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Abstract

Quantile regression is an important tool for describing the characteristics of

conditional distributions. Population conditional quantile functions cannot cross

for different quantile orders. Unfortunately estimated regression quantile curves of-

ten violate this and cross each other, which can be very annoying for interpretations

and further analysis. In this paper we are concerned with flexible varying-coefficient

modelling, and develop methods for quantile regression that ensure that the esti-

mated quantile curves do not cross. A second aim of the paper is to allow for

some heteroscedasticity in the error modelling, and to also estimate the associated

variability function. We investigate the finite-sample performances of the discussed

methods via simulation studies. Some applications to real data illustrate the use of

the methods in practical settings.

Keywords and phrases: B-splines, crossing quantile curves, longitudinal data, P-

splines, quantile regression, quantile sheet, variability, varying-coefficient models.
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1 Introduction

A (unconditional) quantile function is an increasing function in its argument, say τ (with

0 ≤ τ ≤ 1). In real applications, the impact of explanatory variables on a variable of inter-

est, leads to the study of conditional quantile functions or (for short) regression quantiles.

For a given value of τ , a conditional quantile function is thus a function of a covariate

(or several covariates). In practice, the conditional quantile functions are estimated, from

data, for various fixed values τ , i.e. we estimate for example the conditional median
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function, but also the conditional first and third quartile functions. These conditional

quantile functions are helpful to further describe the impact of covariates on the response

variable. See Koenker (2005) for a general reference.

Conditional quantile functions are by definition, for any given fixed value(s) of the

covariate(s), an increasing function in the argument τ . When estimating separately several

regression quantiles based on a sample at hand, there is however no guarantee that the

estimated regression quantiles are not crossing. This is more likely to happen in small to

moderate samples, and is annoying for further analysis and interpretations. There is thus

an interest to prevent this crossing to happen in finite-samples. In the literature one can

find some methods to deal with this issue.

A first approach was given by Koenker (1984) in a linear regression model by consid-

ering parallel quantile planes. Cole (1988) and Cole and Green (1992) proposed a more

general algorithm. They combined the Box-Cox power transformation (L), the mean or

median function (M), and the coefficient of variation (S), leading all together to the LMS

algorithm. However, this implicitly assumes that the L-step leads to normally distributed

random variables. Moreover the choice of transformation is sensitive to outliers in the

data. To remedy for these drawbacks, He (1997) proposed an algorithm such that the

monotonicity in τ at all covariates is guaranteed, without needing to impose a normality

assumption on the error structure. He’s approach actually allows for a heteroscedastic

modelling, but is also applicable to a homoscedastic regression model (being a special

case). The use of He’s algorithm in homoscedastic and heteroscedastic models was also

investigated in the simulation studies of Wu and Liu (2009). They propose a stepwise

procedure to ensure non-crossing estimated curves for both linear and non-linear quantile

regression. They show that their algorithm improves the estimation accuracy although

their estimation scheme costs more time to achieve the non-crossing of the estimated

curves. All the former approaches are based on non-simultaneous estimation, meaning

that they use single quantile objective functions. Schnabel and Eilers (2013b) considered

a location-scale model for obtaining non-crossing expectile curves.

An alternative way is to use simultaneous objective functions to impose the non-

crossing restriction, as was discussed by Bondell et al. (2010) and Liu and Wu (2011).

The latter paper also deals with variable selection. Using the objective functions in a

simultaneous way might share strengths among the regression quantiles. Consequently, it

can improve the estimation accuracy compared to estimation based on individual objective

functions. See Zou and Yuan (2008), Jiang el al. (2016), and Yang and Liu (2016), among

others, for recent contributions in composite quantile regression methods.

Yet another, indirect approach is based on estimating conditional cumulative distri-

bution functions first, and then pass to estimation of quantile curves via an inverting

operation. Non-crossing of curves is enforced on the level of the estimation of the condi-

tional cumulative distribution function. See for example Dette and Volgushev (2008) and
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Chernozhukov et al. (2009).

To describe accurately the stochastic behaviour behind complex data, one often consid-

ers regression models that are on the one hand flexible enough to capture this complexity,

but on the other hand still allow for estimation methods with good practical performance.

In this paper we focus on varying-coefficient type of modelling, which naturally extends

linear regression models by allowing the regression coefficients to change with another co-

variate. Since their introduction by Hastie and Tibshirani (1993), these models have been

studied intensively in the literature, in particular with respect to estimating the mean

regression function. They are very useful tools in statistical data analysis nowadays.

Quantile estimation in varying-coefficient models has been studied in Honda (2004),

Kim (2007), Wang et al. (2009), among others. Andriyana et al. (2014) used the flexible

P-splines estimation technique for quantile regression in varying-coefficient models. They

established the asymptotic distributional behaviour of the estimators, discussed linear (or

more generally convex) programming algorithms for solving the optimization problems,

and provided data-driven choices of regularization parameters. The aim of the current

paper is twofold: (i) to develop methods to prevent for crossing estimated quantile curves

in a setting of varying-coefficient modelling; (ii) to allow for heteroscedasticity and to

discuss estimation of the scaling/variability function, together with the quantile curves.

