
The International Journal of People-Oriented Programming is indexed or listed in the following: Bacon’s Media
Directory; Cabell’s Directories; DBLP; Google Scholar; INSPEC; JournalTOCs; MediaFinder; ProQuest Advanced
Technologies & Aerospace Journals; ProQuest Computer Science Journals; ProQuest Illustrata: Technology; ProQuest
SciTech Journals; ProQuest Technology Journals; The Index of Information Systems Journals; The Standard Periodical
Directory; Ulrich’s Periodicals Directory

Editorial Preface

iv Steve Goschnick, School of Design, Swinburne University of Technology, Melbourne, Australia

Research Articles

1	 Natural	Shell:	An	Assistant	for	End-User	Scripting;

Xiao Liu, College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA

Yufei Jiang, College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA

Lawrence Wu, College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA

Dinghao Wu, College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA

19	 Hasselt:	Rapid	Prototyping	of	Multimodal	Interactions	with	Composite	Event-Driven	Programming;

Fredy Cuenca, School of Mathematical Sciences and Information Technology, Yachay Tech, San Miguel de
Urcuquí, Ecuador & Expertise Centre for Digital Media, Hasselt University – tUL – imec, Diepenbeek, Belgium

Jan Van den Bergh, Expertise Centre for Digital Media, Hasselt University – tUL – imec, Diepenbeek, Belgium

Kris Luyten, Expertise Centre for Digital Media, Hasselt University – tUL – imec, Diepenbeek, Belgium

Karin Coninx, Expertise Centre for Digital Media, Hasselt University – tUL – imec, Diepenbeek, Belgium

39	 An	Empirical	Comparison	of	Java	and	C#	Programs	in	Following	Naming	Conventions;

Shouki A. Ebad, Faculty of Computing and IT, Northern Border University, Arar, Saudi Arabia

Danish Manzoor, Northern Border University, Arar, Saudi Arabia

Book Review

61	 Speaking	JavaScript;

Steve Goschnick, School of Design, Swinburne University of Technology, Melbourne, Australia

CoPyRight
The International Journal of People-Oriented Programming (IJPOP) (ISSN 2156-1796; eISSN 2156-1788), Copyright © 2016 IGI Global. All
rights, including translation into other languages reserved by the publisher. No part of this journal may be reproduced or used in any form or by any
means without written permission from the publisher, except for noncommercial, educational use including classroom teaching purposes. Product or
company names used in this journal are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim
of ownership by IGI Global of the trademark or registered trademark. The views expressed in this journal are those of the authors but not necessarily of
IGI Global.

Volume 5 • Issue 1 • January-June-2016 • ISSN: 2156-1796 • eISSN: 2156-1788
An official publication of the Information Resources Management Association

International	Journal	of	People-Oriented	Programming	

Table	of	Contents

jtravers
Highlight

DOI: 10.4018/IJPOP.2016010102

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

Hasselt:
Rapid Prototyping of Multimodal Interactions
with Composite Event-Driven Programming
Fredy Cuenca, School of Mathematical Sciences and Information Technology, Yachay Tech, San Miguel de Urcuquí,
Ecuador & Expertise Centre for Digital Media, Hasselt University – tUL – imec, Diepenbeek, Belgium

Jan Van den Bergh, Expertise Centre for Digital Media, Hasselt University – tUL – imec, Diepenbeek, Belgium

Kris Luyten, Expertise Centre for Digital Media, Hasselt University – tUL – imec, Diepenbeek, Belgium

Karin Coninx, Expertise Centre for Digital Media, Hasselt University – tUL – imec, Diepenbeek, Belgium

ABSTRACT

Implementing multimodal interactions with event-driven languages results in a ‘callback soup’, a
source code littered with a multitude of flags that have to be maintained in a self-consistent manner
and across different event handlers. Prototyping multimodal interactions adds to the complexity
and error sensitivity, since the program code has to be refined iteratively as developers explore
different possibilities and solutions. The authors present a declarative language for rapid prototyping
multimodal interactions: Hasselt permits declaring composite events, sets of events that are logically
related because of the interaction they support, that can be easily bound to dedicated event handlers
for separate interactions. The authors’ approach allows the description of multimodal interactions at a
higher level of abstraction than event languages, which saves developers from dealing with the typical
‘callback soup’ thereby resulting in a gain in programming efficiency and a reduction in errors when
writing event handling code. They compared Hasselt with using a traditional programming language
with strong support for events in a study with 12 participants each having a solid background in
software development. When performing equivalent modifications to a multimodal interaction, the
use of Hasselt leads to higher completion rates, lower completion times, and less code testing than
when using a mainstream event-driven language.

KEywORDS
Composite Events, Declarative Languages, Event Languages, Event-Driven Programming, Interactive Systems,
Multimodal Systems, Rapid Prototyping

INTRODUCTION

Rapid prototyping multimodal interactive systems consists of implementing, evaluating, and refining
different types of multimodal interactions in an iterative fashion. These progressive refinements
enable developers to gain a proper understanding of the strengths and weaknesses of different possible
solutions. They arrive at a set of interactions that need to be supported by the final system. Rapid

19

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

20

prototyping must be inexpensive in effort, since the goal is to quickly explore a wide variety of possible
types of interaction. This involves building, evaluating, and throwing away many prototypes without
remorse (Beaudouin-Lafon, 2003). In the remainder of this article we use the term developers to
indicate developers of multimodal interactive systems that participate in rapid prototyping activities.

It is commonly accepted that the event-driven paradigm is a good match for realizing the
implementation of interactive systems (Lewis & Rieman, 1993). However, in the case of multimodal
interactive systems, the use of this paradigm may adversely affect the speed and cost of the rapid
prototyping phase significantly. When implementing multimodal interactions, the usage of event-
driven languages results in code that is dedicated in large part to the management of the interaction
state. This code is then plagued with a multitude of flags that developers have to update in a self-
consistent manner and across different event handlers (Spano, Cisternino, Paternò, & Fenu, 2013;
Kin, Hartmann, DeRose, & Agrawala, 2012; Cuenca, Van den Bergh, Luyten, & Coninx, 2014). The
resulting ‘callback soup’ makes it difficult to understand and to change the multimodal system source
code. This complexity has to be faced for each iteration of the prototyping phase.

Several (mostly visual) languages have been proposed with the aims of facilitating the creation
of multimodal prototypes (Bourguet, 2002; Dragicevic & Fekete, 2004; De Boeck, Vanacken,
Raymaekers, & Coninx, 2007; Lawson, Al-Akkad, Vanderdonckt, & Macq, 2009; Navarre, Palanque,
Ladry, & Barboni, 2009; König, Rädle, & Reiterer, 2010; Hoste, Dumas, & Signer, 2011; Dumas,
Signer, & Lalanne, 2014). These languages allow the developer to describe multimodal interactions
at a high-level of abstraction bypassing the need to manually maintain the interaction state, as it is
needed with event-driven languages. To a greater or lesser extent, the aforementioned languages have
accomplished their main goal of simplifying the creation of multimodal prototypes. Despite this, for
many of these languages abstraction also means giving up the fine-grained control when dealing with
events directly. In other words, these approaches dismiss the programming experience of developers
and replace this with some formalism that hides details and introduces a more abstract terminology.
Abstraction by means of visual models may not be the method of choice for many developers, who,
instead, use textual languages or at least access and modify the code that drives the interactive
system. Since familiarity with a language is an important factor that has a strong, positive influence
in programming language adoption (Meyerovich & Rabkin, 2013), we created a language that saves
developers from dealing with the ‘callback soup’ problem, while building upon familiar concepts
and well-known programming practices.

