
Package ‘BiBitR’
February 14, 2017

Type Package

Title R Wrapper for Java Implementation of BiBit

Version 0.2.2

Date 2017-02-10

Author De Troyer Ewoud

Maintainer De Troyer Ewoud <ewoud.detroyer@uhasselt.be>

Description A simple R wrapper for the Java BiBit algorithm from ``A
biclustering algorithm for extracting bit-patterns from binary datasets''
from Domingo et al. (2011) <DOI:10.1093/bioinformatics/btr464>. An simple adap-
tion for the BiBit algorithm which allows noise in the biclusters is also introduced. Fur-
ther, a workflow to guide the algorithm towards given patterns is included as well.

License GPL-3

Imports foreign,methods,utils,
biclust

RoxygenNote 5.0.1

SystemRequirements Java

R topics documented:

bibit . 2
bibit2 . 3
bibit3 . 5
bibit3_patternBC . 8
BiBitR . 9
GOF . 9
make_arff_row_col . 10
MaxBC . 11
rows_full1_in_BC . 12
rows_in_BC . 13

Index 14

1

2 bibit

bibit The BiBit Algorithm

Description

A R-wrapper which directly calls the original Java code for the BiBit algorithm (http://eps.upo.
es/bigs/BiBit.html) and transforms it to the output format of the Biclust R package.

Usage

bibit(matrix = NULL, minr = 2, minc = 2, arff_row_col = NULL,
output_path = NULL)

Arguments

matrix The binary input matrix.

minr The minimum number of rows of the Biclusters.

minc The minimum number of columns of the Biclusters.

arff_row_col If you want to circumvent the internal R function to convert the matrix to .arff
format, provide the pathname of this file here. Additionally, two .csv files
should be provided containing 1 column of row and column names. These two
files should not contain a header or quotes around the names, simply 1 column
with the names.
(Example: arff_row_col=c("...\\data\\matrix.arff","...\\data\\rownames.csv","...\\data\\colnames.csv"))
Note: These files can be generated with the make_arff_row_col function.

output_path If as output, the original txt output of the Java code is desired, provide the out-
puth path here (without extension). In this case the bibit function will skip the
transformation to a Biclust class object and simply return NULL.
(Example: output_path="...\\out\\bibitresult")
(Description Output: The following information about every bicluster generated
will be printed in the output file: number of rows, number of columns, name of
rows and name of columns.

Details

This function uses the original Java code directly (with the intended input and output). Because the
Java code was not refactored, the rJava package could not be used. The bibit function does the
following:

1. Convert R matrix to a .arff output file.

2. Use the .arff file as input for the Java code which is called by system().

3. The outputted .txt file from the Java BiBit algorithm is read in and transformed to a Biclust
object.

Because of this, there is a chance of overhead when applying the algorithm on large datasets. Make
sure your machine has enough RAM available when applying to big data.

Value

A Biclust S4 Class object.

http://eps.upo.es/bigs/BiBit.html
http://eps.upo.es/bigs/BiBit.html

bibit2 3

Author(s)

Ewoud De Troyer

References

Domingo S. Rodriguez-Baena, Antonia J. Perez-Pulido and Jesus S. Aguilar-Ruiz (2011), "A bi-
clustering algorithm for extracting bit-patterns from binary datasets", Bioinformatics

Examples

Not run:
data <- matrix(sample(c(0,1),100*100,replace=TRUE,prob=c(0.9,0.1)),nrow=100,ncol=100)
data[1:10,1:10] <- 1 # BC1
data[11:20,11:20] <- 1 # BC2
data[21:30,21:30] <- 1 # BC3
data <- data[sample(1:nrow(data),nrow(data)),sample(1:ncol(data),ncol(data))]
result <- bibit(data,minr=5,minc=5)
result
MaxBC(result)

End(Not run)

bibit2 The BiBit Algorithm with Noise Allowance

Description

Same function as bibit with an additional new noise parameter which allows 0’s in the discovered
biclusters (See Details for more info).