The paper is organized as follows. In Section 2 we introduce the modelling framework,

and recall briefly the P-splines estimation technique for individual quantile estimation.

We also detail the issue of non-crossing curves and discuss the distinction between ho-

moscedastic and heteroscedastic modelling aspects. In Section 3 several methods for

preventing for crossing estimated quantile curves in the varying-coefficient model setting

are discussed. The optimization problems are solved using linear programming methods.

Details of these can be obtained from the authors. Section 4 focuses on the estimation of

the variability function in a heteroscedastic quantile regression varying-coefficient model.

The finite-sample performances of the methods for the estimation of the quantile curves,

preventing curves to cross, and for estimation of the variability function are investigated

in simulation studies in Sections 5 and 6. The use of the developed methods is illustrated

on a real data example in Section 7. The paper is concluded with Section 8. Additional

theoretical considerations, some practical implementation issues, simulation results and

an additional real data application are provided in the Supplementary material accompa-

nying this paper.
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2 P-splines quantile regression in varying-coefficient

models

2.1 Conditional quantiles

Suppose that a variable of interest Y is influenced by p covariates X(1), . . . , X(p), placed

in the column vector X∗ = (X(1), . . . , X(p))
′

of dimension p (the superscript ′ refers to the

transposed of a vector or matrix). Denoting the conditional distribution function of Y

given X∗ by FY |X∗ , the conditional quantile of Y given X∗ of order τ (with 0 ≤ τ ≤ 1) is

given by

qτ (Y | X∗) = inf
{
u : FY |X∗(u | X∗) ≥ τ

}
.

By definition it follows that, for all values of X∗,

for 0 ≤ τ1 < τ2 ≤ 1 : qτ1(Y | X∗) ≤ qτ2(Y | X∗) . (2.1)

The conditional quantile curves, looked upon as functions of X∗, do not cross each other,

or qτ (Y | X∗) is monotone increasing in the argument τ .

In this paper we are particularly interested in a longitudinal data setting in which we

consider having repeated observations on (Y (T ), (X∗(T ))
′
, T ) where T denotes a variable

(with domain T ), Y (T ) is the measurement of the variable of interest at ‘time’ T , and

X∗(T ) is the vector of covariates at time T . In this setting the conditional τ -th order

quantile of Y (T ) conditionally upon (X∗(T ), T ) is denoted by qτ (Y (T ) | X∗(T ), T ), for

which (2.1) now holds for all values of (X∗(T ), T ). See further Section 2.2.

Direct measures of spread can be obtained from the conditional quantiles by con-

sidering, for example, the median absolute deviation, defined as the conditional median

median(|Y (T )− q0.5(Y (T ) | X∗(T ), T )| | X∗(T ), T ), or the conditional interquartile range

q0.75(Y (T ) | X∗(T ), T )− q0.25(Y (T ) | X∗(T ), T ).

An approach towards estimation in general of conditional quantiles, such as qτ (Y | X∗)
or qτ (Y (T ) | X∗(T ), T ), is to first estimate the conditional distribution function FY |X∗ (or

FY (T )|X∗(T ),T ) and then to invert this function. Note that direct (in particular nonparamet-

ric) estimation of conditional distributions and quantiles (and also conditional measures

of spread) can be very cumbersome, due to the dimensionality of the influencing factors

X∗(T ). A fully parametric approach remains feasible, but allowing for more flexibility

(and less distributional assumptions) here requires to putting some mild structures.

A flexible approach is to consider regression models, and in particular location-scale

models, as will be done from Section 2.2 onwards. In this regression setting we consider a

linear structure qτ (Y (T ) | X∗(T ), T ) = (X∗(T ))
′
βτ (T ), with βτ (T ) a vector of p unknown

univariate functions, which restricts the task to estimation of these p unknown functions.

This additional structure has the advantage to allow for a more detailed study of the
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influence of the covariates on the response, not only in terms of the quantile function, but

also in terms of the variability in the conditional distribution.

2.2 Quantile regression

In multiple linear regression the influence of the p covariates X(1), . . . , X(p) on the response

variable Y is, for the mean influence, modelled via

Y = β0 + β1X
(1) + · · ·+ βpX

(p) + ε̃ = X
′
β + ε̃ , (2.2)

where X = (1, X(1), . . . , X(p))
′
, and where the error term ε̃ satisfies E(ε̃ | X∗) = 0 and

Var(ε̃ | X∗) = σ2(X∗), an unknown p-variate function. In a homoscedastic error model, it

is assumed that σ2(X∗) ≡ σ2, a constant. In many applications though heteroscedasticity

is an issue, and the interest is also to estimate the p-variate function σ2(X∗).

A varying-coefficient model is more flexible and essentially allows the regression coef-

ficients in (2.2) to change with (one of) the covariates or another variable involved. In

the longitudinal data setting described in Section 2.1 one often uses the following basic

varying-coefficient model

Y (t) = β0(t)X(0)(t) + β1(t)X(1)(t) + · · ·+ βp(t)X
(p)(t) + ε̃(t) = X

′
(t)β(t) + ε̃(t) , (2.3)

with t ∈ T , X(t) = (X(0)(t), X(1)(t), . . . , X(p)(t))
′
= (X(0)(t), (X∗(t))

′
)
′
, putting X(0)(t) ≡

1 for all t ∈ T , and denoting β(t) = (β0(t),β1(t), . . . ,βp(t))
′
. The function β0(t) is called

the baseline function (or intercept function). For simplicity of presentation, we do not

write the possible dependence of ε̃(t) on the covariates X∗(t). In a general mean regression

model the basic assumptions on the error term are

E(ε̃(T ) | X∗(T ), T ) = 0 and Var(ε̃(T ) | X∗(T ), T ) = σ2(X∗(T ), T ) .

