts will be derived which later have to
be retracted and, furthermore, when all transmitted data has arrived, the
output of every node will correspond to the result of the query. In addition,
the computation requires no coordination between the nodes.

Obviously, the above strategy leads to a very careless evaluation as the
whole database is send to every node and every node independently com-
putes the complete answer for the targeted query. In the present paper,
we are interested in more economical broadcasting strategies where only
a subset of the local data is transmitted and where each computing node
contributes to the answer of the query by outputting only a subset of the
answer tuples. The result of the query then is the union of the tuples out-
put by the computing nodes. In particular, we focus on full conjunctive
queries without self-joins and we consider oblivious broadcasting strategies
where every computing node determines which facts will be broadcast solely
on the content of its own local database (so, oblivious of the data at other
nodes). By the latter we particularly mean the initial local database. Our
strategies are thus independent of incoming messages and can be thought of
as ‘single-shot’ broadcasting strategies.

The sent facts are referred to as broadcast facts. Facts that are not
initially broadcast are called static. We illustrate the ideas behind such
strategies by means of an example.

Example 1. Let Q1 be the query Q1(x, y, z)← A(x, y), B(y, x), C(x, z) and
let I = {A(1, 2), A(2, 2), B(2, 1), B(2, 2), B(4, 4), C(1, 3)} be a database in-
stance. Consider a network of two computing nodes c and c′ containing the
facts I(c) = {A(2, 2), B(2, 1), B(2, 2)} and I(c′) = {A(1, 2), B(4, 4), C(1, 3)},
respectively.

Naive broadcasting strategy. The naive broadcasting algorithm outlined
above sends all facts in I(c) to c′ and all facts in I(c′) to c. Eventually,
both c and c′ receive all data and both of them compute the result of the
query, that is, Q1(I) = {(1, 2, 3)}.
Improved oblivious broadcasting strategy. The just described strategy is
clearly oblivious but also rather wasteful. Therefore consider the following

1Actually, this observation is the straightforward part of the CALM-conjecture [14]. It
is the converse direction which is more surprising: that every query which can be evaluated
in an eventually consistent and coordination-free manner has to be monotone [6].
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strategy which broadcasts all of the C-facts but none of the A-facts. Fur-
thermore, a B-fact B(i, j) is broadcast only when A(j, i) does not occur
in the local database. Executing this strategy for every computing node in
our example results in c broadcasting the set {B(2, 1)} while c′ broadcasts
{B(4, 4), C(1, 3)}. So, eventually, I∗(c) = {A(2, 2), B(2, 1), B(2, 2), B(4, 4), C(1, 3)}
and I∗(c′) = {A(1, 2), B(2, 1), B(4, 4), C(1, 3)}. Here, we denote by I∗(d) the
instance at node d when all transmitted messages have arrived. Therefore,
Q1(I

∗(c)) = ∅ and Q1(I
∗(c′)) = {(1, 2, 3)}, and Q1(I) equals Q1(I

∗(c)) ∪
Q1(I

∗(c′)). Intuitively, this strategy is correct in general as the following
invariant holds for every computing node d: when a fact B(i, j) is not broad-
cast at a node d, then every satisfying valuation V for Q1 on I that maps
(x, y) to (i, j) can be realized locally in I∗(d). Notice that, a similar strategy
reversing the roles of A- and B-facts would work as well.

We will formalize oblivious broadcasting functions as generic mappings.
This means that decisions on whether to broadcast facts do not depend only
on the name of the predicate but can also depend on the equality type of the
fact under consideration. Therefore, the following strategy would be valid
as well: always broadcast facts of the form C(i, j) with i 6= j and keep all
facts of the form C(i, i) static; broadcast all B-facts; broadcast a fact A(i, j)
only when the fact C(i, i) is not present in the local database. While not
immediately obvious, this strategy correctly computes Q on every distributed
database.

Both strategies will be presented more formally in Section 5 in terms of
broadcast dependency sets and are formalized further in Example 17(1) and
17(2).

In this paper, we make the following contributions:

(i) We provide a semantical characterization of when an oblivious broad-
casting function (OBF) correctly evaluates a given conjunctive query. While
it is desirable to construct OBFs that minimize the overall amount of trans-
mitted facts over all distributed databases, we show that there is no optimal
OBF for any conjunctive query with at least two distinct atoms in its body.
Therefore, we turn to a slightly weaker notion of optimality, called locally
optimal, which requires that an OBF is optimal w.r.t. the local instance
at every computing node. Intuitively, this means that no broadcast fact
can be made static without sacrificing correctness. We provide a semantical
characterization for when an OBF is locally optimal for a given conjunctive
query.

(ii) We introduce the notion of a broadcast dependency set (BDS) as
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a formalism to specify OBFs. In brief, a BDS S is a set of pairs (τ, T )
where τ is a partial equality type w.r.t. a relation and T is a set of partial
equality types. Every such pair encodes a rule that can be interpreted
roughly as follows: when a fact f matches type τ , it will be broadcast at a
computing node c when the set of facts induced by T is not present at c.
We present necessary and sufficient syntactic conditions for when a BDS is
correct for a given query and also for when it is locally optimal w.r.t. that
query. Furthermore, we study the complexity of deciding whether a BDS
is correct for a query and whether it is locally optimal. Finally, and most
importantly, we show that the formalism of BDS is expressively complete
w.r.t. locally optimal OBFs by obtaining that every locally optimal OBF
can be represented by a BDS. In fact, every locally optimal OBF can already
be represented by a BDS that only uses complete types, that is, types where
the equalities between all variables are fully specified.

(iii) Based on the syntactic criteria of when a BDS is correct for Q
and when it is locally optimal, we obtain an algorithm bds-build(Q) that
computes a locally optimal OBF (represented as a BDS) for a given con-
junctive query Q. When restricting to open types (these are types without
restrictions on the equalities between variables), bds-build(Q) computes a
locally optimal OBF in time polynomial in the size of Q. When consider-
ing complete types, bds-build(Q) computes a locally optimal OBF in time
exponential in the size of Q simply because there are exponentially many
complete types.

Outline. We discuss related work in Section 2 and introduce the necessary
definitions and concepts in Section 3. In Section 4, we discuss OBFs and
local optimality. In Section 5, we discuss broadcast dependency sets and
study their properties. In Section 6, we provide an algorithm to construct a
locally optimal OBF for a given conjunctive query. We conclude in Section 7.

The present paper is the full version of the extended abstract [15] and
provides the missing proofs.

2 Related Work

CALM. The approach in this paper is motivated by the work on the CALM-
conjecture. Hellerstein [14] formulated the CALM-principle which suggests
a link between logical monotonicity and distributed consistency without the
need for coordination. The latter principle is, for instance, embedded in
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BLOOM, a declarative language for distributed programming, for which
practical program analysis techniques have been developed detecting po-
tential consistency anomalies [3, 4, 11]. Ameloot et al. [6] formalized (and
proved) the CALM-conjecture in terms of relational transducer networks.
Zinn et al. [20] showed that the generalization of the conjecture to stronger
variants of relational transducer networks fails. Ameloot et al. [5] then subse-
quently provided a more fine-grained answer to the CALM-conjecture by re-
lating these stronger variants of relational transducer networks to weaker no-
tions of monotonicity. All of these works considered naive evaluation strate-
gies that broadcast all of the local data. In particular, none of these works
considered more economic broadcasting evaluation of conjunctive queries.

Massive parallel model. The networked relational transducer model is
just one paradigm for studying distributed query evaluation. In the mas-
sively parallel (MP) model, introduced by Koutris and Suciu [16], computa-
tion proceeds in a sequence of parallel steps, each followed by global synchro-
nization of all servers. In this model, evaluation of conjunctive queries [16, 7]
as well as skyline queries [1] have been considered. Recently, Beame et al. [8]
proved a matching upper and lower bound for the amount of communica-
tion needed to compute a full conjunctive query without self-joins in one
communication round. Notice that this is the same subclass of CQs as we
consider in this work. The upper bound is provided by a randomized al-
gorithm called Hypercube which dates back to Ganguli et al. [13] and was
described by Afrati and Ullman [2] in the context of MapReduce algorithms.
Hypercube is motivated by modern massively distributed systems like, for
instance, Spark [19], where entire computations reside in main memory, re-
play is used to recover, and the dominant cost is that of communication.
We note that one-round Hypercube is coordination-free and can be easily
employed within the framework of relational transducer networks as well. A
characteristic of Hypercube-style algorithms is that the space of computing
nodes (over which the input data will be distributed) needs to be known in
advance. The broadcasting strategies considered in this paper are motivated
by a cloud computing setting where data is already initially distributed and
the complete space of computing nodes is not necessarily known in advance.
In this respect, Hypercube-style and broadcasting algorithms are orthogo-
nal.

Relevance. One approach to minimize data transfer for a query Q, is to
find the smallest subset J of a distributed instance I for which Q(I) = Q(J)
and then only broadcast the relevant subset J . Determining which part of a
database is relevant for answering a query is a problem that arises in differ-
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ent contexts. For instance, causality in databases aims to determine which
tuples in the database instance caused the output to a query [17, 18]. Then,
the contingency set asks for the smallest set K such that Q(I) 6= Q(I −K).
So, any set I−K extended with one element is relevant. Similarly, “where”
and “why” provenance refer to the location(s) in the source databases from
which the output was extracted or by which the output was influenced [10, 9].
Fan et al. [12] study the problem of scale independence where, through ac-
cess patterns, the result of a query depends only on a bounded part of
the database. It would be interesting to investigate how these different ap-
proaches translate to a distributed setting. Most surely, any lower bounds
for the sequential setting imply lower bounds for the distributed setting, but
upper bounds need to take into account that the initial database instance I
is distributed as well.

The oblivious broadcasting strategies that we introduce operate locally
on nodes and are unaware of the data residing on these nodes. In fact, our
strategies are also independent of the network configuration itself (i.e., the
set of computing nodes). Therefore, these strategies apply for example to
(fast) evolving networks, where the exact state of the network at a given time
may be unknown, as long as no adjustments in the network configuration
happen during the query evaluation.