Usage

bibit2(matrix = NULL, minr = 2, minc = 2, noise = 0,
arff_row_col = NULL, output_path = NULL, extend_columns = FALSE)

Arguments

matrix The binary input matrix.

minr The minimum number of rows of the Biclusters.

minc The minimum number of columns of the Biclusters.

noise Noise parameter which determines the amount of zero’s allowed in the bicluster
(i.e. in the extra added rows to the starting row pair).

• noise=0: No noise allowed. This gives the same result as using the bibit
function.

• 0<noise<1: The noise parameter will be a noise percentage. The number
of allowed 0’s in a (extra) row in the bicluster will depend on the column
size of the bicluster. More specifically zeros_allowed = ceiling(noise * columnsize).
For example for noise=0.10 and a bicluster column size of 5, the number
of allowed 0’s would be 1.

4 bibit2

• noise>=1: The noise parameter will be the number of allowed 0’s in a (ex-
tra) row in the bicluster independent from the column size of the bicluster.
In this noise option, the noise parameter should be an integer.

arff_row_col If you want to circumvent the internal R function to convert the matrix to .arff
format, provide the pathname of this file here. Additionally, two .csv files
should be provided containing 1 column of row and column names. These two
files should not contain a header or quotes around the names, simply 1 column
with the names.
(Example: arff_row_col=c("...\\data\\matrix.arff","...\\data\\rownames.csv","...\\data\\colnames.csv"))
Note: These files can be generated with the make_arff_row_col function.

output_path If as output, the original txt output of the Java code is desired, provide the out-
puth path here (without extension). In this case the bibit function will skip the
transformation to a Biclust class object and simply return NULL.
(Example: output_path="...\\out\\bibitresult")
(Description Output: The following information about every bicluster generated
will be printed in the output file: number of rows, number of columns, name of
rows and name of columns.

extend_columns (EXPERIMENTAL!) Boolean value which applies a column extension proce-
dure to the result of the BiBit algorithm. Columns will be sequentially added,
keeping the noise beneath the allowed level. The procedure is the same as in
bibit3, but now no artificial rows have to be ignored in the noise levels.
Note: The @info slot will also contain a BC.Extended value which contains the
indices of which Biclusters’s columns were extended.

Details

bibit2 follows the same steps as described in the Details section of bibit.
Following the general steps of the BiBit algorithm, the allowance for noise in the biclusters is
inserted in the original algorithm as such:

1. Binary data is encoded in bit words.

2. Take a pair of rows as your starting point.

3. Find the maximal overlap of 1’s between these two rows and save this as a pattern/motif. You
now have a bicluster of 2 rows and N columns in which N is the number of 1’s in the motif.

4. Check all remaining rows if they match this motif, however allow a specific amount of 0’s in
this matching as defined by the noise parameter. Those rows that match completely or those
within the allowed noise range are added to bicluster.

5. Go back to Step 2 and repeat for all possible row pairs.

Note: Biclusters are only saved if they satisfy the minr and minc parameter settings and if the bi-
cluster is not already contained completely within another bicluster.

What you will end up with are biclusters not only consisting out of 1’s, but biclusters in which
2 rows (the starting pair) are all 1’s and in which the other rows could contain 0’s (= noise).

Note: Because of the extra checks involved in the noise allowance, using noise might increase
the computation time a little bit.

Value

A Biclust S4 Class object.

bibit3 5

Author(s)

Ewoud De Troyer

References

Domingo S. Rodriguez-Baena, Antonia J. Perez-Pulido and Jesus S. Aguilar-Ruiz (2011), "A bi-
clustering algorithm for extracting bit-patterns from binary datasets", Bioinformatics

Examples

Not run:
data <- matrix(sample(c(0,1),100*100,replace=TRUE,prob=c(0.9,0.1)),nrow=100,ncol=100)
data[1:10,1:10] <- 1 # BC1
data[11:20,11:20] <- 1 # BC2
data[21:30,21:30] <- 1 # BC3
data <- data[sample(1:nrow(data),nrow(data)),sample(1:ncol(data),ncol(data))]

result1 <- bibit2(data,minr=5,minc=5,noise=0.2)
result1
MaxBC(result1,top=1)

result2 <- bibit2(data,minr=5,minc=5,noise=3)
result2
MaxBC(result2,top=2)

End(Not run)

bibit3 The BiBit Algorithm with Noise Allowance guided by Provided Pat-
terns.

