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Abstract

This paper concerns a robust variable selection method in multiple linear regression: the
robust S-nonnegative garrote variable selection method. In this paper the consistency of
the method, both in terms of estimation and in terms of variable selection, is established.
Moreover, the robustness properties of the method are further investigated by providing a
lower bound for the breakdown point, and by deriving the influence function. The provided
expressions nicely reveal the impact that the choice of an initial estimator has on the robust-
ness properties of the variable selection method. Illustrative examples of influence functions
for the S-nonnegative garrote as well as for the original (non-robust) nonnegative garrote
variable selection method are provided.
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1 Introduction

Ordinary least squares regression is often used to fit a linear model. When many variables are
measured, these models become difficult to interpret. To improve the interpretability of such a
model, variable selection methods were introduced. A possible approach for variable selection
is to add a penalty term on the regression coefficients to the objective function of ordinary least
squares regression. For example, the Bridge (Frank and Friedman, 1993; Fu, 1998) and the Least
Absolute Shrinkage and Selection Operator (LASSO, Tibshirani, 1996) both use an Lq-type of
penalty on the regression coefficients, with q < 1 and q = 1 respectively. The Smoothly Clipped
Absolute Deviation (SCAD) penalty is used by Fan and Li (2001). This penalty function gλ
satisfies gλ(0) = 0 and its first-order derivative is given by

g′λ(θ) = λ

{
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ)

}
,

for some a > 2 and θ > 0, and with λ > 0 a regularization parameter. Herein I(A) denotes the
indicator function, i.e. I(A) = 1 if A holds, and 0 if A does not hold. Another approach consists
of the nonnegative garrote method proposed by Breiman (1995). Here one firstly computes the
ordinary least squares estimator (OLS), and then shrinks or puts some coefficients of the OLS
equal to zero.

The main disadvantage of these methods is that they are not robust to outliers. Therefore,
robust versions of the LASSO, SCAD and nonnegative garrote method are proposed in the
literature. For the LASSO, different robust alternatives, such as the LAD-LASSO (Wang et al.,
2007), the WLAD-LASSO (Arslan, 2012) and the Sparse LTS (Alfons et al., 2013), have been
developed in the literature. The LAD-LASSO is a penalized least absolute deviation estimator
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that is consistent in estimation and variable selection, but it is not robust to outliers that are
also outliers in the covariates (i.e. leverage points). Therefore, the WLAD-LASSO is proposed.
This method applies the LAD-LASSO to the data set in which each observation is weighted
using weights computed with robust distances. Arslan (2012) proved that the WLAD-LASSO
is also consistent in estimation and variable selection. The Sparse LTS is a trimmed version of
LASSO, that is robust to vertical outliers and leverage points. Its breakdown point is computed
in Alfons et al. (2013) and Öllerer et al. (2015) derived its influence function. A robust version
of the SCAD that is consistent in estimation and variable selection, is proposed by Wang and
Li (2009). Wang et al. (2013) proposed a penalized robust regression estimator based on the
exponential squared loss function, where the penalty function can be of any type. They also
proved that this method is consistent in estimation and variable selection and they computed
its breakdown point and influence function. In a mean shift regression model with normal
errors Xiong and Joseph (2013) consider regression with outlier shrinkage. The computational
complexity of such an estimator is comparable to that of an LTS estimator.

Since the theoretical properties of the nonnegative garrote method are well studied in the
literature (Yuan and Lin, 2007) and are extended to variable selection in additive regression
models and varying coefficient models by Antoniadis et al. (2012a,b), Gijbels and Vrinssen
(2015) investigated different robust versions of this variable selection method, among others the
S-nonnegative garrote method. An extensive simulation study shows that the S-nonnegative
garrote method performs quite well, also in comparison with competitors.

In this paper we provide some theoretical properties of the S-nonnegative garrote method. In
Section 2 we state the model assumptions and briefly explain the S-nonnegative garrote. Section
3 establishes oracle properties for this method. In Section 4 we prove that the S-nonnegative
garrote method is consistent in variable selection and estimation. In Section 5 its breakdown
point is established and in Section 6 we derive its influence function. Some illustrations regarding
the influence function are provided. The proofs of the theoretical results are deferred to Section
7.

2 Robust nonnegative garrote variable selection procedure

Consider a multiple linear regression model

Yi =

p∑

j=1

Xijβj + εi, (1)

with (Xi1, . . . ,Xip, Yi), i = 1, . . . , n, independent and identically distributed observations from
(X1, . . . ,Xp, Y ), satisfying the model Y =

∑p
j=1Xjβj + ε, where Y is the response, X =

(X1, . . . ,Xp)
T is a vector with the p covariates with AT denoting the transpose of a matrix or

vector A, β = (β1, . . . , βp)
T is the vector of unknown regression coefficients and ε is the error

term with mean 0 and variance σ2. We denote Xi = (Xi1, . . . ,Xip)
T, for i = 1, . . . , n, and

X = (X1, . . . ,Xn)
T. An intercept is included in the model by setting all elements in the first

column of X equal to one. We further assume that the model is sparse, i.e. β =
(
βT
S ,β

T
N
)T

with
S denoting the set of indices containing the non-zero (“to be selected”) regression coefficients,
S = {j : βj 6= 0} and N denoting the set of indices containing the zero (“not to be selected”)
regression coefficients, N = {j : βj = 0}. Throughout this paper we will also use this notation
to partition other vectors and matrices into vectors (or matrices) related to the non-zero and
zero regression coefficients, e.g. X = (XS ,XN ), where XS and XN contain the columns of X
related to βS and βN respectively.

As explained in Section 1, the original nonnegative garrote method of Breiman (1995) starts
from an initial estimator, for example the ordinary least squares estimator, and then it shrinks
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or puts some coefficients βj of the initial estimator equal to zero using the nonnegative garrote

shrinkage factors. More precisely, let β̂OLS
j denote the initial least squares estimator of the

coefficient βj , the nonnegative garrote shrinkage factors ĉ = (ĉ1, . . . , ĉp)
T are found by solving





ĉ = argmin
c





1

2n

n∑

i=1


Yi −

p∑

j=1

cj β̂
OLS
j Xij




2

+ λn

p∑

j=1

cj





s.t. cj ≥ 0 (j = 1, . . . , p),

(2)

where c = (c1, . . . , cp)
T and for a given regularization parameter λn > 0. The nonnegative

garrote estimator of the coefficient βj , j = 1, . . . , p, is then given by

β̂NNG
j = ĉj β̂

OLS
j .

In analogy with the original nonnegative garrote procedure, the S-nonnegative garrote method
now starts from a robust initial estimator, such as the MM-estimator (Yohai, 1987) or the τ -
estimator (Yohai and Zamar, 1988), and it uses the S-nonnegative garrote shrinkage factors to
shrink or put some coefficients of this robust initial estimator equal to zero. Denote the initial
estimator with β̂ init

j , β̂ init
j Xij with Zij, for j = 1, . . . , p and i = 1, . . . , n, Zi = (Zi1, . . . , Zip)

T

and Z = (Z1, . . . ,Zn)
T. The S-nonnegative garrote shrinkage factors ĉ = (ĉ1, . . . , ĉp)

T are found
by solving





ĉ = argmin
c



σ̂ (r(c)) + λn

p∑

j=1

cj





s.t. cj ≥ 0 (j = 1, . . . , p),

(3)

where σ̂ (r(c)) solves the equation

1

n

n∑

i=1

ρ

(
Yi −

∑p
j=1 cjZij

σ̂ (r(c))

)
= b,

with r(c) = (r1, . . . , rn)
T with ri = Yi −

∑p
j=1 cjZij, i = 1, . . . , n, ρ a loss function satisfying

Assumption 4.2 in Section 4 and b = E(ρ(Z)), with Z standard normally distributed. The
S-nonnegative garrote estimator of the coefficient βj , j = 1, . . . , p, is then given by

β̂S-NNG
j = ĉj β̂

init
j . (4)

When the initial estimator β̂ init
j is equal to zero, we also set the S-nonnegative garrote shrinkage

factor ĉj equal to zero.
As explained in Gijbels and Vrinssen (2015) this optimization problem can be approximated

by a weighted quadratic programming problem that suggests an iterative procedure. Let ĉ0 be
the current value of c in the iteration procedure. Then, the value of c in the next iteration step
can be found by solving the optimization problem




ĉ = argmin

c

{
1
2c

TZTWS(ĉ
0)Zc−

(
ZTWS(ĉ

0)Y− λn

ωS(ĉ0)
1p

)T
c

}

s.t. cj ≥ 0 (j = 1, . . . , p),
(5)

whereWS(c) = diag(WS,i(c)) ∈ R
n×n withWS,i(c) =

ρ′(ri(c)/σ̂(r(c)))
ri(c)/σ̂(r(c))

, ωS(c) =
σ̂(r(c))

rT(c)WS(c)r(c)

and Y = (Y1, . . . , Yn)
T.
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Based on Zou (2006), the S-nonnegative garrote method can also be reformulated as





β̂
S-NNG

= argmin
β



σ̂ (r(β)) + λn

p∑

j=1

|βj |
|β̂ init

j |





s.t. βj β̂
init
j ≥ 0 (j = 1, . . . , p),

(6)

where σ̂(r(β)) solves

1

n

n∑

i=1

ρ

(
Yi −

∑p
j=1 βjXij

σ̂ (r(β))

)
= b,

with r(β) = (r1(β), . . . , rn(β))
T and ri(β) = Yi −

∑p
j=1 βjXij , i = 1, . . . , n. If the initial

estimator β̂ init
j is equal to zero, we also set the S-nonnegative garrote estimator β̂S-NNG

j equal to
zero.