3 Preliminaries

Instances and queries. For a finite set S, we denote by |S| its cardinality
and by 2S its powerset. We denote {1, . . . , n} by [n], for n ∈ N. We assume
an infinite set dom of data values. A database schema σ is a collection
of relation names R where every R has arity ar(R) > 0. We call R(d̄) a
fact when R is a relation name and d̄ is a tuple in dom. We say that a
fact R(d1, . . . , dk) is over a database schema σ if R ∈ σ and ar(R) = k. A
(database) instance I over σ is simply a finite set of facts over σ. We denote
by Adom(I) the set of all values that occur in facts of I. When I = {f}, we
simply write Adom(f) rather than Adom({f}). A query over a schema σ to a
schema σ′ is a generic mapping Q from instances over σ to instances over σ′.
Genericity means that for every permutation π of dom and every instance
I, Q(π(I)) = π(Q(I)). For the remainder of the paper, we assume that the
database schema σ where queries are defined over is clear from the context,
and do not refer to it anymore. A query Q is monotone if Q(I) ⊆ Q(J)
for all instances I, J with I ⊆ J . We only consider monotone queries in the
sequel.
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Conjunctive queries. Let var be the universe of variables, disjoint from
dom. An atom A is of the form R(u1, . . . , uk) where R is a relation name
and each ui ∈ var. We call R the predicate and denote it by pred(A). We
denote the variables occurring in A by Vars(A) = {u1, . . . , uk}. We say that
A is an atom over the database schema σ if pred(A) ∈ σ and k = ar(pred(A)).
A conjunctive query Q (CQ) is an expression of the form A0 ← A1, . . . , An,
where for every i ∈ [n], Ai is an atom over the schema and A0 is an atom
not over the schema. In particular, A0 is the head of Q, denoted headQ, and
A1, . . . , An is the body of Q, denoted bodyQ. By Vars(Q) we denote all the
variables occurring in Q. A valuation for Q on an instance I is a function
V : Vars(Q) → dom. The application of V to an atom A = R(u1, . . . , uk),
denoted V (A), results in the fact R(a1, . . . , ak) where ai = V (ui) for each
i ∈ [k]. The valuation V is said to be satisfying for Q if V (A) ∈ I for all
atoms A in the body of Q. In that case, V derives the fact V (A0). The
result of Q on I, denoted Q(I) is defined as the set of facts that can be
derived by satisfying valuations.

In what follows, we assume that every CQ is full and does not con-
tain self-joins. Formally, we require that pred(Ai) 6= pred(Aj) for i 6= j
and Vars(A0) =

⋃
i∈[n] Vars(Ai). That is, every atom has a unique rela-

tion symbol and all variables occurring in the body occur in the head as
well. For instance, Q1(x, y, z) ← A(x, y), B(x, z), C(y, y) is full and does
not contain self-joins, while Q2(x, y) ← A(x, y), B(x, z), C(y, y) is not full
and Q3(x, y, z)← A(x, y), A(x, z), C(y, y) contains a self-join.

Distributed database. A network N is a nonempty finite set of values
from dom, which we call nodes. A distribution of an instance I over N is a
function H that maps each c ∈ N to an instance such that I =

⋃
c∈N H(c).

Notice that facts can be replicated. We also refer to each of the H(c) as the
local instances. We consider a model where nodes have unlimited computa-
tional power and can send messages to all other nodes. These messages can
never be lost but can be arbitrarily delayed.

The latter is formalised in [6] in terms of a local buffer for each computing
node that is used to store incoming messages. Computation of the network is
then defined as a transition system where in every transition a node becomes
active and non-deterministically picks a message from its input buffer. A
fairness condition is imposed to ensure that all messages are eventually read.
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4 Oblivious broadcasting

We refrain from introducing the formalism of relational transducer networks
from [6], but present a simpler setting more suitable for our needs. In partic-
ular, the relational transducer networks needed in this paper only perform
two actions: decide which facts to broadcast (and transmit those) and eval-
uate the query under consideration whenever new data arrives. The only
parameter is the used broadcasting strategy and, therefore, forms the focus
of our formalization. In brief, we consider broadcasting strategies where
computing nodes partition their local database into static and broadcast
facts. Static facts are kept local while broadcast facts, as the name already
indicates, are sent to all other nodes in the network. As we only consider
conjunctive queries which are monotone, the target query can be recomputed
whenever new data arrives.

4.1 Oblivious broadcasting functions

We now formally define oblivious broadcasting function.

Definition 2. An oblivious broadcasting function (OBF) f is a generic map-
ping that maps instances to instances such that f(J) ⊆ J for all instances
J .

An OBF specifies which local facts are broadcast. Specifically, f(J) are
the broadcast facts while J \ f(J) are the static facts. We use the term
oblivious as broadcast facts only depend on the local database instance and
their choice is independent of the facts at other computing nodes. An OBF f
is naive when there are no static facts, that is, f(J) = J for all instances J .

Given a CQ Q, an instance I, a distribution H of I, and a network N , an
OBF f implies a broadcasting algorithm in the following way. Let B(f,H) =⋃
c∈N f(H(c)) be the set of broadcast facts. Then, define eval(Q, f,H) =⋃
c∈N Q(H(c)∪B(f,H))) as the union of the query result at every computing

node over the local instance extended with all broadcast facts.2

Remark 3. We note that the function eval(Q, f,H) implies an evaluation
that can be executed by a transducer program πf,Q at every node c as follows:
(1) R = ∅, output Q(H(c)), broadcast f(H(c)); (2) whenever a fact f arrives,
R = R∪{f}, output Q(H(c)∪R). Correctness then follows from the gener-
icity and monotonicity of f . We refer to the execution strategy induced by

2To simplify notation, in the definition of B and eval, we do not mention I and N as
they are implied by H.
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eval(Q, f,H) as a broadcasting algorithm. Coordination-freeness intuitively
follows as πf,Q never waits. Formally, a transducer is coordination-free [6]
if there is a so-called ideal distribution, on which the query is already com-
puted by a prefix of a run that does not process any of the incoming facts.
For πf,Q this is the distribution that puts the complete instance at every
node. We refer to [6] for a more formal treatment of coordination-freeness.

Definition 4. An OBF f is correct for a CQ Q when Q(I) = eval(Q, f,H)
for all instances I and all distributions H of I.

When f is correct for Q, we also say that f is an OBF for Q. The
following lemma characterizes correctness in that two compatible facts re-
siding at different computing nodes can never be both static. Indeed, if
they are, then the valuation witnessing compatibility is never realized at
any computing node and consequently f can not be correct for Q.

We say that two distinct facts f and g are compatible w.r.t Q, denoted
f ∼Q g, when, in some model, they are assigned to two atoms from the
body of Q under one valuation, i.e., there is a valuation V for Q and atoms
A,B ∈ bodyQ, such that V (A) = f and V (B) = g.

Example 5. For an example recall query Q1 from Example 1: Q1(x, y, z)←
A(x, y), B(y, x), C(x, z). For Q1, facts A(1, 2) and B(2, 1) are compatible,
because they are in the image of valuation V : {x 7→ 1, y 7→ 2, z 7→ 3} over
query Q1. This same valuation also witnesses compatibility of A(1, 2) and
C(1, 3), and B(2, 1) and C(1, 3).

For an example of facts not compatible for Q1, take A(1, 2) and B(2, 2),
for which it is easy to see that no valuation can assign variable x to both
values 1 (for A) and 2 (for B).

Lemma 6. Let Q be a CQ and f be an OBF. Then, the following are
equivalent:

1. f is correct for Q; and

2. there are no instances I, J , and facts f, g, with f ∼Q g, g 6∈ I, f 6∈ J
such that f 6∈ f(I ∪ {f}) and g 6∈ f(J ∪ {g}).

Proof. (1)⇒(2) We start by showing that every OBF for Q satisfies the
above condition. The proof is by contraposition, so we assume that there
are instances I and J and compatible facts f and g w.r.t. Q, where g 6∈ I
and f 6∈ J , but f 6∈ f(I ∪ {f}) and g 6∈ f(J ∪ {g}). Let K be an instance
and let V be a satisfying valuation for Q on K witnessing compatibility
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of f and g. Then consider a network N = {1, 2, 3} and an instance L =
I ∪J ∪V (bodyQ) with the following distribution H: H(1) = I ∪{f}, H(2) =
J ∪ {g}, and H(3) = V (bodyQ) \ {f,g}. Clearly, V (headQ) ∈ Q(L). As Q is
full, V (headQ) 6∈

⋃
c∈N Q(H(c) ∪ B(f,H)) because none of the computing

nodes contain both f and g, and f and g are not broadcast. Thus, Q(L) 6=⋃
c∈N Q(H(c) ∪B(f,H)) = eval(Q, f,H) and f is not an OBF for Q.

(2)⇒(1) It remains to show that if the above condition is satisfied, then f
is an OBF for Q. For this, let I be an instance, N a network, and H a distri-
bution of I over N . We prove that Q(I) = eval(Q, f,H) =

⋃
c∈N Q(H(c) ∪

B(f,H)). As Q is monotone, Q(H(c) ∪ B(f,H)) ⊆ Q(I) for every c ∈ N .
Hence, it suffices to show that Q(I) ⊆

⋃
c∈N Q(H(c)∪B(f,H)). Thereto, let

f ∈ Q(I), let V be a satisfying valuation for Q over I for which V (headQ) = f.
Let J = V (bodyQ) \B(f,H), and c a node for which |H(c)∩ J | is maximal.
We claim that J ⊆ H(c), obviously implying that f will be derived at node
c. Towards a contradiction, assume there is an fi ∈ J \ H(c). As fi ∈ I
there is a d ∈ N , c 6= d, such that fi ∈ H(d). Moreover, by choice of c,
|H(d) ∩ J | ≤ |H(c) ∩ J | and thus there must be a fact fj ∈ H(c) ∩ J that is
not in H(d). However, as fi ∼Q fj , fi 6∈ H(c), and fj 6∈ H(d), the instances
H(d), H(c), and the facts fi, fj contradict condition (2).

4.2 Local optimality

We are interested in OBFs that transmit as little data as possible. Thereto,
we investigate sensible notions of optimality. We fix a query Q, an instance
I, a distribution H of I, and a network N . The total number of trans-
mitted facts equals ||B(f,H)|| =

∑
c∈N |f(H(c))|. Of course, ||B(f,H)|| ≥

|B(f,H)|.