Description

Same function as bibit2 but only aims to discover biclusters containing the (sub) pattern of pro-
vided patterns or their combinations.

Usage

bibit3(matrix = NULL, minr = 1, minc = 2, noise = 0,
pattern_matrix = NULL, subpattern = TRUE, extend_columns = TRUE,
pattern_combinations = FALSE, arff_row_col = NULL)

Arguments

matrix The binary input matrix.

minr The minimum number of rows of the Biclusters. (Note that in contrast to bibit
and bibit2, this can be be set to 1 since we are looking for additional rows to
the provided pattern.)

minc The minimum number of columns of the Biclusters.

noise Noise parameter which determines the amount of zero’s allowed in the bicluster
(i.e. in the extra added rows to the starting row pair).

6 bibit3

• noise=0: No noise allowed. This gives the same result as using the bibit
function.

• 0<noise<1: The noise parameter will be a noise percentage. The number
of allowed 0’s in a (extra) row in the bicluster will depend on the column
size of the bicluster. More specifically zeros_allowed = ceiling(noise * columnsize).
For example for noise=0.10 and a bicluster column size of 5, the number
of allowed 0’s would be 1.

• noise>=1: The noise parameter will be the number of allowed 0’s in a (ex-
tra) row in the bicluster independent from the column size of the bicluster.
In this noise option, the noise parameter should be an integer.

pattern_matrix Matrix (Number of Patterns x Number of Data Columns) containing the patterns
of interest.

subpattern Boolean value if sub patterns are of interest as well (default=TRUE).

extend_columns Boolean value if columns of Biclusters should also be extended for additional
results (default=TRUE). See Details Section for more info.

pattern_combinations

Boolean value if the pairwise combinations of patterns (the intersecting 1’s)
should also used as starting points (default=FALSE).

arff_row_col Same argument as in bibit and bibit2. However you can only provide 1 pat-
tern by using this option. For bibit3 to work, the pattern has to be added 2
times on top of the matrix (= identical first 2 rows).

Details

The goal of the bibit3 function is to provide one or multiple patterns in order to only find those bi-
clusters exhibiting those patterns. Multiple patterns can be given in matrix format, pattern_matrix,
and their pairwise combinations can automatically be added to this matrix by setting pattern_combinations=TRUE.
All discovered biclusters are still subject to the provided noise level.

Three types of Biclusters can be discovered:

Full Pattern: Bicluster which overlaps completely (within allowed noise levels) with the provided
pattern. The column size of this bicluster is always equal to the number of 1’s in the pattern.

Sub Pattern: Biclusters which overlap with a part of the provided pattern within allowed noise lev-
els. Will only be given if subpattern=TRUE (default). Setting this option to FALSE decreases
computation time.

Extended: Using the resulting biclusters from the full and sub patterns, other columns will be
attempted to be added to the biclusters while keeping the noise as low as possible (the number
of rows in the BC stays constant). Naturally the articially added pattern rows will not be taken
into account with the noise levels as they are 0 in each other column.
The question which is attempted to be answered here is ‘Do the rows, which overlap partly or
fully with the given pattern, have other similarities outside the given pattern¿

How?
The BiBit algorithm is applied to a data matrix that contains 2 identical artificial rows at the top
which contain the given pattern. The default algorithm is then slightly altered to only start from this
articial row pair (=Full Pattern) or from 1 artificial row and 1 other row (=Sub Pattern).

