
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Testing for Constancy in Varying Coefficient Models

Peer-reviewed author version

AHKIM, Mohamed & VERHASSELT, Anneleen (2018) Testing for Constancy in

Varying Coefficient Models. In: Communications in statistics. Theory and methods,

47(4), p. 890-911..

DOI: 10.1080/03610926.2017.1300271

Handle: http://hdl.handle.net/1942/23406



Testing for Constancy in Varying Coefficient
Models

M. Ahkim1 and A. Verhasselt2

1. Department of Mathematics - Computer Sciences, Universiteit Antwerpen, Belgium

2. Censtat, Interuniversity Institute for Biostatistics and statistical Bioinformatics,

Universiteit Hasselt, Belgium

November 30, 2016

Abstract

We consider varying coefficient models, which are an extension of the classical

linear regression models in the sense that the regression coefficients are replaced by

functions in certain variables (for example time), the covariates are also allowed to

depend on other variables. Varying coefficient models are popular in longitudinal

data and panel data studies, and have been applied in fields such as finance and

health sciences. We consider longitudinal data and estimate the coefficient functions

by the flexible B-spline technique. An important question in a varying coefficient

model is whether an estimated coefficient function is statistically different from a

constant (or zero). We develop testing procedures based on the estimated B-spline

coefficients by making use of nice properties of a B-spline basis. Our method allows

longitudinal data where repeated measurements for an individual can be correlated.

We obtain the asymptotic null distribution of the test statistic. The power of the

proposed testing procedures are illustrated on simulated data where we highlight

the importance of including the correlation structure of the response variable and

on real data.

Key words: varying coefficient models; hypothesis testing; quadratic forms.

1 Introduction

In this paper, we consider varying coefficient models (Hastie and Tibshirani (1993)) which

are an extension of the classical linear regression models in the sense that the regression
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coefficients are replaced by functions in certain variables (often time t). More precisely,

we study a varying coefficient model of the form

Y (t) = X(t)′β(t) + ε(t) = β0(t) +
d∑
p=1

X(p)(t)βp(t) + ε(t), (1)

where Y (t) is the response at time t ∈ T = [0, T ]; X(t) = (X(0)(t), . . . , X(d)(t))′ is the

covariate column-vector at time t, with X(0)(t) ≡ 1; β(t) = (β0(t),

. . . , βd(t))
′ is the column-vector of coefficients at time t. We assume longitudinal data,

that is, each of the n independently chosen subjects is measured repeatedly over a time

period in T . The j-th measurement of subject i for 1 ≤ i ≤ n and 1 ≤ j ≤ Ni, is a sample

from (t, Y (t),X(t)), which is denoted by (tij, Yij,Xij), where tij is the observed time, Yij
is the observed response of the i-th individual at time tij and Xij = (X

(0)
ij , . . . , X

(d)
ij )′ is

the corresponding observed covariate vector, satisfying

Yij = X′ijβ(tij) + εij. (2)

The total number of observations is N =
∑n

i=1Ni.

There are several nonparametric techniques to estimate the coefficient curves β0(t), . . . , βd(t)

for longitudinal data. The local polynomial technique and the smoothing spline method

are discussed in Hoover et al. (1998), Fan and Zhang (1999) developed a two step lo-

cal polynomial estimation procedure. Huang et al. (2002) elaborated on an estimating

method where coefficient functions are approximated by B-spline basis expansions and

Antoniadis et al. (2012) consider P-spline estimation of the varying coefficients. We use

the flexible B-spline estimation method as described in Huang et al. (2002).

In the context of model (1), it is important to know whether certain coefficient functions

are constant. Since this means that a covariate does not have a varying but a constant

effect on the response and a simpler model can be used instead. The purpose of this

paper is to establish a method to test these kind of hypotheses for longitudinal data

models. For an overview of this question in non-longitudinal data models we refer to

for example Li et al. (2011) and the references therein. Huang et al. (2002) constructed

a test statistic based on the difference of the residual sum of squares under the null

(coefficient is constant) and the alternative hypothesis (coefficient is varying), but do not

acquire asymptotical results of their approach. They obtain critical values via a bootstrap

strategy, which imposes the need of a relatively large sample size at a high computational

cost.

Our method extends the technique by Li et al. (2011) for non-longitudinal data to longitu-

dinal data with correlated error structures, where the coefficient functions are estimated

based on a B-spline basis expansion. Their approach makes fully use of the estimated co-

efficients and the nice properties of B-splines. A main advantage of this approach, besides

its simplicity and high power, is that it can be extended to other interesting hypotheses.
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The test statistic follows (asymptotically if the coefficient functions are not spline func-

tions) a Fisher distribution. The main difficulty is incorporating the weight matrix (when

longitudinal data are used) and the correlation structure of the errors. The novelty of

our approach furnishes this issue. We prove that our test statistic follows asymptotically

a generalized Fisher (notation: F ) distribution. This generalized F -distribution is the

exact null distribution if the coefficient functions are splines.

In Section 2 we describe the B-spline estimator. In Section 3 the testing procedure

and asymptotic results are presented. The proofs can be found in the Appendix. The

performance of our method compared to Huang et al. (2002) are illustrated with numerical

simulations in Section 4 and real data applications are discussed in Section 5. Finally,

we end with a conclusion in Section 6. When there is no information on the correlation

matrix we propose a bootstrap approach, see Section 6. Finally, we end with a conclusion

in Section 7.

2 Spline estimation

2.1 B-spline estimator

In this section we briefly recall the B-spline estimator in varying coefficient models, see

Huang et al. (2004). The assumption is that each component of β(t) = (β0(t), . . . , βd(t))
′

can be approximated by a B-spline basis expansion, i.e., for each p = 0, . . . , d, βp(t) ≈∑mp

l=1 αplBpl(t; qp), where {Bpl(·; qp) : l = 1, . . . , Kp + qp = mp} is the normalized
(

i.e.∑mp

j=1Bj(·; qp) = 1
)
qp-th degree B-spline basis withKp+1 equidistant knots ξp0, ξp1, . . . , ξpKp

in T . Let Gp denote the space spanned by this basis.

