Made available by Hasselt University Library in https://documentserver.uhasselt.be

Variation of natural radionuclides in non-ferrous fayalite slags during a one-month production period Non Peer-reviewed author version

CROYMANS-PLAGHKI, Tom; Vandael Schreurs, Indy; Hult, Mikael; Marissens, Gerd; Lutter, Guillaume; Stroh, Heiko; SCHREURS, Sonja & SCHROEYERS, Wouter (2017) Variation of natural radionuclides in non-ferrous fayalite slags during a one-month production period. In: Journal of environmental radioactivity, 172, p. 63-73.

DOI: 10.1016/j.jenvrad.2017.03.004 Handle: http://hdl.handle.net/1942/23398

- 1 Variation of natural radionuclides in non-ferrous fayalite
- 2 slags during a one-month production period
- 3• Tom Croymans^a,
- 4• Indy Vandael Schreurs^a,
- 5• <u>Mikael Hult</u>,
- 6• <u>Gerd Marissens</u>,
- 7• <u>Guillaume Lutter</u>,
- 8• <u>Heiko Stroh</u>^b,
- 9• Sonja Schreurs^a,
- 10• <u>Wouter Schroeyers</u>a
- 11

12 Highlights

13 14 15 16 17 18 19 20 21 22	 Natural radionuclides monitored in non-ferrous slag during 1 month production. Large activity concentration fluctuations of natural occurring radionuclides. Disequilibrium in the ²³⁸U decay series and equilibrium in the ²³²Th decay series. Extensive comparison between different types of metallurgical slags. Continuous monitoring of the produced slag is advised to assure safe application.
23 24 25	
26	Abstract
27	
28	The European Basic Safety Standards (EU-BSS) describes a set of NORM (Naturally
29	Occurring Radioactive Materials)-processing industries which produce residues
30	known to be possibly enriched in NORs (Naturally Occurring Radionuclides).
0.4	

These residues can be used as a component in building materials aimed for publicusage. The industrial processes, in which the residues are produced, are often

- complex and total monitoring can be challenging especially when the origin of the
 used raw materials varies. In this study the NORs present in non-ferrous fayalite
- 35 slags of a secondary smelter facility, a NORM-processing industry according to the
- 36 EU-BSS, were monitored daily during a one-month production period. In addition
- 37 flue dust samples and feedstock samples, known to contain elevated levels of
- NORs, of the same period were measured. The survey involved the gamma-ray
 spectrometric analysis of the decay products from the ²³⁸U and ²³²Th decay chains,

40 ²³⁵U and ⁴⁰K using HPGe detectors. Secular equilibrium was observed for the slags, flue dust and feedstock samples in the ²³²Th decay chain, in contrast to the ²³⁸U 41 42 decay chain. During the month in question the ratios of maximum over minimum activity concentration were 3.1 ± 0.5 for 40 K, 4 ± 1 for 238 U, 6 ± 1 for 226 Ra, 13 ± 7 43 for 210 Pb, 4.5 ± 0.6 for 228 Ra and 4.7 ± 0.7 for 228 Th for the slags. Even with the 44 45 activity concentration of the feedstock material ranging up to 2.1 ± 0.3 kBg/kg for 238 U, 1.6 ± 0.2 kBq for 226 Ra, 22 ± 7 kBq/kg for 210 Pb, 2.1 ± 0.2 kBq/kg for 228 Ra and 46 2.0 \pm 0.4 kBq/kg for ²²⁸Th, none of the slag samples exceeded the 47 48 exemption/clearance levels of the EU-BSS and RP-122 part II, which can 49 respectively provide guidance under equilibrium and in absence of equilibrium. 50 As each NORM-processing industry has its own complexity and variability, the 51 observed variations point out that one should approach one-time measurements 52 or low frequency monitoring methods cautiously. Low frequency measurements 53 should be optimised depending on the discharge of the batches. A follow up of the 54 industrial process and its output can provide important insights to assure a 55 limited public exposure upon application of these industrial residues.

Finally a comparison is made with reported data on other metallurgical slags and
the use of the slags in building materials is evaluated using the Activity
Concentration Index (ACI) proposed by the EU-BSS.

59

60 **1. Introduction**

61

62 Each year over 400 million tons of metallurgical slags, a by-product from metal 63 producing industries, are produced world-wide (van Oss, 2013). Due to the 64 presence of Naturally Occurring Radionuclides (NORs) in the raw materials used 65 by the metallurgical industries the produced metallurgical slag can contain 66 enhanced concentrations of NORs. In Table 1 an overview is given on the activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K for different types of metallurgical slags 67 68 reported in the literature. These activity concentrations are found in the intervals 69 2-69 kBq/kg, 2-130 kBq/kg and 2-23 kBq/kg for 226 Ra, 232 Th and 40 K, respectively. 70 It must be noted that this list is not exhaustive and some data originate from 71 samples of the 1980's. In several cases the number of measured samples is not specified and not all considered NORs (²²⁶Ra, ²³²Th and ⁴⁰K) are reported. The data 72

and nomenclature are shown as mentioned in the corresponding reference. Data
on other radionuclides mentioned in the corresponding reference is not shown in
Table 1. The two main classes of metallurgical slags are non-ferrous and ferrous
slags (Piatak et al., 2015a). Especially for non-ferrous slags such as Sn, Nb and Cu
slags, higher activity concentrations can be found reaching up to (Table 1):

- 78
- 79

80

• 69 kBq/kg 226 Ra, 130 kBq/kg 232 Th and 23 kBq/kg 40 K for Sn slag,

• 5 kBq/kg ²²⁶Ra and 118 kBq/kg ²³²Th for Nb slag

• 2.1 kBq/kg^{226} Ra, 0.1 kBq/kg^{232} Th and 1.3 kBq/kg^{40} K for Cu slag.

Non-ferrous slags typically consist mainly out of Fe and Si whereas the ferrous 81 82 slags are typically rich in Ca and Si (Piatak et al., 2015a). The production of non-83 ferrous slag is limited to approximately 12% of the total worldwide slag production (National Slag Association, 2013). Non-ferrous industries that process 84 85 niobium ores or work on tin, lead or copper smelting and therefore produce Nb, Sn, Pb and Cu slags are specifically considered in Council directive 86 87 2013/59/Euratom, known as the European Basic Safety Standards (EU-BSS), as 88 practices involving naturally-occurring radioactive materials (NORM). In addition 89 residues of steel production are regulated by the EU-BSS for use in building 90 materials. In Table 1, it is also demonstrated that a large range of activity 91 concentrations can be found for a given type of metallurgical slag. For example for 92 Sn slag, the activity concentrations range from 0.5 - 69 kBq/kg for ²²⁶Ra, 0.2 - 130 93 kBq/kg for ²³²Th and 0.3 - 23 kBq/kg for ⁴⁰K. The measured activity 94 concentrations for different non-ferrous slags are in several cases higher than the 95 activity concentrations for exemption or clearance of NORs in solid materials in 96 secular equilibrium with their progeny, proposed by the EU-BSS (European 97 Commission, 2014). The EU-BSS exemption/clearance levels were chosen in 98 accordance with the exemption/clearance levels of the IAEA "Application of the 99 concepts of exclusion, exemption and clearance". A global level benefits the 100 industries processing and transporting these materials from an administrative 101 and legislative point of view. These EU-BSS | IAEA levels are 1 kBq/kg for natural 102 radionuclides from the ²³⁸U and ²³²Th decay series and 10 kBq/kg for ⁴⁰K (Table 103 2) however these levels are only applicable if secular equilibrium in the decay 104 series is obtained. The EU-BSS allows higher values in case of disequilibrium but

105 does not specify which levels are recommended. RP (Radiation Protection)-122 106 specifies these values and applies of a summation rule for the radiological 107 evaluation (Table 2) (European Commission, 2002).