Note 1 - Large Data:
The arff_row_col can still be provided in case of large data matrices, but the .arff file should
already contain the pattern of interest in the first two rows. Consequently not more than 1 pattern at
a time can be investigated with a single call of bibit3.

bibit3 7

Note 2 - Viewing Results:
A print and summary method has been implemented for the output object of bibit3. It gives an
overview of the amount of discovered biclusters and their dimensions
Additionally, the bibit3_patternBC function can extract a Bicluster and add the artificial pattern
rows to investigate the results.

Value

A S3 list object, "bibit3" in which each element (apart from the last one) corresponds with a
provided pattern or combination thereof.
Each element is a list containing:

Number: Number of Initially found BC’s by applying BiBit with the provided pattern.

Number_Extended: Number of additional discovered BC’s by extending the columns.

FullPattern: Biclust S4 Class Object containing the Bicluster with the Full Pattern.

SubPattern: Biclust S4 Class Object containing the Biclusters showing parts of the pattern.

Extended: Biclust S4 Class Object containing the additional Biclusters after extending the biclus-
ters (column wise) of the full and sub patterns

info: Contains Time_Min element which includes the elapsed time of parts and the full analysis.

The last element in the list is a matrix containing all the investigated patterns.

Author(s)

Ewoud De Troyer

References

Domingo S. Rodriguez-Baena, Antonia J. Perez-Pulido and Jesus S. Aguilar-Ruiz (2011), "A bi-
clustering algorithm for extracting bit-patterns from binary datasets", Bioinformatics

Examples

Not run:
set.seed(1)
data <- matrix(sample(c(0,1),100*100,replace=TRUE,prob=c(0.9,0.1)),nrow=100,ncol=100)
data[1:10,1:10] <- 1 # BC1
data[11:20,11:20] <- 1 # BC2
data[21:30,21:30] <- 1 # BC3
colsel <- sample(1:ncol(data),ncol(data))
data <- data[sample(1:nrow(data),nrow(data)),colsel]

pattern_matrix <- matrix(0,nrow=3,ncol=100)
pattern_matrix[1,1:7] <- 1
pattern_matrix[2,11:15] <- 1
pattern_matrix[3,13:20] <- 1

pattern_matrix <- pattern_matrix[,colsel]

out <- bibit3(matrix=data,minr=2,minc=2,noise=0.1,pattern_matrix=pattern_matrix,
subpattern=TRUE,extend_columns=TRUE,pattern_combinations=TRUE)

out # OR print(out) OR summary(out)

8 bibit3_patternBC

bibit3_patternBC(result=out,matrix=data,pattern=c(1),type=c("full","sub","ext"),BC=c(1,2))

End(Not run)

bibit3_patternBC Extract BC from bibit3 result and add pattern

Description

Function which will print the BC matrix and add 2 duplicate articial pattern rows on top. The
function allows you to see the BC and the pattern the BC was guided towards to.

Usage

bibit3_patternBC(result, matrix, pattern = c(1), type = c("full", "sub",
"ext"), BC = c(1))

Arguments

result Result produced by bibit3

matrix The binary input matrix.

pattern Vector containing either the number or name of which patterns the BC results
should be extracted.

type Vector for which BC results should be printed.

• Full Pattern ("full")
• Sub Pattern ("sub")
• Extended ("ext")

BC Vector of BC indices which should be printed, conditioned on pattern and
type.

Value

Prints queried biclusters.

Author(s)

Ewoud De Troyer

Examples

Not run:
set.seed(1)
data <- matrix(sample(c(0,1),100*100,replace=TRUE,prob=c(0.9,0.1)),nrow=100,ncol=100)
data[1:10,1:10] <- 1 # BC1
data[11:20,11:20] <- 1 # BC2
data[21:30,21:30] <- 1 # BC3
colsel <- sample(1:ncol(data),ncol(data))
data <- data[sample(1:nrow(data),nrow(data)),colsel]

pattern_matrix <- matrix(0,nrow=3,ncol=100)