Special settings would be:

σ2(X∗(T ), T ) = σ2(T ) or even σ2(X(1)(T ), . . . , X(p)(T ), T ) = σ2 , a constant.

We now turn to quantile regression. Let 0 ≤ τ ≤ 1, and denote the τ -th order

conditional quantile of the error term ε̃(T ), given T = t, in model (2.3) by ãτ (t), i.e.

ãτ (t) = inf {u : P{ε̃(T ) ≤ u | T = t} ≥ τ} .

For all 0 ≤ τ1 < τ2 ≤ 1:

ãτ1(t) ≤ ãτ2(t) . (2.4)

Under model (2.3) the τ -th order conditional quantile of the response variable Y (T ) given

{X(T ), T = t} is

qτ (Y (T ) | X(T ), T = t) = X
′
(t)β(t) + ãτ (t) = X

′
(t)βτ (t) , (2.5)
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where βτ (t) = (βτ0(t),β1(t), . . . ,βp(t))
′
, with

βτ0(t) = β0(t) + ãτ (t) . (2.6)

In the sequel we will use the shorthand notation qτ (Y (t)|X(t), t) for this conditional

quantile function. Recalling that X(0)(t) = 1, it is easily seen from (2.4) and (2.5) that

for all 0 ≤ τ1 < τ2 ≤ 1 : qτ1(Y (t) | X(t), t) ≤ qτ2(Y (t) | X(t), t) , (2.7)

for any fixed value of (X(t), t). So the conditional quantile curves do not cross.

Remark 2.1. Note that one has to deal with an identification problem if one aims at

estimating β0(t) using quantile regression. Indeed, if both quantities β0(t) and ãτ (t) are

unknown then one can only estimate βτ0(t), since adding a term to β0(t) and subtracting

the same term from ãτ (t) in (2.6) leads to a same result. The quantity β0(t) can only be

estimated under the additional assumption that ãτ (t) is fully known, for example

(A1): the τ -th order conditional quantile of the error term ε̃(T ), given T = t,

equals zero, i.e. ãτ (t) = 0.

When Assumption (A1) holds, the τ th-order conditional quantile of Y (T ) given T = t

is

qτ (Y (t) | X(t), t) = X
′
(t)β(t) .

Andriyana et al. (2014) studied a P-splines estimation technique to estimate the un-

known vector of regression coefficient functions β(t), in the longitudinal data setting.

In this setting there are repeated measurements on n subjects/individuals. For subject

i, the repeated measurements occur at time points ti1, . . . , tiNi
. At time point tij one

observes, for subject i, the response variable Y (tij) and the vector of covariate values

(X(1)(tij), . . . , X
(p)(tij)), which we denote shorthanded as Yij and (X

(1)
ij , . . . , X

(p)
ij ) respec-

tively. The longitudinal observations of (Y (T ),X(T ), T ) thus consist of (Yij,Xij, tij),

with i = 1, . . . , n and j = 1, . . . , Ni, where tij is the j-th measurement time for the

ith subject, Ni is the number of repeated measurements for the ith subject, and Xij =(
X

(0)
ij , . . . , X

(p)
ij

)′
, with X

(0)
ij ≡ 1. Typically one assumes that the measurements are in-

dependent for different subjects, but measurements at different time points for a same

individual can be correlated. For more details see Andriyana et al. (2014), as well as the

simulation models in Sections 5 and 6.

We now briefly recall the P-splines estimation method for the conditional quantile

function qτ (Y (T ) | X(T ), T = t) in model (2.3). For notational simplicity of presentation

we drop the dependence on τ of the unknown coefficient functions, but this dependence

should be kept in mind. Each of the unknown regression coefficient functions, βk(t)
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for k = 0, . . . , p, is approximated by a set of normalized B-splines of a given degree.

More precisely, the unknown regression coefficient function βk(t) is approximated by mk

normalized B-splines of degree νk, denoted by Bk1(t; νk), . . . , Bkmk
(t; νk):

βk(tij) ≈ αk1Bk1(tij; νk) + · · ·+ αkmk
Bkmk

(tij; νk) =

mk∑
`=1

αk`Bk`(tij; νk) , (2.8)

where (αk1, . . . , αkmk
) denotes the associated coefficient vector that is to be estimated. The

functions Bk`(tij; νk), ` = 1, . . . ,mk, with mk = uk + νk, constitute a basis of normalized

B-splines of degree νk with uk+1 equidistant knots. The objective function for individual

quantile estimation is then given by

S1,τ (α) =
n∑
i=1

1

Ni

Ni∑
j=1

ρτ

(
Yij −

p∑
k=0

mk∑
`=1

αk`Bk`(tij; νk)X
(k)
ij

)
+

p∑
k=0

mk∑
`=dk+1

λk
∣∣∆dkαk`

∣∣γ ,
(2.9)

and is a function of the global vector of all unknown coefficients denoted by α =
(
α
′
0, . . . ,α

′
p

)′
,

with αk = (αk1, . . . , αkmk
)
′
.