Definition 7. An OBF f for a CQ Q is optimal iff ||B(f,H)|| ≤ ||B(g,H)||
for every other OBF g for Q and for every instance I and distribution H.

Intuitively, an OBF is optimal when it transmits the least amount of data
over all instances and all distributions. The next result, however, shows that
this notion of optimality, although desirable, is unattainable.

Lemma 8. There is no optimal OBF for any conjunctive query with at least
two distinct atoms in its body.

Proof. Let Q be the conjunctive query A0 ← A1, . . . , An with n ≥ 2. To-
wards a contradiction assume there is an optimal OBF f for Q. Let I be
the canonical instance for Q where for every i ∈ [n], the relation pred(Ai) is
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interpreted by the fact Ai.
3 Now, consider a network N = [n] and a distri-

bution H that places every fact in I on a distinct node. As all of the n facts
in I need to be gathered at one node, at least n−1 facts must be broadcast.
As the OBF that broadcasts all Ai-facts for i < n and keeps all An-facts
static is correct for Q and only transmits n − 1 facts on I, by assumption
on the minimality of f , ||B(f,H)|| = n − 1. Let g be the fact in I that is
not broadcast by f and assume w.l.o.g. that pred(g) = An. Now, consider
I ′ = I \{g}. And let H ′ equal H restricted to only facts in I ′ over N . Then,
as g is not broadcast in H, ||B(f,H)|| = ||B(f,H ′)||. However, the OBF
that broadcasts all Ai-facts for i > 1 and keeps all A1-facts static is correct
for Q and only broadcasts n− 2 facts on I ′ contradicting the optimality of
f .

We next turn to a different form of optimality. For two OBFs f and
g, we say that f is included in g, denoted f ⊆ g, iff f(I) ⊆ g(I) for every
instance I.

Definition 9. An OBF f for a CQ Q is locally optimal iff for every other
broadcasting function g for Q, g ⊆ f implies f = g.

Intuitively, when f is locally optimal there is no subdivision of f that
transmits only a strict subset of the facts broadcast by f .

The next lemma gives a sufficient criteria for when an OBF can not be
locally optimal. Specifically, a condition is given for when a broadcast fact
f can be kept static and a more economical OBF f ′ can be derived.

Lemma 10. Let Q be a CQ and let f be an OBF for Q. If there is an
instance I and fact f for which f ∈ f(I∪{f}), but there is no instance J and
no fact g for which f ∼Q g, g 6∈ I, f 6∈ J , and g 6∈ f(J ∪ {g}), then there is
an OBF f ′ for Q for which f ′ ( f .

Proof. Assume f , I, and f as given by the statement of the lemma. The proof
is now by construction. Let If,J be the set of facts that (by genericity) relate
the same way to J , as f to I. That is, If,J = {π(f) | π a permutation s.t. π(I) =
J}. Then, define f ′ as the mapping where for every instance J , f ′(J) =
f(J) \ If,J . Notice that f ′ ( f by construction of f ′. Furthermore, f ′

is generic and is an OBF. It remains to show that f ′ is an OBF for Q.
Towards a contradiction, assume that f ′ is not an OBF for Q. Then, by
Lemma 6, there are instances J1 and J2 and facts g1 and g2, for which

3 Notice that we abuse the notation and interpret variables as values.
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g1 ∼Q g2,g2 6∈ J1, g1 6∈ J2, and g1 6∈ f ′(J1 ∪ {g1}) and g2 6∈ f ′(J2 ∪ {g2}).
As f is an oblivious broadcasting function for Q, it holds that

g1 ∈ f(J1 ∪ {g1}) or g2 ∈ f(J2 ∪ {g2}).

Say that g1 ∈ f(J1 ∪ {g1}). Then, g1 ∈ If,J1 , implying J1 = π(I) and
g1 = π(f) for some permutation π. As Q does not contain self-joins and
g1 ∼Q g2, this means that g2 6∈ If,J2 . Therefore, g2 6∈ f(J2 ∪ {g2}) which
contradicts the condition of the lemma (taking π−1(g1) and π−1(J2) as g
and J , respectively).

The following lemma now characterizes when an OBF for a query is
locally optimal.

Lemma 11. Let Q be a CQ and let f be an OBF for Q. The following are
equivalent:

1. f is locally optimal; and

2. for every instance I and fact f for which f ∈ f(I ∪ {f}), there is
an instance J and a fact g such that f ∼Q g, g 6∈ I, f 6∈ J , and
g 6∈ f(J ∪ {g}).

Proof. We can assume that Q contains at least two atoms. Indeed, when Q
contains one atom, the only locally optimal OBF is the one that broadcasts
no facts and the lemma trivially holds. The direction from (1) to (2) follows
from Lemma 10.

(2)⇒(1) Let f be an OBF for Q. Towards a contradiction assume that
f is not locally optimal. That is, there exists another OBF f ′ for Q such
that f ′ ( f . In particular, there is an instance I and a fact f such that
f 6∈ f ′(I ∪ {f}), while f ∈ f(I ∪ {f}). By Lemma 6, for every fact g with
f ∼Q g where g 6∈ I, and for every instance J , where f 6∈ J , it must be
that g ∈ f ′(J ∪ {g}). The latter then implies that for every such g and J ,
g ∈ f(J∪{g}) which contradicts condition (2) of the present lemma.

5 Broadcasting functions based on dependency sets

In this section, we introduce the notion of a broadcast dependency set (BDS)
as a formalism to specify OBFs. We present necessary and sufficient condi-
tions for when a BDS induces an OBF which is correct for a given query and
also for when it is locally optimal. Furthermore, we study the complexity
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of the corresponding decision problems. Finally, we show that every locally
optimal OBF can be represented by a BDS thereby obtaining that BDS is
complete as a representation formalism for locally optimal OBFs.

5.1 Broadcast dependency sets

In a nutshell, a broadcast dependency set is a set of key-dependency set
pairs, where each pair consists of an equality type (the key), and a set of
dependencies (to be formalised later) associated to this key. Intuitively, a
BDS gives rise to the following broadcasting function semantics: a fact is
broadcast only if it satisfies one of the key equality-types, and at least one
of the associated dependencies fails.

We proceed with the formal definition. LetQ be the CQA0 ← A1, . . . , An.
We assume Q is full and does not contain self-joins. Therefore an atom Ai
in bodyQ is uniquely identified by its predicate pred(Ai). For a predicate R,
we denote by atom(R) the unique atom A ∈ bodyQ for which pred(A) = R.

For a finite set of variables X, a partial equality type over X is a pair of
binary relations ϕ = (Eϕ, Iϕ) representing equalities and inequalities among
elements in X. Formally, we require that Eϕ ∪ Iϕ ⊆ X × X, Eϕ is an
equivalence relation, and Iϕ is irreflexive and symmetric. We abuse notation
and also use ϕ to denote the formula

∧
{x = y | (x, y) ∈ Eϕ} ∧

∧
{x 6=

y | (x, y) ∈ Iϕ}. We tacitly assume that partial equality types are always
consistent. That is, we always assume that there is a tuple ā such that
the formula ϕ(ā) evaluates to true. When for all (x, y) ∈ X × X, either
(x, y) ∈ Eϕ or (x, y) ∈ Iϕ, then ϕ completely specifies all relations between
variables inX and we call ϕ a type. For emphasis, we sometimes say complete
equality type rather than just equality type even though equality type always
means complete equality type.

A partial atomic type (over Q) is a pair τ = (Rτ , ϕτ ), where Rτ is a
database predicate and ϕτ is a partial type over Vars(atom(Rτ )), that is, the
variables occurring in the unique atom A ∈ bodyQ for which pred(A) = Rτ .
By Vars(τ) we denote the variables over which τ is defined, i.e., Vars(τ) =
Vars(atom(Rτ )). Sometimes we write atom(τ) to abbreviate atom(Rτ ). We
say that τ is an atomic type when ϕτ is an equality type. To improve
readability, we denote partial atomic types with τ and (complete) atomic
types with ω. We denote by PTypes(Q) and Types(Q) the set of all partial
atomic types and atomic types over Q, respectively.

Example 12. For examples of the above notions, consider the equality types
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ϕ1, ϕ2, ϕ3 over variables X = {x, y, z}:

ϕ1 = (

x y
y x
y z
z y

,

x x
y y
z z
x z
z x

), ϕ2 = (∅,

x x
y y
z z
x z
z x
x y
y x
y z
z y

), ϕ3 = (∅,

x x
z z
x z
z x

).

Alternatively, we can express these equality types through conditions ϕ1 :=
x 6= y ∧ y 6= z ∧ x = z, ϕ2 := x = y ∧ y = z ∧ x = z, and ϕ3 := x = z. Here,
ϕ1 and ϕ2 are complete over X, and ϕ3 is a partial equality type over X.

Examples of atomic types over query Q(x, y, z)← A(x, x), B(x, y, z) are
complete atomic types ω1 = (B,ϕ1) and ω2 = (B,ϕ2), and partial atomic
type τ = (B,ϕ3).

A fact f is of type τ or satisfies τ , denoted f |= τ , when there is a valuation
h from the variables in atom(Rτ ) onto Adom(f) such that h(atom(Rτ )) = f
and the formula ϕτ evaluates to true where each xi is substituted by h(xi).
Notice that h is unique for f. Hereafter we will refer to h as Vf. By type(f), we
denote the unique atomic type satisfied by f when it exists. As atomic types
are defined w.r.t. Q, type(f) is not always defined. Indeed, when f = R(a, b)
(with a 6= b) and atom(R) = R(x, x), then there is no τ with f |= τ . Two
partial atomic types τ, τ ′ are compatible w.r.t. Q, denoted τ ∼Q τ ′, when
there are facts f and g with f |= τ and g |= τ ′ such that f ∼Q g. We say
that τ implies τ ′, denoted τ |= τ ′, if for all facts f, f |= τ implies f |= τ ′.
We can think of a partial atomic type as a disjunction of types for a shared
predicate symbol. Define Types(τ) = {ω ∈ Types(Q) | ω |= τ} as the set of
all atomic types ω which imply τ . Notice that, ω |= τ iff ω ∈ Types(τ) for
any atomic type ω. For a set of partial atomic types T , we use Types(T ) as
an abbreviation for

⋃
τ∈T Types(τ).