The B-spline estimator α̂ = (α̂′0, . . . , α̂
′
d)
′ (with α̂p = (α̂p1, . . . , α̂pmp)′) is then obtained

by minimizing the following expression with respect to α = (α′0, . . . ,α
′
d)
′, where αp =

(αp1, . . . , αpmp)′ for p = 0, . . . , d:

n∑
i=1

wi

Ni∑
j=1

(
Yij −

d∑
p=0

mp∑
l=1

X
(p)
ij Bpl(tij; qp)αpl

)2
,

where wi denote the weight for subject i, often wi = 1
Ni

is used. More compactly written,

we solve

min
α

n∑
i=1

(Yi −Uiα)′Wi(Yi −Uiα), (3)
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where

Yi = (Yi1, . . . , YiNi
)′; Y = (Y1, . . . ,Yn)′;

U′ij = X′ijB(tij) ∈ IR1×dim;

Ui = (Ui1, . . . ,UiNi
)′ ∈ IRNi×dim, where dim =

d∑
p=0

mp;

U = (U1, . . . ,Un)′ ∈ IRN×dim;

B(t) =

 B01(t; q0) . . . B0m0(t; q0) 0 . . . 0 0 . . . 0

0 . . . 0
. . . 0 . . . 0

0 . . . 0 0 . . . 0 Bd1(t; qd) . . . Bdmd
(t, qd)

 ∈ IR(d+1)×dim;

Wi = diag
(
wi, . . . , wi

)
∈ IRNi×Ni (a diagonal matrix with Ni times

wi on the diagonal);

W = diag
(
W1, . . . ,Wn

)
∈ IRN×N (a block diagonal matrix

with the matrices Wi on the diagonal).

If (U′WU) is invertible, then (3) has a unique solution

α̂ = (U′WU)−1U′WY.

Huang et al. (2004) proved that under Assumption 1 in Appendix B, the matrix (U′WU)

is invertible with probability tending to 1. Throughout we assume Assumption 1. Then,

the B-spline estimator of β(t) is

β̂(t) = B(t)α̂ = (β̂0(t), . . . , β̂d(t))
′, with β̂p(t) =

mp∑
l=1

α̂plBpl(t; qp).

By Theorem 1 in Huang et al. (2004), the estimator β̂ is consistent under Assumption 1

and if limnKn log(Kn)/n = 0, where Kn = maxp=0,...,Kp Kp.

2.2 Some properties of spline approximations

The motivation for our test statistics are based on the following nice properties of B-spline

approximations.

Suppose that the function βp(t) is a constant cp, then βp(t) = cp =
∑mp

l=1 αplBpl(t; qp) ∈ Gp.

Indeed, this holds since constant functions on T are contained in Gp. Moreover, we have

that αp = (cp, . . . , cp)
′ ∈ IRmp×1, since normalized B-splines are used and the functions

Bpl(t; qp) (l = 1, . . . ,mp) form a basis of Gp. Therefore there is a one-to-one relation

between the constancy of the function βp and the vector of B-spline coefficients αp being

constant.
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3 Testing constancy of coefficient functions

In this section we consider the problem of testing whether the p-th coefficient βp(t) of

a varying coefficient model is really varying. We develop a testing procedure to test for

constancy, i.e. test

H0 : βp is a constant function versus ¬H0 : βp is not a constant function. (4)

Li et al. (2011)’s technique is based on the vector of first order differences D1α̂p where

D1 =


1 −1 0 0 . . . 0 0 0

0 1 −1 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 1 −1

 ∈ IR(mp−1)×mp .

They use linear splines. However, it should be noted that splines of any degree could be

used (as noted in Section 2.2) which allows to generalize their asymptotic results. We

extend their approach to our longitudinal data model with correlated errors where the

coefficient functions are estimated by B-splines of any degree.

We first give a test for the more restrictive hypothesis that all coefficient functions are

constant:

H1 : βp(·) is a constant function for p = 0, . . . , d versus ¬H1. (5)

Under hypothesis H1 all coefficient functions are modeled by spline functions. Let us

consider the model where all coefficient functions are spline functions, i.e. βp(t) =∑mp

l=1 αplBpl(t; qp) and

Y = Uα+ ε,

with Y = (Y′1, . . . ,Yn)′, ε = (ε′1, . . . , ε
′
n)′ and εi = (εi1, . . . , εiNi

)′ for i = 1, . . . , n. For

this model, testing problem (5) is equivalent to

H∗1 : L′1α = 0 versus ¬H∗1 : L′1α 6= 0,

where

L′1 =

 D1 . . . 0
...

. . .
...

0 . . . D1

 ∈ IR(dim−d−1)×dim.

3.1 Construction of the test statistic

Let us assume that Cov(εi) = σ2Vi and Cov(ε) = σ2V, where V = diag(V1,

. . . ,Vn) and Vi are correlation matrices. Recall the B-spline estimator of model (1)

α̂ = (U˜ ′U˜ )−1U˜ ′Y˜ ,
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where U˜ = W
1
2 U and Y˜ = W

1
2 Y. Let PU˜ = U˜ (U˜ ′U˜ )−1U˜ ′ and Ỹ = E(Y|X ), where

X = {(Xij, tij); i = 1, . . . , n, j = 1, . . . , Ni}. Throughout the remainder of the paper we

condition on X . Let V˜ = W1/2VW1/2.

Testing hypothesis (5)

Remark 1. If we would use Li et al. (2011)’s test statistic in our longitudinal case, then

we would obtain the “test statistic”

dim− d− 1

N − dim
α̂′L1(L

′
1(U˜ ′U˜ )−1L1)

−1L1α̂

Y˜ ′(IN − PU˜)Y˜ , (6)

where IN is the identity matrix of dimension N ×N . Unlike the case in Li et al. (2011)

where the statistic (6), forms a ratio of two independent χ2 variables, we here have a ratio

of two dependent χ2 variables (see the proof of Theorem 1). The novelty of our approach

allows to incorporate the weight matrix W and the correlation matrix V arising from

longitudinal data models. This generalization is not straightforward.

Our test statistic is based on the fact that under hypothesis (5)

E
(
L˜ ′1α̂˜ |X ) = E (L′1α̂|X ) = 0,

where L˜ ′1 = L′1(U˜ ′V˜−1U˜ )−1(U˜ ′U˜ ), α̂˜ := (U˜ ′U˜ )−1U˜ ′V˜−1Y˜ . Note that α̂˜ and L˜ ′1 are

precisely introduced to obtain a ratio of independent quadratic forms of which the distri-

bution is known, see below.

Since Y˜ ∼ N(W
1
2 Ỹ, σ2V˜ ), we have that α̂˜ ∼ N(µ, σ2Σ), where

µ = (U˜ ′U˜ )−1U˜ ′V˜−1W1/2Ỹ and Σ = (U˜ ′U˜ )−1U˜ ′V˜−1U˜ (U˜ ′U˜ )−1.

Next we define two quadratic forms in normal variables. The first is

Q1 = Y˜ ′(IN − PU˜)Y˜ ,
the second

Q2 = α̂˜ ′L˜1(L˜ ′1ΣL˜1)
−1L˜ ′1α̂˜ .

Our test statistic for hypothesis (5) is a ratio of these (stochastic) quadratic forms, namely

T1 =
dim− d− 1

N − dim
Q1

Q2

.