The first term in the objective function (2.9) is the goodness-of-fit term for quantile

regression involving the function ρτ (·), the so-called “check-function”, defined as

ρτ (z) =

{
τz if z > 0

−(1− τ)z otherwise
= τz+ + (1− τ)z− , (2.10)

where we used the notations: z+ = max(z, 0) and z− = max(−z, 0).

The second term in (2.9) is the penalty term. As in Eilers and Marx (1996) this term

is needed when taking mk large for having a good approximation in (2.8). However a large

number of knot points can lead to overfitting, and preventing from this to happen leads

to the inclusion of the penalty term. As in Eilers and Marx (1996) we restrict ourselves

to a penalty function that penalizes for too large differences between the coefficients

of adjacent B-splines, i.e. using ∆dk the dk-th order differencing operator: ∆dkαk` =∑dk
t=0(−1)t

(
dk
t

)
αk(`−t), with dk ∈ IN . The parameters λk > 0, k = 0, . . . , p, in (2.9) are the

smoothing/regularization parameters that control the trade-off between the goodness-of-

fit term and the penalty term. The power γ > 0 leaves the possibility of using a variety

of penalty terms. We refer to Andriyana et al. (2014) for a detailed discussion on the

P-splines estimation method in its generality. For simplicity of presentation we will take

γ = 1 in the sequel of this paper. The advantages of the choice γ = 1 are that one can

rely on linear programming (as opposed to convex programming) and a Frisch-Newton

interior point algorithm can be used (implying faster computing times). See Portnoy and

Koenker (1997). For a general discussion on different types of penalties, see for example

Antoniadis et al. (2011).

Important is to note that due to the B-splines approximation in (2.8) we get to a

very similar formulation as in a usual multiple linear regression model. Indeed consider
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the matrix B, with a block structure containing all the B-splines basis functions for

approximating all component functions βk(·):

B(t) =

B01(t, ν0) . . . B0m0(t, ν0) 0 . . . 0 0 . . . 0

0 . . . 0 0
. . . 0 0 . . . 0

0 . . . 0 0 . . . 0 Bp1(t, νp) . . . Bpmp(t, νp)

 . (2.11)

Recalling (2.5) and approximation (2.8) we then can write

qτ (Y (t) | X(t), t) ≈ X
′
(t)B(t)α , (2.12)

and hence qτ (Yij | Xij, tij) = X
′
ijB(tij)α. The objective function S1,τ (α) can be written

as

S1,τ (α) =
n∑
i=1

1

Ni

Ni∑
j=1

ρτ

(
Yij −X

′

ijB(tij)α
)

+

p∑
k=0

mk∑
`=dk+1

λk
∣∣∆dkαk`

∣∣
=

n∑
i=1

1

Ni

Ni∑
j=1

ρτ

(
Yij −U

′

ijα
)

+

p∑
k=0

mk∑
`=dk+1

λk
∣∣∆dkαk`

∣∣ , (2.13)

where U
′
ij = X

′
ijB(tij). Note the appearance of a linear term in α in the goodness-of-fit

term.

Minimization of S1,τ (α) with respect to α leads to the estimated global vector of

coefficients α̂ =
(
α̂
′
0, . . . , α̂

′
p

)′
, with α̂k = (α̂k1, . . . , α̂kmk

)
′
. The P-splines estimator of

the unknown regression coefficient function βk(·) is

β̂k(t) =

mk∑
`=1

α̂k`Bk`(tij; νk) ,

and subsequently the P-splines estimator for the conditional quantile function:

q̂τ (Y (t) | X(t), t) = β̂0(t)X(0)(t) + β̂1(t)X(1)(t) + · · ·+ β̂p(t)X
(p)(t) = X

′
(t)B(t)α̂τ ,

where we now added the dependence on τ again.

Estimation of various conditional quantile curves is obtained by minimizing the indi-

vidual objective function S1,τ (α) for various values of τ . There is however no guarantee

that the estimated quantile curves satisfy the finite-sample analogue of (2.7), namely

for all 0 ≤ τ1 < τ2 ≤ 1 : q̂τ1(Y (t) | X(t), t) ≤ q̂τ2(Y (t) | X(t), t) ,

for any fixed values of (X(t), t). This is further investigated (theoretically) in Section A

of the Supplementary material and in Section 5 (in the simulation study).
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2.3 Homoscedasticity versus heteroscedasticity

When in a multiple linear regression model (or more generally in a mean regression model)

the attention is drawn also on the variance of the error term and the aspect of homoscedas-

ticity against heteroscedasticity, the error term ε̃ is often written in the form

ε̃ = σ(X∗) ε with E(ε | X∗) = 0 and Var(ε | X∗) = 1 .

The last assumption is in fact needed for identifiability of the variance function σ2(·).