Throughout this paper we will use the following matrix and vector norm. Let A be a matrix

of size m×n. The L2-norm of A is defined as ‖A‖2 = max
x6=0n

‖Ax‖2
‖x‖2 , where x is a non-null vector

of dimension n× 1 and ‖x‖2 =
√∑n

i=1 |xi|2 is the usual L2-norm of a vector x.

3 Oracle properties

In this section we establish the so-called oracle properties of the S-nonnegative garrote, more
precisely of the minimizer of (5), for a given (fixed) ĉ0. Oracle properties are related to looking
at the situation that the set of non-zero coefficients is known, i.e. the set S is known, and one
focuses on estimation of these non-zero coefficients. Recall that the (sub)vector of true non-zero
regression coefficients is denoted by βS and denote the corresponding S-nonnegative garrote

estimator by β̂
S-NNG

S . All asymptotic results in this paper are for fixed p number of covariates.
The oracle properties are derived from the fact that there is a close relation between the

adaptive Lasso and the nonnegative garrote. Indeed, Zou (2006) shows that (2) is equivalent to
solving





β̂
NNG

= argmin
β





1

2n

n∑

i=1


Yi −

p∑

j=1

βjXij




2

+ λn

p∑

j=1

|βj |
|β̂OLS

j |





s.t. β̂OLS
j βj ≥ 0 (j = 1, . . . , p),

(7)

where ĉj =
β̂NNG
j

β̂OLS
j

.

Since weightsWS,i(ĉ
0) are introduced in (5), this S-nonnegative garrote optimization problem

is related to the adaptive Lasso optimization problem in heteroscedastic models (Wagener and
Dette (2013)). Wagener and Dette (2013) consider a heteroscedastic linear regression model

Y = Xβ +Σ(β)ε̃, (8)

where Y = (Y1, . . . , Yn)
T, and where the errors ε̃ = (ε̃1, . . . , ε̃n)

T satisfy E(ε̃i) = 0, Var(ε̃i) = 1
and Σ(β) =diag(σ(X1,β), . . . , σ(Xn,β)), revealing the heteroscedasticity. The S-NNG optim-
ization problem (5) is equivalent to an unweighted adaptive Lasso optimization problem (see
the terminology used in Wagener and Dette (2013)) with extra constraint in a heteroscedastic
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regression model:





β̂
S-NNG

= argmin
β





1

2n

n∑

i=1




Yi −
p∑

j=1

βjXij

W
−1/2
S,i (ĉ0)




2

+
λn

ωS(ĉ0)

p∑

j=1

|βj |
|β̂initj |





,

s.t. β̂initj βj ≥ 0 (j = 1, . . . , p).

(9)

Define X̄ = (X̄S , X̄N ) = W
1/2
S (ĉ0)X, Ȳ = W

1/2
S (ĉ0)Y and denote by X̄ij the (i, j)-th

element of the matrix X̄. With these notations, it can be seen that our model context leads to

Ȳ = X̄β +W
1/2
S (ĉ0)σε̃ which is of the form (8). Furthermore, let CSS = 1

nX̄
T
S X̄S .

In order to prove the oracle properties of the S-NNG, we need the following assumptions.

Assumption 3.1.

1.
1

n

n∑

i=1

X̄2
ij = 1, for all j = 1, . . . , p.

2. There exists a constant B > 0 such that the initial estimator β̂
init

satisfies

lim
n→∞

P (Bmin
j∈S

|β̂initj | < min
j∈S

|βj |) = 0,

3. There exists a sequence rn → ∞ such that the initial estimator satisfies

lim
n→∞

P (max
j∈N

|β̂initj | ≥ 1

rn
) = 0.

4. The sequences λn and rn satisfy

• λn

ωS(ĉ0)
√
n
→ constant ∈ R, as n→ ∞,

• lnn
√
nωS(ĉ

0)
λnrn

→ 0, as n→ ∞.

5. There exists constants κ1 and κ2, such that

0 < κ1 ≤ λmin(CSS) ≤ λmax(CSS) ≤ κ2 <∞,

where λmin(CSS) and λmax(CSS) are the smallest and largest eigenvalue of CSS respect-
ively.

6. There exists a constant σ̄ such that 0 < W−1
S,i (ĉ

0) ≤ σ̄ <∞, for all i = 1, . . . , n.

7. λn

ωS(ĉ0)
√
n
→ 0, as n→ ∞.

8. 1
n max1≤i≤n ‖X̄S,i‖22 = 1

n max1≤i≤n

(
WS,i(ĉ

0)‖XS,i‖22
)
→ 0, where X̄T

S,i is the i-th row of

X̄S , as n→ ∞.

The next theorem states the sign consistency of the S-nonnegative garrote estimator, in the
sense that

lim
n→∞

P (β̂
S-NNG

=s β) = 1,

where β̂
S-NNG

=s β means that each component of β̂
S-NNG

has the same sign as the corres-
ponding component of β. Since the sign of 0 is defined as 0, sign consistency implies variable
selection consistent (in the sense of Theorem 4.1.2).
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Theorem 3.1. Under Assumptions 3.1.1-3.1.6, the S-nonnegative garrote estimator β̂
S-NNG

obtained from (4) using the minimizer of (5), is sign consistent for β.

Proof. This theorem immediately follows from Theorem 4.1 of Wagener and Dette (2013) and
the equivalence between the nonnegative garrote and the adaptive Lasso with extra sign con-
straint in (9). Wagener and Dette (2013) give the sign consistency of the adaptive Lasso in a
heteroscedastic model.

Furthermore we have to verify that the extra sign constraint in (9) is satisfied, with probab-
ility tending to 1. The proof of the latter is similar to the proof of Corollary 2 in Zou (2006).

The asymptotic normality oracle property (Theorem 3.2) follows from Theorem 4.2 in Wa-
gener and Dette (2013) for the adaptive Lasso in a heteroscedastic model. It establishes the
asymptotic normality result of the estimated parameters, restricted to the true non-zero ones
(i.e. in a restricted parameter space).

Theorem 3.2. Let Assumption 3.1 hold. Then for all ᾱn ∈ R
|S| (where |S| is the size of S)

with ‖ᾱn‖2 = 1, the following holds
√
n

sn
ᾱT

n (β̂
S-NNG

S − βS)
D→ N(0, 1), asn→ ∞,

where s2n = 1
nσᾱ

T
nC

−1
SSX̄

T
SW

1/2
S (ĉ0)X̄SC

−1
SSᾱn.

4 Consistency

In this section we establish that the S-nonnegative garrote estimator is consistent in estimation
and variable selection. The latter means that the estimator tends to estimate a true-zero as a
zero. The results in this section complement these of Section 3, where the essence
(in particular in Theorem 3.2) is that the set of non-zero coefficients S is known (the
oracle situation). In reality however the set S is not known. Note that Theorem 3.1
provides the variable selection consistency of the S-nonnegative garrote estimator,
but under the restricted setting of a given ĉ0 (see the assumptions). An obvious
good choice for this initial vector would be a vector containing one’s (respectively
zero’s) at positions of non-zero (respectively zero) true coefficients, a knowledge
that is available when the set of true (non-zero) coefficients is known.

In this section we also obtain the variable selection consistency of the S-nonnegative
garrote estimator, but under a different (and more realistic) setting. In Section 3
the emphasis was on establishing an asymptotic normality result for the oracle
estimator, whereas in this section the main goal is to establish the estimation con-
sistency of the S-nonnegative garrote estimator, including its rate of convergence.
As such the results in Sections 3 and 4 are complementary.

We need the following assumptions on the data:

Assumption 4.1.

1. The matrix 1
nX

T
SXS is invertible.

2. There exists M > 0 such that |Xij | < M for all j = 1, . . . , p, i = 1, . . . , n.

3. εi = O(1), almost surely (with probability one), as n→ ∞, for all i = 1, . . . , n.

4. P (XT
i θ = 0, ∀i = 1, . . . , n) < 0.5 for all θ ∈ R

p \ {0p}, where 0p denotes the null vector
of dimension p.
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5. P (αYi+XT
i θ = 0, ∀i = 1, . . . , n) < 0.5 for all α ∈ R and θ ∈ R

p for which |α|+‖θ‖2 6= 0.

Assumption 4.1.4 implies that the random variables Xi may not be too concentrated on any
subspace of Rp. Assumption 4.1.5 is needed to avoid solutions with σ̂(r(c)) = 0 (see Maronna
and Yohai (1981)). For the loss function we need the following assumptions:

Assumption 4.2. Let ρ : R → R be a real function satisfying the following assumptions:

1. ρ is symmetric, continuously differentiable and ρ(0) = 0.

2. There exists d > 0 such that ρ is strictly increasing on [0, d] and constant on [d,∞) and
such that 0 < ρ(d) = a < +∞.

3. Denoting ψ(u) = ρ′(u), then ψ(u)/u is nonincreasing for u > 0 and 0 ≤ ψ(u)/u ≤ 1.

A loss function that satisfies these assumptions is for example Tukey’s biweight loss function

ρd(x) =





d2

6

(
1−

(
1−

(
x
d

)2)3
)

if |x| ≤ d,

d2

6 if |x| > d.

(10)

Theorem 4.1. Suppose Assumptions 4.1 and 4.2 hold and assume that the initial estimator

β̂
init

is strongly consistent with rate κn, i.e.