Note that T1 does not depend on the marginal variance σ2. Theorem 1 states the exact

null distribution of T1. When t1 ∈ IR is a realization of T1, the p-value p1 to test H1 is

defined to be

p1 = FT1(t1), (7)
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where FT1 is the null distribution function of T1, since Q2 is relatively small under the

null hypothesis. By Theorem 1 we know that under the null hypothesis in (5), T1 follows

a generalized F -distribution of the type

(
∑l

i=1 ciXi)/(
∑l

i=1mi)

Y/n
,

where the components of (X1, . . . , Xl, Y ) are independent with Xi ∼ χ2(mi),

Y ∼ χ2(n) and all ci > 0. Dunkl and Ramirez (2001) gave exact and numerically

tractable expressions of the cumulative distribution function for this kind of general-

ized F -distributions. We have implemented the cumulative distribution function of this

distribution in Matlab.

Note that in the case we have data without repeated measurements, i.e. the matrices W

and V are the identity matrix, the test statistic

N − dim
dim− d− 1

Q2

Q1

is exactly the test statistic used by Li et al. (2011) (see (6) in Remark 1) and follows the

F-distribution with degrees of freedom (dim− d− 1, N − dim) under the null hypothesis

in (5).

Testing hypothesis (4) Let us return to hypothesis (4):

H0 : βp is a constant function versus ¬H0 : βp is not a constant function.

This time we are only interested in the coefficients belonging to the coefficient function

βp(.), therefore we apply the following transformation on α̂

L′2 =
(

0 . . . D1 . . . 0
)
∈ IR(mp−1)×dim.

The hypothesis in terms of the B-spline coefficients becomes

H∗0 : L′2α = 0 versus ¬H∗0 : L′2α 6= 0. (8)

The test statistic for hypothesis (4) is

T2 =
mp − 1

N − dim
Y˜ ′(IN − PU˜)Y˜

α̂˜ ′L˜2(L˜ ′2ΣL˜2)−1L˜ ′2α̂˜ ,
where L˜ ′2 = L′2(U˜ ′V˜−1U˜ )−1(U˜ ′U˜ ). Theorem 2 states that the null distribution function

of T2 denoted by FT2 is asymptotically equal to the generalized F -distribution

mp − 1

N − dim

∑k
i=1 λiχ

2(ri)

χ2(mp − 1)
,

with distribution function F2, where λi, ri and k are defined in Theorem 1. Suppose that

t2 is an observed value for T2. As in (7), the p-value is

p2 = F2(t2).
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Theorem 1. Assume that ε ∼ N(0, σ2V) in model (2). If hypothesis H0 in (5) holds,

then T1 follows the generalized F-distribution

dim− d− 1

N − dim

∑k
i=1 λiχ

2(ri)

χ2(dim− d− 1)
,

with distribution function F1, where λ1, . . . , λk denote the nonzero distinct eigenvalues of

W1/2VW1/2(IN − PU˜)

with algebraic multiplicities r1, . . . , rk respectively, that satisfy
∑k

i=1 ri = N − dim, and

where χ2(r1), . . . , χ
2(rk), χ

2(dim− d− 1) are mutually independent.

The proof of Theorem 1 is given in Appendix D.

Theorem 2. Assume that ε ∼ N(0, σ2V) in model (2). Define the random variable

mp − 1

N − dim

∑k
i=1 λiχ

2(ri)

χ2(mp − 1)
,

with distribution function F2, where λ1, . . . , λk, r1, . . . , rk are defined in Theorem 1, and

where χ2(r1), . . . , χ
2(rk), χ

2(mp−1) are mutually independent. Let ‖A‖ denote the Frobe-

nius norm of a matrix A. Under H0 in (4) and if√
Mξ0

(
Nρ2n‖V−1/2‖2 +

√
Nρn‖V−1/2‖

)
+√

Mη0

(
Nwmaxρ2n +Nwmaxρn

√
wmaxN

1/2
i

)
→ 0, (9)

where wmax = maxi=1,...,nwi, ρn is the approximation error (see Appendix A), Mξ0 and

Mη0 are the maxima of the density function of χ2(mp−1) and
∑k

i=1 λiχ
2(ri), respectively,

then

lim
n→∞

(FT2(t)− F2(t)) = 0 uniformly in t > 0.

The proof of Theorem 2 is given in Appendix E. A discussion on condition (9) is given

in Appendix F.

Testing a general hypothesis The proof of Theorem 2 still holds when we test the

general hypothesis

H∗2 : A′α = a versus ¬H∗2 : A′α 6= a, (10)

where A is a known fixed nonzero matrix, and a is a known fixed vector, see (8). Then,

as before we define A˜ ′ = A′(U˜ ′V˜−1U˜ )−1(U˜ ′U˜ ). Let r denote the number of rows of A′.

The test statistic for hypothesis (10) is

T3 =
r

N − dim
Y˜ ′(IN − PU˜)Y˜

(α̂˜ ′A˜ − a′)(A˜ ′ΣA˜ )−1(A˜ ′α̂˜ − a)
.
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Denote its null distribution function by FT3 . Define the random variable

r

N − dim

∑k
i=1 λiχ

2(ri)

χ2(r)
,

with distribution function F3, where λ1, . . . , λk, r1, . . . , rk are defined in Theorem 2, and

where χ2(r1), . . . , χ
2(rk), χ

2(r) are mutually independent. Under the conditions of Theo-

rem 2 we have that

lim
n→∞

(FT3(t)− F3(t)) = 0 uniformly in t > 0.

Suppose t3 is a realization of T3. As in (7), the p-value is

p3 = F3(t3).

With (10) we can test several hypotheses on the coefficient functions due to nice properties

of B-spline coefficients. For example; by the derivative property of B-splines (De Boor

(2001)) we can test whether a coefficient function βp is a polynomial of degree q. Then,

the matrix A is defined as taking the q-th order differences of the B-spline coefficients

corresponding to βp and a = 0.

4 Simulation study

Here we discuss a simulation example where we illustrate the performance of our ratio

of quadratic forms method (RQF) and compare it with Huang et al. (2002)’s method

(Huang). We illustrate the importance of incorporating the correlation structure in the

RQF method by also providing the RQF method where independence is assumed; referred

to as RQFind.

We let the number of individuals be n = 30, the number of repeated measurements

for individual i is Ni randomly generated from {9, . . . , 12} for i = 1, . . . , 30. For each

individual i, the time points tij, j = 1, . . . , Ni are equidistant in [0, 1]. We have a time

dependent bivariate vector(
X(1)(t)

X(2)(t)

)
∼ N(0,ΣX(t)), ΣX(t) =

(
3
2

1/(2 + t)

1/(2 + t) 2

)
.