Example 13. For examples recall query Q and partial atomic types ω1, ω2, τ
from Example 12. Fact B(a, b, a) satisfies ω1 and τ , but not ω2. The former
particularly holds because ω1 |= τ .

Let ω3 = (A, x = x), then it is easy to see that ω3 ∼Q ω1 due to the
satisfying facts B(1, 2, 1) and A(1, 1), respectively, and valuation V : {x 7→
1, y 7→ 2, z 7→ 1} for Q.
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For a set of variables X and Y , and a partial atomic type τ , X ⊆τ Y if
for all x ∈ X either x ∈ Y or there is an y ∈ Y such that (x, y) ∈ Eϕτ . That
is, X is a subset of Y when taking the equalities in Eϕτ into account. For
instance, let τ be a type such that (y, z) ∈ Eϕτ , then {x, y, z} ⊆τ {x, y}.

For a set of pairs S, we define Keys(S) = {a | (a, b) ∈ S} and Values(S) =
{b | (a, b) ∈ S}.

Definition 14. A broadcast dependency set (BDS) for a CQ Q is a set
S of pairs (τ, T ), where τ ∈ PTypes(Q) is a key, and T ∈ 2PTypes(Q) is a
dependency set, such that the following holds:

1. (τ, T ) ∈ S and (τ, T ′) ∈ S implies T = T ′;

2. τ, τ ′ ∈ Keys(S) implies Types(τ) ∩ Types(τ ′) = ∅; and,

3. (τ, T ) ∈ S implies Vars(τ ′) ⊆τ ′ Vars(τ) for every τ ′ ∈ T .

We call the elements of S dependencies.

The above definition states that (1) every key can have at most one value
in S; (2) every complete type implies at most one partial type τ ∈ Keys(S);
and, (3) the set of variables of atom(τ ′) is included in the set of variables of
atom(τ) taking into account the equalities in Eτ ′ . We first explain informally
how a BDS represents an OBF. Let f be a fact in the local instance at
a computing node. When type(f) is undefined, then f is static as f can
never participate in any satisfying valuation. For instance this happens
when f = R(a, b) with a 6= b and Q contains the atom R(x, x). Every pair
(τ, T ) ∈ S now specifies a condition on facts: when f |= τ then f is broadcast
only if a set of facts implied by T (to be formalized below) is not present
at the local instance. Furthermore, when there is no τ ∈ Keys(S) for which
f |= τ , f is broadcast as well. In this light, conditions (1) and (2) ensure
that every local fact f is matched by at most one partial type τ ∈ Keys(S);
and, condition (3) ensures that when f |= τ then Vf can be extended in a
unique way to a valuation for every τ ′ ∈ T that is consistent with f, that is,
for which type(f) ∼Q τ ′.

Next, we formally define how every BDS S implies an OBF fS . Given a
fact f, if there is no τ ∈ Keys(S) for which f |= τ then f is always broadcast.
Otherwise, by condition (1) and (2) of Definition 14, there is exactly one
τ ∈ Keys(S) such that f |= τ . Recall that Vf is the valuation (defined above)
such that Vf(atom(τ)) = f. Then, by condition (3) of Definition 14, Vf can
also be interpreted as a valuation for every atom(τ ′) for every τ ′ ∈ T for
which type(f) ∼Q τ ′. Indeed, for every y ∈ Vars(τ ′) \ Vars(τ) there is a
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variable x ∈ Vars(τ) for which (x, y) ∈ Eτ ′ . Therefore, define for every
y ∈ Vars(τ ′),

Vf,τ ′(y) =

{
Vf(y) if y ∈ Vars(τ); and,
Vf(x) if y 6∈ Vars(τ) and (x, y) ∈ Eτ ′ .

As we only consider Vf,τ ′ for which type(f) ∼Q τ ′, the above is well-defined.
Now, f is broadcast when the local instance does not contain all the

facts Vf,τ ′(atom(τ ′)) for which τ ′ ∈ T and type(f) ∼Q τ ′. We refer to these
facts as the dependency fact set. To formally define fS , we set Dep(f, T ) =
{Vf,τ ′(atom(τ ′)) | τ ′ ∈ T and type(f) ∼Q τ ′}. Notice that T 6= ∅ does not
necessarily imply Dep(f, T ) 6= ∅, because type(f) ∼Q τ ′ may fail for τ ′ ∈ T .
Further notice that Dep(f, T ) = ∅ means that the fact f is static. Then,
define Dep(f,S) as Dep(f, T ) when there is a (τ, T ) ∈ S for which f |= τ .
Otherwise, Dep(f,S) is undefined.

Example 15. For an example, consider the query

Q2(x, y, z)← A(x, y, z), B(x, y, z), C(z, z).

For simplicity, we define partial types through formulas. Then, define

τB = (B, true),

τx=yA = (A, x = y),

τy=zA = (A, y = z),

τ 6=A = (A, x 6= y ∧ y 6= z),

τ 6=B = (B, x 6= y ∧ y 6= z).

Then, S = {(τB, {τx=yA , τy=zA }), (τ 6=A , {τ
6=
B })} is a BDS for Q2. To illustrate

how OBF fS works, let

I = {A(1, 2, 3), B(1, 2, 3), A(1, 1, 2), B(1, 1, 2),

A(1, 2, 2), B(1, 2, 2), C(3, 4), C(3, 3)}

be a database instance. Then, fS(I) = {A(1, 1, 2), A(1, 2, 2), C(3, 3)}. In-
deed, the facts A(1, 1, 2), A(1, 2, 2), C(3, 3) do not match a key in S and
their type occurs in Types(Q). So they are broadcast. The fact C(3, 4) is
not broadcast as its type does not occur in Types(Q) (C(3, 4) does not match
C(z, z)). The fact f1 = B(1, 1, 2) matches τB and Dep(f1, {τ

x=y
A , τy=zA }) =

{A(1, 1, 2)} ⊆ I. Therefore, B(1, 1, 2) is static. Similarly, the fact f2 =
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B(1, 2, 2) matches τB and Dep(f2, {τx=yA , τy=zA }) = {A(1, 2, 2)} ⊆ I. There-
fore, B(1, 2, 2) is static as well. The fact f3 = A(1, 2, 3) is static as it

matches τx 6=yA and Dep(f3, {τ
6=
b }) = {B(1, 2, 3)} ⊆ I. The fact f4 = B(1, 2, 3)

is static as it matches τB and Dep(f4, {τ
x=y
A , τy=zA }) = ∅.

Definition 16. For a CQ Q and a BDS S for Q, define fS as the function
that maps every instance J to the set fS(J) of those facts f ∈ J for which
(1) type(f) ∈ Types(Q); and, (2) Dep(f,S) is undefined or Dep(f,S) 6⊆ J .

Intuitively, f is static only when type(f) 6∈ Types(Q) (f can not participate
in any satisfying valuation) or the dependency fact set Dep(f,S) is present
at the local instance. Notice that a fact f is thus broadcast when it does not
imply a key in S. This is because then Dep(f,S) is undefined.

Example 17. (1) For a simple example of a BDS S and OBF fS , re-
call query Q1 from Example 1, being Q1(x, y, z)← A(x, y), B(y, x), C(x, z).
Let ϕ = (∅, ∅), that is, ϕ imposes no restrictions. Let τA = (A,ϕ) and
τB = (B,ϕ). Then, S = {(τB, {τA}), (τA, ∅)} is a BDS for Q1. Indeed, ev-
ery partial atomic type occurs at most once as a key. There is no (complete)
atomic type that implies both τA and τB. Furthermore, the variable con-
tainment condition between τA and τB is satisfied. Notice that fS simulates
exactly the broadcast dependency function which is described in Example 1.

(2) For an example where condition (3) of Definition 14 does not reduce
to ordinary variable containment, consider again query Q1 from Example 1.
Let τC = (C, x = z), and τA = (A, true). Then, S = {(τA, {τC}), (τC , ∅)} is
a BDS for Q1. Notice that condition Vars(C) 6⊆ Vars(A) but Vars(τC) ⊆τC
Vars(τA).

(3) Our final example shows that dependencies can be circular. Let

Q3(x, y, z)← A(x, y), B(y, z), C(z, x).

Let τA = (A, x = y), τB = (B, x = y), and τC = (C, x = y). Then,
S = {(τA, {τB}), (τB, {τC}), (τC , {τA})} is an OBF for Q1. Though cor-
rectness of S for Q follows from Lemma 18, we provide some intuition.
Let I = {A(1, 1), B(1, 1), C(1, 1)} be a database instance. Consider a net-
work containg the nodes c1, c2, and c3. When I(c1) = {A(1, 1)}, I(c2) =
{B(1, 1)}, and I(c3) = {C(1, 1)}, then all three facts will be broadcast.
Now, assume one of the nodes contains two of the facts in I, w.l.o.g., say
I(c1) = {A(1, 1), B(1, 1)}. Then, exactly one of the facts in I(c1) is broad-
cast; i.e., B(1, 1). Now, suppose that C(1, 1) is mapped on some node, say
c2, but that C(1, 1) is not broadcast. Then it must be that A(1, 1) is mapped
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on c2 as well. So, broadcasting B(1, 1) indeed suffices to guarantee correct-
ness.

Note that not every BDS for Q induces an OBF which is correct for
Q. Indeed, the following lemma provides equivalent semantic and syntactic
conditions for an OBF fS to be correct for a query.

Lemma 18. Let Q be a CQ and let S be a BDS for Q. Then the following
are equivalent:

1. fS is an OBF for Q;

2. there are no instances I, J , and facts f, g, with f ∼Q g, g 6∈ I, f 6∈ J
such that f 6∈ fS(I ∪ {f}) and g 6∈ fS(J ∪ {g}); and

3. there are no (complete) atomic types ω1, ω2, and pairs (τ1, T1), (τ2, T2) ∈
S, with ω1 ∼Q ω2, ω1 |= τ1, ω2 |= τ2 such that ω1 6∈ Types(T2) and
ω2 6∈ Types(T1).

Proof. (1)⇔(2) Because fS is an OBF, the equivalence follows immediately
from Lemma 6.