‖β − β̂
init‖2 = O(κn), as n→ ∞,

with probability 1, for some κn → 0. If λn tends to 0 in a fashion such that κn = o(λn) and

nλn = O(1), then there exists a minimizer of (5), β̂
S-NNG

, such that

1. ‖β − β̂
S-NNG‖2 = O(λn), as n→ ∞, with probability 1.

2. P
(
β̂ S-NNG
j 6= 0

)
→ 0, as n→ ∞, for any j ∈ N .

This theorem states that the S-nonnegative garrote estimator is strongly consistent with
rate λn. The S-nonnegative garrote estimator has a lower rate of convergence than the initial
estimator, but it has the advantage that it estimates the true-zero coefficients as zero. Suppose
that the initial estimator is strongly consistent with convergence rate κn = n−η, with η > 0,
and that the regularization parameter λn is of order n−ξ, with 0 < ξ < min(η, 1). Then, the
S-nonnegative garrote estimator is strongly consistent with rate n−ξ. A possible initial estimator
for the S-nonnegative garrote method is the ordinary least squares estimator. Chatterjee and
Lahiri (2011) proved that, if E|ε|ζ < ∞ for 1 < ζ < 2, the ordinary least squares estimator is
strongly consistent with convergence rate n−(ζ−1)/ζ . Hence, taking values for the regularization
parameter λn of order n−ξ with 0 < ξ < (ζ − 1)/ζ results in a strongly consistent S-nonnegative
garrote estimator. But using as initial estimator the ordinary least squares estimator would
not lead to a robust procedure. A robust method is obtained by using for example as initial
estimator the least median absolute estimator, proposed in Ip et al. (2003) for which a uniform
strong consistency result was established. As shown in the latter paper this estimator is strongly
consistent with rate O(n−1/4

√
lnn). Taking λn of order n−ξ with 0 < ξ < 1/4 this leads to a

strongly consistent and robust S-nonnegative garrote estimator.
Note that the conditions for the variable selection consistency in the second item of Theorem

4.1, are different from these under which variable selection consistency was obtained in Section
3. Indeed in that section, assumptions are formulated in the situation that ĉ0 and the set S
are given. Consequently, for example, an assumption on the invertibility of 1

nX̄
T
S X̄S is needed

in Section 3 (see Assumption 3.1.5), whereas an assumption on the invertibility of 1
nX

T
SXS is

needed in the current section (see Assumption 4.1.1). Another example is the boundedness
imposed on X̄ij (see Assumption 3.1.1) in Section 3, opposed to the boundedness assumption
on Xij (in Assumption 4.1.2) in the current section.
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5 Breakdown point

Let Pi =
(
XT

i , Yi
)
and Pn = {P1, . . . , Pn}. Assume that Pn is obtained by adding m arbitrary

data points (outliers) to the original uncontaminated sample of size n − m. Without loss of
generality, assume that the m outliers are the first m observed points, i.e. denox te the outliers
by Pm = {P1, . . . , Pm} and the original sample by Pn−m = {Pm+1, . . . , Pn}. The fraction of
outliers in Pn is m

n . Let β̂n = β̂(Pn) denote a regression estimator based on the sample Pn.
The finite sample breakdown point (Donoho and Huber, 1983) of an estimator is defined as

BP(β̂n,Pn−m) = min

{
m

n
: sup
Pm

‖β̂(Pn)− β̂(Pn−m)‖2 = ∞
}
.

Let

anm =
a∗

n−m
=

1

n−m
max

θ∈Rp\{0p}
#{i : m+ 1 ≤ i ≤ n and XT

i θ = 0},

with a∗ the maximum number of Xi, i = m+1, . . . , n, lying on the same subspace. If there are
two covariates, a∗ is the maximum number of Xi’s lying on the same line. When the carriers Xi

are in general position, which means that no more than p of the carriers Xi lie on a hyperplane
of Rp, then a∗ = p. For example, in the case of two covariates, the carriers are in general position
if there are no more than 2 Xi’s on the same line and thus a∗ = 2.

In the sequel we will use a fixed value for λn, namely take λn = λ. A lower bound for the
breakdown point of the S-nonnegative garrote estimator is provided in Theorem 5.1.

Theorem 5.1. Suppose that Assumptions 4.1.4–4.1.5 and 4.2 are satisfied, that b/a = 0.5,

anm < 0.5 and 0 < λ < +∞. Then, if β̂
init

is the initial estimator of β, we have

BP(β̂
S-NNG

,Pn−m) ≥ min

{
BP(β̂

init
,Pn−m),

1− 2anm
2− 2anm

}
.

Regarding the assumption on the loss function in Theorem 5.1 consider, for example, Tukey’s
biweight loss function in (10) for which a = d2/6. A common choice for robust scale estimation
is d = 1.547 (see for example Maronna et al. (2006)) which, with the constraint that b/a = 0.5,
leads to b = 0.1994341.

From Theorem 5.1 we get that, if for example the ordinary least squares estimator (which
has breakdown point 1/n) is used as initial estimator, then the lower bound of the breakdown
point of the S-nonnegative garrote estimator is at most 1/n. This means that this S-nonnegative
garrote estimator may not be robust to outliers. But, if we use a more robust estimator, such
as the S-estimator which has a breakdown point of

([
n
2

]
− p+ 2

)
/n, then the breakdown point

of this S-nonnegative garrote estimator is asymptotically at least 50% when the carriers are in
general position.

6 Influence function

In this section we derive the influence function of the S-nonnegative garrote estimator, for
any given λ > 0. Denote the cumulative distribution function of (XT, Y ) by F . In order to
obtain the influence function we first introduce the functional form of the S-nonnegative garrote
estimator. Like for the sample level (see optimization problem (3)), the functional form of the S-

nonnegative garrote estimator
((

βS-NNG(F )
)T
, σ(F )

)
=
(
βS-NNG
1 (F ), . . . , βS-NNG

p (F ), σ(F )
)
is

obtained by shrinking or putting some components of the functional form of the initial estimator
equal to zero by using the functional form of the S-nonnegative garrote shrinkage factors. Denote

8



the functional form of the initial estimator with βinit(F ) =
(
β init
1 (F ), . . . , β init

p (F )
)T

and let

Z(F ) = (Z1(F ), . . . , Zp(F ))
T where Zj(F ) = β init

j (F )Xj for j = 1, . . . , p. The functional form

of the S-nonnegative garrote shrinkage factors cS-NNG(F ) =
(
cS-NNG
1 (F ), . . . , cS-NNG

p (F )
)T

can
be found by minimizing

S + λ

p∑

j=1

cj (11)

s.t. cj ≥ 0 (j = 1, . . . , p),

for (c, S) ∈ (Rp
+ × R+ \ {0}), where S solves

∫
ρ

(
Y −Z

T(F )c

S

)
dF (XT, Y ) = b. (12)

The functional form of the S-nonnegative garrote estimator for the coefficients βj , j = 1, . . . , p,
is then given by

βS-NNG
j (F ) = cS-NNG

j (F )β
init
j (F ).

To simplify the notation, we will use dF for dF (XT, Y ) in the sequel. Further, we assume that
the functional of the S-nonnegative garrote shrinkage factors and the S-nonnegative garrote
estimator is continuous in F . If F is the empirical distribution function corresponding to the
sample Pn, this optimization problem is equivalent to problem (3).

The influence function of a functional T at a distribution F measures the effect on T of an
infinitesimal contamination at a single point. If we denote the point mass at P0 = (XT

0 , Y0) with
X0 = (X01, . . . ,X0p)

T by δP0
and consider the contaminated distribution Fǫ,P0

= (1− ǫ)F + ǫδP0

with 0 < ǫ < 1, then the influence function is given by

IF(P0, T, F ) = lim
ǫ→0

T (Fǫ,P0
)− T (F )

ǫ
=

∂

∂ǫ
T (Fǫ,P0

)|ǫ=0 .

The expression for the influence function of the S-nonnegative garrote estimator is derived in
the next theorem.

Theorem 6.1. Let ρ be a twice differentiable function and let λ ≥ 0. The influence func-
tion of the S-nonnegative garrote regression functional at a point P0 = (XT

0 , Y0) with X0 =

(X01, . . . ,X0p)
T is given by IF(P0,β

S-NNG, F ) =
(
IF1(P0,β

S-NNG, F ), . . . , IFp(P0,β
S-NNG, F )

)T
with

IFj(P0,β
S-NNG, F ) =





0 if βS-NNG
j (F ) = 0,

Πj

[
−bF

µ21

(
ρ

(
r0
σ(F )

)
− b

)
+

1

µ1
ψ

(
r0
σ(F )

)
X0

+
ν2 + µ1
µ31

(
ρ

(
r0
σ(F )

)
− b

)
aF − 1

µ21
ψ

(
r0
σ(F )

)
r0
σ(F )

aF

+λdiag
(
βinit(F )

)−2
IF(P0,β

init, F )

]

otherwise,

for j = 1, . . . , p, where Πj denotes the jth row of

σ(F )µ31
[
µ21A− µ1bFa

T
F − µ1aFb

T
F + ν2aFa

T
F

]−1
,
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r0 = Y0 −XT
0 β

S-NNG(F ), A =

∫
ψ′ (uF )XX

T dF,

aF =

∫
ψ(uF )X dF, bF =

∫
ψ′ (uF )uFX dF,

µ1 =

∫
ψ(uF )uF dF, ν2 =

∫
ψ′(uF )u

2
F dF,

uF = (Y −X
TβS-NNG(F ))/σ(F ), (13)

with ψ′ the first derivative of ψ, and where diag
((

βinit(F )
)−2
)
is a diagonal matrix where the

jth diagonal element is
(
β init
j (F )

)−2
. The influence function of the scale is given by

IF(P0, σ, F ) =
1

µ1

{
σ(F )

(
ρ

(
r0
σ(F )

)
− b

)
− aTF IF(P0,β

S-NNG, F )

}
.