Intra-subject correlation is involved in this example. We consider two types of intra-

subject correlated errors, the first is V1 where

Corr(ε(tij), ε(tik)) =
1

2
exp(−|tij − tik|), 1 ≤ j 6= k ≤ Ni,

while the error terms of different subjects are mutually independent; the second is an

exchangeable correlation structure V2

Corr(ε(tij), ε(tik)) = 0.6, 1 ≤ j 6= k ≤ Ni,
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while the error terms of different subjects are mutually independent.

Furthermore, we use coefficient functions (with domain [0, 1]):

β0(t) = 0.5(e− e−1) + b0(e
2t−1 − 0.5(e− e−1)),

β1(t) = 4/3 + b1(8t(1− t)− 4/3) and β2(t) = 1 + b2(2 sin2(2πt)− 1),

where changing the parameters b0, b1 and b2, change the level of constancy. We measure the

performance of our test by varying the deviation of each coefficient function βp (p = 0, 1, 2)

from a constant, that is bp varies from 0 to 1 while bk = 1 for k ∈ {0, 1, 2} \ {p}.

Note that we have introduced modeling bias since the coefficient functions are not spline

functions. The results are based on 200 simulated data sets. In the simulations below,

we follow two approaches concerning the choice of the knots. The first approach fixes the

knots (K0, K1, K2) = (5, 5, 5).

In the second approach we use a cross-validation (CV) method to obtain a desired knot

vector K. Since n = 30, it is feasible to employ the leave-one-subject-out cross-validation

method (Huang et al. (2004) and references therein). The advantage of deleting the whole

subject is preserving any intra-subject correlation. We delete subject i from the original

data to obtain the training data which we use to determine the B-spline estimator α̂−i.

This is done for all the subjects i = 1, . . . , n, so that we can compute the cross-validation

score

CV (K) =
n∑
i=1

‖Yi −Uiα̂
−i‖22. (11)

The desired K is the minimizer of (11) where we let K vary over {5, 6, 7, 8, 9}3. The

degree of the splines is fixed at 3.

The performance of the testing procedure is illustrated by the power, namely the prob-

ability P (H0 is rejected |¬H0), that should be as close as possible to 1. Since we do

not know the exact distribution of the test statistic under ¬H0, we report an empirical

estimate of the power based on simulations, namely we report the percentage of rejecting

H0. In Figures 1-4 the power functions for each bp ∈ {0, 0.1, 0.2, . . . , 1}, p = 0, 1, 2 are

shown. The average computing time for a fixed knot vector of RQF is about 0.6 seconds,

while the bootstrap method in Huang et al. (2002) took 22 seconds on average (bootstrap

size B = 200).

When bp = 0 the power functions attain approximately the theoretical level of 5%, and

increase to 1 when bp increases. The RQF method performs better than the method of

Huang et al. (2002) in all our examples, except in Figure 1(a) where the method of Huang

et al. (2002) performs slightly better. Especially when V = V2 (exchangeable correlation)

where the differences are bigger. We also note that including the correlation matrix in the
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RQF method results in higher power than when using the independence correlation ma-

trix. Moreover, even when the correlation is misspecified in the RQF method (RQFind),

the power for β1 and β2 are higher than the method of Huang et al. (2002).
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Figure 1: Simulation example (n = 30) with V = V1 and knots K = (5, 5, 5). The power

functions for the hypothesis that (a) β0, (b) β1 and (c) β2 respectively, are constant for RQF

(black solid line), RQFind (blue dashed line) and Huang (red dotted line) respectively.
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Figure 2: Simulation example (n = 30) with V = V1 and where knots are determined by CV.

The power functions for the hypothesis that (a) β0, (b) β1 and (c) β2 respectively, are constant

for RQF (black solid line), RQFind (blue dashed line) and Huang (red dotted line) respectively.

We now consider the same example, but with a bigger sample size. We let n = 60 and

the number of repeated measurements Ni are chosen randomly from [18, 24]. The RQF

method takes on average 12.3 seconds for fixed knots, while the method of Huang et al.

(2002) needs 260 seconds on average (bootstrap size B=200). As for the knot selection we

use leave-10-subjects-out cross-validation where we divide the data in 6 fixed parts (also
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Figure 3: Simulation example (n = 30) with V = V2 and knots K = (5, 5, 5). The power

functions for the hypothesis that (a) β0, (b) β1 and (c) β2 respectively, are constant for RQF

(black solid line), RQFind (blue dashed line) and Huang (red dotted line) respectively.
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Figure 4: Simulation example (n = 30) with V = V2 and where knots are determined by CV.

The power functions for the hypothesis that (a) β0, (b) β1 and (c) β2 respectively, are constant

for RQF (black solid line), RQFind (blue dashed line) and Huang (red dotted line ) respectively.

denoted by CV). The results can be found in Figures 5-6. Note that the power increases

faster than in the case n = 30, as could be expected.
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Figure 5: Simulation example (n = 60) with V = V1 and where knots are determined by CV.

The power functions for the hypothesis that (a) β0, (b) β1 and (c) β2 respectively, are constant

for RQF (black solid line), RQFind (blue dot line) and Huang (red dash line ) respectively.
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Figure 6: Simulation example (n = 60) with V = V2 and where knots are determined by CV.

The power functions for the hypothesis that (a) β0, (b) β1 and (c) β2 respectively, are constant

for RQF (black solid line), RQFind (blue dot line) and Huang (red dash line ) respectively.

5 Real data applications

5.1 Aids data

We apply our testing methodology to the AIDS data which is a subset of the Multicenter

AIDS Cohort Study. This data set contains the repeated measurements of physical exami-
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nations, laboratory results and CD4 cell percentages of 283 homosexual men who became

HIV-positive between 1984 and 1991. CD4 cells play an important role in the body’s

immune system. The HIV virus destroys CD4 cells. The fewer functioning CD4 cells, the

weaker the immune system and therefore the more vulnerable a person is to infections

and illnesses. The patients would have measurements taken every 6 months, but due to

certain individual’s missing their appointments and the random infection moment, the

number of repeated measurements varied per individual. The aim of the statistical anal-

ysis is to describe the trend of the mean CD4 percentage depletion over time (in years)

explained by the effects of cigarette smoking, age at HIV infection and pre-HIV infection

CD4 percentage. For more details about the design, methods and medical applications

see Kaslow et al. (1987).

The model is

Yij = β0(tij) + β1(tij)X
(1)
i + β2(tij)X

(2)
i + β3(tij)X

(3)
i + εij,

where Yij is the i-th individual CD4 percentage measured at time tij, X
(1)
i is the smoking

status of the i-th individual; X
(1)
i is 1 or 0 if the individual ever or never smoked, X

(2)
i is

the i-th individual’s centered age at HIV infection (obtained by subtracting the sample

average age at HIV infection from the individual’s age at HIV infection), and in a similar

way we let X
(3)
i be the i-th individual’s centered pre-HIV infection CD4 percentage. By

centering, the baseline CD4 percentage β0(t) represents the mean CD4 percentage t years

after HIV infection of a homosexual individual with an average age at HIV infection, an

average pre-HIV CD4 rate and who has never smoked cigarettes.