BiBitR 9

pattern_matrix[1,1:7] <- 1
pattern_matrix[2,11:15] <- 1
pattern_matrix[3,13:20] <- 1

pattern_matrix <- pattern_matrix[,colsel]

out <- bibit3(matrix=data,minr=2,minc=2,noise=0.1,pattern_matrix=pattern_matrix,
subpattern=TRUE,extend_columns=TRUE,pattern_combinations=TRUE)

out # OR print(out) OR summary(out)

bibit3_patternBC(result=out,matrix=data,pattern=c(1),type=c("full","sub","ext"),BC=c(1,2))

End(Not run)

BiBitR A biclustering algorithm for extracting bit-patterns from binary
datasets

Description

BiBit R is a simple R wrapper which directly calls the original Java code for applying the BiBit
algorithm. The original Java code can be found at http://eps.upo.es/bigs/BiBit.html by
Domingo S. Rodriguez-Baena, Antonia J. Perez-Pulido and Jesus S. Aguilar-Ruiz.

References

Domingo S. Rodriguez-Baena, Antonia J. Perez-Pulido and Jesus S. Aguilar-Ruiz (2011), "A bi-
clustering algorithm for extracting bit-patterns from binary datasets", Bioinformatics

GOF Computing Fitness Score of Biclustering Result

Description

EXPERIMENTAL FUNCTION, still needs tuning. Will eventually be integrated in bibit2 function.

Usage

GOF(matrix, bicresult, alpha = 1, verbose = FALSE)

Arguments

matrix The binary input matrix.

bicresult A Biclust result. (e.g. The return object from bibit or bibit2)

alpha Weighting factor between 0 and 1.

verbose Boolean value to show a short summary.

http://eps.upo.es/bigs/BiBit.html

10 make_arff_row_col

Value

A list containing the scores.

Author(s)

Ewoud De Troyer

Examples

Not run:
data <- matrix(sample(c(0,1),100*100,replace=TRUE,prob=c(0.9,0.1)),nrow=100,ncol=100)
data[1:10,1:10] <- 1 # BC1
data[11:20,11:20] <- 1 # BC2
data[21:30,21:30] <- 1 # BC3
data <- data[sample(1:nrow(data),nrow(data)),sample(1:ncol(data),ncol(data))]

result1 <- bibit2(data,minr=5,minc=5,noise=0.2)
result1

fitness <- GOF(matrix=data,bicresult=result1,alpha=0.5)
summary(fitness)

End(Not run)

make_arff_row_col Transform R matrix object to BiBit input files.

Description

Transform the R matrix object to 1 .arff for the data and 2 .csv files for the row and column
names. These are the 3 files required for the original BiBit Java algorithm The path of these 3 files
can then be used in the arff_row_col parameter of the bibit function.

Usage

make_arff_row_col(matrix, name = "data", path = "")

Arguments

matrix The binary input matrix.

name Basename for the 3 input files.

path Directory path where to write the 3 input files to.

Value

3 input files for BiBit:

• 1 .arff file containing the data.

• 1 .csv file for the row names. The file contains 1 column of names without quotation.

• 1 .csv file for the column names. The file contains 1 column of names without quotation.

MaxBC 11

Author(s)

Ewoud De Troyer

Examples

Not run:
data <- matrix(sample(c(0,1),100*100,replace=TRUE,prob=c(0.9,0.1)),nrow=100,ncol=100)
data[1:10,1:10] <- 1 # BC1
data[11:20,11:20] <- 1 # BC2
data[21:30,21:30] <- 1 # BC3
data <- data[sample(1:nrow(data),nrow(data)),sample(1:ncol(data),ncol(data))]

make_arff_row_col(matrix=data,name="data",path="")

result <- bibit(data,minr=5,minc=5,
arff_row_col=c("data_arff.arff","data_rownames.csv","data_colnames.csv"))

End(Not run)

MaxBC Finding Maximum Size Biclusters

Description

Simple function which scans a Biclust result and returns which biclusters have maximum row,
column or size (row*column).

Usage

MaxBC(bicresult, top = 1)

Arguments

bicresult A Biclust result. (e.g. The return object from bibit or bibit2)

top The number of top row/col/size dimension which are searched for. (e.g. default
top=1 gives only the maximum)

Value

A list containing:

• $row: A matrix containing in the columns the Biclusters which had maximum rows, and in
the rows the Row Dimension, Column Dimension and Size.