108

109 Before use of non-ferrous slag can be allowed, the EU-BSS requires that the value 110 of the activity concentration relative to the exemption/clearance levels is 111 determined. In addition the EU-BSS specifies a screening index called the Activity 112 Concentration Index (ACI) applicable for building materials containing these 113 residues (Equation 1).

- 114
- 115

 $ACI = \frac{Ac_{Ra226}}{300 \ Bq/kg} + \frac{Ac_{Th232}}{200 \ Bq/kg} + \frac{Ac_{K40}}{3000 \ Bq/kg}$ (1) 116

117 With Ac as activity concentration of the mentioned radionuclide expressed in 118 Bq/kg. 119

120 According to the EU-BSS this index allows estimating the requirement that upon 121 application of these building materials the public exposure is below the effective 122 dose limit of 1 mSv a year. An ACI value below 1 assumes that the dose limit of 1 123 mSv a year is not exceeded. The application of metallurgical slags in building 124 materials is gaining interest and the applications depend on the chemical 125 composition, cooling path, availability, price, etc. (Piatak et al., 2015a). Usage of 126 metallurgical slags in tiles, in railway ballast, in roofing materials, in coloured glass 127 and in cementitious materials are reported (Piatak et al., 2015b). The main usage 128 is as a raw material in asphalt and concrete mixtures for road construction -129 mainly for ferrous slag (Piatak et al., 2015b). Recently the application of non-130 ferrous slag as a binder to produce inorganic polymers building materials was 131 reported (Pontikes et al., 2013). Inorganic polymers (IPs) are novel types of 132 building materials with lower CO₂ emissions in comparison to concrete (Provis, 133 2014). IPs can be used in similar applications as conventional concrete (Provis and 134 Van Deventer, 2014). In addition, other reuse and recycle options are reported, 135 like usage as sand blasting material, as reprocessing material for secondary metal 136 recovery and for environmental remediation (Al-jabri et al., 2011; Piatak et al., 137 2015b). Despite these applications, still large fractions of slags currently ends up 138 on landfills (Piatak et al., 2015a).

139 A common feature of the listed studies on metallurgical slags in Table 1, is that 140 the measurements represent a one-time sampling and that none of the considered 141 studies follow the output of the process over a period of time. Therefore no 142 information is available to verify to which extent variations in the industrial 143 process or in the origin of the incoming raw materials over time can impact the 144 activity concentration of the produced non-ferrous slag. The current study, which 145 focuses on non-ferrous fayalite slags produced in a secondary smelter for 146 production of different types of non-ferrous metals, aims to address this aspect. 147 The production during a one-month production period was monitored. Within this framework the activity concentrations of NORs are evaluated against the 148 149 exemption/clearance levels of annex VII of the EU-BSS. The variation in activity 150 concentration of the long-living natural radionuclides is discussed, as well as the 151 (dis)equilibria which are present. Finally the ACI is discussed since these slags are 152 used for the production of IP building materials.

- 153
- 154

2. Methods and materials

155

156 2.1 Samples

157

158 The samples in this study originate from a secondary smelting plant aimed at the 159 production of different types of non-ferrous metals. The factory handles a broad 160 range of primary and secondary raw materials from industries listed in annex VI 161 of the EU-BSS as industries with naturally occurring radioactive materials 162 (European Council, 2014). The smelter facility is sorted under the category tin/lead/copper smelting in annex VI of the new EU-BSS. Non-ferrous favalite 163 164 slags are produced as by-product.

165

166 2.1.1 Non-ferrous favalite slag samples

167

168 Every day, several smelting cycles are performed and with each cycle a different 169 amount of slag is produced. These residues are the remaining after the recovery 170 of non-ferrous metals from the feedstock by pyrometallurgical processes.

171 Representative samples of slags from each smelting cycle were taken during a 172 one-month period. The samples were collected directly from the liquid bath 173 situated in the furnace. This implies that the sample is representative of the batch 174 and that it is homogeneous. The produced fayalite slags were cooled by water 175 quenching. In order to limit the number of samples for analysis and because the 176 slags are discharged daily, one sample for each day was produced based on 177 samples from several smelting cycles of that particular day. The relative 178 contribution of each smelting cycle sample to the daily sample was proportional 179 to the slag production quantity of each smelting cycle (Equation 2).

180

181 Composition daily sample = $\sum_{i=1}^{n} \frac{Quantity \ production \ batch \ i}{Quantity \ day \ production} * 100\%$ (2)

182

All cycle samples were dry and milled to powders by disk milling. In total 31 slag 183 184 mixtures were produced corresponding to 31 consecutive days of slag production. 185 Each slag mixture dry mass varied between 80 g and 140 g. The samples of a first 186 batch of slag samples were measured after a period of approximately 470 days after sample collection. Samples from a second batch (indicated as second batch), 187 188 in total two fayalite slags samples, were sampled at a later date, prepared in the 189 exact same way as the first batch and measured after a period of approximately 190 180 days after sample collection.

The slag samples are rich in aluminium oxides (typically 6% (by mass)), iron
oxides (typically 55% (by mass)) and silicon oxides (typically 23% (by mass)).

193

194 2.1.2 Flue dust samples

195

196 The flue dust is recovered by leading the off-gasses through fabric filter units. 197 These are cleaned at regular time intervals by which the dust is transferred to dust 198 silos for temporary storage. By the cleaning action and the subsequent fluidization 199 of the dust for transport purposes, the dust is already mixed in the silos. Trucks 200 are loaded directly from those silos. At several places of the truckload, grab 201 samples are collected and mixed to form a homogeneous sample for 202 measurements. Nine different batches of dust samples were monitored during the 203 one month production period, containing mainly Zn, and minor amounts of other

non-ferrous metals. The dry mass of the collected samples ranged from 42 g to 76
g. The samples were measured after a period of approximately 470 days after
sample collection.

207

208 2.1.3 Feedstock samples

209

210 All feedstock materials are monitored upon arrival via a detection portal. As a 211 result of this screening one type of feedstock material with elevated activities is 212 selected for further investigations in the framework of this study. The considered 213 feedstock material is mainly a metallic by-product of a primary non-ferrous metal producer, containing iron (> 70%), and minor amounts of other metals. The 214 215 radioactivity is primarily resulting from slag inclusions, which are difficult to 216 separate from the metal phase. The considered feedstock material is a minor 217 fraction of the total feedstock materials used in the production process. Samples 218 for measurement were produced by mixing delivered lots (size from 25 to 50 ton) 219 homogeneously by mobile cranes, and subsequently performing several "coning 220 & quartering" actions until a homogeneous and representative sample of about 221 500 kg is reached. This sample is further downsized by the same techniques using 222 manual actions until a sample of circa 50 kg remains. Grab samples of this final 223 sample were used for measurements. Five different batches of feedstock materials 224 were monitored during the one month production period. The dry mass of these 225 samples ranged between 260 g and 570 g. The samples were measured after a 226 period of approximately 470 days after sample collection.

227

228 2.2 Radiological analysis

229

Measurements were performed on different HPGe-detectors of the Radionuclide Metrology Laboratory of JRC-Geel in Belgium. All detectors are located in the 225 m deep underground laboratory Hades located on the premises of the Belgian Nuclear Centre SCK•CEN in Mol, Belgium except for Ge T-5 which is located above ground. The detector details are listed in Table 3. The low background count rates of the underground detectors were in the order of 200 to 400 counts per day in the energy interval 40 to 2700 keV. The background count rate of individual peaks 237 was mostly below 1 count per day. This low background is particularly important 238 when measuring NORs that are known to be present in all detector systems. All 239 samples for gamma-ray spectrometric analysis were transferred to radon tight 240 Teflon containers and stored for at least 21 days to reach secular equilibrium 241 between ²²⁶Ra and daughters. The slag and flue dust samples were positioned 2 242 mm above the endcap of each HPGe-detector except for detector Ge-8 where the 243 samples were placed directly on the endcap. The feedstock samples were 244 positioned 11 mm above the endcap of the HPGe-detector. The measurement 245 times ranged from 2 to 7 days and the dead time was always below 1%.