(2)⇒(3) The proof is by contraposition. So, assume that there are two
(complete) atomic types ω1, ω2, and pairs (τ1, T1), (τ2, T2) ∈ S, with ω1 ∼Q
ω2, ω1 ∈ Types(τ1), ω2 ∈ Types(τ2) such that ω1 6∈ Types(T2) and ω2 6∈
Types(T1). Now, because ω1 ∼Q ω2, there are facts f and g, with f ∼Q g,
type(f) = ω1, and type(g) = ω2. Define I = Dep(f,S) and J = Dep(g,S).
Observe that by definition of Dep, ω1 6∈ Types(T2) implies f 6∈ Dep(g,S) and
ω2 6∈ Types(T1) implies g 6∈ Dep(f,S). Hence, f 6∈ J and g 6∈ I. Moreover,
by definition of fS , it is always the case that f 6∈ fS(Dep(f,S) ∪ {f}) and
g 6∈ fS(Dep(g,S) ∪ {g}). Therefore, f 6∈ fS(I ∪ {f}) and g 6∈ fS(J ∪ {g}),
which contradicts condition (2).

(3)⇒(2) Again, the proof is by contraposition. So, assume that there
is an instance I and J and facts f and g where f ∼Q g, g 6∈ I and f 6∈ J ,
but f 6∈ fS(I ∪ {f}) and g 6∈ fS(J ∪ {g}). As f ∼Q g, we have ω1 ∼Q ω2

for ω1 = type(f) and ω2 = type(g). Then, by construction of fS there
are (τ1, T1), (τ2, T2) ∈ S with type(f) ∈ Types(τ1) and type(g) ∈ Types(τ2).
Now, f 6∈ fS(I ∪ {f}) and g 6∈ fS(J ∪ {g}) implies Dep(f,S) ⊆ I and
Dep(g,S) ⊆ J . If we assume that type(g) ∈ Types(T1) then g ∈ Dep(f,S)
(as g = Vf,type(g)(atom(type(f)))), and therefore g ∈ I which leads to a con-
tradiction. Hence, type(g) 6∈ Types(T1). A similar argument shows that
type(f) 6∈ Types(T2). So, we have found ω1, ω2, (τ1, T2), and (τ2, T2) contra-
dicting condition (3).
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Notice that the OBFs of Example 17 are all correct for the given query.
Two partial atomic types τ1, τ2 are said to be equal, denoted τ1 = τ2,

when Types(τ1) = Types(τ2). We say that a BDS S is harmonious when
every two partial types in S are either disjoint or equal. That is, when for
every two partial atomic types τ1, τ2 ∈ Keys(S) ∪ {τ ′ ∈ T | T ∈ Values(S)},
either τ1 = τ2 or Types(τ1) ∩ Types(τ2) = ∅.

Theorem 19. Let Q be a CQ and let S be a BDS for Q. Deciding whether
fS is correct for Q is conp-complete and in ptime when S is harmonious.

Proof. (conp-completeness) When fS is not an OBF for Q, Lemma 18 guar-
antees there exists a polynomial-size certificate, consisting of two compatible
(complete) atomic types ω1, ω2, two partial atomic types τ1, τ2, and two sets
T1, T2, witnessing fS to be not an OBF for Q, where (τ1, T1), (τ2, T2) ∈ S,
ω1 ∈ Types(τ1), ω2 ∈ Types(τ2), ω1 6∈ Types(T2), and ω2 6∈ Types(T1). As
the foregoing test can be done in polynomiale time, deciding whether fS is
correct for Q is in conp. Particularly notice that τ ′ |= τ is polynomial time
verifiable, for arbitrary (partial) atomic types τ ′, τ , by taking the union of
conditions implied by τ ′ and τ , computing the closure over variable equali-
ties, and then checking for explicit contradictions.

For the hardness proof, we rely on a reduction from the well-known np-
complete problem 3-colorability, which asks, given a graph G, whether
there is a color assignment for the nodes in G such that only three colors
are used and no two adjacent nodes are assigned the same color.

Let G = (NG, EG) be an input for the problem, and m = |NG|.
In what follows we will represent G by a partial-atomic type τP , which

takes a variable for each node in the graph and an inequality between every
pair of variables corresponding to adjacent nodes in the graph. Particularly
observe that every (valid) coloring for G yields a (complete) atomic type
implying τP , and vice versa, every atomic type implying τP implies a valid
coloring for G.

More formally, we consider relation schema σ = {P (m), A(m)} and con-
junctive query Q,

Q(x1, . . . , xm)← P (x1, . . . , xm), A(x1, . . . , xm),

over σ. Let β be a bijection from the nodes in NG onto the set of variables
{x1, . . . , xm}. Then, τP takes the form (P, (E, I)) for Q, where E = ∅, and
I = {(β(n1), β(n2)) | (n1, n2) ∈ EG}.

Now consider partial type τA = (A, (∅, ∅)), and for every i, j, k, l, where
1 ≤ i < j < k < l ≤ m, partial type τi,j,k,l = (P, (E, I)), where E = ∅,
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and I = {(xs, xt) | s, t ∈ {i, j, k, l}, s 6= t}. Intuitively, τi,j,k,l represents all
color assignments where four specified nodes (those related to xi, xj , xk, xl)
are assigned distinct colors. Let T = {τi,j,k,l | 1 ≤ i < j < k < l ≤ m}.
Notice that |T | ∈ O(m4), and that these types can be constructed one by
one by simply enumeration the possible values for i, j, k, and l. Now, let
S = {(τP , ∅), (τA, T )}.

We claim that S is a BDS for Q. Indeed, every pair in S is a (consistent)
partial atomic-type for Q, every (complete) atomic type in S implies at most
one of the partial atomic types in Keys(S), and Vars(atom(τi,j,k,l)) ⊆τi,j,k,l
Vars(atom(τA)) for all i, j, k, l.

To show that the reduction works, we need to argue that for every graph
G there is a mapping assigning to every node one out of three colors in such
a way that every adjacent node is labeled a different color, if and only if, fS
is not an OBF for Q.

(⇒) Let α be an assignment mapping the nodes in G onto a set of colors
{a, b, c}, such that the above mentioned conditions are satisfied. Notice that
there is a (complete) atomic type encoding exacty this solution, namely,
atomic type ω = (P, (E, I)), where E = {(xi, xj) | i, j ∈ [m], α(β−1(xi)) =
α(β−1(xj))}, and I = X ×X \ E. In particular, ω implies τP , ω does not
imply any of the partial types in T , and ω is compatible with τA. Then,
indeed, by Lemma 18 it immediately follows that fS is not an OBF for Q.

(⇐) If no such assignment exists, we have to show that fS is an OBF
for Q. For this, we make use of the fact that every (complete) atomic type
ω, where ω |= τP , encodes a color assignment for G. Because there is no
three-color assignment, it must be that all of these assigments use at least
four different colors. In particular, then every ω has at least four variables
that are pairwise unequal, say xi, xj , xk, xl, where 1 ≤ i < j < k < l ≤ m.
Thus, ω implies τi,j,k,l. Therefore, condition (3) of Lemma 18 is satisfied,
implying fS to be an OBF for Q.

(Harmonious case is in ptime) First of all, observe that condition (3) of
Lemma 18 for harmonious BDS simplifies to: fS is correct iff

(†) there are no partial types τ1, τ2 and pairs (τ1, T1), (τ2, T2) ∈ S with
τ1 ∼Q τ2 such that none of the types in T2 equals τ1 and none of the
types in T1 equals τ2

To verify whether fS is correct for harmonious BDS S, we thus have
to verify condition (†). For this, consider every pair of compatible partial
atomic types τ1, τ2 ∈ Keys(S). Compatibility is polynomial time verifiable
by taking the union of the conditions in both types and verifying if the
resulting partial type is still consistent. Then, for every τ ′1 ∈ T1 verify if
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τ2 = τ ′1, and for every τ ′2 ∈ T2 if τ ′2 = τ1. If none of these tests succeed, then
τ1, τ2, T1, T2 form a proof that condition (†) fails. Notice that equality of
partial types can be checked in polynomial time in the size of |Q| by making
both the implicit and explicit conditions of the type visible (by means of E
and I) and by comparing these conditions. Eventually, if no proof against
(†) is found, (†) satisfies and thus fS is an OBF for Q.

5.2 Local optimality

Next, we turn to locally optimal OBFs. The following lemma provides
equivalent semantic and syntactic conditions for an OBF to be locally op-
timal. Regarding condition (3), the intuition is as follows. While condi-
tion (3c) is the syntactic counterpart of condition (2), conditions (3a) and
(3b) specify optimality requirements which are inherent to the formalism
of BDS. More specifically, condition (3a) specifies that every atomic type
implying a partial type in a dependency set in S must also imply a key
in S. Indeed, when an atomic type does not imply a key, every local fact
of this type is always broadcast and therefore present at every computing
node. The atomic type can therefore be removed from every dependency
set it occurs in. When Condition (3b) fails for an atomic type ω, S can be
adapted to broadcast less while preserving correctness for Q by adding the
pair (ω, {τ | τ ∼Q ω, τ ∈ Types(Keys(S))}).

Lemma 20. Let Q be a CQ, S a BDS for Q, and fS an OBF for Q. The
following are equivalent:

1. fS is locally optimal;

2. for every instance I and fact f for which f ∈ fS(I ∪ {f}), there is
an instance J and a fact g such that f ∼Q g, g 6∈ I, f 6∈ J , and
g 6∈ fS(J ∪ {g}); and,

3. S satisfies the following conditions:

(a) for (τ, T ) ∈ S and ω ∈ Types(T ), ω ∼Q τ implies ω |= τ ′ for
some τ ′ ∈ Keys(S);

(b) for every ω ∈ Types(Q)\Types(Keys(S)), there is a partial atomic
type τ1 ∈ Keys(S) and a ω1 ∈ Types(τ1) such that ω ∼Q ω1 and
Vars(ω1) 6⊆ω1 Vars(ω); and

(c) for (τ1, T1), (τ2, T2) ∈ S, where ω1 ∈ Types(τ1), ω2 ∈ Types(τ2),
and ω1 ∼Q ω2: ω1 ∈ Types(T2) implies ω2 6∈ Types(T1).
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Proof. The equivalence between (1) and (2) follows from Lemma 11.
We show that (2) implies all three conditions in (3) separately.