Theorem 6.1 reveals that the boundedness of the influence function IFj(P0,β
S-NNG, F ) is

guaranteed if all quantities involved such as aF , bF , X0, and so on, are finite, as well as the
influence function of the initial estimator IF(P0,β

init, F ) is bounded. If the latter does not hold,
then the influence function of the S-nonnegative garrote estimator will be unbounded as well.
See also the examples further in this section.

For completeness, we also provide the expression of the influence function of the original
nonnegative garrote estimator in Theorem 6.2. But we first introduce the functional form of the
nonnegative garrote estimator.

To obtain the functional form of the nonnegative garrote estimator, denoted by
(
βNNG(F )

)T
=(

βNNG
1 (F ), . . . , βNNG

p (F )
)T

, we start with the functional form of the initial estimator and we
then shrink or put some components of the functional form of the initial estimator equal to zero
by using the functional form of the nonnegative garrote shrinkage factors. This functional form

of the nonnegative garrote shrinkage factors cNNG(F ) =
(
cNNG
1 (F ), . . . , cNNG

p (F )
)T

can be found
by minimizing

1

2

∫
(Y −Z

T(F )c)2 dF + λ

p∑

j=1

cj (14)

s.t. cj ≥ 0 (j = 1, . . . , p),

for c ∈ R
p
+. The functional form of the nonnegative garrote estimator for the coefficients βj ,

j = 1, . . . , p, is then given by

βNNG
j (F ) = cNNG

j (F )β
init
j (F ).

Theorem 6.2. The influence function of the original nonnegative garrote regression functional

for λ ≥ 0 is given by IF(P0,β
NNG, F ) =

(
IF1(P0,β

NNG, F ), . . . , IFp(P0,β
NNG, F )

)T
with

IFj(P0,β
NNG, F ) =





0 if βNNG
j (F ) = 0,

Πj

[(
Y0 −XT

0 β
NNG(F )

)
X0 − λ

(
βinit(F )

)−1

+λdiag
(
βinit(F )

)−2
IF(P0,β

init, F )

]

otherwise,

for j = 1, . . . , p, where Πj denotes the jth row of

(∫
XX

T dF

)−1

and
(
βinit(F )

)−1
is a column

vector of length p where the jth element is
(
β init
j (F )

)−1
.
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The proof is along the same lines as the proof of Theorem 6.1 and is therefore omitted here.
We will now compare the influence functions of different initial estimators, the original non-

negative garrote estimator and the S-nonnegative garrote estimator. These influence functions
are plotted for simple linear regression Y = Xβ0 + ε with β0 = 2 and where X and ε are inde-
pendent and both standard normal distributed. Different values for the regularization parameter
λ are used, i.e. λ = 0.1 and λ = 0.5.

The influence functions of the τ - and OLS-estimator together with those of the S-nonnegative
garrote estimator for different values of the regularization parameter λ and different initial
estimators are plotted in Figure 1. The blue lines in these plots correspond to the true re-
gression line. It can be seen from Figures 1(a), 1(c) and 1(e) that the shape of the influence
functions of the τ -estimator and of the S-nonnegative garrote with the τ -estimator as initial
estimator are quite similar. This just illustrates that the main characteristics of the influence
function IFj(P0,β

S-NNG, F ) of the S-nonnegative garrote estimator are determined by these
of the influence function of the initial estimator IF(P0,β

init, F ), together with, among others,
the boundedness (or not) of X0. Since the influence functions of, for example, the τ -estimator
and the S-estimator are unbounded (see for example Yohai and Zamar (1988) and Yohai and
Zamar (1997)) this property is inherited by the influence function of the S-nonnegative garrote
estimator with the τ -estimator as initial estimator. Estimators with an unbounded influence
function can still have a high breakdown point, and a more detailed study of the maximum
bias properties of estimators explains their ‘robustness’ properties. We refer the readers to Yo-
hai and Zamar (1988), Yohai and Zamar (1997) and Maronna et al. (2006), among others, for
background information on these issues.

There are however also some noticeable (quantitative) differences in the influence functions
of the τ -estimator and of the S-nonnegative garrote with the τ -estimator as initial estimator,
in particular for points (x0, y0) that are away from the regression line, but still close to the
regression line. See Figures 1(a), 1(c) and 1(e): the area where the influence function is zero is
more extended for the S-nonnegative garrote estimator, and this area is larger for smaller values
of λ. At the same time for points (x0, y0) away but even closer to the regression line, the values
of the influence function for the S-nonnegative garrote estimator tend to be larger. In other
words, the S-nonnegative garrote estimator is less influenced by those observations (x0, y0) with
larger residuals and more influenced by those with smaller residuals (see the behaviour away
but close to the straight line in Figures 1(a) and 1(e)). Figures 1(b), 1(d) and 1(f) show that
the influence function of the OLS-estimator and of the S-nonnegative garrote estimator with
the OLS-estimator as initial estimator are even unbounded for points (x0, y0) far away from the
regression line (there are no flat zero-valued parts).

Figure 2 presents again the influence functions of the τ - and OLS-estimator, but now together
with those of the original nonnegative garrote estimator for different initial estimators and for
different values of the regularization parameter. It can be seen that the influence function
of the original nonnegative garrote estimator is even unbounded for points (x0, y0) far away
from the regression line, when the OLS-estimator as well as the τ -estimator are used as initial
estimator. In conclusion, the S-nonnegative garrote estimator with as initial estimator a τ -
estimator is ‘robust’ to regression outliers, i.e. points that are far away from the regression
line (see e.g. Figures 1(c) and 1(e)) whereas the original nonnegative garrote estimator with as
initial estimator a τ -estimator is not robust to such outliers (see for example Figures 2(c) and
2(e)).
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(a) τ -estimator. (b) OLS-estimator.

(c) S-NNG estimator with τ -estimator as ini-
tial estimator and λ = 0.1.

(d) S-NNG estimator with OLS-estimator as
initial estimator and λ = 0.1.

(e) S-NNG estimator with τ -estimator as ini-
tial estimator and λ = 0.5.

(f) S-NNG estimator with OLS-estimator as
initial estimator and λ = 0.5.

Figure 1: Influence functions for the τ -estimator, the OLS-estimator and the S-NNG estimator.
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(a) τ -estimator. (b) OLS-estimator.

(c) NNG estimator with τ -estimator as initial
estimator and λ = 0.1.

(d) NNG estimator with OLS-estimator as
initial estimator and λ = 0.1.

(e) NNG estimator with τ -estimator as initial
estimator and λ = 0.5.

(f) NNG estimator with OLS-estimator as
initial estimator and λ = 0.5.

Figure 2: Influence functions for the τ -estimator, the OLS-estimator and the original NNG
estimator.
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7 Proofs of the theorems

7.1 Proof of Theorem 4.1

Before proving Theorem 4.1, we prove the following lemma.

Lemma 7.1. Suppose Assumptions 4.1.4, 4.1.5 and 4.2 hold and that ĉ0 is the current value of
c in the iterative procedure (5), then

0 <
1

nωS(ĉ0)
< +∞,

where ωS(c) =
σ̂(r(c))∑n

i=1WS,i(c)r2i (c)
.

Proof of Lemma 7.1. By Lemma 2.2 in Maronna and Yohai (1981) there exist constants A1, A2 ∈
(0,+∞) such that A1 ≤ σ̂(r(ĉ0)) ≤ A2. Further, we have, for i = 1, . . . , n, that 0 ≤WS,i(ĉ

0) ≤ 1
because of Assumption 4.2.3, and if |ri(ĉ0)| > d, then WS,i(ĉ

0) = 0. Hence,

0 <
1

nωS(ĉ0)
=

∑n
i=1WS,i(ĉ

0)r2i (ĉ
0)

nσ̂(r(ĉ0))
≤
∑n

i=1WS,i(ĉ
0)d2

nσ̂(r(ĉ0))
≤ d2

σ̂(r(ĉ0))
< +∞.

The proof of Theorem 4.1 is based on arguments similar to those used in the proof of Theorem
1 in Yuan and Lin (2007).

Proof of Theorem 4.1. Let

ΛNS = {j : cj = 0, βj 6= 0} ΛNN = {j : cj = 0, βj = 0}
ΛSS = {j : cj > 0, βj 6= 0} ΛSN = {j : cj > 0, βj = 0} ,

and pij = #(Λij), for i, j = S,N . Also define the events A = {pSN > 0} and B = {pNS = 0}.
We first prove the second part of the theorem by proving that

P (A) → 0, as n→ ∞, (15)

by contradiction type of arguments, and by then showing that

P (B|Ac) → 1, as n→ ∞. (16)

The convergence rate of the S-nonnegative garrote estimator of the first part of the theorem is
obtained as a final result in the proof of statement (16).

