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ABSTRACT

Navigation systems allow drivers to find the shortest or fas-
test path between two or multiple locations mostly using time
or distance as input parameters. Various researchers extended
traditional route planning approaches by taking into account
the user’s preferences, such as enjoying a coastal view or alpi-
ne landscapes during a drive. Current approaches mainly rely
on volunteered geographic information (VGI), such as point
of interest (POI) data from OpenStreetMap, or social media
data, such as geotagged photos from Flickr, to generate scenic
routes. While these approaches use proximity, distribution or
other spatial relationships of the data sets, they do not take in-
to account the actual view on specific route segments. In this
paper, we propose Autobahn: a system for generating scenic
routes using Google Street View images to classify route seg-
ments based on their visual characteristics enhancing the dri-
ving experience. We show that this vision-based approach can
complement other approaches for scenic route planning and
introduce a personalized scenic route by aligning the charac-
teristics of the route to the preferences of the user.
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INTRODUCTION & RELATED WORK

The rapid development of autonomous vehicles will also ra-
dically change the way we perceive the in-car experience [5]].
Navigation will no longer be only a tool to navigate from
point A to point B on the shortest or fastest path, but the se-
lection of a route will have an impact on the in-car experience
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as well. This is already true for travellers and owners of con-
vertibles or motorbikes as the driving itself has an intrinsic
motivation for them [/1]].

There is already a large corpus of related work that explores
the generation of scenic or alternatives routes. For example,
Hochmair et al. [[1, 4] describe an approach to generate sce-
nic routes using different sources of volunteered geographic
information (VGI) and data from photo sharing platforms.
The GPSView system uses a similar approach and adapts an
attention-aware technique to community contributed photos
and allows travellers to enjoy sightseeing during a trip [13].
As shown by Bolzoni et al. [2]], adding category informati-
on to points of interest (POIs) makes it easier for tourists to
formulate their preferences while planning an itinerary. In or-
der to provide a better navigation experience, Samsonov et
al. [[10] proposed that navigation systems should also be awa-
re of so-called space usage rules (such as no-swimming signs,
no-surfing signs or no-fishing signs) to be able to guide the
users to places where they can enjoy certain activities (e.g.
swimming or fishing). In the domain of pedestrian navigation
multiple applications and research prototypes exist to impro-
ve walking experiences. The application Space Recommen-
der System [11]] merges data from social networks to improve
walking experiences in urban spaces, whereas the Hobbit ap-
plication [8]] helps people to avoid company in rural areas.

While all these approaches provide interesting alternatives to
the shortest or fastest route, the main limitation is that the-
se techniques do not consider the actual view from the road
and rely on other data to judge the route’s aspects. It has been
shown that in order to improve driver experience, it is ne-
cessary to take into account a rich set of visual landscape fea-
tures. For example, Qin et al. [9] showed that the presence of
billboards negatively influences scenic qualities and the pre-
sence of lakes positively improves the overall driving experi-
ence. One could also consider a scenario where a street, that
is close to the shoreline, might be directly behind dams, or
the view on the ocean is blocked by houses, tunnels or trees
(as illustrated in Figure [I]). On the other hand, a street fur-
ther away from the coast might offer a beautiful view over
the ocean (e.g. because there is a high plateau). In addition,
VGI could also be biased [3]] or not uniformly distributed and
affect other approaches for scenic route generation. For exam-



IUI 2016 * Personalization

2

E@@%

March 7-10, 2016, Sonoma, CA, USA

forest road (Nature; p=0.965)
highway (Street; p=0.218)
tree farm (Nature; p=0.109)
forest path (Nature; p=0.087)
rain forest (Nature; p=0.062)

ocean (Water; p=0.260)
sky (Nature; p=0.173)
river (Water; p=0.169)
coast (Water; p=0.151)
highway (Street; p=0.124)

highway (Street; p=0.445)
forest road (Nature; p=0.291)
valley (Nature; p=0.171)

sky (Nature; p=0.135)

field (Field; p=0.116)

Figure 1. By looking on the map of a route near Copenhagen on the left, a user would expect view from the ocean from all locations, but most of the
time it is blocked by trees or wastelands. On the left: The route, and the computed grid. In the middle: the corresponding GSV images. On the right:
the outcome of the classification. The categories with the highest probability p are assigned to each grid cell. Image and base map ©Google 2015.

ple, while there will be a high amount of geo-tagged photos
taken around a popular sight, it is unlikely that this location
will be visible from the road. While these limitations could
be overcome by creating a detailed 3D model of the environ-
ment and applying scene and visibility analysis [[12]], such an
approach would be computationally very expensive on a glo-
bal scale. However, it would also not take into account the
presence of flora, e.g. trees and bushes, at a location.

To overcome these issues, we propose a pipeline to ge-
nerate scenic routes based on Google Street View (GSV)
data. Our automated system named Autobahn crawls GSV
images alongside routes and tags and classifies these images
using deep learning [7]. In contrast to other photo sharing
platforms, building upon GSV has the advantage that these
images are taken from a vehicle (in the majority of the ca-
ses) on major roads. We provide insights on the technical im-
plementation, as well as a first user study, that compares our
approach with the state-of-the-art.