• $column: A matrix containing in the columns the Biclusters which had maximum columns,
and in the rows the Row Dimension, Column Dimension and Size.

• $size: A matrix containing in the columns the Biclusters which had maximum size, and in
the rows the Row Dimension, Column Dimension and Size.

Author(s)

Ewoud De Troyer

12 rows_full1_in_BC

Examples

Not run:
data <- matrix(sample(c(0,1),100*100,replace=TRUE,prob=c(0.9,0.1)),nrow=100,ncol=100)
data[1:10,1:10] <- 1 # BC1
data[11:20,11:20] <- 1 # BC2
data[21:30,21:30] <- 1 # BC3
data <- data[sample(1:nrow(data),nrow(data)),sample(1:ncol(data),ncol(data))]
result <- bibit(data,minr=2,minc=2)

MaxBC(result)

End(Not run)

rows_full1_in_BC Finding BC’s with specific rows which only 1’s in the BC.

Description

Simple function which scans a Biclust result and returns which biclusters contain all rows given in
the rows parameter, but only if these rows only contain 1’s in the bicluster. This can be particularly
helpful after having added articial row-pairs with a pattern of interest. With this function you can
retrieve the biclusters that grew from these pairs from all the discovered biclusters.

Usage

rows_full1_in_BC(matrix, bicresult, rows)

Arguments

matrix The binary input matrix.

bicresult A Biclust result. (e.g. The return object from bibit or bibit2)

rows A vector containing containing the row numbers which should be in the biclus-
ter.

Value

A matrix containing the biclusters in the columns and the row, column and size dimensions on the
rows.

Author(s)

Ewoud De Troyer

Examples

Not run:
data <- matrix(sample(c(0,1),100*100,replace=TRUE,prob=c(0.9,0.1)),nrow=100,ncol=100)
data[1:10,1:10] <- 1 # BC1
data[11:20,11:20] <- 1 # BC2
data[21:30,21:30] <- 1 # BC3

rows_in_BC 13

extra_rows <- rep(0,100)
extra_rows[11:25] <- 1

data <- rbind(data,rbind(extra_rows,extra_rows))
rownames(data) <- NULL

result <- bibit2(data,minr=2,minc=2,noise=0.2)

rows_full1_in_BC(matrix=data,bicresult=result,rows=c(101,102))

End(Not run)

rows_in_BC Finding BC’s with specific rows.

Description

Simple function which scans a Biclust result and returns which biclusters contain all rows given
in the rows parameter.

Usage

rows_in_BC(bicresult, rows)

Arguments

bicresult A Biclust result. (e.g. The return object from bibit or bibit2)

rows A vector containing containing the row numbers which should be in the biclus-
ter.

Value

A matrix containing the biclusters in the columns and the row, column and size dimensions on the
rows.

Author(s)

Ewoud De Troyer

Examples

Not run:
data <- matrix(sample(c(0,1),100*100,replace=TRUE,prob=c(0.9,0.1)),nrow=100,ncol=100)
data[1:10,1:10] <- 1 # BC1
data[11:20,11:20] <- 1 # BC2
data[21:30,21:30] <- 1 # BC3
result <- bibit(data,minr=2,minc=2)

rows_in_BC(result,rows=c(21,22,23))

End(Not run)

Index

bibit, 2, 3–6
bibit2, 3, 5, 6
bibit3, 4, 5, 6, 8
bibit3_patternBC, 7, 8
BiBitR, 9
BiBitR-package (BiBitR), 9

GOF, 9

make_arff_row_col, 2, 4, 10
MaxBC, 11

rows_full1_in_BC, 12
rows_in_BC, 13

14

	bibit
	bibit2
	bibit3
	bibit3_patternBC
	BiBitR
	GOF
	make_arff_row_col
	MaxBC
	rows_full1_in_BC
	rows_in_BC
	Index