In this proof, the following notations are introduced: for a vector c ∈ R
p, denote cij = cΛij

,

for i, j = S,N , ciℓ =
(
cTiS , c

T
iN
)T

and cℓj =
(
cTSj, c

T
N j

)T
for i, j = S,N . For all other matrices

and vectors, the same type of notation is used. Further, let 1p be a vector of length p with all
elements equal to one, Ip a diagonal matrix of size p × p with the diagonal elements equal to
one and ∆ a diagonal matrix with on the diagonal the elements of β. By way of illustration,
suppose that p = 10 and that the set of indices S contains 4 elements. For 3 of these elements,
we have that cj > 0. For 1 element of the set of indices N , we also have that cj > 0. For this
example we now have that pSS = 3, pNS = 1, pSN = 1 and pNN = 5. The vector 1pNS

is thus
a vector containing one element and the matrix ∆NS is a (1 × 1)−matrix containing the value
of βj for which cj = 0.
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1. Proof of statement (15). Let ĉSℓ be the unconstrained minimizer of

1

2
cTZT

SℓWS(ĉ
0)ZSℓc−

(
ZT
SℓWS(ĉ

0)Y− λn
ωS(ĉ0)

1pSℓ

)T

c

with c ∈ R
pSℓ. Hence, ĉSℓ is given by

(
ĉSS
ĉSN

)
=

(
ZT
SSWS(ĉ

0)ZSS ZT
SSWS(ĉ

0)ZSN
ZT
SNWS(ĉ

0)ZSS ZT
SNWS(ĉ

0)ZSN

)−1
(
ZT
SSWS(ĉ

0)Y− λn

ωS(ĉ0)
1pSS

ZT
SNWS(ĉ

0)Y− λn

ωS(ĉ0)
1pSN

)

=

(
Z̃T
SSZ̃SS/n Z̃T

SSZ̃SN/n
Z̃T
SN Z̃SS/n Z̃T

SN Z̃SN/n

)−1(
Z̃T
SSỸ/n− λn

ωn
1pSS

Z̃T
SN Ỹ/n− λn

ωn
1pSN

)

where Z̃Sj = W
1/2
S (ĉ0)ZSj, for j = S,N , Ỹ = W

1/2
S (ĉ0)Y and ωn = nωS(ĉ

0). Denote

A =

(
ASS ASN
ANS ANN

)
,

with

Aij = Z̃T
SiZ̃Sj/n for i, j = S,N ,

B = ANN −ANSA
−1
SSASN =

1

n
Z̃T
SN

{
IpSS

− Z̃SS
(
Z̃T
SSZ̃SS

)−1
Z̃T
SS

}
Z̃SN

and because

IpSS
− Z̃SS

(
Z̃T
SSZ̃SS

)−1
Z̃T
SS

is a projection matrix, and therefore positive definite, we have that B is a positive semidefinite
matrix. By using these notations we can obtain the inverse of the matrix A,

A−1 =

(
A−1

SS +A−1
SSASNB−1ANSA

−1
SS −A−1

SSASNB−1

−B−1ANSA
−1
SS B−1

)
.

Therefore we have that,

ĉSN = −B−1ANSA
−1
SS

(
Z̃T
SSỸ/n − λn

ωn
1pSS

)
+B−1

(
Z̃T
SN Ỹ/n− λn

ωn
1pSN

)
= B−1w

with

w = Z̃T
SN Ỹ/n− λn

ωn
1pSN

−ANSA
−1
SSZ̃

T
SSỸ/n+

λn
ωn

ANSA
−1
SS1pSS

.

= Z̃T
SN Ỹ/n− Z̃T

SN Z̃SS
(
Z̃T
SSZ̃SS

)−1
Z̃T
SSỸ/n− λn

ωn
1pSN

+
λn
ωn

ANSA
−1
SS1pSS

= Z̃T
SN

(
IpSS

− Z̃SS
(
Z̃T
SSZ̃SS

)−1
Z̃T
SS

)
Ỹ/n− λn

ωn
1pSN

+
λn
ωn

ANSA
−1
SS1pSS

.

We first look for an upper bound for

ANSA
−1
SS =

(
Z̃T
SN Z̃SS

)(
Z̃T
SSZ̃SS

)−1
=

(
1

n
Z̃T
SN

1

n
Z̃SS

)(
1

n
Z̃T
SS

1

n
Z̃SS

)−1

.
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Since β̂
init

is a strongly consistent estimator with rate κn and by using Assumption 4.1.2, we
find for (ZSN )j, the jth column of ZSN , that

1

n
‖(ZSN )j − 0‖22 = O(κ2n),

with probability 1 and thus is 1√
n
‖(ZSN )j‖2 = O(κn) with probability 1.

In addition, we have for the jth column of ZSS that

1√
n
‖(ZSS)j‖2 ≤

1√
n
‖(ZSS)j − (XSS)jβj‖2 +

1√
n
‖(XSS)jβj‖2

= O(κn) +
1√
n
‖(XSS)jβj‖2 < +∞,

since β̂
init

is strongly consistent with rate κn and (XSS)j is uniformly bounded.
Since ‖WS(ĉ

0)‖2 ≤ 1, we have that,

1

n
‖Z̃T

SSZ̃SS‖2 ≤ 1

n
‖ZT

SSZSS‖2

≤ 1

n
‖ZT

SSZSS −∆SSX
T
SSXSS∆SS‖2 +

1

n
‖∆SSX

T
SSXSS∆SS‖2

=
1

n
‖ZT

SS(ZSS −XSS∆SS) + (ZT
SS −∆SSXT

SS)XSS∆SS‖2 +
1

n
‖∆SSXT

SSXSS∆SS‖2

≤ 1√
n
‖ZSS‖2

1√
n
‖ZSS −XSS∆SS‖2 +

1√
n
‖ZT

SS −∆SSXT
SS‖2

1√
n
‖XSS∆SS‖2

+
1

n
‖∆SSX

T
SSXSS∆SS‖2

=

(
O(κn) +

1√
n
‖XSS∆SS‖2

)
O(κn) +O(κn)

1√
n
‖XSS∆SS‖2 +

1

n
‖∆SSXT

SSXSS∆SS‖2

= O(κ2n) +O(κn) +
1

n
‖∆SSX

T
SSXSS∆SS‖2

= O(κn) +
1

n
‖∆SSX

T
SSXSS∆SS‖2,

with probability 1. Therefore we obtain that,
(
1

n
Z̃T
SSZ̃SS

)−1

=

(
1

n
∆SSXT

SSXSS∆SS

)−1
(
IpSS

+O(κn)

(
1

n
∆SSXT

SSXSS∆SS

)−1
)

=

(
1

n
∆SSX

T
SSXSS∆SS

)−1

(IpSS
+O(κn)IpSS

)

and

‖( 1
n
Z̃T
SSZ̃SS)

−1‖2 = ‖( 1
n
∆SSX

T
SSXSS∆SS)

−1‖2(1 +O(κn)),

with probability 1. An upper bound for ANSA
−1
SS is now given by

‖ANSA
−1
SS‖2 ≤ ‖ANS‖2‖A−1

SS‖2
= ‖ 1

n
Z̃T
SN Z̃SS‖2‖(

1

n
Z̃T
SSZ̃SS)−1‖2

≤ 1√
n
‖ZSN‖2

1√
n
‖ZSS‖2‖(

1

n
Z̃T
SSZ̃SS)

−1‖2

= O(κn)

(
O(κn) +

1√
n
‖XSS∆SS‖2

)
‖( 1
n
∆SSX

T
SSXSS∆SS)

−1‖2(1 +O(κn))

= O(κn),
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with probability 1. Hence,

w = Z̃T
SN
(
IpSS

− Z̃SS(Z̃
T
SSZ̃SS)

−1Z̃T
SS
)
Ỹ/n− λn

ωn
(1 +O(κn))1pSN

.

Because IpSS
Z̃SS(Z̃T

SSZ̃SS)−1Z̃T
SS is a projection matrix, we have that

‖IpSS
− Z̃SS(Z̃

T
SSZ̃SS)

−1Z̃T
SS‖2 ≤ 1

and therefore,

‖(IpSS
− Z̃SS(Z̃T

SSZ̃SS)−1Z̃T
SS)Ỹ‖2 ≤ ‖IpSS

− Z̃SS(Z̃T
SSZ̃SS)−1Z̃T

SS‖2‖Ỹ‖2
≤ ‖Y‖2 = O(

√
n),

with probability 1, because of Assumption 4.1.2 and 4.1.3 and by using Model (8). Since

‖Z̃T
SN (IpSS

− Z̃SS(Z̃
T
SSZ̃SS)

−1Z̃T
SS)Ỹ‖2 ≤ ‖Z̃SN ‖2‖(IpSS

− Z̃SS(Z̃
T
SSZ̃SS)

−1Z̃T
SS)Ỹ‖2

≤ ‖ZSN ‖2‖(IpSS
− Z̃SS(Z̃

T
SSZ̃SS)

−1Z̃T
SS)Ỹ‖2

= O(
√
nκn)O(

√
n) = O(nκn),

with probability 1, and because of Lemma 7.1, we find that

w = O(κn)1pSN
− λn
ωn

(1 +O(κn))1pSN
= −λn

ωn
(1 + o(1))1pSN

= −O(λn)1pSN
.

The contradiction is now obtained from the fact that we have that for any j ∈ ΛSN ĉj > 0 and
therefore wTĉSN < 0. But we also have that ĉSN = B−1w and therefore wTB−1w is positive,
because B−1 is a positive definite matrix. Consequently, P (A) → 0 for n→ ∞.