246

247 Canberra's Genie 2000 software was used for data acquisition and spectrum 248 analysis. The EGSnrc (electron gamma shower National Research Council Canada) 249 (Kawrakow et al., 2009). Monte Carlo code was used to calculate the full energy 250 peak (FEP) efficiencies and the coincidence summing corrections. The Monte 251 Carlo code input consists of the sample's measured dimensions, composition and 252 density, and the detector set-up. Isotropic and uncorrelated emission of the 253 gamma-rays was assumed in the simulations. A homogeneous distribution of 254 radionuclides in the sample and of the sample material in the sample container 255 were two other assumptions that were adopted in all the calculations.

256

The radionuclides occurring in natural decay series of ²³⁸U and ²³²Th, as well as ²³⁵U and ⁴⁰K were investigated by their emitted gamma rays. An overview of the used gamma lines is found in Croymans et al. 2016 (Croymans et al., 2016).

260

A weighted mean of the activity was calculated for radionuclides with multiple gamma-rays. The activity of the different gamma-rays was taken into account. The Decay Data Evaluation Project (DDEP) website was used for the nuclear decay data (Laboratoire national Henri Becquerel, 2016).

The 186 keV peak is a doublet with contributions from ²³⁵U (185.7 keV) and ²²⁶Ra (186.2 keV). By subtracting the contribution from ²²⁶Ra, which activity was determined from its daughters ²¹⁴Pb and ²¹⁴Bi, from the 186 keV doublet peak, the activity of ²³⁵U is calculated. In addition this result was confirmed by the other three main gamma lines of ²³⁵U i.e. 143.8 keV, 163.4 keV and 205.3 keV. As natural isotopic abundance is expected for ²³⁵U in these "non-nuclear" samples, one can
see the measured ²³⁸U/²³⁵U activity ratio as a quality control of the measurement.

The activity concentration (in this paper meaning the activity per unit of mass) was determined by dividing the final activity determined for each radionuclide by the measured dry mass of the sample. All the activity concentrations are determined on the measurement date, mentioned in section 2.1 for each sample. Thus, no decay correction to the sampling date was made. The time of measurement between the first slag sample and the last slag sample was 42 days.

280 The uncertainties of the obtained activity concentrations are the combined 281 standard uncertainties calculated according to the GUM (Guide to the expression 282 of uncertainty in measurement) (JCGM WG1, 2008). When combining several 283 gamma-rays to one activity-value for one radionuclide and when combining 284 activity-values from several daughters to one mother radionuclide using weighted 285 means, the correlated parameters were excluded from the calculation of the 286 uncertainty of the weighted mean and added separately afterwards in quadrature 287 in order not to obtain unrealistic and far too low final uncertainties.

288

The ACI was calculated for slag 1 to 31 using the activity concentration of ²²⁶Ra, ²³²Th and ⁴⁰K (Equation 1). The EU-BSS assumes equilibrium between ²³²Th and ²²⁸Ac, and therefore the activity concentration of ²²⁸Ac is used. The ACI calculation performed here assumes that the building material is constructed solely of the non-ferrous slag. Novel developments in IP production allow developing building materials solely out of non-ferrous fayalite slag (Kriskova et al., 2015).

295

296 Uncertainty of the ACI is calculated like in Equation 3297

298
$$u(I) = \sqrt{\left(\frac{1}{300}\right)^2 u^2 \left(Ac_{226Ra}\right) + \left(\frac{1}{200}\right)^2 u^2 \left(Ac_{232Th}\right) + \left(\frac{1}{3000}\right)^2 u^2 \left(Ac_{40K}\right)}\right)}$$
(3)

299

Where I is the activity concentration index, u(Ac) is the uncertainty of the activityconcentration of the mentioned radionuclide.

303 **3. Results & Discussion**

304

Figures 1 and 2 show the measured activity concentrations of radionuclides from the ²³²Th and ²³⁸U decay series in the slag mixtures. Table 4 shows the minimum and maximum activity concentrations, the ratio of the maximum over the minimum activity concentration and the ratio of different long living radionuclides over each other for feedstock material, flue dust and slag samples.

310

311 **3.1Assessment of radiological equilibrium in samples**

312

313 **3.1.1** The ²³²Th decay series

314

The activity concentrations of the relatively short-lived ²²⁴Ra, ²¹²Pb, ²¹²Bi and ²⁰⁸Tl 315 316 (corrected for its branching) were equal within the measurement uncertainties. Their weighted mean value gave the activity concentration for 228 Th (t_{1/2}= 1.9126 317 years). The activity concentration of the short-lived ²²⁸Ac was in equilibrium with 318 319 its mother 228 Ra (t_{1/2}= 5.75 years). Looking at Table 4 the ratio of 228 Ra over 228 Th equals 1 in the feedstock material samples, flue dust samples and slag samples. 320 321 For the slags, this equilibrium is not likely to have been established in the 322 relatively short time (~470 days, two-thirds of the $t_{1/2}$ of ²²⁸Th, and ~180 days, a quarter of the $t_{1/2}$ of ²²⁸Th; respectively for Batch 1 and 2) between the production 323 324 and the measurement. This means that Ra is not separated from Th during the 325 industrial process of non-ferrous metal production. Th and Ra are both lithophilic and will therefore end up in the slag phase (Bourdon et al., 2003; White, 2013). 326 327 The affinity for silicates of both radionuclides confirms the unaffected equilibrium 328 during the industrial process. Often in literature, equilibrium is assumed between ²³²Th and ²²⁸Ra, here the activity of ²²⁸Ra is shown since this one is actually 329 330 measured.

331

332

333 3.1.2 The ²³⁸U decay series

For the ²³⁸U series (Figure 2), the activity concentrations of ²³⁴Th and ^{234m}Pa 335 represent the activity concentration of ²³⁸U, secular equilibrium is assumed in case 336 337 of the slags since measurements of the slags took place 470 days after the production. The activity concentrations of ²¹⁴Pb and ²¹⁴Bi were equal within the 338 339 measurement uncertainties so their mean value was taken as the activity for ²²⁶Ra. 340 The 226 Ra activity concentrations are for the slags a factor 1.7 ± 0.4 to 7 ± 2 lower 341 than the activity concentration of ²³⁸U (Table 4). This indicates an absence of 342 equilibrium between ²³⁸U and ²²⁶Ra in the slags. This absence is surprising since 343 U, Th and Ra, all are part of the first section of the ²³⁸U decay series (²³⁸U to ²²⁶Ra) 344 and are lithophilic elements (Bourdon et al., 2003; White, 2013). So these 345 elements have a high affinity for silicates and are expected to mainly end up in the 346 slag phase.

347

348 This disequilibria is also present in the investigated feedstock material but less 349 distinct, with a minimum and maximum ratio $^{238}\text{U}/^{226}\text{Ra}$ of 1.2 ± 0.2 and 1.9 ± 0.3 350 respectively (table 4). Looking at another output material of the industrial 351 process, the flue dust demonstrates an even more outspoken absence of equilibria 352 with a minimum and maximum $^{238}\text{U}/^{226}\text{Ra}$ ratio of respectively 10 ± 3 and 30 ± 353 10. It must be noted that the 238 U (maximum 50 ± 10 Bq/kg) and 226 Ra (maximum 354 3.3 ± 0.2 Bq/kg) activity concentrations of the flue dust samples are low in 355 comparison with 238 U (minimum 42 ± 4 Bq/kg) and 226 Ra (minimum 14 ± 2 Bq/kg) 356 activity concentrations of the slag samples (Table 4). In addition, per ton slag 357 approximately 25 kg of flue dust is produced. This means transport of ²³⁸U and ²²⁶Ra to the flue gasses is limited. The activity concentrations of ²³⁸U and ²²⁶Ra in 358 359 the metallic fractions are low - this is confirmed by the company, however no data 360 can be made publicly available. Regarding the lithophile properties of U and Ra 361 and their limited absolute transport, it is believed that other sources of NORs 362 which have a higher degree of disequilibrium than the measured feedstock 363 material are present and consequently explain the relatively high level of 364 disequilibria in the slag samples.