Hasselt is a textual, declarative language that allows the description of executable multimodal
interaction models. The core concept of Hasselt is a composite event, which is essentially a user-
defined sequence of events that are logically related (for example, because these are part of the same
interaction). Within Hasselt, developers define composite events by connecting several primitive
events (e.g. touch events or speech inputs) by means of specialized operators. Each operator represents
a specific relation between their operands. The overall composite event can then be bound to one or
more event handlers, which specify the behavior the system should expose when the composite event
occurs. At runtime, the event handlers are executed every time their associated composite events
occur. For event detection, Hasselt relies on existing recognizers to process the low-level input (like
speech, mid-air gestures or mouse movements) and does not replace existing recognition-based fusion
engines (D’Ulizia, 2009; Nigay & Coutaz, 1995; Bouchet, Nigay, & Ganille, 2004).

One can implement the “put-that-there” interaction (Bolt,1980) —probably the best known
example of multimodal interaction— in Hasselt with a composite event, ptt (Figure 2) that combines
speech events and pointing events and specifies their temporal constraints (e.g. the pointing gestures
must be synchronized with the spoken pronouns ‘that’ and ‘there’ to avoid ambiguities). Such a
composite event can be bound to a function, putThatThere(), which will put the selected object at
the specified position once the interaction is completed (i.e. once ptt occurs). When desired, one can
also bind additional functions that are called before the interaction is completed (i.e. in response to
the partial detection of ptt), e.g. to highlight the object identified as ‘that’.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

21

Hasselt includes a mechanism for tracking event sequences. By delegating the tracking of event
sequences to its supporting tool, Hasselt developers can focus on specifying the interaction, rather
than encoding and decoding the ever-changing interaction state. This dismisses a significant portion
of the flags and global variables that would be required to implement the same task with traditional
event-driven languages.

Hasselt was evaluated in a comparative user study for which a set of participants were asked to
modify a multimodal interaction in both a mainstream event-driven language and Hasselt. Participants
were developers familiar with the event-driven programming languages. The study was designed to
reflect one iteration of the prototyping phase: instead of implementing interactions from scratch,
developers have to read, understand, and modify existing code. The results show that, when using
Hasselt, participants achieve higher completion rates, lower completion times, and the code that they
produced required less validation. Despite their strong affinity with traditional programming languages,
the participants expressed their appreciation for our approach with respect to the traditional approach.

RELATED wORK

Almost all tools that allow rapid prototyping of multimodal interactions provide visual languages
whose models are variations of block diagrams, state machines, and Petri nets (Cuenca, Coninx,
Luyten, & Vanacken, 2015).

Block Diagrams to Model Multimodal Interaction
The visual languages provided by ICon (Dragicevic & Fekete, 2004), Squidy (König, Rädle, &
Reiterer, 2010), and OpenInterface (Lawson, Al-Akkad, Vanderdonckt, & Macq, 2009) allow the
representation of multimodal interactions as block diagrams. Block diagrams are directed graphs whose
links allow input data to flow in the direction of their arrowheads towards an externally developed
application. The nodes of a block diagram can represent (1) input hardware, (2) output devices, (3)
an external application that will eventually receive data, and (4) transformations to be applied to the
data (e.g. data filters).

As to the particular characteristics of each tool, it can be mentioned that ICon and OpenInterface
provide a set of predefined transformation nodes whereas Squidy allows users to customize the
transformation nodes by writing fine-grained code. Moreover, ICon and Squidy models can only
include one external application while OpenInterface can feed data into multiple applications developed
in different languages. For these three tools, multimodal applications have to store the input data
coming from different modalities and identify when a meaningful set of events has occurred so that an
adequate system response can be conveyed. Other approaches, including Hasselt, are able to identify
these meaningful sets of events directly from the user-defined declarative specifications.

Finite State Machines to Model Multimodal Interaction
When using finite state machines (FSM) to model multimodal interactions, the nodes of the FSM
represent the possible states of the interaction, while the arcs represent the transitions in the interaction
state caused by events. Several approaches use FSMs to model multimodal interaction but differ in
how events are linked to transitions.

In particular, with MEngine (Bourguet, 2002), each arch can be annotated with only one event
name. This causes MEngine models to grow too quickly when simultaneous inputs are modelled. For
instance, it is known that spoken deictic terms can precede pointing inputs or vice versa during speak-
and-point selection (Oviatt, 1999) When using MEngine, these two possibilities have to be explicitly
specified by the user. Obviously, this gets more tedious if one has to describe interactions involving
not only two, but several simultaneous inputs –in general, N inputs can arrived in N! different ways.
Hasselt UIMS protects its users from this state explosion: Hasselt developers only have to specify

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

22

which inputs are to be simultaneous (by using the AND operator) and, at runtime, its supporting
tool will internally make all of the necessary arrangements to deal with all possible orders of arrival.

Compared to MEngine in NiMMiT (De Boeck, Vanacken, Raymaekers, & Coninx, 2007), one
can annotate several event names to one single arc of a model. Such arcs will be traversed only if all
its associated events occur simultaneously. Furthermore, one does not have to explicitly specify all
possible orders of arrival in which the inputs can be sensed; NiMMiT hides the order of arrival of
simultaneous events. One limitation of NiMMiT is that its events cannot carry parameters, which
increases the number of function calls needed to compensate. E.g. every time one needs to refer to
the cursor position during a mouse click, a function that returns this information has to be invoked.
Instead, Hasselt allows events to carry parameters; the values of which are automatically set by its
supporting tool.

In HephaisTK (Dumas, Signer, & Lalanne, 2014) models, there is a clear separation between the
specifications of events and the dialog model, which, in our opinion, enhances their readability. In
HephaisTK, each arc of its FSM-based models is annotated with a user-defined event pattern and an
event-handling callback. Callbacks are launched when predefined event patterns occur, thus causing
the system to switch to a new state. To define an event pattern, HephaisTK users have to specify the
relation among its constituent events using the CARE properties. The CARE framework (Coutaz et
al., 1995) defines the possible combinations of modalities in multimodal interaction: Complementary
(two or more modalities are combined synergistically during an interaction), Assigned (one modality
used for one interaction), Redundant (two or more equivalent commands are issued simultaneously
through multiple modalities), and Equivalent (one out of several modalities can be chosen to issue a
command). A limitation of HephaisTK is its inability to provide partial feedback. Unlike HephaisTK,
Hasselt allows binding event-handling callbacks at very specific moments during detection of the
multimodal command thus enabling partial feedback.

Petri Nets to Model Multimodal Interaction
ICO is a language intended for formal descriptions of multimodal interactive systems (Navarre,
Palanque, Ladry, & Barboni, 2009). It has been successfully applied in the field of safety- critical
systems. With ICO, one can describe a wide variety of interactions by depicting them in Petri
nets-based models. By exploiting the well-studied mathematical apparatus behind Petri nets, some
properties about ICO models can be predicted in static time, before running the model. But the use
of a general-purpose mathematical modeling language has disadvantages too: Petri nets were not
specifically created for modelling computerized systems, much less for multimodal systems. Not
surprisingly, it does not have the notations for describing the special characteristics of multimodal
interaction in a straightforward way. Other languages, with higher domain-specificity map closer
to the multimodal domain than does ICO. In Hasselt, for instance, the modalities involved in the
interaction are explicitly specified and each possible relation between modalities can be represented
with one designated symbol. Empirical studies have shown that the more domain-specific a language
is, the more accurate and more efficient developers are in program comprehension (Kosar, Mernik, &
Carver, 2012). This efficiency is desirable in the prototyping phase, where the interaction descriptions
have to go through multiple design-implement-test loops.