2. Proof of statement (16). We now show that P (B|Ac) → 1 and therefore we assume
pSN = 0. Let ĉℓS be the unconstrained minimizer of

1

2
cTZT

ℓSWS(ĉ
0)ZℓSc−

(
ZT
ℓSWS(ĉ

0)Y− λn
ωS(ĉ0)

1pℓS

)T

c,

where c ∈ R
pℓS . Denote again W

1/2
S (ĉ0)ZℓS with Z̃ℓS , W

1/2
S (ĉ0)Y with Ỹ and nωS(ĉ

0) with
ωn. Using similar calculations as in the first part of this proof we obtain that

ĉℓS = (Z̃T
ℓSZ̃ℓS/n)

−1

(
Z̃T
ℓSỸ/n − λn

ωn
1pℓS

)
,

1√
n
ZℓS =

1√
n
XℓS∆ℓS +O(κn),

1

n
Z̃T
ℓSZ̃ℓS =

1

n
∆ℓSX

T
ℓSXℓS∆ℓS +O(κn),

‖Z̃T
ℓSỸ/n‖2 ≤ ‖∆ℓSX

T
ℓSY/n‖2 +O(κn),

with probability 1, and hence

ĉℓS =

(
1

n
∆ℓSX

T
ℓSXℓS∆ℓS

)−1(
∆ℓSX

T
ℓSY/n − λn

ωn
1pℓS

)
(1 +O(κn)).
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Furthermore, we find that, because
∥∥∥
(
1
n∆ℓSXT

ℓSXℓS∆ℓS
)−1
∥∥∥
2
< ∞, Y = XℓS∆ℓS1pℓS + ε and

because of Assumption 4.1.3,

(
1

n
∆ℓSX

T
ℓSXℓS∆ℓS

)−1

∆ℓSX
T
ℓSY/n =

(
1

n
∆ℓSX

T
ℓSXℓS∆ℓS

)−1 1

n
∆ℓSX

T
ℓSXℓS∆ℓS1pℓS

+

(
1

n
∆ℓSX

T
ℓSXℓS∆ℓS

)−1

∆ℓSX
T
ℓSε/n

= 1pℓS +O

(
1

n

)
1pℓS .

We now have that

ĉℓS =

(
1pℓS +O

(
1

n

)
1pℓS

)
(1 +O(κn))−

λn
ωn

(
1

n
∆ℓSX

T
ℓSXℓS∆ℓS

)−1

1pℓS (1 +O(κn))

= 1pℓS + 1pℓSO(λn),

provided that nλn = O(1), as n→ ∞.
Hence, β̂ S-NNG

j = β̂ init
j (1 +O(λn)) for all j such that βj 6= 0 and P (β̂ S-NNG

j = 0) → 1 for all
j ∈ N . As a final result we obtain that

‖β̂S-NNG − β‖2 ≤ ‖β̂S-NNG − β̂
init‖2 + ‖β̂init − β‖2

= O(λn) +O(κn) = O(λn),

with probability 1.

7.2 Proof of Theorem 5.1

Before proving Theorem 5.1, we will prove the following Lemma. The proofs of this lemma and
of Theorem 5.1 are inspired by the proofs of Theorem 2.1 in Yohai (1987), Theorem 3.1 in Yohai
and Zamar (1988) and Theorem 2 in Wang et al. (2013).

Lemma 7.2. Consider the same assumptions as in Theorem 5.1. Then, if 0 < λ < +∞ and

for given ǫ < min
{
BP(β̂

init
,Pn−m), 1−2anm

2−2anm

}
, there exists a K such that m

n ≤ ǫ implies

inf
‖β‖2≥K



σ̂(r(β)) + λ

p∑

j=1

|βj |
|β̂ init

i |



 > σ̂(r(β̂

init
)) + λp,

where r(β) = (r1, . . . , rn)
T with ri = Yi −XT

i β and σ̂(r(β)) is the solution of

1

n

n∑

i=1

ρ

(
Yi −XT

i β

σ̂(r(β))

)
= b.

Proof of Lemma 7.2. By definition of anm, we have

#
{
i : m+ 1 ≤ i ≤ n and |XT

i β| > 0
}
/(n −m) ≥ 1− anm

for all β ∈ R
p. Take a∗n > anm such that ǫ < 1−2a∗n

2−2a∗n
too. Therefore, we can find δ > 0 such that

inf
‖β‖2=1

#
{
i : m+ 1 ≤ i ≤ n and |XT

i β| > δ
}
/(n −m) ≥ 1− a∗n. (17)
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Since 1− ǫ > 1− 1−2a∗n
2−2a∗n

= 1
2−2a∗n

, there exists 0 < a0 < a = sup
u
ρ(u) such that m

n ≤ ǫ implies

a0
n−m

n
≥ (1− ǫ)a0 >

a

2− 2a∗n
. (18)

Since a = sup
u
ρ(u) and ρ is continuous, there exists k2 such that ρ(k2) = a0. Furthermore, since

ǫ < BP(β̂
init
,Pn−m), there exists k1 such that ‖β̂init‖2 ≤ k1, and let σ̂(r(β̂

init
)) = k0.

Now let K1 = (maxm+1≤i≤n |Yi|+ k0k2) /δ and suppose that m
n ≤ ǫ and ‖β‖2 ≥ K1 . For any

i = 1, . . . , n, we have

|ri| = |Yi −Xiβ| ≥
∣∣|XT

i β| − |Yi|
∣∣

=

∣∣∣∣‖β‖2
∣∣∣∣X

T
i

(
β

‖β‖2

)∣∣∣∣− |Yi|
∣∣∣∣ ≥

∣∣∣∣K1

∣∣∣∣X
T
i

(
β

‖β‖2

)∣∣∣∣− |Yi|
∣∣∣∣ .

Hence we see that, by using (17) and (18), m
n ≤ ǫ implies

inf
‖β‖2≥K1

n∑

i=1

ρ

(
Yi −XT

i β

k0

)
≥ inf

‖β‖2=1

n∑

i=1

ρ

(
K1|XT

i β| − |Yi|
k0

)

≥ inf
‖β‖2=1

∑

i∈A
ρ

(
K1|XT

i β| − |Yi|
k0

)

≥ (n−m)(1− a∗n)ρ(k2)

= (n−m)(1− a∗n)a0

> n
a

2
= nb,

where A = {i : m+ 1 ≤ i ≤ n and |XT
i β| > δ (for β with ‖β‖2 = 1)}. Therefore, for all β with

‖β‖2 ≥ K1, we have

σ̂(r(β)) > k0 = σ̂(r(β̂
init

)). (19)

Let K2 = p3/2k1. Take K = max(K1,K2), we have

inf
‖β‖2≥K



σ̂(r(β)) + λ

p∑

j=1

|βj |
|β̂ init

j |



 ≥ inf

‖β‖2≥K
σ̂(r(β)) + inf

‖β‖2≥K
λ

p∑

j=1

|βj |
|β̂ init

j |

≥ inf
‖β‖2≥K1

σ̂(r(β)) + inf
‖β‖2≥K2

λ

p∑

j=1

|βj |
|β̂ init

j |
.

Because of (19), we only need to deal with the second term. Since ‖β‖2 ≥ K2 implies that there
exists an element βj of β such that |βj | ≥ K2/

√
p for some j, we have that

inf
‖β‖2≥K2

λ

p∑

j=1

|βj |
|β̂ init

j |
≥ λ

|βj |
|β̂ init

j |
≥ λ

|βj |
‖β̂init‖2

≥ λ
|βj |
k1

≥ λK2√
pk1

= λp.

Proof of Theorem 5.1. Suppose ǫ < min
{
BP(β̂

init
,Pn−m), 1−2anm

2−2anm

}
. For a contaminated sample

Pn and for m
n ≤ ǫ we have that, according to Lemma 7.2, if there exists a K such that

‖β̂S-NNG‖2 ≥ K,

σ̂(r(β̂
S-NNG

)) + λ

p∑

j=1

|β̂ S-NNG
j |
|β̂ init

j |
> σ̂(r(β̂

init
)) + λp.
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Since this is a contradiction to the fact that β̂
S-NNG

minimizes



σ̂(r(β)) + λ

p∑

j=1

|βj |
|β̂ init

j |



 for

β ∈ R
p, we have that

BP(β̂
S-NNG

,Pn−m) ≥ min

{
BP(β̂

init
,Pn−m),

1− anm
2− 2anm

}
.

7.3 Proof of Theorem 6.1

Proof of Theorem 6.1. By the chainrule, we have that the influence function of βS-NNG
j (F ),

j = 1, . . . , p, is given by

IF(P0, β
S-NNG
j , F ) =

∂

∂ǫ
βS-NNG
j (Fǫ)

∣∣
ǫ=0

=
∂

∂ǫ
cS-NNG
j (Fǫ)

∣∣
ǫ=0

β
init
j (F ) + cS-NNG

j (F )
∂

∂ǫ
β

init
j (Fǫ)

∣∣∣
ǫ=0

= IF(P0, c
S-NNG
j , F )β

init
j (F ) + cS-NNG

j (F ) IF(P0, β
init
j , F ) (20)

with Fǫ := (1− ǫ)F + ǫδP0
.

In this proof we denote the set of indices containing the non-zero regression coefficients of
βS-NNG(F ) with Sλ = {j : βS-NNG

j (F ) 6= 0} and the set of indices containing the zero regression

coefficients of βS-NNG(F ) with Nλ = {j : βS-NNG
j (F ) = 0}.

Note that the necessary conditions (Karush-Kuhn-Tucker conditions; see Kuhn and Tucker
(1951) or Boyd and Vandenberghe (2004), among others) for minimizing (11) are

∂S

∂cj
+ λ− µj = 0 for j = 1, . . . , p (21)

cj ≥ 0 for j = 1, . . . , p

µjcj = 0 for j = 1, . . . , p

µj ≥ 0 for j = 1, . . . , p,

where the µj are the KKT (Karush-Kuhn-Tucker) multipliers corresponding to the positivity
constraint on the cj .