In our analysis we use the same B-spline bases as Huang et al. (2002) for the estimation

of the coefficient functions, i.e. K = (1, 6, 2, 4) and q = (3, 3, 3, 3).

Let us test whether a linear regression model makes more sense, hence we want to test

hypothesis (5). The p-value for this test is 0.000 for RQFind. Therefore we strongly reject

the hypothesis that all coefficient functions are constants. Hence, it makes sense to state a

varying coefficient model. In Table 1 the p-values are presented for testing the constancy

of each coefficient function of model (5.1), it includes the corresponding results of Huang

et al. (2002). The inference procedure in Huang et al. (2002) is based on a resampling

subject bootstrap to construct confidence regions and to perform hypothesis testing.

Table 1 shows that the results for testing the constancy of β0, β1, β2 and β3 are the same

with significance level 0.05. For β3, the p-value for the method of Huang et al. (2002) is

on the border of being significant, while our test “strongly” does not reject the hypothesis

that β3 is a constant.
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RQFind Huang et al. (2002)

Null hypothesis p-value p-value

β0(·) is constant 0.000 0.000

β1(·) is constant 0.495 0.176

β2(·) is constant 0.153 0.301

β3(·) is constant 0.575 0.059

Table 1: Aids data: p-values

5.2 Primary Biliary Cirrhosis Data

This data was collected by the Mayo Clinic trial in primary biliary cirrhosis (PBC)

of the liver, which was conducted from January 1974 to May 1984 (data available at

http://lib.stat.cmu.edu/datasets/pbcseq). Primary biliary cirrhosis is an autoimmune

disease of the liver marked by the slow progressive destruction of the small bile ducts of

the liver. We look at multiple laboratory results of 312 patients, which were taken at

specified visits at six months, one year, and annually thereafter. Many patients missed

their scheduled appointments due to various reasons, hence the number of repeated mea-

surements per patient differed.

The time (in days) dependent variables we consider are PT (prothrombin time in seconds)

as the response variable, and Alb (albumin in gm/dl) as the predictor variable. Only the

results of the first 1600 days are considered. The varying coefficient model is

PT(t) = β0(t) + β1(t)Alb(t) + ε(t).

The B-spline estimator of the coefficient functions, with m = (4, 4) and q = (3, 3), for this

data is given in Figure 7. These estimates suggest an increasing trend for the intercept

and a decreasing trend for the slope function. As to be expected, we find that the p-value

for testing hypothesis (4) is zero in both cases, i.e. the intercept function and the slope

function are non-constant.

Figure 7: PBC data: estimates of the intercept function and the Albumin coefficient

function.
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6 Testing for constancy: unknown variance

When no prior information is available on the variance, it is natural to consider the

RQF method where we plug in an estimate of V. We have pursued this approach by

estimating the variance as described in Huang et al. (2004), yielding bad results. There

are several reasons for this unsuccessful attempt. Estimating V is not sufficient, what

is needed is a good estimation of (U˜ ′VU˜ )−1. Also, Theorems 1 and 2 only hold if V is

positive definite, therefore an estimator of V should guarantee this. Instead, we propose

a bootstrap approach when there is little information on V.

Our bootstrap approach to test hypothesis (10) in VCMs is inspired by the bootstrap

approach of Huang et al. (2002). The difference is our multidimensional test statis-

tic and the use of Mahalanobis distances. An important step is to create pseudo data

{(Y ps
ij , Xij, tij) : i = 1, . . . , n, j = 1, . . . , Ni} which satisfies the null hypothesis in (10).

Denote by α̂cs the estimator we obtain under the constraints imposed by the null hypoth-

esis. Pseudo data {(Y ps
ij , Xij, tij) : i = 1, . . . , n, j = 1, . . . , Ni} are simulated by using α̂cs.

The test statistic is A>α̂−a, where α̂ is the estimator obtained without constraints. The

null hypothesis is either rejected or not based on the bootstrap procedure given below.

• Step 1: Resample n subjects with replacement from

{(Y ps
ij , Xij, tij) : i = 1, . . . , n, j = 1, . . . , Ni}

to obtain the bootstrap sample {(Y ps∗
ij , X∗ij, t

∗
ij) : i = 1, . . . , n, j = 1, . . . , N∗i }.

• Step 2: Repeat the above resampling procedure B times.

• Step 3: Obtain the test statistic vector from each bootstrap sample and derive

the center of mass µM and the sample covariance ΣM of all test statistic vectors

obtained from all the bootstrap samples. Then determine the sample distribution

of all Mahalanobis distances.

• Step 4: Take the (1− α) percentile M1−α of the Mahalanobis distances obtained in

Step 3 and reject the null hypothesis (10) if (A>α̂−a−µM)>ΣM(A>α̂−a−µM) >

M1−α, else do not reject the null hypothesis.

7 Conclusion

The RQF method was introduced in the varying coefficient model setting by Li et al.

(2011) as well as its theoretical motivation. They illustrated on simulations the RQF

method and showed that it is competitive with other methods in the literature. In this
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paper, we have extended it to varying coefficient models for longitudinal data with intra-

subject correlation. This method stands on its own due to its simplicity.

The simulations have shown that the RQF method is more powerful with considerably

less computing time than the bootstrap method of Huang et al. (2002). Moreover, the

RQF method allows to test a series of hypothesis, by adjusting the transformation matrix

on the coefficients, see (10). For example one could test simultaneously whether certain

coefficient functions are constant, constant with a prespecified constant, polynomial, etc.

Moreover, we paid attention to the situation where the correlation matrix V is unknown

by providing a bootstrap approach which is of the same spirit as the RQF method.
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Appendix A Notation

1. For a real valued function h on T , ‖h‖∞ = supt∈T |h(t)| denotes its supremum norm,

while for a real vector valued function h = (h1, . . . , hm)′, we let its supremum norm

be ‖h‖∞ = max16i6m ‖hi‖∞.

2. Let G = G0 × . . . × Gd. Define the function g∗(t) = (g∗0(t), . . . , g∗d(t))
′ such that

‖β − g∗‖∞ = ρn = infg∈G ‖β − g‖∞. Let α∗ denote the corresponding coefficient

vector, i.e. g∗(t) = B(t)α∗. Throughout we assume that limn→∞ ρn = 0, i.e., the

unknown function β can be uniformly approximated by spline functions of a certain

degree.
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Appendix B Assumptions

Assumption 1. 1. The observation times tij, j = 1, . . . , Ni, i = 1, . . . , n, are chosen

independently according to a distribution function FT (t) on T . Moreover, they are

independent of the response and the covariate process {(Yi(t), Xi(t))}, i = 1, . . . , n.