Logic Rules to Model Multimodal Interaction
Mudra (Hoste, Dumas, & Signer, 2011) allows the description of multimodal interactions with a
textual notation. When comparing different models of the interaction put- that-there, we observed
that the specification obtained with Mudra was more concise (in space) than other equivalent visual
specifications. This conciseness is significantly beneficial for its users: the less material to be scanned,
the higher is the proportion that can be held in working memory, and the lower the disruption caused
by frequent searches through the model (Green & Petre, 1996). Mudra strongly influenced our
decision to create Hasselt as a textual language. Mudra specifications have to be written in CLIPS,

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

23

which was specifically designed for expert systems. Therefore, Mudra does not map as closely to
the multimodal domain as other domain-specific languages such as Hasselt and HephaisTK. Mudra
requires viewing multimodal interactions by using the logic-based paradigm: In Mudra, the events
are not viewed as notifications that have to be handled as they occur, as is the case with Hasselt and
mainstream event-driven languages. Instead, Mudra events have to be viewed as information that is
accumulated in a database that will be queried by the CLIPS engine from time to time. This type of
approach fails when patterns need to be detected as soon as they really occur (Anicic, Fodor, Stuhmer,
& Stojanovic, 2009).

HASSELT’S PROTOTyPING ENVIRONMENT

Hasselt is part of a User Interface Management System (UIMS) suite, hereafter called Hasselt UIMS. It
includes a code editor, runtime environment and debugging tools for writing, running, and evaluating
Hasselt programs. In order to realize a multimodal interface, Hasselt UIMS requires an interaction
model and back-end functionality (Figure 1).

The interaction model describes the interplay between the end user and the multimodal prototype,
while the back-end functionality includes a set of callback functions that will be launched, at runtime,
in response to user actions. Whereas the interaction model can be specified with Hasselt, the back-
end functionality is encoded in .Net compatible libraries, without support from Hasselt UIMS.
The Hasselt runtime environment allows for linking with .Net libraries and import the required
functionality this way.

At runtime, the Hasselt code is ‘glued’ with the back-end functionality. This results in an
executable multimodal prototype that the end user can interact with. In Hasselt, multimodal interactions
are described as mappings of composite events to event handlers. The composite events represent
coordinated sets of user actions; the event handlers encode all potential system responses. Hasselt

Figure 1. Hasselt UIMS, the tool supporting Hasselt, links people with different roles in the prototyping process; a Hasselt
developer specifies an interaction model that calls upon .Net libraries and executables provided by a .Net developer, to create
a prototype for an end user

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

24

developers can quickly explore a variety of multimodal interactions by defining and redefining these
mappings in a declarative fashion.

The runtime environment of Hasselt UIMS incorporates a set of input recognizers (abstractions
of input hardware) for managing events from various input devices ranging from mouse and keyboard
to multi-touch screens, microphone input and depth cameras (like the MS Kinect and the SoftKinetic
DS325 and DS326). In addition, new custom recognizers can be created and added for those projects
that need to manage additional input devices.

HASSELT: A LANGUAGE TO SPECIFy MULTIMODAL INTERACTION

Hasselt is a domain-specific, declarative language that essentially allows for (1) declaration of
composite events, and for (2) binding these composite events to event handlers.

Declaring Composite Events
An atomic event is an abstraction used to represent a signal generated by input hardware (like a
voice signal or a frame generated by Kinect). It is called atomic because it cannot be defined as a
combination of other more fine-grained events within Hasselt.

A composite event is a combination of several events with associated constraints. The events to be
combined can be atomic events or previously defined composite events. Unlike atomic events, which
occur in an instant, composite events occur over a significant time interval. To define a composite
event, its constituent events are interconnected with event operators. Table 1 shows them in increasing
order of precedence. Explicit use of parentheses is allowed to force the evaluation order of the terms.
For instance, the composite events A;B|C and (A;B)|C are treated differently: the former will be
triggered upon the detection of event A followed by either B or C whereas the latter will be triggered
after the consecutive occurrence of A and B or, alternatively, upon the detection of C.

Binding Composite Events to Event Handlers
The Hasselt UIMS runtime can call event handlers both during and at the end of the detection of
a composite event. This is possible because, at design time, Hasselt UIMS generates a Finite State
Machine (FSM) for each composite event. Hasselt developers can attach function call statements to
each node of the FSM, thus specifying the moment when the event handlers have to be called. Aside
from launching the functions of the back-end applications, Hasselt also permits other types of system
responses, as shown in Table 2.

Put-That-There Example
This section illustrates how one can implement a variation of the multimodal interaction put-that-there
(Bolt, 1980) with Hasselt. In contrast to the original put-that-there in this case, a mouse is used for

Table 1. Event operators supported by Hasselt

Event Operator Example Semantics

NEGATION (−) A-B During event A, event B cannot occur

FOLLOWED BY (;) A;B B occurs after A

OR (|) A|B A or B occur

AND (+) A+B A and B occur simultaneously, meaning both occur within a pre-defined
timeframe

ITERATION (*) A* A occur zero or more times

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

25

pointing. The prototype permits users to move virtual objects around a windows form by saying the
sentence ‘put that there’ in conjunction with the mouse. While saying the pronouns ‘that’ and ‘there’,
the user has to simultaneously click on the target object and then its intended position, respectively.

The Hasselt code (Figure 2) required for this interaction has three distinguishable parts: (1)
composite event declarations, (2) finite state machines (FSMs), and (3) composite event binding
code. The non-editable FSMs appear automatically right after a composite event is declared. These
FSMs are the linking element that allows binding composite events to event handlers.

Atomic event names consist of two parts separated by a dot: the first part refers to the input
modality (e.g. speech); the second part refers to the event itself (e.g. put). According to the code,
the composite event ptt will be triggered upon the detection of the speech input ‘put’ followed by
the co-occurrence of ‘that’ and a mouse click, and this, in turn, followed by the co-occurrence
of the input ‘there’ and another mouse click. The triggering of ptt will cause the execution of the
function putThatThere() of the .Net class ppt.Ptt, which was encoded for moving virtual objects
over a windows form.

The FSM next to it is used to link user inputs and system responses. Every time a callback
function is attached to a node (or link) of a FSM, one is implicitly declaring the moment when such
a function has to be called. In the Figure, the two alternative paths from node 2 to node 5 (and the
same is true for paths from node 5 to node 8) shown cater for two possible situations: although the
speech input and mouse clicks are expected to occur simultaneously, one will always proceed the
other by some minuscule amount of time.

The event binding code starts with the statement wrt ce.{eventName}, which stands for: with
respect to composite event {eventName} . In Figure 2, the code is binding the method putThatThere()
to the final state of ptt, i.e. node(8), which means that putThatThere() will be called when the

Table 2. Available types of system responses in Hasselt

System Response Type Description

call:ns.cls.subName Call routine subName of the namespace ns and class cls of the back-end application

raise:eventName Generate an event that can be captured by other composite event

assign:lstVarAssign Assign values to weakly typed variables

speak:expression Speak sentence through text-to-speech

play:filePath Play an audio file

Figure 2. Composite event ptt defined with Hasselt. The upper part of the code contains the declaration of ptt; the lower part is the
code for binding ptt to two event handlers. Event handlers can be launched at different stages of the composite event lifespan;
all these stages are represented in the auto-generated FSM on the right side.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

26

interaction is completed, that is, once the event ptt is fully detected. Node 5 is also voice annotated
with a statement via the built-in speech synthesizer of Hasselt UIMS (speak) as well as a function
that highlights an object on screen, so that end users receive acknowledgement that the prototype is
correctly interpreting their inputs.