First we calculate the influence function of βS-NNG
j (F ) for j ∈ Nλ. There are two possible

ways to have that βS-NNG
j (F ) = 0. In the first case we have that β init

j (F ) = 0. Since we then

also set cS-NNG
j (F ) equal to zero, we have, by (20), that IF(P0, β

S-NNG
j , F ) = 0. In the second

case β init
j (F ) 6= 0, but by the choice of the KKT multipliers µj we have that cS-NNG

j (F ) =

0. Since cS-NNG
j (F ) is continuous this implies that IF(P0, c

S-NNG
j , F ) = 0 and by (20) that

IF(P0,β
S-NNG
j , F ) = 0. Hence, for all j ∈ Nλ we have that IF(P0, β

S-NNG
j , F ) = 0.

To find the expressions for the influence functions of the S-nonnegative garrote shrink-
age factors cS-NNG

j (F ), for j ∈ Sλ, and σ(F ), we first differentiate the estimating equations

of cS-NNG
j (F ) and σ(F ) at the contaminated model with distribution Fǫ with respect to ǫ

and then take the limit of these expressions for ǫ going to zero. The influence functions of
the regression coefficients βS-NNG

j (F ) for j ∈ Sλ are then obtained by (20). The estimating
equations of the S-nonnegative garrote shrinkage factors at the population level can be de-
rived in a similar way as these at the sample level. Note that the quantity uF in (13) equals
uF = (Y −Z

T(F )cS-NNG(F ))/σ(F ).
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If j ∈ Sλ, then the KKT multiplier µj equals zero and (21) reduces to

∂S

∂cj
+ λ = 0,

where
∂S

∂cj
= −

∫
ψ (uF )Zj(F ) dF/

∫
ψ (uF )uF dF , which can be obtained by taking the de-

rivative of equation (12) with respect to cj . See Gijbels and Vrinssen (2015) for more details.
Hence, cS-NNG

j (F ) for j ∈ Sλ and σ(F ) can be represented by the following equations:

−

∫
ψ (uF )Zj(F ) dF
∫
ψ (uF ) uF dF

+ λ = 0, for j ∈ Sλ, (22)

and
∫
ρ(uF ) dF = b. (23)

We first derive the expression for the influence function of σ(F ) and then these for cS-NNG
j (F ),

j ∈ Sλ. We finalize the proof by combining the two obtained equations.

1. By differentiating equation (23) at the contaminated model with distribution Fǫ with respect
to ǫ, we have, since Z

T(F )cS-NNG(F ) = X
TβS-NNG(F ), that

0 =
∂

∂ǫ

[
(1− ǫ)

∫
ρ(uFǫ) dF + ǫρ

(
Y0 −XT

0 β
S-NNG(Fǫ)

σ(Fǫ)

)]

=−
∫
ρ(uFǫ) dF + ρ

(
Y0 −XT

0 β
S-NNG(Fǫ)

σ(Fǫ)

)

+ (1− ǫ)

∫
ψ(uFǫ)

(
− X

T

σ(Fǫ)

∂

∂ǫ
βS-NNG(Fǫ)−

uFǫ

σ(Fǫ)

∂

∂ǫ
σ(Fǫ)

)
dF

− ǫψ

(
Y0 −XT

0 β
S-NNG(Fǫ)

σ(Fǫ)

)
XT

0

σ(Fǫ)

∂

∂ǫ
βS-NNG(Fǫ)

− ǫψ

(
Y0 −XT

0 β
S-NNG(Fǫ)

σ(Fǫ)

)
Y0 −XT

0 β
S-NNG(Fǫ)

σ2(Fǫ)

∂

∂ǫ
σ(Fǫ).

Letting ǫ → 0, we obtain

0 =−
∫
ρ(uF ) dF + ρ

(
r0
σ(F )

)
+

∫
ψ(uF )

(
− X

T

σ(F )
IF(P0,β

S-NNG, F )− uF
σ(F )

IF(P0, σ, F )

)
dF,

where r0 = Y0 −XT
0 β

S-NNG(F ). Using (23), we get

IF(P0, σ, F ) =

σ(F )

(
ρ

(
r0
σ(F )

)
− b

)
−
∫
ψ(uF )X

T dF IF(P0,β
S-NNG, F )

∫
ψ(uF )uF dF

. (24)
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2. At the contaminated model with distribution Fǫ (22) yields for j ∈ Sλ,

0 =λ+
N(Fǫ)

D(Fǫ)
,

where

N(Fǫ) =− (1− ǫ)

∫
ψ (uFǫ)Zj(Fǫ) dF − ǫψ

(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

)
Z0j(Fǫ),

D(Fǫ) =(1− ǫ)

∫
ψ (uFǫ) uFǫ dF + ǫψ

(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

)
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)
,

with Z0(Fǫ) = diag(β init(Fǫ))X0. Differentiating with respect to ǫ gives

0 =
1

D(Fǫ)

∫
ψ (uFǫ)Zj(Fǫ) dF − 1

D(Fǫ)
ψ

(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

)
Z0j(Fǫ)

+
1− ǫ

D(Fǫ)

∫
ψ′ (uFǫ)Zj(Fǫ)

(
∂

∂ǫ
Z

T(Fǫ)
cS-NNG(Fǫ)

σ(Fǫ)
+

Z
T(Fǫ)

σ(Fǫ)

∂

∂ǫ
cS-NNG(Fǫ)

)
dF

+
1− ǫ

D(Fǫ)

∫
ψ′ (uFǫ)Zj(Fǫ)

uFǫ

σ(Fǫ)

∂

∂ǫ
σ(Fǫ) dF − 1− ǫ

D(Fǫ)

∫
ψ (uFǫ)

∂

∂ǫ
Zj(Fǫ) dF

+
ǫ

D(Fǫ)
ψ′
(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

)
Z0j(Fǫ)

(
∂

∂ǫ
ZT
0 (Fǫ)

cS-NNG(Fǫ)

σ(Fǫ)
+

ZT
0 (Fǫ)

σ(Fǫ)

∂

∂ǫ
cS-NNG(Fǫ)

)

+
ǫ

D(Fǫ)
ψ′
(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

)
Z0j(Fǫ)

Y0 − ZT
0 (Fǫ)c

S-NNG(Fǫ)

σ2(Fǫ)

∂

∂ǫ
σ(Fǫ)

− ǫ

D(Fǫ)
ψ

(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

)
∂

∂ǫ
Z0j(Fǫ)

− N(Fǫ)

D2(Fǫ)

{
−
∫
ψ (uFǫ)uFǫ dF + ψ

(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

)
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

− (1− ǫ)

∫
ψ′ (uFǫ)uFǫ

(
∂

∂ǫ
Z

T(Fǫ)
cS-NNG(Fǫ)

σ(Fǫ)
+

Z
T(Fǫ)

σ(Fǫ)

∂

∂ǫ
cS-NNG(Fǫ)

)
dF

− (1− ǫ)

∫
ψ′ (uFǫ)uFǫ

uFǫ

σ(Fǫ)

∂

∂ǫ
σ(Fǫ) dF − (1− ǫ)

∫
ψ (uFǫ)

uFǫ

σ(Fǫ)

∂

∂ǫ
σ(Fǫ) dF

− (1− ǫ)

∫
ψ (uFǫ)

(
∂

∂ǫ
Z

T(Fǫ)
cS-NNG(Fǫ)

σ(Fǫ)
+

Z
T(Fǫ)

σ(Fǫ)

∂

∂ǫ
cS-NNG(Fǫ)

)
dF

− ǫψ′
(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

)
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

∂

∂ǫ
ZT
0 (Fǫ)

cS-NNG(Fǫ)

σ(Fǫ)

− ǫψ′
(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

)
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

ZT
0 (Fǫ)

σ(Fǫ)

∂

∂ǫ
cS-NNG(Fǫ)

− ǫψ′
(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

) (
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

)2

σ3(Fǫ)

∂

∂ǫ
σ(Fǫ)

− ǫψ

(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

)(
∂

∂ǫ
ZT
0 (Fǫ)

cS-NNG(Fǫ)

σ(Fǫ)
+

ZT
0 (Fǫ)

σ(Fǫ)

∂

∂ǫ
cS-NNG(Fǫ)

)

− ǫψ

(
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ(Fǫ)

)
Y0 − ZT

0 (Fǫ)c
S-NNG(Fǫ)

σ2(Fǫ)

∂

∂ǫ
σ(Fǫ)

}
,
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where
∂

∂ǫ
Z(Fǫ) = diag

(
∂

∂ǫ
βinit(Fǫ)

)
X . Now let ǫ → 0,

0 =

∫
ψ(uF )Zj(F ) dF
∫
ψ(uF )uF dF

−
ψ

(
r0
σ(F )

)
Z0j(F )

∫
ψ(uF )uF dF

+

∫
ψ′ (uF )Zj(F )

(
IF(P0,Z , F )

TcS-NNG(F ) +Z
T(F ) IF(P0, c

S-NNG, F )
)
dF

σ(F )

∫
ψ(uF )uF dF

+

∫
ψ′ (uF ) uFZj(F ) dF

σ(F )

∫
ψ(uF )uF dF

IF(P0, σ, F ) −

∫
ψ (uF ) IF(P0, Zj , F ) dF
∫
ψ(uF )uF dF

−

∫
ψ(uF )Zj(F ) dF
∫
ψ(uF )uF dF

+

∫
ψ(uF )Zj(F ) dF

(∫
ψ(uF )uF dF

)2ψ

(
r0
σ(F )

)
r0
σ(F )

−

∫
ψ(uF )Zj(F ) dF

∫
ψ′(uF )uF

(
IF(P0,Z , F )

TcS-NNG(F ) +Z
T(F ) IF(P0, c

S-NNG, F )
)
dF

σ(F )

(∫
ψ(uF )uF dF

)2

−

∫
ψ(uF )Zj(F ) dF

∫
ψ′(uF )u2F dF

σ(F )

(∫
ψ(uF )uF dF

)2 IF(P0, σ, F )−

∫
ψ(uF )Zj(F ) dF

σ(F )

∫
ψ(uF )uF dF

IF(P0, σ, F )

−

∫
ψ(uF )Zj(F ) dF

∫
ψ(uF )

(
IF(P0,Z , F )

TcS-NNG(F ) +Z
T(F ) IF(P0, c

S-NNG, F )
)
dF

σ(F )

(∫
ψ(uF )uF dF

)2 ,

(25)

where IF(P0,Z , F ) = diag( IF(P0,β
init, F ))X .