The distribution function FT (t) has a Lebesgue density fT (t) that is bounded away

from zero and infinity, uniformly over all t ∈ T , that is, there exist positive constants

M1 and M2 such that M1 6 fT (t) 6M2 for t ∈ T .

2. The eigenvalues η0(t), . . . , ηd(t) of Σ(t) = E(X(t)X(t)′) are bounded away from zero

and infinity, uniformly over all t ∈ T , that is, there exist positive constants M3 and

M4 such that M3 6 η0(t) 6 . . . 6 ηd(t) 6M4 for t ∈ T .

3. There exists a positive constant M5 such that |Xp(t)| 6 M5 for t ∈ T and p =

0, . . . , d.

4. There exists a positive constant M6 such that E(ε(t)2) 6M6 <∞ for t ∈ T .

5. lim supn
maxpKp

minpKp
<∞.

These conditions are commonly used (e.g. Huang et al. (2004)) and are satisfied in many

practical examples. As for Assumption 1.1, when dealing with deterministic time points

we can replace this assumption by

sup
t∈T
|Fn(t)− FT (t)| = o(1/Kp),

for some distribution function FT having a Lebesgue density function fT which is bounded

away from zero and infinity, uniformly over t ∈ T , where Fn(t) = 1
n

∑n
i=1

1
Ni

∑Ni

j=1 1tij<t
and 1tij<t is the indicator function (Huang et al. (2004)). Note that we do not assume

zero modeling bias, since we allow the knots to increase to infinity.

Appendix C Theorem of Tan (1977)

In the proof of Theorem 3 and 4 we need the following Lemma, based on Theorem 3.1 of

Tan (1977).

Lemma 1. Let Z ∼ Np(µ,V) with V invertible and Q = Z′AZ, where A is a real sym-

metric matrix. Then Q =
∑k

i=1 λiχ
2(ri, θ

2
i ) where χ2(ri, θ

2
i ) are independent noncentral

chi-square variables, λ1, . . . , λk are the nonzero distinct eigenvalues of VA with algebraic

multiplicities r1, . . . , rk respectively, and

θ2j = µ′V−1Ejµ,
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where VA has the spectral decomposition VA =
∑k

j=1 λjEj. Moreover, we have that

µ′Aµ =
k∑
j=1

λjθ
2
j .

Appendix D Proof of Theorem 1

Proof. Under hypothesis H1 we have that βp(t) =
∑

l αplBpl(t; qp) and αpl = cp for l =

1, . . . ,mp; p = 0, . . . , d. Therefore E(Y˜ |X ) = U˜α and

L˜ ′1α̂˜ ∼ Ndim−d−1(0, σ
2L˜ ′1(U˜ ′U˜ )−1U˜ ′V˜−1U˜ (U˜ ′U˜ )−1L˜1) =: Ndim−d−1(0,Σ1),

hence we find that

Q2 = α̂˜ ′L˜1Σ
−1
1 L˜ ′1α̂˜ ∼ χ2(dim− d− 1).

The specified distribution of Q1 ∼
∑k

i=1 λiχ
2(ri, θ

2
i ) follows from Lemma 1 in Appendix

C with 0 =
∑

i λiθ
2
i . We now show that

∑k
i=1 ri = N − dim and that all θi = 0. Note

that the idempotent matrix (IN − PU˜) has eigenvalues 0 and 1. Therefore we have the

decomposition IRN = E0 + E1, where Eb is the eigenspace corresponding to the eigenvalue

λ = b of the matrix (IN − PU˜). Moreover, E1 has dimension trace(IN − PU˜) = N − dim.

Denote by E ′0 the eigenspace of the eigenvalue λ = 0 of the matrix V˜ (IN − PU˜). One

can verify that E0 = E ′0. Hence, in order to find the eigenvectors corresponding to a

nonzero eigenvalue we can restrict to the space E1 ⊂ IRN . This also means that the λi are

eigenvalues of V˜ . Since V˜ is positive definite and the fact 0 =
∑

i λiθ
2
i , we obtain that

all θi = 0. The eigenspace of V˜ has dimension N , therefore

k∑
i=1

ri = N − dim.

It remains to show that Q1 and Q2 are independent. By Theorem 3.2 of Tan (1977) Q1

and Q2 are independent if and only if

V˜ (IN − PU˜)V˜V˜−1U˜ (U˜ ′U˜ )−1L˜1(L˜ ′1(U˜ ′U˜ )−1U˜ ′V˜−1U˜ (U˜ ′U˜ )−1L˜1)
−1

L˜ ′1(U˜ ′U˜ )−1U˜ ′V˜−1V˜ = 0. (12)

It takes a small effort to verify the equation above by noting that PU˜U˜ = U˜ . �

Appendix E Proof of Theorem 2

Proof. The proof of this theorem is along the same lines as the proof of Theorem 3 in

Li et al. (2011), some of the details are however different due to our longitudinal setting.
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Recall the definition of α∗ (see Appendix A). Set δ = E[Y|X ]−Uα∗, then ‖δ‖∞ = O(ρn).

We can also write Y˜ = U˜α∗ + W1/2δ + W1/2ε, so that under hypothesis H0 we obtain

Y˜ ∼ N(U˜α∗ + W1/2δ, σ2V˜ ).

Note that L′2α
∗ = 0 under H0, hence

L˜ ′2α̂˜ = L˜ ′2(U˜ ′U˜ )−1U˜ ′V˜−1W1/2ε+ L˜ ′2(U˜ ′U˜ )−1U˜ ′V˜−1W1/2δ,

so

L˜ ′2α̂˜ ∼ Nmp−1(L˜ ′2(U˜ ′U˜ )−1U˜ ′V˜−1W1/2δ, σ2L˜ ′2(U˜ ′U˜ )−1U˜ ′V˜−1U˜ (U˜ ′U˜ )−1L˜2).

Denote Σ2 := Cov(L˜ ′2α̂˜). We define

ξ0 := (W1/2ε)′V˜−1U˜ (U˜ ′U˜ )−1L˜2Σ
−1
2 L˜ ′2(U˜ ′U˜ )−1U˜ ′V˜−1W1/2ε ∼ χ2(mp − 1).