Variables in Hasselt
Variables in Hasselt are not declared, but are implicitly created and are scoped to a composite event.
How this happens differs according to their initialization:

• Event parameters: The information carried by atomic events comes encapsulated in variables
called event parameters (e.g. tscreen.up<x,y,t,id>). Such parameters can be passed to event handlers
or be used to define conditional expressions. Once a composite event is fully detected (i.e. the final
state of its reciprocal FSM is reached), the parameter values of all its constituent atomic events
are cleared. Event parameters are defined in external DLLs, called input recognizers (Figure 1);

• Local variables: Hasselt local variables can be created at any stage of the composite event
lifespan. Hasselt local variables are declared and maintained with the keyword assign (Table 2),
e.g. assign: count=0, sum=sum + 1. There is no need to specify the datatype of Hasselt local
variables; these will be treated as if they had the same datatype of their initial value;

• Callback-generated variables: These variables contain the returning values of the functions
implemented in the back-end applications. Callback-generated variables do not have to be defined
explicitly. Hasselt UIMS automatically creates a variable with the same name of the function and
sets it with the return value. Callback-generated variables can be used, for example, to process
the output generated by an externally developed gesture recognition library;

• Properties: Hasselt offers properties (i.e. auto-maintained variables) that simplify the description
of interactions. Some properties, e.g. _lastNode and _lastEvent, allow reference to past interaction
states; these two properties, for instance, can be used to conditionally execute rollback functions.
Other properties (e.g. Now.TotalMilliSeconds) help ease the specification of time constraints.

PROOF-OF-CONCEPT APPLICATION

In this section, we discuss the features of Hasselt UIMS using a proof-of-concept multimodal
application, called Couch Potato. This is a multimodal application that allows wireless and remote
control of a media player. Users can choose, play, pause, and stop their favorite movies through the
coordinated use of touch screen, body posture, and speech.

Couch Potato
First, Couch Potato displays an enumerated list of movie names, which can be scrolled through by
voice commands or touch gestures. By saying ‘next’, ‘previous’, or more flexible commands like ‘four
steps forward’ or ‘ten steps backward’, users can navigate the list to select a video. Alternatively, a
user can draw a number on the touch-sensitive screen of his smartphone; this number is interpreted
as the index of the video to be selected. Both selection methods can be used alternatively.

Once a video is selected, one can play it by flicking right on the smartphone while pointing it
towards the screen where a Kinect sensor is positioned. For this multimodal command, Couch Potato
combines two input modalities: (a) full body input to detect pointing towards the screen with Kinect
and (b) flicking to the right on the smartphone’s touch screen. Similarly, as the video plays, one can
point to the screen and flick to the left or tap on the smartphone in order to stop or pause the playback,
respectively. When the video stops, the video list is shown again. The playback volume can also be
increased/decreased by flicking up/down when in playback mode. Couch Potato is closed down when
the user says ‘goodbye’ while waving his right hand in front of the Kinect sensor.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

27

Back-End Applications
Couch Potato uses three back-end applications: a Windows application, a generic dynamic link library
(DLL) for gesture stroke recognition, and a generic mobile application.

The Windows application presents a form hosting a video player, with a list box containing the
names of the video files located in a specific directory. This Windows application implements both
the presentation part and the functions for controlling the media player. The DLL contains a function
that receives a series of (x-y)-points and returns a string with the name of the 0-9 digit encoded in
those points, or the string ‘none’ when no match is possible. Both the Windows application and the
DLL were imported into Hasselt UIMS. The mobile application that translates touch events into
TUIO messages is the open-source TUIOdroid.

Input Recognizers
The Couch Potato prototype uses three predefined recognizers incorporated into Hasselt UIMS. These
enable skeleton tracking via Microsoft Kinect API, speech recognition via Microsoft Speech API,
and touch event detection via TUIO.

Each recognizer implements a subclass of the class InputRecognizer, which includes methods
for configuring, starting, and stopping the operation of input hardware and raising atomic events. In
addition to those, one or more subclasses of the class AtomicEvent (Figure 3) are needed. For each
atomic event, the event name and possible parameters need to be specified. For each input recognizer
used, about 200 lines C# code are required.

Importing input recognizers into Hasselt UIMS has two results: (1) At design time, the Hasselt
grammar is internally updated so that a new set of atomic events are available to Hasselt developers,
who can thereafter describe multimodal interactions that involve more sensors. (2) At runtime, new

Figure 3. Classes to be implemented to let Hasselt UIMS support input hardware

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

28

types of hardware are automatically activated (deactivated) upon entering (leaving) runtime mode,
and their signals are encoded as events through the whole runtime.

Specification of Multimodal Interactions with Hasselt
Hierarchical Interaction Specification
Starting a video is achieved by combining multimodal events: flicking to the right and extending
the right hand forward are two events that when occurring simultaneously cause the selected video
to play (Figure 4). The composite event flickRight occurs when the user flicks towards the right on
his smartphone screen. This event is declared as a sequence of touch events: one initial touch.down
event followed by an arbitrary number of touch.move’s and one final touch.up event. Two constraints
are imposed to guarantee that the touch moved to the right, i.e. x2 > x1, and that this movement was
horizontal, i.e. abs (y2 - y1) < 0.05. The composite event handFront occurs when the user is pointing
forward: when his right hand is at least 35 cm in front of his body. The parameter skl carried by the

Figure 4. Couch potato enters into playback mode when a user flicks to the right on a smartphone (flickRight, a) while pointing
forward (handFront, b) at the same time (playVideo, c)

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

29

atomic event kinect.skelPos, generated by the Kinect recognizer, is a data structure containing the
(x,y,z)-positions of skeleton joints. The prefix ce, preceding flickRight and handFront, indicates
that these two events have already been defined as composite events. The function play(), contained
in the media player application, will be launched when playVideo is detected, i.e. when flickRight
and handFront co-occur. This interaction illustrates how one can reduce the complexity of defining
complex interactions by using composite events without associated event handler, such as flickRight
and handFront. These composite events can be reused to achieve different interactions. E.g. handFront
is reused in the definitions of stop and pause interactions.

Handling Simultaneous Inputs with Time-Out Transitions
In the FSM of Figure 4c, the dashed links outgoing from node 2 and node 3 towards node 1 represent
time-out transitions that will be automatically executed if the events handFront and flickRight do
not arrive within a time interval (whose length is predefined in the configuration file of Hasselt
UIMS). Time-out transitions (dashed links) appear when a composite event contains simultaneous
events, i.e. when the operator AND (+) is used. Time-out transitions thus guard correct execution
of the operator AND (+): the interaction moves to its final state (in this case node 4) only if the two
involved inputs (flick gesture and body pose) co-occur within a time interval. Otherwise, i.e. if the
time interval expires when only one input has been detected, the time-out transitions are executed,
thus resetting the interaction to its initial state (node 1).

Use of Arrays: Free-Form Gesture Recognition
Hasselt allows the collection of event parameters (e.g. touch position) into arrays, which can then be
passed to back-end applications (e.g. gesture recognition libraries). Couch Potato allows users to select
the Nth element of the video list by drawing the number N on his smartphone screen. Numbers to be
drawn can consist of one or many unistroke 0-9 digits drawn in a quick succession. This interaction
is defined with the composite events digit and number. In the definition of the event digit (Figure
5), all the points of a stroke as well as their timestamps are collected into arrays that are passed to
the function getBestMatch() once the stroke is finished. This function belongs to the DLL that was
imported into Hasselt UIMS. As mentioned, a variable getBestMatch is created that contains the
value returned by the function of the same name. In this case it is a string containing the name of the
depicted digit or ‘none’ if the stroke did not match with any digit template. This enables expressions
such as getBestMatch <> ‘none’.