365

The activity concentrations ratios of 210 Pb over 226 Ra in the non-ferrous slags range between 0.14 ± 0.09 and 1.4 ± 0.5 (Table 4). In nine cases an absence of

368 equilibrium is observed and the activity concentration of ²¹⁰Pb is lower than the activity concentration of ²²⁶Ra. However in slags 6 to 11, slags 17 to 23, slag 25 369 370 and slags 27 to 29 equal activity concentrations are measured (Figure 2). It is 371 important to note that the observed equal activity concentrations of ²²⁶Ra and 372 ²¹⁰Pb cannot originate from the instalment of equilibrium of ²¹⁰Pb with ²²⁶Ra 373 during or after processing, since the half-life of ²¹⁰Pb is 22.23 years. Table 4 shows 374 that for the flue dust the minimum and maximum ratios $^{210}Pb/^{226}Ra$ are 110 ± 30 375 and 900 \pm 300 respectively and for the feedstock material they are 8 \pm 3 and 20 \pm 376 7 respectively. So the absence of equilibrium is already present in the feedstock 377 material but is less pronounced for the slag samples and more pronounced for the flue dust samples. An enrichment in Pb concentration and enhanced ratios 378 379 ²¹⁰Pb/²²⁶Ra in dust samples were also observed by Khater and Bakr which studied the transport of ²¹⁰Pb transport in metallurgical industries (Khater and Bakr, 380 381 2011). The transport of Pb towards flue dust and fumes can be subscribed to the 382 volatile nature of Pb. In addition the ratio ²¹⁰Pb over ²²⁶Ra in the slags samples is 383 influenced by the transport of Pb towards the metallic phase i.e. the produced 384 metal alloy. This transport is depending on the reduction potential in the furnace 385 of the investigated smelter facility. Strong reducing conditions favor the transport 386 of Pb towards the metal phase.

387

No ²¹⁰Pb was measured in slags 1 to 5 and the Minimum Detectable Activity (MDA)
with a confidence limit of 95% was below 20 Bq/kg for slags 1 to 4 and 160 Bq/kg
for slag 5. The MDA of slag 5 is higher due to the thicker dead layer of detector Ge3, which impacts the FEP for the low-energy gamma-ray of ²¹⁰Pb.

392

The ratio of activity concentrations ²³⁸U/²³⁵U of all slags agreed within the uncertainties (except for slag 19) with the expected value of 21.6. The measured ²³⁸U/²³⁵U ratios (Figure 3) indicate therefore the expected natural isotopic composition. This is an important quality control measure, which indicates that the gamma-spectrometric measurements were robust.

- 398
- 399 <u>3.1.3 ⁴⁰K</u>
- 400

401 Potassium-40 is not a part of a decay series and has lithophilic properties (White,
402 2013). The ⁴⁰K activity concentrations in the slags vary between 26 ± 8 Bq/kg and

- 403 80 ± 10 Bq/kg (Figure 4 and Table 4).
- 404

405 **3.2 Temporal variation in the activity concentrations**

406

407 The ratios of the maximum measured activity concentration over the minimum 408 activity concentration for each long living radionuclide in the different materials 409 (Table 4) indicate significant fluctuations. For the slags, the lowest ratio was 3.1 ± 0.5 for 40 K and the highest ratio was 13 ± 7 for 210 Pb whereas for the flue dust 410 samples the lowest ratio was 2.0 \pm 0.3 for ²²⁸Ra and the highest ratios was 4.3 \pm 411 412 0.7 for ⁴⁰K. The variations in the non-ferrous slag and flue dust samples can be explained as the smelter facility uses a mixture of primary and secondary raw 413 414 materials. The radiological content of the input materials is strongly depending on 415 the origin and as the data of the investigated feedstock material (Table 4 and 416 Figure 4) suggests also variations occur even when the origin of the input material 417 is the same (IAEA, 2003). For the feedstock materials the lowest observed 418 maximal/minimal ratio was 2.2 ± 0.6 for ²²⁸Th and the highest observed ratio was 419 9 ± 7 for 40 K.

420

421 The selection of the input material is driven by economical factors and optimised 422 in function of the produced metals in order to obtain a stable elemental 423 composition in the slags and metals (Nakamura and Halada, 2015). In addition the 424 company states that the amount of metals present in the input stream influences 425 the quantity of slags and metals produced. Both quantities are also influenced by 426 the process parameters. Therefore differences occur between the production 427 batches and as a result a large variation in activity concentration is observed even 428 in the studied one-month period. It is clear that conclusions based on the 429 radiological characterisation of one day production can be very misleading.

These measures will only bear information on a specific time and not on the variation of the activity concentrations. Drawing conclusions based on a one-time sampling or low frequency sampling in order to ensure radiation protection of general public and workers should be performed cautiously. The authors recommend performing radiological measurements depending on the frequency
of the discharge of the residues taking into account the complexity and variability
of the facility/industry.

437

438 **3.3 Comparison of activity concentrations with the literature.**

439

440 As discussed in the introduction and shown in Table 1 metallurgical slags can 441 contain various amounts of NORs. Overall the activity concentrations of the 442 measured fayalite slags of this study are low compared with the metallurgical slags of Table 1. The quantity of slag per produced quantity of metal can vary 443 444 depending on the production process. Gorai et al. estimated that for every ton of 445 copper 2.2 ton of slag is produced whereas Proctor et al. estimated that 220-370 kg blast furnace slag is produced per ton of produced iron (Gorai and Jana, 2003; 446 447 Proctor et al., 2000). This in combination with the chemical characteristics of the 448 slags and metals produced influences the transport of radionuclides and gives rise 449 to enrichments or depletions in comparison with the input materials. Here the 450 slags originate from a secondary smelter facility, with a tonnage ratio of produced 451 slags over metal above 1 and with scrap being the main input material for the 452 recycling of metals. Since not all the feedstock contains enhanced concentrations 453 of NORs, the result is that the activity concentration of the resulting slag is lower 454 than the most active components in the feedstock.

455

456 **3.4 Evaluation in function of legislative criteria**

457

458 **<u>3.4.1 Evaluation considering the exemption and clearance levels</u>**

459

Except for ²¹⁰Pb in the flue dust samples, all activity concentrations of the long
living radionuclides in the slag and flue dust samples are below the EU-BSS | IAEA
and RP-122 exemption/clearance levels (Table 2 and 4). This is in contrast with
the feedstock materials for which all radionuclides – except for ²³⁵U and ⁴⁰K - are
above the exemption/clearance levels.

465 RP-122 part II specifies the exemption/clearance levels even when the secular 466 equilibrium is absent via a summation rule. For slag 18 – having the highest 467 observed activity concentrations - the result of this summation rule is 0.52 ± 0.03 , 468 well below the exemption/clearance level of 1.

469

470 **<u>3.4.2 Evaluation for use as building material considering the ACI</u>**

471

472 Figure 5 shows the variation of the ACI when the fayalite slag is solely used 473 (100%) to construct a building material. No day production batch exceeded the 474 index value of 1, therefore every day production batch can be used as an building material. It must be noted that the highest observed activity concentrations (slag 475 476 18) are approximately a factor 12, 10 and 120 below the exemption/clearance levels of the EU-BSS for respectively ²²⁶Ra, ²³²Th and ⁴⁰K, however the index has a 477 478 value of approximately 0.8. So being well below the exemption/clearance levels 479 does not necessarily imply that is in accordance with the limits applying to 480 building materials.

481

Finally, it was observed that when only minor amounts of feedstock material, containing activity concentrations well above the EU-BSS exemption/clearance levels are used, the activity concentrations of the slags are below the exemption/clearance levels and the ACI value of 1 is not exceeded.