(2)⇒(3a) Let (τ, T ) ∈ S and ω ∈ Types(T ). Choose f with type(f) ∈ Types(τ)
and set I = Dep(f, T ), g = Vf,ω(atom(ω)), so that f and g witness τ ∼Q ω.
Further, let I ′ = I \ {g}. By definition of fS , f 6∈ fS(I ∪ {f}), and f ∈
fS(I ′ ∪ {f}). By condition (2), the latter implies that there is an instance
J and a fact h, such that h 6∈ I ′, h ∼Q f, f 6∈ J , and h 6∈ fS(J ∪ {h}).
Therefore, there must be a pair τ ′ ∈ Keys(S) with type(h) ∈ Types(τ ′).
However, as fS is an OBF for Q, Lemma 6 implies that h ∈ I. So, it must
be that h = g. Hence, type(g) = ω ∈ Types(τ ′).

(2)⇒(3b) Let ω ∈ Types(Q) \ Types(Keys(S)) and let f be a fact of type
ω. By definition of fS , f ∈ fS(I ∪ {f}) for every instance I. Let I1 be such
an instance. By condition (2) there is a compatible fact g1 and instance
J1, where g1 6∈ I1, f 6∈ J1, and g1 6∈ fS(J1 ∪ {g1}). Now, consider Ii =
Ii−1 ∪ {gi−1}, for i ≥ 2. Then, f ∈ f(Ii ∪ {f}) for i ≥ 2. Again, by condition
(2) there is a fact gi and instance Ji, where gi ∼Q f, gi 6∈ Ii, f 6∈ Ji,
and gi 6∈ fS(Ji ∪ {gi}) for i ≥ 2. In particular, gi 6∈ {g1, . . . ,gi−1}. As
there are infinitely many such gi, but only finitely many atomic types in
Types(Q), there is a type ω1 such that type(gi) = ω1 for infinitely many
i. Let G = {gi | i ≥ 1, type(gi) = ω1}. As g 6∈ fS(Ji ∪ {g}) for every
g ∈ G, by definition of fS , there is a τ1 ∈ Keys(S) with ω1 ∈ Types(τ1).
Notice that ω ∼Q ω1 as f ∼Q g for all g ∈ G. Towards a contradiction,
assume Vars(ω1) ⊆ω1 Vars(ω). But then, Adom(g) ⊆ Adom(f) for every
g ∈ G which can not be as the size of G is infinite. Therefore, Vars(ω1) 6⊆ω1

Vars(ω).

(2)⇒(3c) Let (τ1, T1), (τ2, T2) ∈ S, with ω1 ∈ Types(τ1), ω2 ∈ Types(τ2),
ω1 ∼Q ω2, and ω1 ∈ Types(T2). As ω1 ∼Q ω2 there are facts g and f, with
g = ω1, f = ω2, and g ∼Q f. Then, g ∈ Dep(f, T2) as ω1 ∈ Types(T2). To-
wards a contradiction, assume ω2 ∈ Types(T1) which implies f ∈ Dep(g, T1).
Let I = Dep(g, T1) and I ′ = I \ {f}. Then, g 6∈ fS(I ∪ {g}) and g ∈
fS(I ′ ∪ {g}). By condition (2), there is a fact h and instance J , where
h 6∈ I ′, h 6∈ fS(J ∪ {h}), and g 6∈ J . By Lemma 6, however, it must be that
h ∈ I. So, h = f, which implies that f 6∈ fS(J ∪{f}). But then, by definition
of fS , Dep(f,S) ⊆ J and thus g 6∈ Dep(f,S). Which is a contradiction.

(3)⇒(2) Let f be a fact and I an instance, with f ∈ fS(I ∪{f}). This means
that f is broadcast. We make a distinction between two cases: (1) the type
of f is in S but not all the necessary facts in Dep(f,S) are present, and (2)
the type of f is not in S.
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Case 1: Suppose there is a pair (τ, T ) ∈ S with type(f) ∈ Types(τ). Then,
by definition of fS it must be that Dep(f,S) 6⊆ I. In particular, there is a
fact g ∈ Dep(f,S) \ I, where type(g) ∈ Types(T ). Notice that f ∼Q g
because of the definition of Dep(f,S) and S. By condition (3a) there is a
pair (τ2, T2) ∈ S such that type(g) ∈ Types(τ2). Because type(g) ∈ Types(T ),
and τ2 ∼Q τ (by g ∼Q f), condition (3c) implies that type(f) 6∈ Types(T2).
Now, let J = Dep(g,S). Then, f 6∈ J and g 6∈ fS(J ∪ {g}). So, facts f, g
and instances I and J are as required by condition (2).

Case 2: Suppose that type(f) 6∈ Types(Keys(S)). Then, condition (3b)
implies that there is a pair (τ1, T1) ∈ S and atomic type ω1 ∈ Types(τ1),
where ω1 ∼Q type(f) and Vars(ω1) 6⊆ω1 Vars(type(f)). As ω1 ∼Q type(f),
there is a fact g′ such that g′ ∼Q f and type(g′) = ω1. Because, Vars(ω1) 6⊆ω1

Vars(type(f)), there must be a variable, say z, in Vars(ω1) that does not
equal any of the variables in Vars(type(f)) according to the conditions in
atomic type ω1. That is, for no variable x ∈ Vars(type(f)), ω1 |= x = z.
Define Z = {y | ω1 |= y = z} as the set of variables equal to z according
to ω1. Let for every u ∈ dom \ (Adom(f) ∪ Adom(g′)), Vu be the mapping
where Vu(x) = Vf(x) for every x ∈ Vars(atom(f)), Vu(x) = Vg′(x) for every
x ∈ Vars(atom(g′)) \ Z, and Vu(x) = u for every x ∈ Z. Notice that
the above is well defined, because compatibility between f and g ensures
that Vg′(x) = Vf(x) for every shared variable. Now, every Vu induces a
fact gu = Vu(atom(ω1)) which has atomic type ω1 and is compatible with
f. Further, gu 6= gu′ for distinct u and u′. By the presence of (τ1, T1) in
S, and the definition of fS , gu 6∈ fS(Dep(gu, T1) ∪ {gu}). In particular,
condition (3a) implies type(f) 6∈ Types(T1) (because otherwise type(f) must
be in Keys(S), which is a contradiction). Thus, f 6∈ Dep(gu, T1). As there
are infinitely many such values u, for every finite instance I there should
be a u for which gu 6∈ I. Hence, for every I where f ∈ fS(I ∪ {f}), there is
indeed a fact gu and instance J = Dep(gu, T1), where gu 6∈ I, f 6∈ J , and
f 6∈ fS(J ∪ {gu}) as requested by condition (2).

Deciding whether fS is locally optimal for arbitrarily given BDS S turns
out to be hard (c.f., Theorem 21). Therefore, we also consider the special
case of open BDSs. We say that a partial type ϕ = (E, I) is open when
it enforces no restrictions. That is, when E = I = ∅. A partial atomic
type (R,ϕ) is open when ϕ is. We say that a BDS S is open when it only
contains open partial atomic types. Notice that a BDS that is open is also
harmonious (but not vice versa).

Similarly to Theorem 19, we have the following decidability result for
locally optimal OBFs.
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Theorem 21. Let Q be a CQ and let S be a BDS for Q for which fS is
correct for Q. Deciding whether fS is locally optimal is in conp and in
ptime when S is open.

Proof. Verifying whether a given BDS S for a query Q is not locally optimal,
where fS is correct for Q, is easy when given the right gadgets. For these
gadgets we rely on Lemma 20 which states that either,

• there is an atomic type ω, partial atomic type τ , and set of partial
atomic types T , where (τ, T ) ∈ S, ω ∈ Types(T ), ω ∼Q τ , and for
none of the keys τ ′ ∈ Keys(S), ω |= τ ′;

• there is an atomic type ω, where ω ∈ Types(Q)\Types(Keys(S)), where
for every ω1 |= τ1, where τ1 ∈ Keys(S), and ω ∼Q ω1, Vars(ω1) ⊆ω1

Vars(ω); or,

• there are atomic types ω1, ω2, partial atomic types τ1, τ2, and sets
of partial atomic types T1, T2, where (τ1, T1), (τ2, T2) ∈ S, ω1 |= τ1,
ω2 |= τ2, ω1 ∼Q ω2, and both ω1 ∈ Types(T2), and ω2 ∈ Types(T1).

All three cases yield a straightforward certificate (of polynomial size) that
can be verified in polynomial time. Therefore, indeed, local optimality is in
conp.

To show that deciding local optimality is in ptime when S is an open
BDS, observe that condition (3) of Lemma 20 simplifies for open BDS to:

1. (τ, T ) ∈ S and τ ′ ∈ T , where τ ∼Q τ ′ implies τ ′ ∈ Keys(S);

2. for every open partial type τ not in Keys(S), there is a τ1 ∈ Keys(S),
where τ ∼Q τ1 and Vars(τ1) ⊆τ1 Vars(τ); and

3. (τ1, T1), (τ2, T2) ∈ S, τ1 ∼Q τ2, τ1 ∈ T2 implies τ2 6∈ T1.

Particularly notice that condition (2) now considers only open partial types,
of which there are only polynomialy many. Therefore, all three conditions
can be verified straightforward in polynomial time in the size of Q and
S.

It remains open though whether deciding local optimality is conp-complete
or in ptime (even for harmonious BDS). For harmonious BDS, condition
3(a) and 3(c) of Lemma 20 are verifiable in polynomial time.

Next, we show that every locally optimal OBF can be represented by a
BDS thereby obtaining that BDSs (satisfying the conditions in Lemma 20)
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are a complete representation of locally optimal OBFs. Let Q be a CQ and
let f be an OBF for Q. We call a fact f semi-static for f when there is an
atomic type ω and an instance I such that f 6∈ f(I ∪ {f}) and type(f) = ω.
That is, f has an atomic type and there is an instance for which f is not
broadcast. We say that a semi-static fact f (for f) depends on a fact g, when,
for every instance I, f 6∈ f(I∪{f}) implies g ∈ I. With every semi-static fact
f, we associate the set Df containing exactly all facts on which f depends.
Thus, f 6∈ f(I ∪ {f}) implies Df ⊆ I.