The event number (Figure 6) is composed out of a stream of digit events, e.g. digit<‘two’>,
digit<‘six’>, that finishes after 2.5 seconds of ‘silence’. The event number collects the parameters
carried by the digit events into an array, e.g. d = [‘two’, ‘six’], that is passed to the back-end method
chooseVideo, which selects the video whose index is indicated in the input parameter, i.e. the 26th video.

Figure 5. Composite event digit. Parameters carried by atomic (touch) events down and move are accumulated into arrays.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

30

Interruptibility: Cancelling Partially Entered Commands
End users may sometimes decide to interrupt a partially entered command to start issuing a new one.
Hasselt UIMS facilitates the implementation of such a scenario by allowing developers to declare a
reset command, which causes an immediate reset of Hasselt UIMS: local variables are destroyed and
FSMs return to their initial state. The reset command (e.g. speech.reset) is declared in a configuration
file that Hasselt UIMS reads at startup.

In some cases, aborting the tracking of composite events may leave the system in an inconsistent
state. For instance, if the reset command is detected after the system has already performed some
internal computation, it may be convenient to roll back the effects produced so far. Just as Hasselt
UIMS resets its local variables, the back-end applications are expected to include roll back functions
to reset their internal variables.

For the rollback functions to be launched in the right scenario, it is important to distinguish whether
composite events return to their initial state after reaching the final state (normal termination), or else,
after a reset command (abort termination). By using the property _lastNode, Hasselt developers can
restrict the invocation of roll back functions only for those cases when the reset command was raised.
More technically, roll back functions have to be attached to the initial nodes and their invocations have
to be restricted to the case: when _lastNode <> N, where N is the index of the final node.

Passive Inputs
Whereas active inputs are intentionally generated by the end user to command a system (e.g. speech),
passive inputs are unintentionally issued (e.g. facial expressions or incidental manual gestures) and
can be exploited by the system to proactively help the end user.

Couch Potato can react to passive inputs. If the end user leaves the room, Couch Potato will
automatically pause the video, which will be automatically played again once the end user is back.
Such an interaction can be described by using the atomic events kinect.userOn (kinect.userOff), which
are fired by the Kinect recognizer every time the end user appears (disappears) from the Kinect’s
field of view. These two events are not part of the Microsoft Kinect API; these were implemented by
the application developer, thus hiding complexity from Hasselt developers.

EVALUATION OF HASSELT

We gathered 12 participants in order to evaluate whether programming with composite events brings
about benefits when it comes to modify multimodal systems. Event-driven programming was used
as the baseline paradigm. This section is a summary of the most relevant aspects of the experiment
described in (Cuenca, F., Van den Bergh, J., Luyten, K., & Coninx, K.).

Figure 6. Composite event number. Parameters carried by digit are accumulated into arrays.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

31

Hypothesis
Based on the results of a pilot test, we hypothesized that the adaptation of a multimodal interaction
model requires (1) less time, (2) less code testing, and (3) less mental effort when using composite
events than when using traditional event-callback code These hypotheses were tested by a within-
subjects experiment in which participants are required to perform equivalent modifications with
both Hasselt and C#.

The variables are operationalized as follows: The amount of time for performing the requested
changes is counted from the moment the participant starts modifying the code until he informs the
researcher about the completion of the task. The amount of testing involved during the experiment is
measured as the number of times the participant enters into runtime mode. The mental effort required
by a programming task was obtained with the subjective post-task Single Ease Question (SEQ)
questionnaire. It uses a rating scale ranging from 1 (anchored with “Very difficult”) to 7 (anchored
with “Very easy”) and is aimed to assess the perceived difficulty (or perceived ease, depending on
one’s perspective) of a task (Sauro & Dumas, 2009).

Participants
We recruited 12 participants, all of which are male. The overall programming experience of the
participants ranged from 4 to 13 years (M = 7.9, SD = 2.3); and their C# experience, between 1 and
8 years (M = 3.0, SD = 2.2). The pool of participants included master and PhD students, post-docs,
and industry developers, from different universities and countries, and with different backgrounds
(computer science and engineering).

Procedure
The study was a within-subject experiment and was preceded by a short training session of 10-15
minutes. By following step-by-step instructions, one by one, the participants were able to describe a
simple multimodal interaction with Hasselt. In this way, they got acquainted with Hasselt and Hasselt
UIMS. Since all had experience with C# and MS Visual Studio, there was no need for training in
that respect.

In the experiment, each participant was shown a multimodal prototype that he had to interact
with, according to instructions from the researcher. Once he was familiar with the functionality of
the prototype, he was asked to make some changes; these changes had to be performed with both
Hasselt and C# within a time limit of 30 minutes per language. The order of the languages to be used
is balanced over the participants so that the aggregated experience bias was neutralized overall. After
the experiment the participants fill out a questionnaire and were interviewed.

The prototype they were required to modify allows end users to create and move virtual objects
around a Windows form. New objects can be created, in random positions, through the voice command
‘create object’. Existing objects can be moved by issuing ‘put that there’ while clicking on both the
target object and then its new position. Participants were asked to adapt the command for creating
objects so that the end user is able to select using a mouse click, the position where the new object
has to be placed. The changes only required modifying the interaction code, not the application-
specific code.

Results
All 12 participants completed the experiment when using Hasselt; but only 10 succeeded with C# —
the other two exceeded their allotted time. For completion time and code testing effort we analyzed
the 10 participants that completed both conditions. For the other variable the analysis includes the
results of all participants.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

32

Completion Time
Changes made with Hasselt took on average 4.4 minutes (SD = 0.97) compared to 24.7 minutes (SD
= 3.02) when using C#. A Wilcoxon signed-rank test rejected the null hypothesis in favor of the
alternative hypothesis that Hasselt completion times are shorter (p-value = 0.0009766, W = 0, Z =
−2.8085). Participant 2, who did not finish the C# task, mentioned in the interview that he eventually
got lost in the maintenance of the state variables when using C#.

Code Testing Effort
On average, participants tested their code significantly less when using Hasselt (M = 1.8 times,
SD = 0.75) than when using C# (M = 3.3 times, SD = 1.72). We reject the null hypothesis based
on a Wilcoxon signed-rank test in favor of the alternative hypothesis “Hasselt code is tested less
frequently” (p-value = 0.009766, W = 2.5, Z = −2.4233). Participants 1 and 2, who did not complete
the experiment, showed the highest difference in code testing effort (300% and 250% additional tests,
respectively); while other participants did between 50% and 150% additional tests with C#.

Perceived Ease of the Task
All participants gave higher SEQ scores to Hasselt. Participants rated the task with Hasselt to be easy
(M = 6.08, SD = 0.67) while they rated the task with C# to be slightly difficult (M = 3.42, SD = 1.00).
A Wilcoxon signed-rank test showed this difference to be significant in support of the alternative
hypothesis that Hasselt’s SEQ scores are higher (p-value = 0.0002441, W = 78, Z = 3.0953). In
the interview the difference in rating was explained by the split over multiple event handlers. E.g.
participant 11 mentioned: “It is harder with C# because it requires modifying the code in multiple
places.” Participant 3 mentioned: “With C#, you have to check multiple variables and multiple handlers
simultaneously to identify the right state of the system... and you also have to reset the variables.”

