Variation of natural radionuclides in nonferrous fayalite slags during a one-month production period.

Tom Croymans-Plaghki¹, Indy Vandael Schreurs¹, Mikael Hult², Gerd Marissens², Heiko Stroh², Guillaume Lutter², Sonja Schreurs¹, Wouter Schroeyers¹

Terrestrial Radioisotopes in Environment International Conference on Environmental Protection – 18/05/2016

Fayalite slag

Secondary smelter facility

- Uses input material of Annex VI of EURATOM Basic safety standards
- Wide variation of input materials
- Non-ferrous slag

Slag can be processed in:

- Supplementary cementitious material
- Road base constructions
- Inorganic polymers

Picture from: www.econet.ne.jp/en/

31 samples Non ferrous slag samples

- 3 Production batches of 1 day
 - Milled
 - Fine powder
 - Tapped
- >21 days in radon tight containers
- Measured using HPGe

Picture from: <u>www.econet.ne.jp/en/</u>

Radiological characterization

Table on detector details						
	Ge-3	Ge-4	Ge-5	Ge-8		
Crystal type	P-type, coaxial	P-type, coaxial	P-type, planar	P-type, planar		
Relative efficiency	60%	100%	50%	19%		
Shielding	10 cm copper + 14 cm lead	7.5 cm copper + 15 cm lead	5 cm copper + 15 cm lead	5 cm copper + 15 cm lead		
Samples measured	Slag 5	Slag 4, 6, 9, 11, 14, 20, 22, 26, 29, 31	Slag 1, 2, 3, 7, 12, 15, 17, 18, 19, 21, 23, 27,30	Slag 8, 10, 13, 16, 24, 25, 28		
Dead time	0.54%	0.01-0.02%	0.04-0.05%	0.01%		
FWHM of QA at 661.6	1.554	1.572	1.315	1.231		
FWHM of QA at 1173.3	1.820	1.891	1.670	1.572		
FWHM of QA at 1332	1.891	1.964	1.753	1.637		

Picture from: www.sckcen.be/nl

Radiological characterization - spectrum

Spectrum of a non-ferrous slag measured on detector Ge-8 for 4 days acquired with genie 2000 (Canberra)

Radiological characterization – gamma lines

Radionuclide	Energy (keV)	Probability of emission (%)	Radionuclide	Energy (keV)	Probability of emission (%)
²³⁴ Th	63.3	3.75	²²⁸ Ac	209.248	3.97
	92.38	2.18		328.004	3.04
	92.8	2.15		409.46	2.02
^{234m} Pa	766.361	0.323		463.002	4.45
	1001.026	0.847		755.313	1.03
²¹⁴ Pb	241.997	7.268		772.291	1.52
	295.224	18.414		794.942	4.31
	351.932	35.6		911.196	26.2
²¹⁴ Bi	609.312	45.49		968.96	15.9
	768.356	4.892		1588.2	3.06
	806.174	1.262		1630.618	1.52
	934.061	3.1	²²⁴ Ra	240.986	4.12
	1120.287	14.91	²¹² Pb	238.632	43.6
	1155.19	1.635	²¹² Bi	1620.738	1.51
	1238.111	5.831	²⁰⁸ TI	277.37	6.6
	1280.96	1.435		583.187	85
	1377.669	3.968		763.45	1.8
	1401.5	1.33		860.53	12.4
	1407.98	2.389		2614.511	99.755
	1509.228	2.128	²³⁵ U	143.767	10.94
	1729.595	2.844		185.72	57
	1764.494	15.31		163.356	5.08
	1847.42	2.025		205.316	5.02
	2118.55	1.158	⁴⁰ K	1460.822	10.55
	2204.21	4.913			
	2447.86	1.548			
²¹⁰ Pb	46.539	4.252			

Radiological characterization – full energy peak efficiencies

• EGSnrc

- Electron Gamma shower national research council of Canada
- Input
 - Geometry of set-up
 - Sample composition
 - Radionuclides

Picture of measurement set up in EGSnrc

Results ²³⁸U decay chain

Results ²³²Th decay chain

Results ⁴⁰K

Comparison with other slags (Bq/kg)

	²²⁶ Ra	²³² Th	⁴⁰ K
Variation in this study	14-83	22-96	26-84
Cu slag [1]	490-940	41-60	530-760
Ni slag [1]	52	78	76
Sn slag [1]	1000-1200	230-340	330
Pb slag [1]	270	36	200
Furnace slags [2]	15-347	1 78	20-536

[1] Lehmann, R. (1996). Strahlenbelastung durch natürliche radionuklide in baumaterialien, fossilen brennstoffen und Dungemitteln. *Bundesamt Für Strahlenshutz, Berlin*, 135 – 156.

[2] Nuccetelli, C., Pontikes, Y., Leonardi, F., & Trevisi, R. (2015). New perspectives and issues arising from the introduction of (NORM) residues in building materials: A critical assessment on the radiological behaviour. *Construction and Building Materials*, *82*, 323–331.

Dose calculations

- Based on Radiation Protection (RP) 122 (part II)
 - Scenarios are specified
 - Severe dose model
 - Activity concentration of
 - ^{234m}Pa or ²³⁴Th (highest of ²³⁸U decay chain)
 - ²²⁸Ac
 - ⁴⁰K
- Two scenarios
 - Road construction worker
 - Public space outdoor as sport ground
 - More severe than road use

Picture from: http://lfotonin.com/

Dose calculations – road construction worker

Dose assessment according to RP122 (part II)

- exposure time: 1800h/a
- plane geometry (length 100 m width 10 m thickness 0.4 m)
- Density: 2000 kg/m3
- dilution factor: 1
- breathing rate: 1.2
- annual average dust concentration: 1 mg/m³ ingestion rate: 10 mg/h

Dose calculations – outdoor public place

Dose assessment according to RP122 (part II)

- Exposure time: 500h/a
- plane geometry (length infinite width infinite thickness 0.1 m)
- Density: 2000 kg/m3
- dilution factor: 1
- breathing rate of 0.925 m³/h
- annual average dust concentration: 0.5 mg/m³
- ingestion rate: 10 mg/h

Conclusion

- Thorough measurements are usefull
 - Don't take equilibrium for granted (in industrial) samples
- Variations in output of materials throughout typical NORM-radionuclides
 - Good to monitor production
- Measured slags are safe to use
 - Road construction worker
 - Public outdoor spaces

Questions?

- Tom Croymans
- <u>Tom.croymansplaghki@uhasselt.be</u>
- Acknowledgement
 - Company for providing the samples
 - This work was supported by the European Commission within HORIZON2020 via the EURATOM Project EUFRAT