23



3. The proof is then completed by plugging (24) (in which we replaced X
T IF(P0,β

S-NNG, F )
with IF(P0,Z , F )

TcS-NNG(F ) +Z
T(F ) IF(P0, c

S-NNG, F )) into (25). We get

0 =− 1

µ1
ψ

(
r0
σ(F )

)
Z0j(F )

+
1

σ(F )µ1

∫
ψ′ (uF )Zj(F )

(
IF(P0,Z , F )

TcS-NNG(F ) +Z
T(F ) IF(P0, c

S-NNG, F )
)
dF

+
1

µ21

∫
ψ′ (uF ) uFZj(F ) dF

(
ρ

(
r0
σ(F )

)
− b

)

− 1

σ(F )µ21

∫
ψ′ (uF ) uFZj(F ) dF

∫
ψ(uF ) IF(P0,Z , F )

TcS-NNG(F ) dF

− 1

σ(F )µ21

∫
ψ′ (uF ) uFZj(F ) dF

∫
ψ(uF )Z

T(F ) dF IF(P0, c
S-NNG, F )

− 1

µ1

∫
ψ(uF ) IF(P0, Zj , F ) dF +

1

µ21

∫
ψ(uF )Zj(F ) dFψ

(
r0
σ(F )

)
r0
σ(F )

− 1

σ(F )µ21

∫
ψ(uF )Zj(F ) dF

∫
ψ′(uF )uF IF(P0,Z , F )

TcS-NNG(F ) dF

− 1

σ(F )µ21

∫
ψ(uF )Zj(F ) dF

∫
ψ′(uF )uFZT(F ) dF IF(P0, c

S-NNG, F )

− ν2
µ31

∫
ψ(uF )Zj(F ) dF

(
ρ

(
r0
σ(F )

)
− b

)

+
ν2

σ(F )µ31

∫
ψ(uF )Zj(F ) dF

∫
ψ(uF ) IF(P0,Z , F )

TcS-NNG(F ) dF

+
ν2

σ(F )µ31

∫
ψ(uF )Zj(F ) dF

∫
ψ(uF )Z

T(F ) dF IF(P0, c
S-NNG, F )

− 1

µ21

∫
ψ(uF )Zj(F ) dF

(
ρ

(
r0
σ(F )

)
− b

)

+
1

σ(F )µ21

∫
ψ(uF )Zj(F ) dF

∫
ψ(uF ) IF(P0,Z , F )

TcS-NNG(F ) dF

+
1

σ(F )µ21

∫
ψ(uF )Zj(F ) dF

∫
ψ(uF )Z

T(F ) dF IF(P0, c
S-NNG, F )

− 1

σ(F )µ21

∫
ψ(uF )Zj(F ) dF

∫
ψ(uF ) IF(P0,Z , F )

TcS-NNG(F ) dF

− 1

σ(F )µ21

∫
ψ(uF )Zj(F ) dF

∫
ψ(uF )Z

T(F ) dF IF(P0, c
S-NNG, F ).
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Noting that the last four terms cancel out and regrouping all terms in IF(P0, c
S-NNG, F ), we get

{
+

1

σ(F )µ1

∫
ψ′ (uF )Zj(F )Z

T(F ) dF − 1

σ(F )µ21

∫
ψ′ (uF ) uFZj(F ) dF

∫
ψ(uF )Z

T(F ) dF

− 1

σ(F )µ21

∫
ψ(uF )Zj(F ) dF

∫
ψ′(uF )uFZT(F ) dF

+
ν2

σ(F )µ31

∫
ψ(uF )Zj(F ) dF

∫
ψ(uF )Z

T(F ) dF

}
IF(P0, c

S-NNG, F )

=
1

µ1
ψ

(
r0
σ(F )

)
Z0j(F )−

1

µ21

∫
ψ′ (uF ) uFZj(F ) dF

(
ρ

(
r0
σ(F )

)
− b

)

− 1

µ21

∫
ψ(uF )Zj(F ) dFψ

(
r0
σ(F )

)
r0
σ(F )

+
ν2
µ31

∫
ψ(uF )Zj(F ) dF

(
ρ

(
r0
σ(F )

)
− b

)

+
1

µ21

∫
ψ(uF )Zj(F ) dF

(
ρ

(
r0
σ(F )

)
− b

)
+

1

µ1

∫
ψ(uF ) IF(P0, Zj , F ) dF

− 1

σ(F )µ1

∫
ψ′ (uF )Zj(F ) IF(P0,Z , F )

TcS-NNG(F ) dF

+
1

σ(F )µ21

∫
ψ′ (uF ) uFZj(F ) dF

∫
ψ(uF ) IF(P0,Z , F )

TcS-NNG(F ) dF

+
1

σ(F )µ21

∫
ψ(uF )Zj(F ) dF

∫
ψ′(uF )uF IF(P0,Z , F )

TcS-NNG(F ) dF

− ν2
σ(F )µ31

∫
ψ(uF )Zj(F ) dF

∫
ψ(uF ) IF(P0,Z , F )

TcS-NNG(F ) dF.

To obtain the expressions for the influence functions of cS-NNG
j (F ) for j ∈ Sλ, we take all

the equations for cS-NNG
j (F ) for j ∈ Sλ together and use that Z(F ) = diag

(
βinit(F )

)
X . Since

IF(P0, c
S-NNG
Nλ

, F ) = 0, we find

IF(P0,c
S-NNG
Sλ

, F ) = diag
(
βinit
Sλ

(F )
)−1

ΠSλ
diag

(
βinit
Sλ

(F )
)−1

diag
(
βinit
Sλ

(F )
) [ 1

µ1
ψ

(
r0
σ(F )

)
X0Sλ

− 1

µ21

∫
ψ′ (uF ) uFX Sλ

dF

(
ρ

(
r0
σ(F )

)
− b

)
− 1

µ21

∫
ψ(uF )X Sλ

dFψ

(
r0
σ(F )

)
r0
σ(F )

+
ν2
µ31

∫
ψ(uF )X Sλ

dF

(
ρ

(
r0
σ(F )

)
− b

)
+

1

µ21

∫
ψ(uF )X Sλ

dF

(
ρ

(
r0
σ(F )

)
− b

)

+ λdiag
(
βinit
Sλ

(F )
)−2

IF(P0,β
init
Sλ
, F )−Π−1

Sλ
diag

(
IF(P0,β

init
Sλ
, F )

)
cS-NNG
Sλ

(F )
]
,

where

ΠSλ
=

[
1

σ(F )µ1

∫
ψ′ (uF )X Sλ

X
T
Sλ

dF − 1

σ(F )µ21

∫
ψ′ (uF ) uFX Sλ

dF

∫
ψ(uF )X

T
Sλ

dF

− 1

σ(F )µ21

∫
ψ(uF )X Sλ

dF

∫
ψ′(uF )uFXT

Sλ
dF +

ν2
σ(F )µ31

∫
ψ(uF )X Sλ

dF

∫
ψ(uF )X

T
Sλ

dF

]−1

.

Note that the term λdiag
(
βinit
Sλ

(F )
)−2

IF(P0,β
init
Sλ
, F ) is obtained by using (22) on the term

1
µ1

∫
ψ(uF ) IF(P0,ZSλ

, F ) dF .
If we now use equation (20) and the following notations,

ASλ
=

∫
ψ′ (uF )X Sλ

X
T
Sλ

dF, aFSλ
=

∫
ψ(uF )X Sλ

dF,

bFSλ
=

∫
ψ′ (uF ) uFX Sλ

dF,
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we obtain
{

ASλ

σ(F )µ1
−

bFSλ
aTFSλ

σ(F )µ21
−

aFSλ
bT
FSλ

σ(F )µ21
+
ν2aFSλ

aTFSλ

σ(F )µ31

}
IF(P0,β

S-NNG
Sλ

, F ) =

ψ

(
r0
σ(F )

)
X0Sλ

µ1
−
(
ρ

(
r0
σ(F )

)
− b

)
bFSλ

µ21
− ψ

(
r0
σ(F )

)
r0
σ(F )

aFSλ

µ21

+

(
ρ

(
r0
σ(F )

)
− b

)
ν2aFSλ

µ31
+

(
ρ

(
r0
σ(F )

)
− b

)
aFSλ

µ21
+ λdiag

((
βinit
Sλ

(F )
)−2
)
IF(P0,β

init
Sλ
, F ).
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