486

487 Portal monitoring provides valuable information on the input materials that could 488 be of concern. Nevertheless setting up holistic balances containing information on 489 the activity concentration of all input materials per produced batch of output 490 material can be difficult and cumbersome due to the complexity of industrial 491 processes and large number of different input materials used. Therefore one 492 cannot exactly determine the impact of "elevated" feedstock materials so output 493 monitoring in function of discharges provides the necessary information whether 494 the residues are exempted or if they can be used in building materials considering 495 the EU-BSS.

496

497 **4. Conclusion**

499 The current study monitored different materials processed in a non-ferrous 500 smelter facility, which fits within the framework of the EU-BSS. Equilibria are 501 discussed for the ²³²Th and ²³⁸U decay series. The ²³²Th decay series was found to 502 be in equilibrium for all the slags, measured feedstock material and flue dust. This 503 was not the case for ²³⁸U decay series due to lack of equilibrium in the feedstock 504 material and the impact of the industrial process. The activity concentrations of 505 the slags were all below the provided exemption/clearance levels of the EU-BSS 506 and RP-122 part II, and are also low in comparison to slags reported in literature. 507 The activity concentrations of the flue dust samples were all except for ²¹⁰Pb 508 below the exemption/clearance levels. For the feedstock material only ⁴⁰K and 509 ²³⁵U were below the exemption/clearance levels. In addition the ACI is not a 510 restriction regarding the use of these non-ferrous slags to produce building 511 materials.

512 Comparing the minimum and maximum observed activity concentrations for 513 different radionuclides, differences up to a factor 13, 4.3 and 9 are registered for 514 respectively slag, flue dust and feedstock samples. These variations occur due to 515 heterogeneity within the same input materials, and variation in input materials, 516 input and output quantity and in the process parameters. The variations in activity 517 concentrations indicate that using one-time sampling or applying a low frequency 518 of sampling is inappropriately for the considered industrial case. One-time 519 sampling leads to a misleading conclusion regarding the radiological output of the 520 production process in particular in complex systems. Consequently drawing 521 conclusions to ensure radiation protection should be performed cautiously and 522 the complexity and variability of the facility or industry should be taken into 523 account. Over the long time, production processes tend to change in time due to innovations, regulations and economic factors. These factors will impact both 524 525 input and output and subsequently can also influence the radiological content of 526 the residues. The frequency of the radiological monitoring should be optimized 527 for a given plant in order to ensure radiation protection, especially when the 528 residues are aimed towards reuse in public applications. The authors recommend 529 monitoring depending on the frequency of the discharge of these residues.

530

531 **5. Acknowledgements**

532

The authors would like to thank the company for providing the samples and collaboration during this study. This work was supported by the European Commission within HORIZON2020 via the EURATOM project EUFRAT for transnational access. The authors would also like to acknowledge networking support by the COST Action TU1301. <u>www.norm4building.org</u>.

538

539 6. Reference list

- 540
- Al-jabri, K.S., Al-saidy, A.H., Taha, R., 2011. Effect of copper slag as a fine
 aggregate on the properties of cement mortars and concrete. Constr. Build.
 Mater. 25, 933–938.
- ALamoudi, Z.M., ALmehmadi, F.G., 2013. Concentrations of the Naturally
 Occurring Radioactive Materials in waste samples from iron production the
 carbon filters used in Saudi Arabia. Life Sci. J. 10, 641–647.
- 547 Baltas, H., Kiris, E., Ustabas, İ., Yilmaz, E., Sirin, M., Kuloglu, E., Erdogan Gunes, B.,
 548 2014. Determination of natural radioactivity levels of some concretes and
 549 mineral admixtures in Turkey. Asian J. Chem. 26, 3946–3952.
 550 doi:10.1093/jae/ejm029
- Bourdon, B., Turner, S., Henderson, G.M., Lundstrom, C.C., 2003. Introduction to
 U-series Geochemistry. Rev. Mineral. Geochemistry 52, 1–21.
- Brodén, K., Ab, S.R., Sandell, Y., 2001. Radioactivity in commercially available
 metals.
- 555 Cabanekova, H., 1996. The concentration of natural radionuclides in various
 556 types of building materials in slovakia. J. Radioanal. Nucl. Chem. 209, 142–
 557 144.
- 558 Cabáneková, H., 2008. Building materials as the source of radiation load of Slovak
 559 population.
- 560 Chinchón-payá, S., Piedecausa, B., Hurtado, S., Sanjuán, M.A., Chinchón, S., 2011.
 561 Radiological impact of cement, concrete and admixtures in Spain. Radiat.
 562 Meas. 46, 734–735.
- 563 Crockett, G.M., Smith, K.R., Oatway, W.B., Mobbs, S.F., 2003. NRPB-W48
 564 Radiological impact on the UK population of industries which use or
 565 produce materials containing enhanced levels of naturally occurring
 566 radionuclides Part II: The steel production industry.
- 567 Croymans, T., Schroeyers, W., Krivenko, P., Kovalchuk, O., Pasko, A., Hult, M.,
 568 Marissens, G., Lutter, G., Schreurs, S., 2016. Radiological characterization
 569 and evaluation of high volume bauxite residue alkali activated concretes. J.
 570 Environ. Radioact.
- 571 Ene, A., Pantelica, A., 2011. Characterization of Metallurgical slags using low-level
 572 gamma-ray spectrometry and neutron activation analysis. Rom. J. Phys. 56,
 573 1011–1018.
- 574 European Commission, 2002. Radiation protection 122 practical use of the

575	concepts of clearance and exemption Part II application of the concetps of
576	exemption and clearance to natural radiation sources.
577	European Council, 2014. Laying down basic safety standards for protection
578	against the dangers arising from exposure to ionising radiation, and
579	repealing directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom,
580	97/43/Euratom and 2003/122/Euratom. Off. J. Eur. Union 1–73.
581	Gallyas, M., Torok, I., 1984. Natural radioactivity of raw materials and products in
582	the cement industry. Radiat. Prot. Dosimetry 7, 69–71.
583	Garcia, M.A.A., 2009. Caracterização Radioquímica E Impacto Radiológico
584	Ambiental No Processamento De Cassiterita Para Produção.
585	Gilmore, J.C., Jackson, R.G., 1992. Radiological hazards from deposits of Tin-
586	smelting slag and the problems of site clearance and disposal, in:
587	Proceedings of the Eighth International Congress on Radiation Protection
588	(IRPA8) of the International Radiation Protection Association, Montreal. pp.
589	1408–1411.
590	Gorai, B., Jana, R.K., 2003. Characteristics and utilisation of copper slag - a review.
591	Resour. Conserv. Recycl. 39, 299–313.
592	Hughes, J.S., Harvey, M.P., 2008. A Study on the Transport of Naturally-Occurring
593	Radioactive Material.
594	IAEA, 2004. Application of the Concepts of Exclusion, Exemption and Clearance
595	Safety Guide RS-G-1.7.
596	IAEA, 2003. Extent of Environmental Contamination by Naturally Occurring
597	Radioactive Material (NORM) and Technological Options for Mitigation -
598	Technical reports series no. 419.
599	Ismail, B., Teng, I.L., Samudi, Y.M., 2011. Relative radiological risks derived from
600	aliferent TENORM Wastes in Malaysia. Radiat. Prot. Dosimetry 147, 600–
602	007. ICCM WC1 2000 Evaluation of management data — Cuida to the supression of
602 602	JCGM WG1, 2008. Evaluation of measurement data — Guide to the expression of
604	Loong I Baik M Bark C Bark T Ko N Yoon KH 2014 A basis study on the
605	radiological characteristics and disposal methods of NOPM Wastes I. Nucl
606	Fuel Cycle Waste Technol 12, 217–233
607	Kawrakow I Mainagra-Hing F Tassiar F Walters BRB 2009 The ECSpre
608	C++ class library NRC Ren PIRS-898 (rev A)
609	Khater A E M Bakr W F 2011 Technologically enhanced 210Ph and 210Ph in
610	iron and steel industry I Environ Radioact 102 527–530
611	doi:10.1016/i.jenyrad.2011.02.002
612	Kontol, K.M., Ahmad, S.H.S.S., Omar, M., 2007. Radiological impact assessment for
613	landfill disposal of NORM wastes in Malaysia, in: Naturally Occurring
614	Radioactive Material (NORM V), pp. 355–359.
615	Kriskova, L., Jones, P.T., Jannsen, H., Blanpain, B., Pontikes, Y., 2015, Synthesis
616	and Characterisation of Porous Inorganic Polymers from Favalite Slag. Slag
617	Valoris. Symp. Zero Waste 4. 227–230.
618	Laboratoire national Henri Becquerel, 2016. Decay Data Evaluation Project
619	http://www.nucleide.org/DDEP.htm (accessed 5.22.16).
620	Lehmann, R., 1996. Strahlenbelastung durch natürliche radionuklide in
621	baumaterialien, fossilen brennstoffen und Dungemitteln. Bundesamt für
622	Strahlenshutz, Berlin 135–156.
623	Leopold, K., Weiss, D., 2003. New approach to assessment and reduction of