DISCUSSION

It has been reported that familiarity with a language has a strong, positive impact in programming
language adoption, even more positive than performance, reliability, or language semantics
(Meyerovich & Rabkin, 2013). Based on this report and the past experiences described below, Hasselt
was designed so that interactions can be described by means of event binding, as with traditional
event-driven languages.

Design Decisions About Hasselt: why Textual? why Event-Driven?
Almost all languages provided by the studied rapid prototyping tools are visual languages and/or
require using concepts such as CARE properties, transition rules, or logic-based concepts, which
are unrelated to event languages. These concepts may thus be unknown even to developers with
experience in interactive systems. We conceded this may be a design issue since past experiences
show that deviating developers from their ‘native languages’ brings about negative consequences.

Programmers’ Resistance to Unusual Concepts
After being involved in the development of four UIMSs, Olsen Jr. stated that the “success of a UIMS
is directly related to the ease with which interface designs can be expressed” (Olsen Jr., 1987). He
illustrates his point by confessing that the difficulty in describing interfaces in terms of grammars
caused the SYNGRAPH system (Olsen Jr. & Dempsey, 1983) to not be widely used despite the
improved productivity realized by its users realized. A few years after, when discussing the Mickey
UIMS, a tool proposed to tackle the problems engendered by MIKE (Olsen Jr., 1986), its author
reminded us once again of the risks of including unfamiliar languages within a UIMS: “By using

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

33

interface specifications based on familiar terms to developers we were able to overcome the developer
resistance that plagued our earlier UIMS” (Olsen Jr., 1989).

Influence of Previous Programming Experience
The previous cases highlighted the resistance of developers to use unfamiliar concepts. The present
study warns about the potential consequences of adopting languages that are clearly different from
the languages one is accustomed to. In another study, a group of master and doctoral students had to
expand on a project consisting of describing a system with the language Live Sequence Charts (LSC),
the syntax of which was unknown to the participants, as were the underlying concepts. Instead, they
had experience with other programming languages, mainly C++ and Java (Alexandron, Armoni,
Gordon, & Harel, 2012). The results showed that previous programming experience leads developers
not only to misunderstand or misinterpret concepts that are new to them, but that it can also lead
them to actively distort the new concepts in a way that enables them to use familiar programming
patterns, rather than exploiting the new ones to good effect. Learners of the new language not only
interpret the new models through the prism of the previous models they are familiar with — this is
the straightforward implication of a theory called constructivism (Ben-Ari, 2001) —, but they actively
try to force the new model to behave like the model they are familiar with, so they can use previously
acquired programming solutions.

Skepticism Towards Visual Languages
Since many of the existing languages aimed at describing multimodal interactions are visual languages,
it is also important to reflect on the experiment carried out by Oney et al. (Oney, Myers, & Brandt,
2014). They enlisted 20 developers to perform equivalent modifications with both InterState, a visual
language, and RaphaelJS, a textual, event language.

These researchers reported that, during the interviews, the participants (experienced developers)
showed skepticism about using visual languages in practice since they still felt more comfortable
with standard imperative code. The authors hypothesized that this preference may be “largely due
to the relatively long-term exposure to standard code”. Not even the enhanced efficiency achieved
with InterState in comparison with equivalent event-callback code could seduce the participants to
consider using visual languages in real- world scenarios.

Based on these experiences, it is clear that when designing a new language, one cannot simply
overlook the previous programming experience of its potential users. The rankings of programming
language popularity published by IEEE (“IEEE Spectrum”, 2016) and by TIOBE (“TIOBE Index”,
2016) agree that most widely-used languages to date are textual, and a predominant proportion of
them subscribe to the event- driven paradigm. Therefore, Hasselt was designed to retain the textual
and event-driven nature that are fundamental features of commonly-used event languages to which,
after decades of practice, developers have become accustomed to, and naturally, they will not want
to give up.

Hasselt Simplifies the Creation of Multimodal Interactive Prototypes
Below we discuss how Hasselt helps reduce the “callback soup” obtained when prototyping multimodal
interactions with event languages.

Updating Interaction State
When implementing multimodal interactions with event languages, developers have to update
several state variables that altogether encode the interaction state. For the put-that-there interaction
(Bolt, 1980), for instance, state variables have to be updated for every relevant speech input and
pointing gesture until the whole interaction is completed. These updates have to be implemented
manually, in a self-consistent manner, and across different event handlers. By contrast in Hasselt,
developers are saved from the error-prone task of maintaining state variables, as demonstrated by

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

34

the actual experience of participants in the evaluation as well as the assessment in the questionnaire
and interview. The interaction state is internally updated by Hasselt UIMS while tracking composite
events: for each interaction, Hasselt UIMS ‘knows’ whether this is in its initial stage, (node 1), final
stage, or somewhere in between.

Identifying Current Interaction State
When implementing multimodal interactions with event-driven languages, developers must write
conditional clauses for distinguishing between interaction states, e.g. “if interaction state is X; system
must respond with Y”. These conditional clauses can be more or less complex depending on the
number of state variables that need to be interrogated. By contrast in Hasselt, the interaction state can
be referred to directly, in an explicit manner, e.g. “when in node(A), function B is called”, without
the need of conditional clauses for interrogating state variables.

Fusing Inputs from Different Event Handlers
With event languages, the event data (e.g. mouse cursor position) is carried by the parameters of the
event handlers (e.g. MouseEventArgs), which can only be referred to from within the event handlers
(local scope). Therefore, the event data may have to be saved in a wider scope (e.g. global variables)
in order to make it visible to other event handlers needed to deal with the same multimodal interaction.
This trick of saving event data in global variables for its subsequent fusion with the data carried by
other related events is not needed in Hasselt. Hasselt variables can be referred to at any moment of the
interaction, i.e. at any moment during the composite event lifespan. In existing event languages, local
variables are alive within one event; global variables, throughout the whole runtime; but a new scope
for maintaining variables across a particular sequence of events —as introduced by Hasselt— can
be better tailored for describing multimodal interactions. Developers can then use such (scoped by
composite events) variables and avoid littering the code with too many global variables whose only
purpose is to make event data visible at the moment of fusion. Maintenance of variables in C# was
also an important cause of complexity mentioned by participants in the evaluation presented before.

Limitations of Hasselt
The creation of multimodal prototypes may be hindered by the low range of fine-tuning allowed
by Hasselt. Some functionalities offered by Hasselt UIMS are ‘hermetically sealed’ and cannot be
tweaked, which restricts Hasselt developers to a subset of the interactions that can be implemented
with event-callback code. Defining the tempo with which the voice messages are to be synthesized
or invoking back-end functionality asynchronously exemplify two operations that cannot be defined
with Hasselt. Therefore, such a fine tuning is not possible with the current version of Hasselt or done
by the application developer. This is because the present work focused on evaluating the feasibility,
pros and cons of extending the concepts of event and event binding with the aims of facilitating rapid
prototyping. Augmenting Hasselt with additional notations to increase the level of fine tuning during
prototyping, remains part of future envisaged work.