The second aim of this paper is to deal with estimation of a similar kind of variability

function in the setting of quantile regression in varying-coefficient models. Similarly as in

the mean regression model, we therefore re-express the error term in model (2.3) as

ε̃(t) = V (X∗(t), t) ε(t) ,

with V (·) ≥ 0, and denote the τ -th order conditional quantile of the error term ε(T ),

given T = t, in model (2.3) by aτ (t): aτ (t) = inf {u : P{ε(T ) ≤ u | T = t} ≥ τ} . Some

special cases are to be noted:

V (X∗(T ), T ) = V (T ) or even V (X∗(T ), T ) = V , a nonnegative constant.

As in the case of mean regression we will need to impose some additional assumption

on the random error term ε(t) to ensure identifiability of the function V (·). We refer to

this function V (·) as the variability function.

In this paper we restrict to the special case that V (X∗(T ), T ) = V (T ) and the error

term ε(T ) is independent of X∗(T ) for given T . We refer to this model as the (simple)

heteroscedastic model. We speak about a homoscedastic model if, in addition, V (T ) = V

(a constant).

In case of a simple heteroscedastic model

Y (t) = X
′
(t)β(t) + V (t) ε(t), t ∈ T , (2.14)

with V (·) ≥ 0. In such a location-scale model we have that

ãτ (t) = V (t)aτ (t) .

Under model (2.14) the τ -th order conditional quantile of the response variable Y (T )

given {X(T ), T = t} is then

qτ (Y (t) | X(t), t) = X
′
(t)β(t) + V (t)aτ (t) = X

′
(t)βτ (t) , (2.15)

where βτ (t) = (βτ0 (t), β1(t), . . . , βp(t))
T , with now

βτ0 (t) = β0(t) + V (t)aτ (t) . (2.16)
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The interests are now in: (i) estimating the quantile curves qτ (Y (t) | X(t), t), through

estimation of the functions βτ0 (t), β1(t), . . . , βp(t); (ii) estimation of the variability function

V (·).

Some examples of error structures for ε̃(t) and associated conditional quantiles are:

(i) for ε̃(t) ∼ N(µ(t);σ2(t)), the function ãτ (t) = µ(t) + σ(t)Φ−1(τ); (ii) for ε̃(t) ∼
Lognormal(µ(t);σ(t)), the function ãτ (t) = exp{µ(t)} [exp{σ(t)}]Φ

−1(τ). Here Φ denotes

the cumulative distribution function of a N(0; 1) random variable.

Remark 2.2. From (2.16) it is clear what will be needed in order for V (t) to be identifi-

able. Sufficient conditions for this to happen are that, for example, aτ (·) is known for at

least two given values of τ , say τ1 and τ2. Indeed, from (2.16) we have

βτ10 (t)− βτ20 (t) = V (t) (aτ1(t)− aτ2(t)) .

An estimator for V (t) is then

V̂ (t) =
β̂τ10 (t)− β̂τ20 (t)

aτ1(t)− aτ2(t)
.

So a sufficient condition for estimating the variability function V (·) in model (2.14) is the

knowledge of two quantile functions of the error term:

(B): the τ1-th order and the τ2-th conditional quantile of the error term ε, given

T = t, with 0 ≤ τ1, τ2 ≤ 1 and τ1 6= τ2, are fully known (i.e. aτ1(t) and aτ2(t) are

fully known).

It is interesting to look when the identifiability is ensured for the examples of error

distributions mentioned above: (i) for ε̃(t) ∼ N(µ(t);σ2(t)), identifiability is ensured for

example when µ(t) = 0, leading to V (t) = σ(t) and aτ (t) = Φ−1(τ); (ii) for ε̃(t) ∼
Lognormal(µ(t);σ(t)), identifiability is guaranteed for example in case σ(t) = 1, leading

to V (t) = exp{µ(t)}, and aτ (t) = [exp{1}]Φ
−1(τ).

From now on we entirely focus on the location-scale model (2.14) and our two-fold

estimation task:

Task 1. estimation of the quantile regression curves in (2.15), via estimation of βτ0(t),β1(t),

. . . ,βp(t), and guaranteeing that the estimated curves do not cross;

Task 2. estimation of the variability function V (·).

Estimation Task 1 is dealt with mainly in Section 3 and Section A of the Supplemen-

tary material, whereas estimation Task 2 is discussed in Section 3 (partly) and Section

4.
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3 Methods to prevent for crossing estimated quantile

curves

The aim of this section is to develop methods that deal with the issue of crossing estimated

quantile curves, based on the P-splines estimation technique. We present several methods,

and evaluate and compare their performances via a finite-sample simulation study in

Section 5 (see also the Supplementary material).

The proposed methods are inspired by three approaches available in the literature: (a)

considering simultaneous objective functions (for various values of τ); (b) the approach

followed by He (1997); (c) the stepwise approach of Wu and Liu (2009). In the first

approach an important issue is of how to combine the individual objective functions into

an aimed simultaneous objective function, such that the non-crossing is enforced. This

discussion leads to the methods described in Sections 3.1 and 3.2. Approach (c) leads to

the method discussed in Section 3.3, and the adaptation of approach (b) in the current

setting of varying-coefficient models can be found in Section 3.4.

