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Motivation and introduction

 ABM: need for transportation as derived demand 
from people’s activity patterns

 Mandatory (inflexible) activities scheduled before more 
flexible activities

 Conventional mandatory activities: work & education

 HTS Flanders, Belgium (OVG):

 Only 45% contains a ‘mandatory’ activity

 No structure in other 55%?

 Data-driven approach to reveal the real basic 
structure of individuals’ schedules: skeleton schedule
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Methodology – Data description

 HTS of Flanders, Belgium

 Single-day, including weekends

 Only out-of-home activities

 17,300 individuals
 13,200 at least one trip

 Weights

 14 (of 2600 different) most frequent day-long schedules: 
45% of observations (each other pattern <1%)
 55% more complex behavior  skeleton schedules??

 Pre-processing

 Consecutive activities merged
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Methodology – Sequential clustering algorithm

 Main idea:

 Find common activity patterns in otherwise highly 
heterogeneous activity schedules

 H-S-H-S-H ↔ H-S-H-R-H ↔ H-S-H-Se-H ?

  H-S-H-X-H ?

 Optimization of location X ?
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Methodology – Sequential clustering algorithm
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Methodology – Overview of the research
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Methodology – Sequential clustering algorithm

 Pre-processing

 Cleaning
 ⑤ Remove schedules with >x activities?

 ∀ schedules: find all possible wildcard-containing 
schedules according to settings:
 ①Minimum # activities not replaced by X ?

 ② H cannot become X ?

 ③W cannot become X ?

 ④Merge consecutive X ?



 Sequential clustering

 determine the largest groups of unique wildcard-
containing patterns
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Methodology – Sequential clustering algorithm

 Post-processing

 Exclude odd patterns (“outliers”)

 ⑥ Cutoff after cum. freq. of x %

9



Methodology – Sensitivity analysis

 Effect of ①, ②, ③, ④, ⑤, ⑥ …?

 Ultimate goal: predictions

 Use DTs as in ABMs such as FEATHERS, ALBATROSS

 Two stages

1. Generate many sets of skeletons with different setting 
combinations
 2520 sets were generated 

2. Use ID3 algorithm to train DT and estimate accuracy of 
skeleton classification

 ⑦minimum number of records in a leaf ?

 ± 44,000 DTs fitted

 Training (75%) and test set (25%) CMAs
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Methodology – Overview of the research
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Methodology – Sensitivity analysis

 Influence of ①, ②, ③, ④, ⑤, ⑥, ⑦ on 
classification accuracy?

 Analyzed in regression model (adj. R2 0.82)

 Minimum # activities not replaced by X: inversely 
correlated

 Cutoff after cum. freq. of x %: inversely correlated

 Remove schedules with >x activities from input dataset: 
Marginal effect on CMA

 H cannot become X: marginal negative effect

 ‘Practical optimum’ set of settings yields test set 
CMA of 32% (↔ null model accuracy 13.3%)
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Results

 Two runs

1. ①Minimum # activities not replaced by X = 3
 733 skeletons from 2,600 schedules

2. ①Minimum # activities not replaced by X = 2
 341 skeletons from 2,600 schedules

 14 skeletons = 70 % of all records (↔ 45% in original data)
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Discussion and conclusion

 Only single-day data is limitation

 Temporal component not accounted for

 Number of trips affected by merging of consecutive X

Yet:

 Activity-distribution in X quite complex; common 
travel behavior extracted

 Algorithm universal and simple

 Data driven

 Compatible with current ABM approaches
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