A further limitation involves the finite state machines (FSMs). The strong dependency between the
event binding code and the FSMs implies that every time a FSM changes (because the corresponding
composite event is redefined), the event binding code may have to be updated. E.g. some nodes of
the original FSM may not exist in the new FSM or may have a different index. For future versions
of Hasselt we will explore alternative ways to refer to the timeline points of the human-machine
interaction, e.g. using after:speech.move instead of @node(2). However, this not trivial since many
events can lead to the same node or the same event may occur in different nodes.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

35

CONCLUSION

This article presents Hasselt, a declarative language that was designed as an alternative to event-driven
languages in the rapid prototyping of multimodal interactions. One reason to look for an alternative
to event-driven languages in that prototyping phase is the ‘callback soup’ problem associated with
handling events. Such programs are plagued with a multitude of flags and state variables that have to
be maintained in a self-consistent manner, across different event handlers, and for each iteration of the
prototype. The ability to compose events that allow developers to describe multimodal interactions at
a high level of abstraction, and thereby avoid the aforementioned ‘callback soup’, is the distinguishing
feature of Hasselt. In doing so it reduces the risk of a project delivery going overtime. By taking into
account the disadvantages of other proposed languages that push developers beyond familiar concepts
and their programming practices, we designed Hasselt to maintain the textual and event-driven nature
of well-known event languages, allowing them to describe multimodal interactions in familiar terms.
We do this by binding (composite) events to event handlers.

The enhanced simplicity of Hasselt in comparison with event-driven languages was noticed
in practice by twelve participants, who were asked to perform slight modifications to a mouse-
and-speech interaction with both languages. They unanimously agree, in both interviews and SEQ
questionnaires, that the required changes were more easily performed with Hasselt than with C#.
This subjective perception is in line with the objective fact that, during the same study, Hasselt led
to higher completion rate, lower completion times, and less code testing.

ACKNOwLEDGMENT

This research was partly funded by the ClaXon. ClaXon is a project co-funded by IMEC, a digital
research institute founded by the Flemish Government. Project partners are Audi Brussels, Robovision,
SoftKinetic, Melexis, and AMS.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

36

REFERENCES

Alexandron, G., Armoni, M., Gordon, M., & Harel, D. (2012, November). The effect of previous programming
experience on the learning of scenario-based programming. Proceedings of the 12th Koli Calling International
Conference on Computing Education Research (pp. 151-159). ACM. doi:10.1145/2401796.2401821

Anicic, D., Fodor, P., Stuhmer, R., & Stojanovic, N. (2009, August). Event-driven approach for logic-based
complex event processing. Proceedings of the International Conference on Computational Science and
Engineering CSE’09 (Vol. 1, pp. 56-63). IEEE. doi:10.1109/CSE.2009.402

Beaudouin-Lafon, M. (1994). User interface management systems: Present and future. In From object modelling
to advanced visual communication (pp. 197–223). Springer Berlin Heidelberg. doi:10.1007/978-3-642-78291-6_7

Beaudouin-Lafon, M., & Mackay, W. (2003). Prototyping tools and techniques. In Human Computer Interaction-
Development Process, 122-142.

Ben-Ari, M. (1998, March). Constructivism in computer science education. In ACM SIGCSE bulletin, 30(1),
257-261. doi:10.1145/273133.274308

Bolt, R. A. (1980). “Put-that-there”: Voice and gesture at the graphics interface. ACM SIGGRAPH Computer
Graphics, 14(3), 262–270.

Bouchet, J., Nigay, L., & Ganille, T. (2004, October). ICARE software components for rapidly developing multimodal interfaces.
Proceedings of the 6th international conference on Multimodal interfaces (pp. 251-258). ACM. doi:10.1145/1027933.1027975

Bourguet, M. L. (2002). A toolkit for creating and testing multimodal interface designs. companion proceedings
of UIST (Vol. 2, pp. 29-30).

Cass, S. (2016, December 31). The 2016 Top Programming Languages. IEEE Spectrum. Retrieved from http://
spectrum.ieee.org/computing/software/the-2016-top-programming-languages

Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., & Young, R. M. (1995). Four easy pieces for assessing the
usability of multimodal interaction: the CARE properties (pp. 115–120). Springer, US: Human—Computer Interaction.

Cuenca, F., Coninx, K., Luyten, K., & Vanacken, D. (2015). Graphical Toolkits for Rapid Prototyping of
Multimodal Systems: A Survey. Interacting with Computers, 27(4), 470–488. doi:10.1093/iwc/iwu003

Cuenca, F., Van den Bergh, J., Luyten, K., & Coninx, K. (2014, June). A domain-specific textual language for
rapid prototyping of multimodal interactive systems. Proceedings of the 2014 ACM SIGCHI symposium on
Engineering interactive computing systems (pp. 97-106). ACM. doi:10.1145/2607023.2607036

Cuenca, F., Van den Bergh, J., Luyten, K., & Coninx, K. (2015). A user study for comparing the programming efficiency of modifying
executable multimodal interaction descriptions: a domain-specific language versus equivalent event-callback code. Proceedings of the
6th Workshop on Evaluation and Usability of Programming Languages and Tools (pp. 31-38). ACM. doi:10.1145/2846680.2846686

D’Ulizia, A. (2009). Exploring multimodal input fusion strategies. The Handbook of Research on Multimodal
Human Computer Interaction and Pervasive Services: Evolutionary Techniques for Improving Accessibility,
34-57. doi:10.4018/978-1-60566-386-9.ch003

De Boeck, J., Vanacken, D., Raymaekers, C., & Coninx, K. (2007). High-level modeling of multimodal interaction
techniques using nimmit. Journal of Virtual Reality and Broadcasting, 4(2).

Dragicevic, P., & Fekete, J. D. (2004, October). Support for input adaptability in the ICON toolkit. Proceedings
of the 6th international conference on Multimodal interfaces (pp. 212-219). ACM. doi:10.1145/1027933.1027969

Dumas, B., Lalanne, D., & Ingold, R. (2010). Description languages for multimodal interaction: a set of guidelines
and its illustration with SMUIML. Journal on multimodal user interfaces, 3(3), 237-247.

Dumas, B., Lalanne, D., & Oviatt, S. (2009). Multimodal interfaces: A survey of principles, models and frameworks.
In Human machine interaction (pp. 3–26). Springer Berlin Heidelberg. doi:10.1007/978-3-642-00437-7_1

Dumas, B., Signer, B., & Lalanne, D. (2014). A graphical editor for the SMUIML multimodal user interaction
description language. Science of Computer Programming, 86, 30–42. doi:10.1016/j.scico.2013.04.003

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: A cognitive
dimensions framework. Journal of Visual Languages and Computing, 7(2), 131–174. doi:10.1006/jvlc.1996.0009

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

37

Hoste, L., Dumas, B., & Signer, B. (2011, November). Mudra: a unified multimodal interaction framework.
Proceedings of the 13th international conference on multimodal interfaces (pp. 97-104). ACM.

Kin, K., Hartmann, B., DeRose, T., & Agrawala, M. (2012, May). Proton: multitouch gestures as regular expressions.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2885-2894). ACM.

König, W. A., Rädle, R., & Reiterer, H. (2010). Interactive design of multimodal user interfaces. Journal on
Multimodal User Interfaces, 3(3), 197–213. doi:10.1007/s12193-010-0044-2

Kosar, T., Mernik, M., & Carver, J. C. (2012). Program comprehension of domain-specific and general-purpose languages:
Comparison using a family of experiments. Empirical Software Engineering, 17(3), 276–304. doi:10.1007/s10664-011-9172-x

Lawson, J. Y. L., Al-Akkad, A. A., Vanderdonckt, J., & Macq, B. (2009, July). An open source workbench for
prototyping multimodal interactions based on off-the-shelf heterogeneous components. Proceedings of the 1st ACM
SIGCHI symposium on Engineering interactive computing systems (pp. 245-254). ACM. doi:10.1145/1570433.1570480

Lewis, C., & Rieman, J. (1993). Task-centered user interface design. A Practical Introduction.