All methods proposed involve minimizing objective functions, using P-splines approx-

imation. All optimization problems are translated into a linear programming problem.

Due to space limitations we do not provide these implementation details here.

3.1 Method of weighted simultaneous quantile objective func-

tions

Recall the matrix notation of the objective function in (2.13). Consider now H different

values of τ denoted by 0 ≤ τ1 < . . . < τH ≤ 1, with H ∈ IN0. Theoretically the H

quantile curves qτh(Y (t) | X(t), t) cannot cross, for any given value of the covariate vector

and the variable T . We want to prevent this from happening with the P-splines estimator

q̂τh(Y (t) | X(t), t).

Since we need to look at several values for τ simultaneously, we combine the different

individual objective functions. An obvious way to do so is to consider

H∑
h=1

n∑
i=1

1

Ni

Ni∑
j=1

ρτh

(
Yij −U

′

ijαh

)
+

H∑
h=1

p∑
k=0

mk∑
`=dk+1

λτh,k
∣∣∆dkαhk`

∣∣ ,
where we needed to introduce additional necessary indices. If we want to ensure that the

P-splines estimators q̂τh(Y (t)|X(t), t) do not cross at each of the observations, i.e.

q̂τh(Yij | Xij, tij) ≥ q̂τh−1
(Yij | Xij, tij) for allh = 2, . . . , H ,

we need to include additional constraints into the simultaneous objective function. This

would involveNm(H−1) constraints, withN =
∑n

i=1Ni the total number of observations,
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and m =
∑p

k=0mk the number of columns in the matrix B in (2.11). Because of the large

number of constraints the computational costs would be very substantial. Therefore, we

need to find a way to reduce the number of additional constraints. The function values

of normalized B-splines are always nonnegative, and if the covariate values X(k)(tij) are

nonnegative, for each possible tij, then the constraints for non-crossing curves can be

simply imposed on the coefficient vectors αh:

αh ≥ αh−1 for allh = 2, . . . , H , (3.1)

where the inequality sign means this should hold for all components of the vectors. This

reduces the number of constraints to be m(H − 1).

In practice we thus first transform the covariates X(k)(t) to be nonnegative on the

range of the observations. One way to do so is by subtracting from X(k)(t) the smallest

observed value of X(k)(tij), i.e. by subtracting min1≤i≤n,1≤j≤Ni
{X(k)(tij)}.

Imposing the constraints (3.1) leads to adding terms in the optimization problem,

together with a Lagrange multiplier parameter, denoted by λ(NC) (where the superscript

(nc) refers to the word non-crossing). To make clear distinction with the regulariza-

tion parameters λτh,k for the penalty terms, we add the superscript (ps) to the latter

parameters. This results into the following simultaneous objective function

S2(α) =
H∑
h=1

n∑
i=1

1

Ni

Ni∑
j=1

ρτh

(
Yij −U

′

ijαh

)
+ λ(NC)

H∑
h=2

w(τh)

p∑
k=0

mk∑
`=1

|∆(NC)αhk`|

+
H∑
h=1

p∑
k=0

mk∑
`=dk+1

λ(PS)

τh,k

∣∣∆dkαhk`
∣∣ , (3.2)

where we denoted α = (α
′
1, . . . ,α

′
H)
′
, ∆(NC)αhk` = αhk` − α(h−1)k` for h = 2, . . . , H,

k = 0, . . . , p and ` = 1, . . . ,mk, and where the weight function defines the constraints on

the coefficients of all αh’s.

w(τh) =

1 if ∆(NC)αhk` < 0 for some k and `

0 otherwise .

The weight function reduces the number of constraints in case the inequalities are fulfilled

in some or even all estimates.

For given tuning parameters, λ(NC), and λ(PS)

τh,k
, for h = 1, . . . , H and k = 0, . . . , p,

we need to minimize S2(α) with respect to α. To do so we transform the optimization

problem into a (primal) linear programming problem and use a Frisch-Newton interior

point algorithm to solve the linear programming problem. See also Koenker and Ng

(2005).

The total number of tuning parameters to be chosen in (3.2) is H(p+1)+1. Combining

all H(p + 1) + 1 possible grids of λ’s is of course not possible due to the computational
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demand. A practical data-driven choice for these tuning parameters, that is used for all

methods in this paper, can be found in Section B of the Supplementary material.

The objective function in (3.2) is obtained by combining the individual objective

functions and adding constraints for imposing the non-crossing property. In the goodness-

of-fit term each individual quantile curve gets the same weight. Because the quality and/or

difficulty of estimation can be different for different τ ’s it might make sense to include a

weight factor Wh into the simultaneous objective function, i.e. to consider a goodness-of-

fit term of the form
H∑
h=1

Wh

n∑
i=1

1

Ni

Ni∑
j=1

ρτh

(
Yij −U

′

ijαh

)
instead of the first term in (3.2).

This issue of appropriate weighting in case of simultaneous estimation of quantile

curves has received some attention in the literature of quantile regression. Zou and Yuan

(2008), Bondell et al. (2010), Guo et al. (2012), Schnabel and Eilers (2013a), among

others, take Wh = 1, for all τh-values, which corresponds with the approach in (3.2).