Using Lemma 1, we obtain that

η0 := (W1/2ε)′(IN − PU˜)(W1/2ε) ∼
l∑

i=1

λiχ
2(ri),

ξ1 := Y˜ ′V˜−1U˜ (U˜ ′U˜ )−1L˜2Σ
−1
2 L˜ ′2(U˜ ′U˜ )−1U˜ ′V˜−1Y˜ ∼ χ2(mp − 1, γ2),

η1 := Y˜ ′(IN − PU˜)Y˜ ∼
k∑
i=1

λiχ
2(ri, θ

2
i ),

where γ2 and θ2i are specified in Lemma 1. Denote τ0 = η0
ξ0

and τ1 = η1
ξ1

. To prove Theorem

2, we need to show that

lim
n→∞

(Fτ1(t)− Fτ0(t)) = 0 uniformly in t > 0. (13)

Some mathematical preparation is needed to prove (13). The Takagi factorization of

(IN − PU˜) leads to a matrix G ∈ IR(N−dim)×N such that

G′G = (IN − PU˜), GG′ = IN−dim.

Throughout ‖A‖ (‖c‖) denotes the Frobenius (Euclidean) norm of a matrix A (vector c),

and 〈a,b〉 denotes the standard inproduct of vectors a,b. Let ζ = (ζ1, ζ2, . . . , ζN−dim)′ =

GW1/2ε, then η0 = ‖GW1/2ε‖22 =
∑N−dim

i=1 ζ2i where

ζ ∼ N(0,Gσ2V˜G′).

Let ν = (ν1, ν2, . . . , νN−dim)′ = GW1/2δ. Note that if δ = 0, then there is nothing to

prove since in that case ξ0 = ξ1 and η0 = η1, so we proceed with the case δ 6= 0. We also

have that

N − dim = Rank(G′G) ≤ min(Rank(G′), Rank(G)) = Rank(G) ≤ N − dim,
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from which it follows that ν 6= 0. Define an orthogonal transformation T ∈ IR(N−dim)×(N−dim)

with first row equal to ν ′/‖ν‖ and let

ζ∗ = (ζ∗1 , ζ
∗
2 , . . . , ζ

∗
N−dim)′ := Tζ.

We obtain the expressions

η0 = ‖GW1/2ε‖22 =
N−dim∑
i=1

(ζ∗i )2

η1 = ‖GW1/2ε+ GW1/2δ‖22 = ‖GW1/2ε‖2 + ‖GW1/2δ‖2 +

2〈GW1/2ε,GW1/2δ〉
= ‖ζ‖2 + ‖ν‖2 + 2〈ζ,ν〉
= ‖ζ‖2 + ‖ν‖2 + 2ζ∗1‖ν‖

= (‖GW1/2δ‖+ ζ∗1 )2 +
N−dim∑
i=2

(ζ∗i )2 .

Therefore

|η1 − η0| ≤ ‖GW1/2δ‖2 + 2‖GW1/2δ‖|ζ∗1 |
E(|η1 − η0|) ≤ ‖GW1/2δ‖2 + 2‖GW1/2δ‖E(|ζ∗1 |)

= ‖GW1/2δ‖2 + 2‖GW1/2δ‖
√

2

π

√
Var(ζ∗1 ), (14)

since for a mean zero normal variable Z we have the property E(|Z|) =
√

2
π

Var(Z).

Now Var(ζ∗) = Var(Tζ) = TGσ2V˜G′T′ and TGG′T′ = IN−dim. We want to bound

Var(ζ∗1 ). Let b = (b1, b2, . . . , bN) denote the first row of the orthogonal matrix TG,

then we know ‖b‖ = 1, also denote by c1, . . . , cN the columns of σ2V˜ . Using the fact

〈b, ci〉 ≤ σ2 maxni=1wi
√
Ni which is obtained by the Cauchy-Schwarz inequality, and the

symmetric property of σ2V˜ , we have that

Var(ζ∗1 ) =
N∑
i=1

bi〈b, ci〉 ≤
N∑
i=1

|bi〈b, ci〉| ≤
N∑
i=1

|〈b, ci〉| ≤ σ2N
n

max
i=1

wi
√
Ni.

Using the previous inequality, we can continue from equation (14) to obtain

E(|η1 − η0|) ≤ ‖GW1/2δ‖2 + 2‖GW1/2δ‖
√

2

π
σ

√
N

n
max
i=1

wi
√
Ni. (15)

Let H = 1
σ
Σ
−1/2
2 L˜ ′2(U˜ ′U˜ )−1U˜ ′W−1/2V−1/2, then HH′ = Imp−1, ξ0 =

‖HV−1/2ε/σ‖2 and ξ1 = ‖HV−1/2ε/σ+ HV−1/2δ/σ‖2. Analogously as in (15) we obtain

E(|ξ1 − ξ0|) ≤ ‖HV−1/2δ/σ‖2 + 2‖HV−1/2δ/σ‖
√

2

π
, (16)
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since for any orthogonal transformation T2 ∈ IR(mp−1)×(mp−1), the variance of the first

component of κ∗ := T2κ, where κ = HV−1/2ε/σ is obtained by the entry with index

(1, 1) of the matrix

Cov(κ∗) =
1

σ2
T2HV−1/2σ2VV−1/2H′T′2 = Imp−1.

Note that GW1/2ε and HV−1/2ε/σ are independent multivariate normal random vectors,

because on the one hand

Cov(GW1/2ε,HV−1/2ε/σ) = GW1/2V1/2H′,

on the other hand, by the same argument as in (12)

G′GW1/2V1/2H′H = 0,

from which we find that

GG′GW1/2V1/2H′HH′ = GW1/2V1/2H′ = 0.

Hence

Cov(GW1/2ε,HV−1/2ε/σ) = 0.

Fix a t > 0, then

Fτ1(t)− Fτ0(t) = P

(
η1
ξ1
< t

)
− P

(
η0
ξ0
< t

)
= P

(
η1
ξ1
< t

)
− P

(
η1
ξ0
< t

)
+ P

(
η1
ξ0
< t

)
− P

(
η0
ξ0
< t

)
≤ P

(
η1
ξ1
< t

)
− P

(
η1
ξ0
< t

)
. (17)

For the last inequality, since η1 and ξ1 are independent, and η1 and ξ0 are independent,

we have that

P

(
η1
ξ0
< t

)
= Eξ0{P (η1 ≤ tξ0)|ξ0}

= Eξ0{
∫
‖x+GW1/2δ‖2≤tξ0

f(x)dx |ξ0}

= Eξ0{
∫
‖x‖2≤tξ0

f(x−GW1/2δ)dx |ξ0}

≤ Eξ0{
∫
‖x‖2≤tξ0

f(x)dx |ξ0}

= P

(
η0
ξ0
< t

)
,

where f is the density function of the multivariate normal distribution

NN−dim(0,Gσ2V˜G′).
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Continuing from equation (17) with k a positive real number

P

(
η1
ξ1
< t

)
− P

(
η1
ξ0
< t

)
= P (ξ0 ≤ η1/t)− P (ξ1 ≤ η1/t)