624	health risk and environmental impact originating from TENORM according
625	to requirements of EU directive 96/29.
626	Muntean, L.E., Cosma, C., Moldovan, D. V., 2014. Measurement of natural
627	radioactivity and radiation hazards for some natural and artificial building
628	materials available in Romania. J. Radioanal. Nucl. Chem. 299, 523–532.
629	Mustonen, R., 1984. Natural radioactivity in and radon exhalation from Finnish
630	building materials. Heal. Phys. Soc. 46, 1195–1203.
631	Nakamura, T., Halada, K., 2015. Urban Mining Systems.
632	National Slag Association, 2013. Common uses for slag
633	http://www.nationalslag.org/common-uses-slag (accessed 5.22.16).
634	NORM4Building, 2016. Database of NORM4Building
635	http://norm4building.org/db/ (accessed 7.1.16).
636	Omar, M., 2000. NORM waste management in Malaysia, in: International
637	Conference on the Safety of Radioactive Waste Management. pp. 89–92.
638	Omar, M., Hamzah, M.S., Wood, A.K., 2008. Radioactive disequilibrium and total
639	activity concentration of NORM waste. J. Nucl. Relat. Technol. 5, 47–56.
640	Pensko, J., Stpiczynska, Z., Blaton-Albicka, K., 1980. Emanating Power of Radon-
641	222 Measured in Building Materials Original from Typical Building Materials
642	Used in Poland Original from, in: CONF-780422 (VOL. 2). pp. 1407–1414.
643	Pepin, S., 2013. Technische leidraad voor de operatoren van installaties voor de
644	verwerking, de opwaardering en de recyclage van de NORM reststoffen.
645	Piatak, Parsons, M.B., Seal, R.R., 2015a. Applied Geochemistry Characteristics and
646	environmental aspects of slag : A review, Applied Geochemistry.
647	Piatak, Parsons, M.B., Seal, R.R., 2015b. Characteristics and environmental
648	aspects of slag: A review. Appl. Geochemistry.
649	Pires do Rio, M.A., Amaral, E.C.S., Fernandes, H.M., Rochedo, E.R.R., 2002.
650	Environmental radiological impact associated with non-uranium mining
651	industries: A proposal for screening criteria. J. Environ. Radioact. 59, 1–17.
652	Pontikes, Y., Machiels, L., Onisei, S., Pandelaers, L., Geysen, D., Jones, P.T.,
653	Blanpain, B., 2013. Slags with a high Al and Fe content as precursors for
654	inorganic polymers. Appl. Clay Sci. 73, 93–102.
655	Proctor, D.M., Fehling, K.A., Shay, E.C., Wittenborn, J.L., Green, J.J., Avent, C.,
656	Bigham, R.D., Connolly, M., Lee, B., Shepker, T.O., Zak, M.A., 2000. Physical
657	and chemical characteristics of blast furnace, basic oxygen furnace, and
658	electric arc furnace steel industry slags. Environ. Sci. Technol. 34, 1576–
659	1582.
660	Provis, J.L., 2014. Geopolymers and other alkali activated materials: why, how,
661	and what? Mater. Struct. 47, 11–25. doi:10.1617/s11527-013-0211-5
662	Provis, J.L., Van Deventer, J.S.J., 2014. Alkali Activated Materials.
663	Puertas, F., Alonso, M.M., Torres-Carrasco, M., Rivilla, P., Gasco, C., Yagüe, L.,
664	Suárez, J.A., Navarro, N., 2015. Radiological characterization of
665	anhydrous/hydrated cements and geopolymers. Constr. Build. Mater. 101,
666	1105–1112.
667	Ryan, T.P., Janssens, A., Henrich, E., Daroussin, JL., Hillis, Z.K., Meijne, E.I.M.,
668	2004. Industries giving rise to NORM discharges in the European Union - A
669	review, in: Naturally Occuring Radioactive Materials (NORM IV). pp. 169–
6/U	185. Cabasia M. Luca A. Astaba A. Laca D. Tarras M. Carsia Tarras D. 2014
0/1	Sanagia, M., Luca, A., Antone, A., Ioan, K., Tanase, M., Garcia Torano, E., 2014.
0/2	comparison of analysis methods for the characterisation of the radioactive

- 673 content of metallurgical slag used within the EURAMET-EMRP JRP IND04
- 674 metrometal. Rom. Reports Phys. 66, 649–657.
- Sharaf, M., Mansy, M., El Sayed, A., Abbas, E., 1999. Natural radioactivity and
 radon exhalaton rates in building materials used in Egypt. Radiat. Meas. 31,
 491–495.
- 678 Skowronek, J., Dulewski, J., 2005. NORM in Polish industry.
- 679 Smodis, B., Repinc, U., Benedik, L., 2006. Identification and inventory of TENORM
 680 sources in Slovenia. Czechoslov. J. Phys. 56, 37–42.
- Sofilic, T., Bariši, D., Grahek, Ž., Cerjan-stefanovi, Š., Rastov, A., Mio, B., 2004.
 Radionuclides in metallurgical products and waste. Acta Metall. Slovaca 10, 29–35.
- Sofilić, T., Barišić, D., Rastovčan Mioč, A., Sofilić, U., 2010a. Radionuclides in steel
 slag intended for road construction. J. Radioanal. Nucl. Chem. 284, 73–77.
- Sofilic, T., Barisic, D., Sofilic, U., 2011. Natural radioactivity in steel slag aggregate.
 Arch. Metall. Mater. 56, 627–634. doi:10.2478/v10172-011-0068-y
- Sofilić, T., Barišić, D., Sofilić, U., 2010b. Monitoring of 137Cs in electric arc furnace
 steel making process. J. Radioanal. Nucl. Chem. 284, 615–622.
- 690 Sofilic, T., Barišic, D., Sofilic, U., Đurokovic, M., 2011. Radioactivity of some
 691 building and raw materials used in Croatia. Polish J. Chem. Technol. 13, 23–
 692 27.
- Taha, R., Sirin, O., Sadek, H., 2014. Beneficial use of Qatar's steel slag and gravel
 deposits in road construction. Int. J. waste Resour. 4, 1–7.
- Tanase, G., Tanase, M., 2003. Natural radioactivity in iron and steel materials by
 low-level gamma spectrometry. Rom. J. Phys. 48, 363–368.
- Turhan, Ş., 2008. Assessment of the natural radioactivity and radiological
 hazards in Turkish cement and its raw materials. J. Environ. Radioact. 99,
 404–414.
- Ugur, F.A., Turhan, S., Sahan, H., Sahan, M., Goren, E., Gezer, F., Yegingil, Z., 2013.
 Investigation of the activity level and radiological impacts of naturally
 occurring radionuclides in blast furnace slag. Radiat. Prot. Dosimetry 153,
 502–508.
- Van Der Steen, J., 2004. Regulatory approaches for NORM residues in the
 Netherlands, in: Regulatory and Management Approaches for the Control of
 Environmental Residues Containing Naturally Occurring Radioactive
 Material (NORM). pp. 61–73.
- van Oss, H.G., 2013. 2011 Minerals Yearbook: Slag-Iron and Steel, 2011 Minerals
 Yearbook.
- Vanmarcke, H., Paridaens, J., Froment, P., Cauteren, J. Van, Timmermans, C.,
 Cosemans, C., Sassi, F., 2010. Identification and characterization of NORM
 industries in Belgium, in: Proceedings of IRPA12: 12. Congress of the
 International Radiation Protection Association: Strengthening Radiation
- 714 Protection Worldwide-Highlights, Global Perspective and Future Trends.
- Wendling, L.A., Binet, M.T., Yuan, Z., Gissi, F., Koppel, D.J., Adams, M.S., 2013.
 Geochemical and ecotoxicological assessment of iron- and steel-making
 slags for potential use in environmental applications. Environ. Toxicol.
 Chem. 32, 2602–2610.
- White, W.M., 2013. Chapter 7: Trace elements in Igneous processes, in:
 Geochemistry. pp. 259–313.
- 721 Xirouchakis, D., Manolakou, V., 2011. Properties of an EAf slag produced in