Alexander et al. (2011) considers also constant weights Wh = 1/H, whereas a fixed

weighting scheme assigning the highest weight Wh for median estimation is opted for in

Koenker (2004) and Lamarche (2010), among others. Zhao and Xiao (2014) and Jiang et

al. (2014) obtain Wh’s by minimizing the asymptotic variance of the associated quantile

coefficient in the simultaneous objective function. Such an approach is only applicable

when an expression for the asymptotic variance of the quantile estimator is available,

and moreover can be estimated from the data. In complex (and flexible) models, as the

varying-coefficient model, this is not feasible. Our approach below is inspired by Liu and

Wu (2011). They take Wh = 1/E[ρτh(ε− qτh(ε))], assuming that the regression error term

is ε ∼ N(0, 1) and hence E[ρτh(ε− qτh(ε))] = φ(Φ−1(τh)), where φ and Φ are respectively

the density and cumulative distribution function of a standard normal random variable.

We now briefly discuss our alternative weighting scheme. Note that for the simple

heteroscedastic model (2.14) and the expression for the quantile regression curve it follows

that

Y (t) = qτ (Y (t) | X(t), t) + V (t) [ε(t)− aτ (t)] ,

and this holds for all values of τ . Therefore

Y (t)− qτh(Y (t) | X(t), t) = V (t) [ε(t)− aτh(t)] , (3.3)

and since ρτ (z) = z(τ − I {z < 0}) and V (t) ≥ 0, we find that

ρτh (V (t) [ε(t)− aτh(t)]) = V (t) [ε(t)− aτh(t)] (τh − I {V (t) [ε(t)− aτh(t)] < 0})
= V (t) [ε(t)− aτh(t)] (τh − I {ε(t)− aτh(t) < 0})
= V (t)ρτh (ε(t)− aτh(t)) .
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Taking expectation (conditionally upon a given value for T = t), we get

E {ρτh (V (t) [ε(t)− aτh(t)])} = V (t)E {ρτh (ε(t)− aτh(t))} ,

which shows that the influence of the expectation by τ is captured byE {ρτh (ε(t)− aτh(t))}.
It thus seems reasonable to assign a larger weight to a smaller term in the global goodness-

of-fit term, i.e. to consider

Wh =
1

E {ρτh(ε(t)− aτh(t))}
.

Since the conditional distribution of ε(t) is not known, the expectation in this weight is

approximated by
1

1

n

n∑
i=1

1

Ni

Ni∑
j=1

ρτh (ε(tij)− aτh(tij))

.

Using (3.3), the unknown expression in the denominator is then further approximated by

Ŵh =
1

1

n

n∑
i=1

1

Ni

Ni∑
j=1

ρτh

(
Yij − q̂τh(Yij|Xij, tij)

V̂ (tij)

) , (3.4)

where V̂ (·) is a consistent estimator of the variability function V (·), that needs to be

obtained in a first step. In Section 4 we discuss methods for estimating V (·) using the

unweighted simultaneous objective function in (3.2).

To summarize, in a first step the unweighted simultaneous objective procedure in (3.2)

is used, leading also to an estimator for V (·). In a second step one then uses the estimated

weight in the simultaneous weighted objective function

S2,W(α) =
H∑
h=1

1

Ŵh

n∑
i=1

1

Ni

Ni∑
j=1

ρτh

(
Yij −U

′

ijαh

)
+ λ(NC)

H∑
h=2

w(τh)

p∑
k=0

mk∑
`=1

|∆(NC)αhk`|

+
H∑
h=1

p∑
k=0

mk∑
`=dk+1

λ(PS)

τh,k

∣∣∆dkαhk`
∣∣ ,

which is then minimized with respect to α.

3.2 Quantile sheet method

In this section, we propose an alternative to overcome the crossing curves, using also a

simultaneous objective function approach. The idea is based on the paper of Schnabel and

Eilers (2013a), on univariate nonparametric quantile regression. The basic idea of their

method is to consider a bivariate surface representing the behaviour of the quantile curve
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in both the covariate and the quantile order τ . They use a tensor product of B-splines

to describe the behaviour in each of the two variables (the covariate and τ). The non-

crossing property of the quantile curves in then imposed by requiring that the bivariate

function is monotonic increasing in the argument τ . The latter is done by adding a specific

penalty. We adapt this method to the context of varying-coefficient models, and refer to

it as quantile sheet (following the terminology of Schnabel and Eilers (2013a)).

Here we have the following simultaneous objective function,

H∑
h=1

n∑
i=1

1

Ni

Ni∑
j=1

ρτh

(
Yij −

m̃∑
~=1

p∑
k=0

m̂k∑
`=1

α~k`

[
B̃~(τh; ν̃)×

(
B̂k`(tij; ν̂k)X

(k)
ij

)])

+λ(NC)

m̃∑
~=2

w(τ~)

p∑
k=0

m̂k∑
`=1

|∆(NC)α~k`|+
m̃∑
~=1

p∑
k=0

m̂k∑
`=dk+1

λ(PS)

k

∣∣∆dkα~k`
∣∣ , (3.5)

where B̃~(τh; ν̃), ~ = 1, . . . , m̃ denotes a B-spline basis on the domain τ ∈ [0, 1] of degree

ν̃ with ũ+ 1 equidistant knots with m̃ = ũ+ ṽ. The functions B̂kl(tij; ν̂k), ` = 1, . . . , m̂k,

form a B-spline basis, on the domain T , of degree ν̂k with ûk + 1 equidistant knots for

the k-th component of the covariates with m̂k = ûk + v̂k. ∆(NC)α~k` = α~k` − α(~−1)k`, for

all ~ = 2, . . . , m̃. Further α~ =
(
α~01, . . . , α~0m̂0

, . . . , α~p1, . . . , α~pm̂p

)′
is the associated

coefficient vector of dimension m̂ =
∑p

k=0 m̂k.