We make use of the following lemma in the proof of Theorem 24.

Lemma 22. Let Q be a CQ, and f be a locally optimal OBF for Q. Let f
be semi-static for f . Then, f 6∈ f(Df ∪ {f}). Furthermore, g ∈ Df implies

1. g is semi-static and g ∼Q f;

2. Adom(g) ⊆ Adom(f);

3. Vars(atom(g)) ⊆type(g) Vars(atom(f)); and

4. g = Vf,type(g)(atom(g));

Proof. Before going to the actual proof, we first show the following auxiliary
result:

Lemma 23. If f ∼Q g and both are semi-static for f then f depends on g
or g depends on f.

Proof. Assume towards a contradiction that both dependencies fail. Then,
as f and g are semi-static, there is an instance I such that f 6∈ f(I ∪ {f})
and g 6∈ I, and instance J such that g 6∈ f(I ∪ {g}) and f 6∈ J . But then,
by Lemma 6, f,g, I, and J contradict with f being an OBF for Q.

Next, we argue f 6∈ f(Df ∪ {f}). Towards a contradiction suppose f ∈
f(Df∪{f}). Then, by Lemma 11 there must be some fact h and instance H,
where h ∼Q f, h 6∈ Df, f 6∈ H, and h 6∈ f(H ∪ {h}). Because f is semi-static
and h 6∈ Df, there must be some instance J , where h 6∈ J and f 6∈ f(J ∪{f}).
So, by Lemma 6, we have found h, f, J,H contradicting f being an OBF for
Q.

For (1) let I = Df. Because f is semi-static, by the above, f 6∈ f(I ∪{f}).
Further, g ∈ Df implies f ∈ f(I ∪ {f} \ {g}). Then, by local optimality of f
and Lemma 11, there is an instanceH and a fact h, such that h 6∈ f(H∪{h}),
h ∼Q f, h 6∈ I \ {g}, and f 6∈ H. However, by Lemma 6, h ∈ I, implying
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h = g. So, indeed, g is compatible with f, and there is an instance for which
g is not broadcast.

For (2), towards a contradiction suppose Adom(g) 6⊆ Adom(f), implying
a value a ∈ Adom(g) which is not in Adom(f). Because f is semi-static, there
must be an instance J , where f 6∈ f(J ∪{f}). Now, let π be the permutation
over dom that maps a onto u (where u ∈ dom \ Adom(J ∪ {f})), u onto
a, and is the identity for every other value. Notice that by construction,
π(f) = f, and g 6∈ π(J ∪ {f}). Then, by genericity of f , f 6∈ f(π(J) ∪ {f}),
implying Df ⊆ π(J), which is a contradiction with the assumption that
g ∈ Df. Thus, indeed Adom(g) ⊆ Adom(f).

For (3), again towards a contradiction, suppose that Vars(atom(g)) 6⊆type(g)

Vars(atom(f)). So, there is a variable z ∈ Vars(atom(g)) \ Vars(atom(f)),
and no variable y ∈ Vars(atom(g))∩Vars(atom(f)) exists, for which Vg(z) =
Vg(y). Recall that Vg denotes the partial valuation implied by g for atom(g).
Let Z be the set of variables z′ in Vars(atom(g)), where Vg(z′) = Vg(z).
Notice Z ∩ Vars(atom(f)) = ∅. Now, let u ∈ dom \ Adom({f} ∪ {g}). Con-
sider the mapping V , where V (x) = Vf(x) for every x ∈ Vars(atom(g)) ∩
Vars(atom(f)). Notice that by compatibility and (1): V (x) = Vg(x) as well.
Further, V (x) = Vg(x) for every x ∈ Vars(atom(g)) \ (Vars(atom(f)) ∪ Z),
and V (z) = u for every z ∈ Z. Notice that g′ = V (atom(g)) is compatible
with f. So, because g ∈ Df, implying that g is semi-static by (1), by gener-
icity g′ is also semi-static for f . By construction, Adom(g′) 6⊆ Adom(f),
implying g′ 6∈ Df. So, by Lemma 23 it must be that f ∈ Dg′ . The later im-
plies Adom(f) ⊆ Adom(g′). In particular, because u 6∈ Adom(f), we actually
have Adom(f) ( Adom(g′). However, g ∈ Df implies Adom(g) ⊆ Adom(f),
and because g and g′ have the same type, |Adom(g)| = |Adom(g′)|, which
is a contradiction.

Item (4) follows immediately from (1), (3) and the definition of Vf,type(g).

We are now ready to prove completeness. The proof of the following
theorem shows that the formalism of BDS that only uses complete atomic
types can already represent every locally optimal OBF.

Theorem 24 (Completeness). Let Q be a CQ and f a locally optimal OBF
for Q. Then, there is a BDS S for Q such that f = fS .

Proof. We start by noting that if f is semi-static for f , then every g with
type(f) = type(g) is semi-static for f as well. Therefore, we say that an
atomic type τ is semi-static for f when there is a semi-static fact f with
type(f) = τ . The proof is by construction. Let S be the set of pairs (τ,Dτ )
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where τ is semi-static for f and Dτ = Types(Df), where f is a fact with
atomic type τ .

We first show that S is a BDS and then that f = fS . Notice that,
S has only finitely many pairs, because there are only finitely many dis-
tinct atomic-types, and every set in Values(S) is finite by construction. Let
(τ, T ) ∈ S, and τ ′ ∈ T . By construction of S, τ is a semi-static atomic
type for f and for every atomic type τ there is at most one pair (τ, T ) ∈ S.
Furthermore, T = Dτ . Let f be a fact of type τ . Then, f is a semi-static
fact for f and there is a g ∈ Df, such that type(g) = τ ′. By Lemma 22(3),
Vars(atom(τ ′)) = Vars(atom(g)) ⊆type(g) Vars(atom(f)) = Vars(atom(τ)).
So, S is a broadcast dependency set for the query Q.

Next, we show that f = fS . For this, we assume Df = Dep(f, Dtype(f))
(which is argued below) and show that f 6∈ f(I ∪ {f}) iff f 6∈ fS(I ∪ {f}).

Let f be a fact and I an instance, such that f 6∈ f(I ∪ {f}). If f has no
atomic type, then it is never broadcast by fS . So, assume f has an atomic
type. Then it must be that Df ⊆ I. However, because (type(f), Dtype(f)) ∈ S
and Df = Dep(f, Dtype(f)), Dep(f,S) ⊆ I. Hence, by definition of fS , f ∈
fS(I ∪ {f}).

For fact f and instance I, where f ∈ f(I ∪ {f}), Lemma 11 implies that
f has an atomic type. Either, f is always broadcast by f , or it is semi-static
for f. The former implies that there is no pair in S of the form (type(f), T ).
So, f is broadcast by fS as well. The latter implies by Lemma 22 that
Df 6⊆ I and there is a pair (type(f), Dtype(f)) ∈ S. In particular, because
Dep(f, Dtype(f)) = Df, Dep(f, Dtype(f)) 6⊆ I, which implies that f 6∈ fS(I∪{f}).

It remains to show that Df = Dep(f, Dtype(f)). Because g ∈ Df, imply-
ing type(g) ∈ Dtype(f), it follows by Lemma 22(4) that g ∈ Dep(f, Dtype(f)).
For the reverse direction, let g ∈ Dep(f, Dtype(f)), which implies type(g) ∈
Dtype(f). So, there must be some fact g′, which is of the same type as g, in Df.
In particular, because Df ⊆ Dep(f, Dtype(f)), g′ = Vf,type(g′)(atom(g′)). How-
ever, because g = Vf,type(g)(atom(g)), atom(g) = atom(g’), and type(g′) =
type(g), it must be that g = g′. So, indeed g ∈ Df.

Remark 25. The reader may wonder if a similar result exists for OBSs that
are not necessarily locally optimal. Then, however, the behaviour of OBS is
much less predictable and the BDS formalism falls short. For an example,
recall query Q1 and OBF fS from Example 17(1). Now let f be the OBF
defined by f(I) = fS(I) if |I| is even, and f(I) = I if |I| is odd. OBF f is
clearly correct for Q1 (because fS(I) ⊆ I), but cannot be simulated through
a BDS.
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Input: conjunctive query Q
Param: sequence of partial types R
S = ∅;
foreach τ ∈ R do

addPair = true;
Values = ∅;
foreach τ ′ ∈ Keys(S), where τ ′ ∼Q τ do

Values = Values ∪{τ ′};
if Vars(τ ′) 6⊆τ ′ Vars(τ) then

addPair = false;
end

end
if addPair then
S = S ∪ {(τ,Values)};

end

end
return S

Algorithm 1: Algorithm bds-build.

6 Algorithms for constructing a BDS

Lemma 18 and Lemma 20 yield a natural algorithm for constructing a locally
optimal OBF for a given conjunctive query Q by simply starting from S = ∅
and adding new pairs in a one by one fashion till no more pairs can be added.
More formally, we introduce the algorithm bds-build, given in Algorithm 1.
As there are exponentially many (in the size of Q) partial atomic types, we
parameterize bds-build by a sequence R of partial atomic types.4 The
algorithm then produces a set of pairs (τ, T ) ∈ PTypes(Q)× 2PTypes(Q).

The following theorem obtains the correctness of bds-build. The com-
plexity follows directly from the size of R which is polynomial in the size of
Q for open types and exponential for complete types.

Theorem 26. For a conjunctive query Q and a sequence R consisting of
exactly the complete (respectively, open) types, bds-build(Q) computes a
BDS S for Q in time exponential (respectively, polynomial) in the size of Q
such that fS is correct for Q and locally optimal.

Proof. We show that (1) the complexity of bds-build(Q) is in time poly-
nomial in the size of R and Q, (2) bds-build(Q) computes a BDS S for

4We use a sequence rather than a set R to keep bds-build deterministic.
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Q, (3) S is correct for Q, and (4) fS is locally optimal. Because there are
exponentially many complete types (in the size of Q), and only polynomially
many open types (in the size of Q), (1) implies the complexity claims of the
theorem.