- Greece : a construction material for sustainable growth. 5th Int. Conf. Bitum.Mix. pavements.
- Zak, A., 1995. Exposure to radiation from the natural radionuclides indoors
 investigation of radioactivity of raws and building materials. Cent. Lab.
 Radiol. Prot. Bi-annual Rep. 1994-1995 51–55.
- Radiol. Prot. Bi-annual Rep. 1994-1995 51–55.
 Zak, A., Biernacka, M., Jagielak, J., Lipinski, P., 1993. Investigations of radioactivity
- 728 of building raws and materials. Nukleonika 38, 51–70.
- Żak, A., Isajenko, K., Piotrowska, B., Kuczbajska, M., Ząbek, A., Sczygielski, T.,
 2008. Natural radioactivity of wastes. Nukleonika 55, 387–391.
- 731
- 732

733 Figures734

735

Figure 1: Activity concentration of 31 slag samples for the ²³²Th decay series (coverage factor, k=2).
Samples were collected at 31 consecutive days of slag production.

738

739

740

Figure 2: Activity concentration of 31 slag samples for the ²³⁸U decay series (coverage factor, k=2).

742 Samples were collected at 31 consecutive days of slag production.

- Figure 4: Activity concentration of slag 1 slag 31 for 40 K (coverage factor, k=2). Samples were
- $750 \qquad \text{collected at 31 consecutive days of slag production.}$

752

753Figure 5: Activity concentration index for slag 1 – 31 (k=2). Samples were collected at 31754consecutive days of slag production.

755

756 **Tables**

758 Table 1: Overview of the activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in metallurgical slags in

759 Bq/kg. N is the number of samples.

Slag type	Ν	²²⁶ Ra	²³² Th	⁴⁰ K	Slag origin	Reference
Tin slag*	/	1100	/	/	Germany	Leopold and Weiss, 2003
Tin slag≬	/	/	11000		United Kingdom - The Netherlands	Ryan et al., 2004
Tin slag	/	2000	/	/	Malaysia	Omar, 2000
Tin slag	12	492 - 1153	720 - 1532	11230 - 23183	Malaysia	Ismail et al., 2011
Tin slag	4	/	12100 - 14200	/	United Kingdom	Gilmore and Jackson, 1992
Tin slag	3	500 - 3400	800 - 7300	/	Malaysia	Omar et al., 2008
Tin slag	/	4570	420	/	Malaysia	Kontol et al., 2007
Tin slag	3	20000 - 69000	34000 - 130000	/	Brazil	Garcia, 2009
Tin slag	/	1000	4000	/	United Kingdom	European Commission, 1997
Tin slag	/	1000 - 1200	230 - 340	330	Germany	Lehmann, 1996
Tin melting slag*	/	5500	15000	/	Germany	Leopold and Weiss, 2003
Nickel smelt slag	3	16.7 -364	7.9 - 82	78.1 - 888	Poland	Zak et al., 2008

Nickel slag	/	52	78	76	Germany	Lehmann, 1996
Niobium slag	/	/	80000	80000 / /		European Commission, 1997
Niobium slag	/	3300 - 5000	17000 - 118000	17000 - 118000 / Br		Pires do Rio et al., 2002
Lead slag	/	270	36	200	Germany	Lehmann, 1996
Copper slag*	/	2000	/	/	Germany	Leopold and Weiss, 2003
Copper slag	8	287 - 401	44 - 73	674 - 900	Poland	Zak, 1995
Copper smelt slag●	80	236.6 - 517.8	25.7 - 183	615.4 - 1250.6	Poland	Zak et al., 2008
Copper slag*	/	530	183	1459	Poland	Skowronek and Dulewski, 2005
Copper slag	23	237 - 336	26 - 76	615 -1251	Poland	Zak et al., 1993
Copper slag (old production)	/	861 - 2100	18 - 78	300 - 730	Germany	Lehmann, 1996
Copper slag (new production	/	490 - 940	41 - 60	530 - 760	Germany	Lehmann, 1996
Copper slag primary process	/	/	13	/	/	RP-122 part II
Copper slag secondary process	/	17	15	/	/	RP-122 part II
Steel slag	/	88	49	/	United Kingdom	Crockett et al., 2003; Hughes and Harvey, 2008
Steel Slag	1	8.62	3.73	5.14	Romania	Ene and Pantelica, 2011
Steel slag	/	/	150	/	The Netherlands	Van Der Steen, 2004
Steel slag	1	62	21	51	China	Wendling et al., 2013
Steel slag	3	184 - 213	156 - 182	<17 - 25	Qatar	Taha et al., 2014
Steel slag	10	15.2 - 21.4	12.9 - 15.1	45.3 - 62.9	Croatiä	Sofilic et al., 2011
Steel slag	/	5 - 31	0 - 5	/	/	RP-122 part II
Steel slag	/	100 -600	/	/	Slovenia	Smodis et al., 2006
Steel and Iron slag	/	150	150	/	/	European Commission, 1997

Steel slag□	/	196	29.6	148	Romania	Tanase and Tanase, 2003
Steel slag	5	51 - 114	28.6 - 35.5	118 - 145	Romania	Sahagia et al., 2014
Non-Iron slag	/	20 -30	10 - 15	20	South Korea	Jeong et al., 2014
Iron slag	2	107.4 - 113.9	95.2 - 109.6	2.27 - 18.9	Saudi Arabia	Alamoudi and Almehmadi, 2013
Iron slag	/	10 - 220	10 - 90	10 - 150	South Korea	Jeong et al., 2014
Iron slag	12	15 - 22	/	/	Scandinavia	Broden et al., 2001
Iron slag	/	64 - 380	30 - 98	/	/	RP-122 part II
Iron slag	6	4 - 234	2 - 196	8 - 105	Slovenia	NORM4Building database, 2016
EAF slag	3	14.6 - 17.1	6.7 - 13.1	15.3 - 36.9	Croatiä	Sofilic et al., 2010
EAF slag	12	18.3 -21.6	12.3 - 15.4	45.3 - 63.8	Croatia	Sofilic et al., 2010
EAF slag	/	25	5	10	Greece	Xirouchakis and Manolakou, 2011
Blast furnace slag	/	160 - 165	35-40	/	Belgium	Vanmarcke et al., 2010
Blast furnace slag	40	13.7 - 310.1	3.8 - 330	18.1 - 290.1	Turkey	Ugur et al., 2013
Blast furnace slag	1	166	47.6	232.3	Spain	Chinchon-Paya et al., 2011
Blast furnace (boiler) slag	368	12.4 - 351.1	2.2 - 115	18.0 - 1400	Poland	Zak et al., 2008
Blast furnace slag	4	116 - 223	83 - 141	136 - 196	China	Wendling et al., 2013
Blast furnace slag	12	8 -308	1.6 - 337.3	18.4 - 388.9	Turkey	Turhan, 2008
Blast furnace slag	/	251.2	24.8	361.7	Croatia	Sofilic et al,. 2011
Blast furnace slag	2	143.4 - 150.9	45.6 - 45.8	75.7 - 76.8	/	Puertas et al., 2015
Blast furnace slag	5	105 - 129	32.4 - 102	97.2 - 209	Finland	Mustonen, 1984
Blast furnace slag	5	323 ± 18.6	39.8 ± 7.2	158 ± 16	Egypt	Sharaf et al., 1999
Blast furnace slag	/	88.3 - 142.0	26.8 - 46.0	188 - 269	Hungary	Gallyas and Torok, 1984
Blast furnace slag	/	186.69 ± 2.38	35.87 ± 1.67	295.91 ± 9.08	Turkey	Baltas et al., 2014