= P (ξ1 ≤ η1/t, ξ0 ≤ η1/t) +

P (ξ1 > η1/t, ξ0 ≤ η1/t)− P (ξ1 ≤ η1/t)

≤ P (ξ1 > η1/t, ξ0 ≤ η1/t)

= P (ξ1 > η1/t, η1/t− k ≤ ξ0 ≤ η1/t) +

P (ξ1 > η1/t, ξ0 < η1/t− k)

≤ P (η1/t− k ≤ ξ0 ≤ η1/t) + P (ξ0 − ξ1 < −k)

≤ Mξ0k +
1

k
E(|ξ0 − ξ1|), (18)

where Mξ0 is the maximum of the density function of ξ0 (the Markov inequality is applied

in (18)). Substitute

k =

√
E(|ξ0 − ξ1|)

Mξ0

in (18) to find that

P

(
η1
ξ1
< t

)
− P

(
η1
ξ0
< t

)
≤ 2
√
Mξ0 E(|ξ0 − ξ1|),

and by (17) we obtain that for all t ≥ 0

Fτ1(t)− Fτ0(t) ≤ 2
√
Mξ0 E(|ξ0 − ξ1|).

On the other hand, we obtain in a similar fashion

Fτ1(t)− Fτ0(t) = P

(
η1
ξ1
< t

)
− P

(
η0
ξ0
< t

)
= P

(
η1
ξ1
< t

)
− P

(
η0
ξ1
< t

)
+ P

(
η0
ξ1
< t

)
− P

(
η0
ξ0
< t

)
≥ P

(
η1
ξ1
< t

)
− P

(
η0
ξ1
< t

)
= −P (η0 ≤ tξ1)− P (η1 ≤ tξ1)

= −P (η1 ≤ tξ1, η0 ≤ tξ1) + P (η1 > tξ1, η0 ≤ tξ1)−
P (η1 ≤ tξ1)

≥ −P (η1 > tξ1, η0 ≤ tξ1)

= −P (η1 > tξ1, tξ1 − k ≤ η0 ≤ tξ1)+

P (η1 > tξ1, η0 ≤ tξ1 − k)

≥ −P (tξ1 − k ≤ η0 ≤ tξ1) + P (η0 − η1 < −k)

≥ −Mη0k +
1

k
E(|η0 − η1|), (19)
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where Mη0 is the maximum of the density function of the random variable η0. Substitute

in (19)

k =

√
E(|η0 − η1|)

Mη0

to finally establish

∀t > 0 : −2
√
Mη0 E(|η0 − η1|) ≤ Fτ1(t)− Fτ0(t) ≤ 2

√
Mξ0 E(|ξ0 − ξ1|). (20)

Note that

‖HV−1/2δ/σ‖2 ≤ ‖V−1/2δ/σ‖2 = O(Nρ2n‖V−1/2‖2)
‖GW1/2δ‖2 ≤ ‖W1/2δ‖2 = O

(
Nρ2nwmax

)
since H′H and G′G are idempotent matrices, thus 0 and 1 are the only eigenvalues. Then

by (14),(16) and (20), it follows that

|Fτ1(t)− Fτ0(t)| = O

(√
Mξ0

(
Nρ2n‖V−1/2‖2 +

√
Nρn‖V−1/2‖

))
+

O

(√
Mη0

(
Nwmaxρ2n +Nwmaxρn

√
max
i
wiN

1/2
i

))
.

�

Appendix F Rate of convergence

In Theorem 2 we assume (9). We shed more light on this rate by assuming that Nmax

Nmin
is

bounded (Nmax = maxi=1,...,nNi and Nmin = mini=1,...,nNi),
N

3/2
max

n
= o(1) and dim

n
= o(1).

Suppose that subjects with equal number of repeated measurements have the same time

points, we do not need this assumption if the correlation structure does not depend on

time, as is the case with any time independent correlation structure.

For the first part we use the fact that Mξ0 = O

(
1√
mp−1

)
(Li et al. (2011)), thus the first

part is bounded by √√√√(Nρ2n‖V−1/2‖2√
mp

+

√
Nρn‖V−1/2‖√

mp

)
.

Bounding Mη0 For the second part, we note that there is no closed form expression

of the density function of a linear combination of chi-square variables (see Bausch (2013)

25



among others). However, we obtain a reasonable bound on Mη0 which is the maximum

of the density of
∑k

i=1 λiχ
2(ri).

First, it does not hold that ri = 1 for all i. To prove this, suppose otherwise, i.e. ri = 1

for all i. Then, by Theorem 1, we have k =
∑k

i=1 ri = N −dim. Next, we obtain a bound

on k. We argue, as in the proof of Theorem 1, that to find a bound on k we restrict

to the eigenspace E1 ⊂ IRN of eigenvalue 1 of (IN − PU˜). Thus, restricting to E1, we

only look at the number of positive eigenvalues of W1/2VW1/2 which is a block diagonal

matrix. By the restriction on the time points (see above), W1/2VW1/2 contains at most

Nmax − Nmin + 1 different block matrices with dimensions not exceeding Nmax. Hence,

the number of different positive eigenvalues does not exceed Nmax(Nmax −Nmin + 1), i.e.

k ≤ Nmax(Nmax −Nmin + 1). By assumption all ri = 1, thus it should hold

N − dim =
∑
i

ri = k ≤ Nmax(Nmax −Nmin + 1). (21)

Divide (21) by N , since Nmax/Nmin is bounded by C > 0 and Nmax/n→ 0, we obtain from

the previous inequality using also the fact N ≥ nNmin, that the left hand side is 1 + o(1)

while the right hand side is o(1). This is a contradiction. Hence, there is a 1 ≤ j ≤ k

such that rj > 1.

Also, we can write
∑k

i=1 λiχ
2(ri) as a sum of a scaled chi-square distribution λmaxχ

2(rλmax)

and the remaining part, where λmax := maxi λi is assumed to be an eigenvalue of a vector

in E1. Moreover, we assume that rλmax > 1. The density of this sum is a convolution

which is bounded by O( 1
λmax

) (after a small calculation). Moreover, by Theorem 2.1 of

Wolkowicz and Styan (1980) we know that

λmax ≥
Tr(W1/2VW1/2)

N
=

n∑
i=1

Niwi/N ≥ wmin

since V contains only ones on its diagonal. Hence we derived Mη0 = O(1/wmin).

Bound on (9) By the discussion above, we have the following bound on (9)√√√√(Nρ2n‖V−1/2‖2√
mp

+

√
Nρn‖V−1/2‖√

mp

)
+

√(
wmax

wmin

Nρ2n +N
wmax

wmin

ρn

√
max
i
wiN

1/2
i

)
.
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