THE AUTOBAHN PIPELINE

Typical automotive navigation between two locations requi-
res a starting point, a destination and routing parameters such
as fastest or shortest route. As input, the Autobahn system
requires the user to additionally select one of the 6 predefi-
ned scenic routing parameters in order to align the routing to
the user’s preferences. An overview on the developed com-
ponents can be seen in Figure [2] The following sections ex-
plain the main components of the pipeline in detail.

Grid Creation

When starting a route generation between two locations, the
bounding box of the area is taken as the reference grid for our
calculations. The corresponding OpenStreetMap (OSM) data
of this area is downloaded through the OSM Overpass API.
The area is divided into a grid with cells of one square kilo-
meter size. The cell size corresponds to roughly one-minute
driving time, assuming an average speed of 60 km per hour.
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For each cell, one location is determined by selecting the clo-
sest road to the center of the cell. Roads classified as service
roads in OSM are excluded as it is highly unlikely that GSV
is available on these roads. If a cell does not contain any app-
licable roads, it will not be processed any further.

Street View Data Collection

In the next step, we generate panoramic images for all sample
locations of the grid using GSV. As the GSV API does not al-
low to retrieve an entire panoramic view as a single image, we
reconstruct the panorama by individually downloading image
tiles and stitching them together. We iterate through the pan-
orama with a pitch ranging from minus ten to seventy de-
grees in steps of ten degrees for each 10 degree heading in
the 360 degree panoramic image. The resulting 288 images
with a resolution of 640 x 640 pixels are then downscaled to
320 x 320 pixels. As the positions of all 288 tiles are known,
the stitching process is straightforward and a single image of
11520 x 2560 pixels is generated. As the classification com-
ponent (described in the next section) is trained on smaller
pictures, we scaled panoramic image down by 80%. Figure [I]
shows examples of the used 2304 x 512 pixel panoramas.

Panorama Classification

In order to classify the images, we used the pre-trained neural
network created by Zhou et al. [14]. They used crowd workers
to assign place tags to different images. This resulted in 205
place categories, such as field, forest, airport terminal or boat
deck. The neural network was trained with 2,448,873 images
of the ImageNet Database and showed an accuracy 50% on
the evaluation dataset and even better results for other data-
sets, like the easier dataset SUN 205 (66.5% accuracy).

For classifying our panoramic images, we used the Caffe De-
ep Learning Framework for neural networks [6]]. As our use
case does simply require a distinction between a few unique
place categories, tags related to indoor scenes were discarded.
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Figure 2. The Autobahn pipeline for scenic route generation using GSV images.

In an iterative process, we grouped the 111 trained scenes in-
to 5 high-level scenic categories, namely sightseeing (e.g. via-
duct, temple, amusement park), nature and woods (e.g. valley,
alley, garden), fields (e.g. wheat field, corn field), water (e.g.
ocean, harbor, coast) and mountain (e.g. butte, snowy moun-
tain, volcano). The sixth category contained all non-scenic
tags (e.g. street, industry and building). For each panoramic
image, the neural network gives a probability what kind of
landscape is most likely visible in the image. We categorized
the images based on the category with the highest probabili-
ty. The most probable tags for three examples on a route in
Copenhagen are shown in the Figure [I]. We also list all the
probabilities for the place classification and the category it
belongs to. Three example outputs for a colored grid (with
the corresponding categories) based on the panorama classi-
fications can be seen in Figure [4].

Route Planning

Once a region of interest (ROI) is classified based on the
panoramic GSV image, we are able to plan different rou-
tes through the ROI. Our algorithm generates a scenic rou-
te from a given start point to a finish point through multiple
or even all cells containing the scenic qualities constrained to
the maximum travel time as selected by a user. For example,
a user interested in mountain views would start by providing
the system with his preference, a start location, a destination,
and maximum travel time. The system provides the user with
a personalized route in the ROI, maximizing the number of
cells classified as mountain in the given time.

Since routing is not the main contribution of the paper, we
implemented a first approach in two steps. Firstly, a route is
created from the given start location to the destination while
passing through the scenic cell surrounded by the most other
scenic cells. In the second step, we recursively split existing
segments by adding the closest scenic point to the route, as
long as the overall route length does not exceed the value
defined by the user or all points from the grid are added. If
adding a point leads to going on a road twice, it is skipped.
This routing strategy ensures a high concentration of the sce-
nic preferences, while avoiding there-and-back detours. For
routing from A to B in the algorithm, we used OpenRouteSer-
vic for the European routes and GraphHoppei“|for the USA
routes.

]http ://openrouteservice.org
2http ://graphhopper. com
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Figure 3. Mean values for a 5-point Likert scale (5=very scenic, 1=not
scenic) ratings, error bars indicate standard deviation. Comparing two
routes generated by the Autobahn system (Autobahn-scenic) and the fas-
ted routes from the same start and end points (Autobahn-fastest). Same
for the routes by Hochmair.