Blast furnace slag†	42	18.5 - 458.8	/	225.7 - 2227.4	Poland	Pensko et al., 1980
Blast furnace slag*	/	2100	340	1000	/	RP-112
Blast furnace slag≬	/	270	70	240	/	RP-112
Blast furnace slag	/	131 - 139	4	157 - 177	Ukraine	NORM4Building database, 2016
Metallurgical slag	/	251	115	1400	Poland	Skowronek and Dulewski, 2005
Metallurgical slag	6	41 - 124	41 - 106	166 - 395	Slovakia	Cabanekova, 1996
Metallurgical slag	2	162 - 173	25 - 52	179 - 219	Romania	Muntean et al., 2014
Metallurgical slag	40	13 - 341	2 -115	36 - 889	Poland	Zak, 1995
Metallurgical slag	8	10.8 - 38.8	2.7 - 21.8	7.3 - 63.3	1	Sofilic et al., 2004
Metallurgical slag	160	33 - 351	12 - 102	14 - 825	Poland	Zak et al., 1993
Metallurgical slag + dross ‡	43	10.0 - 436.0	9.5 - 55.6	75.7 - 649.6	Slovakia	Cabanekova, 2008

760 * Mentioned as maximum value

 $761 \qquad {\rm \emptyset \ Mentioned \ as \ typical \ values}$

 $762 \qquad \square \text{ Mentioned as average value} \\$

• Could contain samples reported by Zak et al. 1993 and Zak 1995

 $764 \qquad \ \ \, + \ \ \, Could\ \ \, contain\ \ \, boiler\ \ \, slag\ \ \, data\ \ \, and\ \ \, is\ \ \, converted\ \ \, from\ \ \, pCi/g$

- 765 ‡ Could contain doubles with Cabanekova 1996
- 766

767 Table 2: Exemption/clearance levels reported in EU-BSS | IAEA (equilibrium situation) and RP-

768 122 part II (disequilibrium situation)

	1 ,	
	EU-BSS IAEA*	RP-122 part II
Radionuclide	Exemption/clearance level (Bq/kg)	Exemption/clearance level (Bq/kg)
²³⁸ U	1000	5000
²²⁶ Ra	1000	500**
²¹⁰ Pb	1000	5000**
²²⁸ Ra	1000	5000**
²²⁸ Th	1000	500**
235 U	1000	1000**

	⁴⁰ K	10000	5000
--	-----------------	-------	------

* The activity concentration criterion of the EU-BSS | IAEA assumes equilibrium (European
 Council, 2014; IAEA, 2004).

** To indicate that the derived clearance level also includes daughter nuclides (European
 Commission, 2002).

773 774

Table 3: HPGe detectors used for gamma-ray analysis.

	Ge-3	Ge-4	Ge-5	Ge-8	Ge-T5
Crystal type	P-type, coaxial	P-type, coaxial	P-type, planar	P-type, planar	P-type, coaxial
Relative efficiency	60%	100%	50%	19%	46%
Shielding	10 cm copper + 14 cm lead	7.5 cm copper + 15 cm lead	5 cm copper + 15 cm lead	5 cm copper + 15 cm lead	1 mm copper+ 10 cm lead
Top dead layer	0.7 mm	0.5 μm	0.5 μm	0.5 μm	0.6 mm
Samples measured	Slag 5, Flue dust samples	Slag 4, 6, 9, 11, 14, 20, 22, 26, 29, 31	Slag 1, 2, 3, 7, 12, 15, 17, 18, 19, 21, 23, 27,30	Slag 8, 10, 13, 16, 24, 25, 28	Feedstock materials
FWHM of QA at 661.6	1.55	1.57	1.31	1.23	1.41
FWHM of QA at 1332	1.89	1.96	1.75	1.64	1.86

775

Table 4: minimum and maximum activity concentrations, ratio of the maximum over the minimum

activity concentration and ratio of different long living radionuclides over each other for feedstock

778 material, flue dust and non-ferrous fayalite slag samples (k=2).

	Feedsto	ck material (5 s	amples)	Flue dust (9 samples)		
Radionuclide	Activity co (Bq	ncentration /kg)		Activity con (Bq/		
	min	max	Ratio max/min	min	max	Ratio max/min
238U	770 ± 90	2100 ± 300	2.7 ± 0.5	21 ± 8	50 ± 10	2 ± 1
²²⁶ Ra	410 ± 40	1600 ± 200	3.9 ± 0.6	0.8 ± 0.2	3.3 ± 0.2	4 ± 1
²¹⁰ Pb	6000 ± 2000	22000 ± 7000	4 ± 2	300 ± 200	900 ± 300	3 ± 2
²²⁸ Ra	770 ± 70	2100 ± 200	2.7 ± 0.4	1.4 ± 0.2	2.8 ± 0.2	2.0 ± 0.3
235U	27 ± 4	74 ± 8	2.7 ± 0.5	0.8 ± 0.2	2.3 ± 0.2	2.9 ± 0.8
²²⁸ Th	800 ± 100	2000 ± 400	2.2 ± 0.6	1.2 ± 0.2	3 ± 2	3 ± 2
⁴⁰ K	10 ± 8	90 ± 10	9 ± 7	49 ± 6	210 ± 20	4.3 ± 0.7
²²⁸ Ra/ ²²⁸ Th	0.9 ± 0.2	1.0 ± 0.2		0.96 ± 0.09	1.5 ± 0.4	
²³⁸ U/ ²²⁶ Ra	1.2 ± 0.2	1.9 ± 0.3		10 ± 3	30 ± 10	
²¹⁰ Pb/ ²²⁶ Ra	8 ± 3	20 ± 7		110 ± 30	900 ± 300	

	Non-ferrous fayalite slag (31 samples)			
Radionuclide	Activity con (Bq/	centration kg)		
	min	max	Ratio max/min	

²³⁸ U	42 ± 4	180 ± 40	4 ± 1
²²⁶ Ra	14 ± 2	83 ± 8	6 ± 1
²¹⁰ Pb	7 ± 4	90 ± 20	13 ± 7
²²⁸ Ra	22 ± 2	100 ± 10	4.5 ± 0.6
235 U	2.0 ± 0.4	8 ± 2	4 ± 1
²²⁸ Th	21 ± 2	100 ± 10	4.7 ± 0.7
⁴⁰ K	26 ± 8	80 ± 10	3.1 ± 0.5
²²⁸ Ra/ ²²⁸ Th	0.9 ± 0.2	1.1 ± 0.2	
²³⁸ U/ ²²⁶ Ra	1.7 ± 0.4	7 ± 2	
²¹⁰ Pb/ ²²⁶ Ra	0.14 ± 0.09	1.4 ± 0.5	