A generic data-driven sequential clustering algorithm determining activity skeletons

Wim Ectors, Bruno Kochan, Luk Knapen, Davy Janssens, Tom Bellemans

ANT 2016

Table of contents

- Motivation and introduction
- Methodology
 - Data description
 - Sequential clustering algorithm
 - Sensitivity analysis
- Results
- Discussion and conclusion

Motivation and introduction

- ABM: need for transportation as derived demand from people's activity patterns
 - Mandatory (inflexible) activities scheduled before more flexible activities
 - Conventional mandatory activities: work & education
- HTS Flanders, Belgium (OVG):
 - Only 45% contains a 'mandatory' activity
 - No structure in other 55%?
- Data-driven approach to reveal the real basic structure of individuals' schedules: skeleton schedule

Methodology – Data description

- HTS of Flanders, Belgium
 - Single-day, including weekends
 - Only out-of-home activities
 - 17,300 individuals
 - 13,200 at least one trip
 - Weights
 - 14 (of 2600 different) most frequent day-long schedules:
 45% of observations (each other pattern <1%)
 - 55% more complex behavior → skeleton schedules??
- Pre-processing
 - Consecutive activities merged

- Main idea:
 - Find common activity patterns in otherwise highly heterogeneous activity schedules
 - $H-S-H-S-H \leftrightarrow H-S-H-R-H \leftrightarrow H-S-H-Se-H$?
 - → H-S-H-X-H ?
 - Optimization of location X ?

Н	Home
S	Shopping
R	Recreation
Se	Services
Х	'Wildcard'

universiteit

Methodology – Overview of the research

TRANSPORTATION RESEARCH INSTITUTE

- Pre-processing
 - Cleaning
 - (5) Remove schedules with >x activities?
 - ∀ schedules: find all possible wildcard-containing schedules according to settings:
 - ① Minimum # activities not replaced by X ?
 - 2 H cannot become X ?
 - 3 W cannot become X ?
 - ④ Merge consecutive X ?

$$N = \sum_{r=s}^{n} \frac{n!}{r! (n-r)!}$$

- Sequential clustering
 - determine the largest groups of unique wildcardcontaining patterns

- Post-processing
 - Exclude odd patterns ("outliers")
 - 6 Cutoff after cum. freq. of x %

universiteit hasset

Methodology – Sensitivity analysis

- Effect of (1), (2), (3), (4), (5), (6) ...?
- Ultimate goal: predictions
 - Use DTs as in ABMs such as FEATHERS, ALBATROSS
- Two stages
 - 1. Generate many sets of skeletons with different setting combinations
 - 2520 sets were generated
 - 2. Use ID3 algorithm to train DT and estimate accuracy of skeleton classification
 - (7) minimum number of records in a leaf ?
 - ± 44,000 DTs fitted
 - Training (75%) and test set (25%) CMAs

Methodology – Overview of the research

TRANSPORTATION RESEARCH INSTITUTE

Methodology – Sensitivity analysis

- Influence of (1), (2), (3), (4), (5), (6), (7) on classification accuracy?
- Analyzed in regression model (adj. R² 0.82)
 - Minimum # activities not replaced by X: inversely correlated
 - Cutoff after cum. freq. of x %: inversely correlated
 - Remove schedules with >x activities from input dataset: Marginal effect on CMA
 - H cannot become X: marginal negative effect
- 'Practical optimum' set of settings yields test set
 CMA of 32% (↔ null model accuracy 13.3%)

Results

- Two runs
 - 1. (1) Minimum # activities not replaced by X = 3
 - 733 skeletons from 2,600 schedules
 - 2. (1) Minimum # activities not replaced by X = 2
 - 341 skeletons from 2,600 schedules

TRANSPORTATION RESEARCH

Discussion and conclusion

- Only single-day data is limitation
- Temporal component not accounted for
- Number of trips affected by merging of consecutive X
 Yet:
- Activity-distribution in X quite complex; common travel behavior extracted
- Algorithm universal and simple
- Data driven
- Compatible with current ABM approaches

Thank you

Wim Ectors* Bruno Kochan Luk Knapen Davy Janssens Tom Bellemans

*wim.ectors@uhasselt.be

Universiteit