Meyerovich, L. A., & Rabkin, A. S. (2013). Empirical analysis of programming language adoption. ACM
SIGPLAN Notices, 48(10), 1–18. doi:10.1145/2544173.2509515

Mitra, S., & Acharya, T. (2007). Gesture recognition: A survey. IEEE Transactions on Systems, Man and
Cybernetics. Part C, Applications and Reviews, 37(3), 311–324. doi:10.1109/TSMCC.2007.893280

Myers, B., Hudson, S. E., & Pausch, R. (2000). Past, present, and future of user interface software tools. ACM
Transactions on Computer-Human Interaction, 7(1), 3–28. doi:10.1145/344949.344959

Navarre, D., Palanque, P., Ladry, J. F., & Barboni, E. (2009). ICOs: A model-based user interface description
technique dedicated to interactive systems addressing usability, reliability and scalability. ACM Transactions on
Computer-Human Interaction, 16(4), 18. doi:10.1145/1614390.1614393

Nigay, L., & Coutaz, J. (1995, May). A generic platform for addressing the multimodal challenge. Proceedings
of the SIGCHI conference on Human factors in computing systems (pp. 98-105). ACM Press/Addison-Wesley
Publishing Co. doi:10.1145/223904.223917

Olsen, D. R. Jr. (1986). MIKE: The menu interaction kontrol environment. ACM Transactions on Graphics,
5(4), 318–344. doi:10.1145/27623.28868

Olsen, D. R. Jr. (1987). Larger issues in user interface management. Computer Graphics, 21(2), 134–137.
doi:10.1145/24919.24932

Olsen, D. R., Jr. (1989, March). A programming language basis for user interface. In ACM SIGCHI Bulletin,
20(SI), 171-176. doi:10.1145/67449.67485

Olsen, D. R. Jr, & Dempsey, E. P. (1983). SYNGRAPH: A graphical user interface generator. Computer Graphics,
17(3), 43–50. doi:10.1145/964967.801131

Oney, S., Myers, B., & Brandt, J. (2014). Interstate: Interaction-oriented language primitives for expressing gui
behavior. Proc. of UIST (Vol. 14). doi:10.1145/2642918.2647358

Oviatt, S. (1999). Ten myths of multimodal interaction. Communications of the ACM, 42(11), 74–81.
doi:10.1145/319382.319398

Sauro, J., & Dumas, J. S. (2009, April). Comparison of three one-question, post-task usability questionnaires.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1599-1608). ACM.
doi:10.1145/1518701.1518946

Spano, L. D., Cisternino, A., Paternò, F., & Fenu, G. (2013, June). GestIT: a declarative and compositional
framework for multiplatform gesture definition. Proceedings of the 5th ACM SIGCHI symposium on Engineering
interactive computing systems (pp. 187-196). ACM. doi:10.1145/2494603.2480307

TIOBE. (2016, December 31). Index for December 2016. Retrieved from http://www.tiobe.com/tiobe-index/

Turk, M. (2014). Multimodal interaction: A review. Pattern Recognition Letters, 36, 189–195. doi:10.1016/j.patrec.2013.07.003

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

38

Fredy Cuenca is a professor in the School of Mathematical Sciences and Information Technology at Yachay Tech,
Ecuador. Since he received his PhD degree, from Hasselt Universiteit, he is dedicated to investigate multimodal
interaction description languages and programming environment tools.

Jan Van den Bergh is a senior researcher at Hasselt University and member of the Human-Computer Interaction lab
of the research institute Expertise Centre for Digital Media. He has a PhD from Hasselt University and Maastricht
University. His research focus is on user-centered engineering of context-sensitive or collaborative user interfaces.
His current research includes programming and modeling languages for the creation or configuration of multimodal
and collaborative interfaces for human-robot interaction as well as professional translation environments.

Kris Luyten is a professor in Computer Science at Hasselt University and member of the Human-Computer
Interaction lab of the research institute Expertise Centre for Digital Media. His research interest is exploring new
techniques and methods to engineer and use context-aware interactive systems. Since a few years, he is working
on creating more accessible, usable and approachable ubiquitous systems, focusing on intelligibility in its various
shapes and forms. More information on his endeavours in research and teaching can be found on his website
www.krisluyten.net.

Karin Coninx is full professor at Hasselt University, Belgium. She leads the Human-Computer Interaction Group
in the Expertise Centre for Digital Media at UHasselt and is engaged in a mandate as Vice-Rector Education.
Her research interests include user-centred methodologies, (engineering approaches for) multimodal interaction,
haptic feedback, virtual environments, technology-supported rehabilitation and CareTech, serious games, mobile
and context-sensitive systems, and interactive work spaces.

Please recommend this Publication to your librarian
For a convenient easy-to-use library recommendation form, please visit:
http://www.igi-global.com/IJPOP

Volume 5 • Issue 1 • January-June 2016 • ISSN: 2156-1796 • eISSN: 2156-1788
An official publication of the Information Resources Management Association

all inquiries regarding iJPoP should be directed to the attention of:
Steve Goschnick, Editor-in-Chief • IJPOP@igi-global.com

all manuscriPt submissions to iJPoP should be sent through the online submission system:
http://www.igi-global.com/authorseditors/titlesubmission/newproject.aspx

Activity theory and modeling • Agent meta-models, mental models • Alert filter and notification software,
automated task assistance • Augmented reality, augmented interaction • Automating personal ontologies,
personalised content generation • Client-side conceptual modeling • Computational models from psychology •
Context-aware systems, location-aware computing, ubiquitous computing • Cultural probes, self-ethnography
• End-user composition, end-user multi-agent systems • Game development support tools • Game mods, game
engines, open game engines • Home network applications • Human-centered software development • Interface
generators, XML-based UI notation generators • Interface metaphors • Life logs, life blogs, feed aggregators
• Mashups, mashup tools, cloud mashups • Model-driven design, didactic models, model-based design and
implementation • New generation visual programming • People-Oriented Programming (POP) • People-Oriented
Programming case studies • Personal interaction styles, touch and gestures • Personal ontologies and taxonomies
• Personalisation, individualisation, market of one • Personalized Learning • Personas and actors • Real-time
narrative generation engines • Role-based modeling • Service science for individuals • Situated computation,
social proximity applications • Smart-phone mashups, home network mashups, home media mashups • Software
analysis & design, software process modeling • Software component selection • Speech and natural language
interfaces • Storyboarding, scenarios, picture scenarios • Task flow diagrams, Task-based design • Task models,
task analysis, cognitive task models, concurrent task modeling • Use case models, user interface XML notations
• User interface tools, XML-based UI notations • User modelling, end user programming, end user development
• User-centered design, usage-centered design • Wearable Computing • Wearable computing, bodyware • Web-
service orchestration, web-service co-ordination

Coverage and major topiCs
The topics of interest in this journal include, but are not limited to:

The primary mission of the International Journal of People-Oriented Programming (IJPOP) is to be
instrumental in the improvement and development of the people-oriented programming, appealing to both
academics and practitioners. It also educates a wider audience discussing the conceptualization, design,
programming, configuration and orchestration of self-fashioned tools and products that ultimately suit the user’s
own unique needs and aspirations. The journal publishes original material of high quality concerned with the
theory, concepts, techniques, methodologies and the tools that service a market-of-one—the empowered user.

mission

Ideas FOr sPecIal Theme Issues may be submITTed TO The edITOr(s)-In-chIeF

international Journal of People-oriented Programming

call for articles