For (1), as every partial atomic type has a size that is polynomial in the
size of Q, verifying variable containment and adding a pair to S can be done
in polynomial time in Q.

These actions are repeated for iterations of the inner and outer loop,
which iterate over every key in the partially constructed set S, and over
every element of R respectively. By construction, S can have at most R
keys, implying that both loops together perform at most |R|2 iterations,
which confirms the complexity of bds-build(Q) to be in time polynomial
in the size of R and Q.

For (2) and (3), observe that both conditions are satisfied when S = ∅.
Indeed, because there are no pairs in S, S is a BDS for Q, and every fact
that can contribute to a satisfying valuation for Q is broadcast by fS .

Next, we argue that (2) and (3) remain satisfied during each step of the
outer loop. Because R contains exactly the complete (respectively, open)
types, every partial type that is considered in the outer loop is disjoint with
every partial type considered before, implying that condition (1) and (2)
of Definition 14 remain satisfied during each iteration. Further, as only
pairs (τ, T ) are added to S, where Vars(τ ′) ⊆τ ′ Vars(τ) is satisfied for every
τ ′ ∈ T , condition (3) of Definition 14 remains valid as well. For correctness,
observe that every τ ′ ∈ Keys(S), where τ ′ ∼Q τ , is added to T , implying
that condition (3) of Lemma 18 remains satisfied.

It remains to argue (4). We distinguish between the case of complete
and open types.

For R consisting of complete types, condition (3a) of Lemma 20 is sat-
isfied, because only atomic types that are already a key are considered as a
value, and because keys are never removed during the construction. Condi-
tion (3b) is satisfied because every atomic type ω for Q is in R, and either ω
is added to S as a key, or it is not added because there is already a compati-
ble atomic type ω1 in S, for which Vars(ω1) 6⊆ω1 Vars(ω). So, again because
keys are never removed during the construction, condition (3b) is satisfied.
For condition (3c) it suffices to observe that value sets do not change during
the construction of S. Therefore, for (τ1, T1) ∈ S, τ2 ∈ T1 implies that τ1
was already a key when (τ1, T1) was added, and thus τ1 was not a key when
(τ2, T2) was added, implying τ2 6∈ T1.

For R consisting of open types the proof is analogous. Every complete
atomic type that implies an open type in S is added as a key during the
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construction, implying that condition (3a) holds.
For every complete atomic type ω, if ω implies no key in S, then the

open type τ for pred(ω) must have been excluded from S, implying that
there is a key τ ′ ∈ Keys(S), where Vars(τ ′) 6⊆τ ′ Vars(τ). Because τ ′ itself
must be open, and Q is a CQ, there must be some atomic type ω′ |= τ ′ such
that ω′ ∼Q ω. The later then imply Vars(ω′) 6⊆ω′ Vars(ω).

Condition (3c) satisfies, because for every (τ1, T1), (τ2, T2) ∈ S, where
ω1 |= τ1, ω2 |= τ2, ω1 ∼Q ω1, ω1 ∈ Types(T2) implies that τ1 ∈ T2. So, τ1
was already a key in S before τ2 was added. Thus, τ2 6∈ T1. The result then
follows because for two distinct open types τ, τ ′, Types(τ) and Types(τ ′) are
always disjoint.

Notice that, on arbitrary (not necessarily complete) sequences of par-
tial atomic types, the above algorithm outputs BDSs that are correct but
not necessarily locally optimal for the given query. Further notice that the
correctness and local-optimality of the BDS returned by bds-build is inde-
pendent of the order in which types are fed to the algorithm, but that the
order can influence its structure and thus the behaviour of the OBF that it
describes.

Example 27. We illustrate bds-build by means of an example.
Consider the conjunctive query Q(x, y, z, w)← A(x, y, z), B(x, y, z), C(z, w).
(1) Open types. Observe that query Q has three open types, being

τA = (A, true), τB = (B, true), and τC = (C, true). Let R = (τA, τB, τC).
Then, bds-build computes a BDS by starting from S = ∅, expanding S
to {(τA, ∅)} in the first iteration and to {(τA, ∅), (τB, {τA})} in the second
iteration. During the last iteration, S is not changed anymore, because
Vars(τA) 6⊆τA Vars(τC).

(2) Complete types. The (complete) atomic types for Q are

τ 6=X = (X,x 6= y ∧ y 6= z ∧ x 6= z), τx=zX = (X,x = z ∧ z 6= y ∧ y 6= z),

τx=yX = (X,x = y ∧ x 6= z ∧ y 6= z), τy=zX = (X,x 6= y ∧ y = z ∧ z 6= x),

τ=X = (X,x = y ∧ x = z ∧ y = z), τ=C = (C, z = w), and τ 6=C = (C, z 6= w),

where X ∈ {A,B}.5 Let

R = (τ 6=B , τ
=
C , τ

6=
C , τ

x=z
B , τx=yA , τ 6=A , τ

x=z
A , τ=A , τ

=
B , τ

y=z
A , τx=yB , τy=zB ).

5For convenience we represent atomic types here by partial atomic types with sufficient
(but not complete) conditions; e.g., we write (C, x = y) to denote (C, x = y ∧ y = x).
Nevertheless, all of the listed pairs indeed correspond to a single (complete) atomic type.
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Then, the output of algorithm bds-build(Q) is the BDS

S = {(τ 6=B , ∅), (τ
x=z
B , ∅), (τx=yA , ∅), (τ 6=A , {τ

6=
B }), (τ

x=z
A , {τx=zB }),

(τ=A , ∅), (τ=B , {τ=A }), (τ
y=z
A , ∅), (τx=yB , {τx=yA }), (τy=zB , {τy=zA })}.

Observe that the atomic types τ=C and τ 6=C are not part of S because the
variable containment condition is not satisfied by the earlier included atomic
type τ 6=B .

Observe that the constructed BDS S can be simplified by merging multiple
atomic types into partial atomic types; e.g., for

S ′ = {(τA, {τ 6=B , τ
x=z
B }), (τB, {τx=yA , τ=A , τ

y=z
A })},

we have fS = fS′.

Notice that when R consists of the complete or open atomic types,
adding pairs to a given BDS S as is done by bds-build(Q) results in a BDS
S ′ that describes an OBF that broadcasts strictly less facts, i.e., fS′ ( fS .
That is, adding pairs optimizes the OBF.

Remark 28. By construction, bds-build(Q) prevents any circular depen-
dencies by stratifying the construction of S so that partial atomic types can
only depend on partial atomic types that where added before. As illustrated
in Example 17(4), dependencies in a BDS can also be circular. To allow
for these bds-build can be modified as follows: as an alternative for adding
pairs (τ, T ) where every existing key that is compatible with τ is included
in T , we can allow adding pairs where some keys that are compatible with
τ are in T , and for every other compatible key, their respective value set is
expandend to contain τ ; i.e., allowing pairs of the form (τ,D), where D is
a subset of C = {ω′ ∈ Keys(S) | ω′ ∼Q ω} satisfying Vars(ω′) ⊆ω′ Vars(ω)
for every ω′ ∈ D, and where every existing pair (ω′, T ), where ω′ ∈ C \D,
is expanded to (ω′, T ∪ {ω}). Particularly notice that when a given BDS S
is changed to S ′ by adding a pair and expanding at least one of the existing
pairs as described above, the inherent nature of the described OBF changes,
so that not necessarily fS′ ( fS .

Remark 29. Although the machinery developed throughout this paper is
motivated by gaining a better understanding of the spectrum of locally opti-
mal OBFs, the reader may notice that when no (statistical) information on
the actual distribution of the data is available, there is no basis to favor one
locally optimal OBF over another.
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In fact, there is already a very simple algorithm to find an arbitrary
locally optimal OBF for given CQ Q which is as good as any locally opti-
mal one (when no additional information on the distribution of the data is
available). Indeed, consider an arbitrary order on the predicates of Q:

for every local fact f, with predicate R, if there is an earlier pred-
icate S such that some variable in Vars(S) is not in Vars(R), f
is broadcast; otherwise, f is broadcast only if all the facts induced
by Vf on query Q are in the local instance.

Of course, not every locally optimal OBF can take this form.

7 Discussion

We investigated locally optimal oblivious broadcasting functions represented
by the formalism of broadcast dependency sets. We obtained semantical and
syntactical characterizations, showed completeness of BDSs for representing
locally optimal OBFs, and gave an algorithm for constructing locally opti-
mal OBFs for a given conjunctive query. We present several directions for
future work: more expressive query languages, incorporating background
knowledge, and non-oblivious broadcast functions.

An obvious question is how to generalize our results to the class of all
conjunctive queries (possibly extended with negation) or even to (subsets
of) Datalog. A first step would be to get rid of the fullness-restriction and
to allow self-joins. When removing these restrictions, output facts may
have non-unique valuations, which makes reasoning about local optimality
much more complex. Of course, to evaluate non-monotonic queries in a
coordination-free manner, computing nodes need more information on how
data is distributed (c.f., [6]).

We only discussed how to build a BDS when no information about the
way data is distributed is available. Indeed, the best one can do is to let
a BDS cover as much types as possible, but at the same time introduce as
little dependencies as possible, as these are likely to fail when data is arbi-
trarily distributed. It would be interesting to devise optimal broadcasting
algorithms taking more background knowledge into account like information
about clustering of attributes, foreign keys, or cardinality of relations.

Another interesting direction for future work is to investigate non-oblivious
broadcasting functions where over time, when new messages arrive, static
facts can become broadcast facts (but not vice versa). Such functions are
initially more conservative keeping more facts static and only broadcast facts
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when there is some evidence that they can be used at another computing
node. For instance, consider the setting of Example 1. Rather than im-
mediately sending B(i, j) whenever A(j, i) is locally absent, broadcasting is
suspended until a C-fact of the form C(j, k) is received. The rationale is
that a B-fact that can not contribute to a locally satisfying valuation, should
only be broadcast when some evidence is received that it could potentially
contribute to a satisfying valuation on a remote node. For our example this
means that c waits to send B(2, 1) until C(1, 3) arrives. Moreover, B(4, 4)
is never sent. While non-oblivious strategies might seem more attractive as
they transmit fewer tuples, such strategies, while remaining coordination-
free, can increase the overall evaluation time.
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