RESULTS & EVALUATION

We have used our Autobahn system to classify GSV images
in 10 different ROIs of about 32,000 km? around the world.
Based on their preferences, users are able to plan various sce-
nic routes throughout these 10 areas. An overview can be seen
in Figure []. The grid view provides an overview of the clas-
sified area and provides insight into the generation of scenic
routes. In the left image, showing the classification of Mallo-
ca, Spain, the following area classifications are visible: cities,
fields and areas where a driver could enjoy nice mountain
views. We have also classified the main highway system of
Belgium, to provide users with an overview on the most sce-
nic parts of the highways system. The interactive website can
be accessed at http://autobahn.edm.uhasselt.be.

To further evaluate the Autobahn system, an online survey
was conducted. Three different areas with scenic views we-
re evaluated (Mallorca, Spain; Rhone-Alpes, France; Santa
Barbara, USA). For each area, two routes with identical start
and finish locations, were created. One route was generated
using a default fastest route planning algorithm. The second
route took into account the scenic information from our Au-
tobahn system. The scenic routes were generated using the
mountain and water tags, this because we expected users to
pay more attention to sea and mountain views compared to
forests, sightings and fields. In order to compare these results
to previous work, we used three routes generated by Hoch-
mair. et al. [1] and their fastest routing alternatives connec-
ting the identical start and finish locations. These routes are
located throughout the state of Florida (North Tampa, Odessa
and Yankeetown). Each route contains one point every 100
to 500 meters, in average 34 points per route, and variated
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Figure 4. Three example colored grid outputs of Autobahn. From the left to the right: Mallorca (Spain), Madeira (Portugal), Rhone-Alpes (France).

Base map: ©Google 2015

from 4.8 km to 16.4 km in distance. Both our routes and the
routes of Hochmair shared same characteristics in terms of
length and ratio between the scenic route and the fastest path.
The routes were presented in Latin square order to prevent
influences. For each route, the points on that route were se-
quentially iterated though. For each point, participants we-
re shown the panoramic view on that location for a duration
of two seconds. These images are not identical to the ones
used for categorizing the grid. After each route, participants
were asked to rate that route on a 5-point Likert scale with
regard to the scenic qualities. They were also asked if they
would like to travel the route in real-life. Participants were
able to provide feedback on, why assessed a route scenic or
not scenic in a free-text field. The survey took about 30-40
minutes to complete. A total of 24 participants (10 female, 14
male) were unfamiliar with the selected ROI and completed
the survey. Participants ranged between 18 and 49 years old
(M =32.4,58D =9.2), 18 owned a car and one owned a mo-
torbike. Participants expressed preference to routes generated
by the Autobahn system, as can be seen in Figure [3]. However
a pair-wise comparison of these both results yields no signi-
ficant differences. The routes generated by Hochmair were
also preferred to the fastest routes, again with no significant
difference. The free-text field answers revealed similar prefe-
rences toward the scenic routes. Participants commented “this
is a mountain tour on an island”, “nature” and “a lot of gree-
nery” for both the fastest and the scenic routes, but the more
subjective answers also expressed a tendency towards the sce-
nic routes, e.g. “nice, cool, beautiful, interesting”, compared
to “boring and normal” for the fastest path. Participants also
expressed overall positive feedback in the general idea behind
the Autobahn system and were interested in the application
for future use.

DISCUSSION & CONCLUSION

In this paper, we presented a novel approach to generate sce-
nic routes based on automatic scene classification using GSV
images. We created an automated pipeline that allows the user
to define scenic preferences for a routing assignment from a
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given start location to a destination point. Our pipeline clas-
sifies regions using a deep learning into 6 different scenic ca-
tegories. They are used to align the routing to the preferences
of the user. Our results are promising as they visualize the
diversity of scenic qualities in a selected region and reveal
route qualities that go beyond those currently picked up by
comparable systems such as Hochmair et al. [1]]. Initial user
tests revealed preferences to our routes generated by the Au-
tobahn system compared to the fastest path, yet no statistical
differences were found. As such ratings are highly subjective
and might be influenced by several factors, we believe that
the Autobahn system provides the first steps into scenic rou-
tes generation based on automatic scene classification using
GSV images.

One could also imagine various other routing algorithms ba-
sed on the classified GSV images. Users interested in diversi-
ty could be provided with a route through a region which con-
tains a multitude of different scenic qualities. Alternatively, a
route could be designed to ensure a highly diverse landsca-
pe or, on the contrary, a very monotone drive. Besides scenic
routing, we believe the power of classifying GSV data has
yet to be fully exploited in a diverse range of applications. As
GSV images is constrained to mainly North America and Eu-
rope, our system is limited in this regard and lacks coverage
in large parts of Asia, Africa and South-America, as well as
major cities of Germany and Austria.

As our system can recommend routes with a large variety of
different views, we believe that it can complement other ap-
proaches for scenic route planning. This will be further explo-
red in the future. The generated grids can be used in regional
statistics, such as cross referencing the scenic qualities of re-
gions to health and population related data.
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