Expression (3.5) can be written more compactly by introducing some additional matrix

notation. Similarly as in (2.11) in Section 3.1 we denote the matrix of B-spline basis

functions, formed by the functions B̂kl(t, ν̂k), by B̂(t). Next, we put Û
′

ij = X
′
ijB̂(tij), a

row vector of dimension m̂. By stacking the vectors Û
′

ij, for i = 1, . . . , n and j = 1, . . . , Ni,

as rows in a matrix, we build the matrix Û of dimension N × m̂. In the domain of the

quantile variable τ , we build in a similar fashion the matrix B̃ of dimension H × m̃ in

which the h-th row consists of (B̃1(τh, ν̃), . . . , B̃m̃(τh, ν̃)). We then define U = B̃ ⊗ Û,

the Kronecker product of the two matrices. The matrix U is a block matrix of dimension

H N × m̃ m̂, where the row of this matrix corresponding to observations on subject i at

time tij, with respect to a fixed value τh, is referred to as Uhij. Each row is of dimension

m̃× m̂. With this matrix notation, we can rewrite the objective function in (3.5) as

S3(α) =
H∑
h=1

n∑
i=1

1

Ni

Ni∑
j=1

ρτh

(
Yij −U

′

hijαh

)

+λ(NC)

m̃∑
~=2

w(τ~)

p∑
k=0

m̂k∑
`=1

|∆(NC)α~k`|+
m̃∑
~=1

p∑
k=0

m̂k∑
`=dk+1

λ(PS)

k

∣∣∆dkα~k`
∣∣ , (3.6)

with α = (α
′
1, . . . ,α

′

m̃)
′

where α~ =
(
α~01, . . . , α~0m̂0

, . . . , α~p1, . . . , α~pm̂p

)′
, for ~ =

1, . . . , m̃.
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It should be mentioned that Schnabel and Eilers (2013a) solve their optimization prob-

lem using a classic iteratively re-weighted least squares approach combined with the fast

array algorithm GLAM (Currie et al. (2006); Eilers et al. (2006)) for multidimensional

P-spline fitting. In contrast, in our context, we transform the optimization problem into

a linear programming problem exploiting the sparsity in some matrices. Also here we can

use the Frisch-Newton interior point algorithm. See for example Koenker and Ng (2005).

As before, we first need to transform our covariates X(t) to be positive.

3.3 Stepwise individual quantile regression estimation

Another approach to ensure that estimated quantile curves do not cross, was introduced

by Wu and Liu (2009). They proposed a stepwise procedure that starts by estimating a

particular quantile function, then in the next step moves on to estimating the next (higher

or lower order) quantile in the given set of quantile orders (0 ≤ τ1 < . . . < τH ≤ 1). To

ensure the non-crossing property of the quantiles involved in the first and second step,

they include the necessary constraints. The procedure continues by moving to the next

step (next quantile order). A specific choice to be made when applying this method is:

which quantile is estimated at the starting step? Wu and Liu (2009) advice to use median

estimation as a starting point, and we follow this recommendation when adapting this

approach to our setting. In the upward step (moving-up), we add a constraint so that

the estimated larger order quantile curve exceeds the preceding estimated quantile curve.

Otherwise, in the downward step, we put a constraint such that the estimated smaller

order quantile curve does not exceed the preceding estimated quantile curve. To reduce

the number of constraints (see also the description in Section 3.1), we again transform

the covariates to be positive.

The main steps of the Upward and Downward stepwise procedures read as follows.

STEP 1: Estimating the median regression curve

The P-splines median quantile estimator is given by

α̂0.5 = argminα

n∑
i=1

1

Ni

Ni∑
j=1

ρ0.5

(
Yij −U

′

ijα
)

+

p∑
k=0

mk∑
`=dk+1

λ(PS)

0.5,k

∣∣∆dkαk`
∣∣ .

STEP 2: Complete Up (CU)

Starting from τh = 0.5, the next larger order (τh+1 > τh) is obtained from the following

constrained minimization problem:

minimize

n∑
i=1

1

Ni

Ni∑
j=1

ρτh+1

(
Yij −U

′

ijα
)

+

p∑
k=0

mk∑
`=dk+1

λ(PS)

τh+1,k

∣∣∆dkαk`
∣∣ (3.7)
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with respect to α, subject to

α ≥ α̂τh . (3.8)

The Complete Upward (CU) stepwise procedure consists of minimizing (3.7) subject

to (3.8) for subsequently larger values τh+1 (for h taking values in a given grid).

STEP 2: Complete Down (CD)

This is similar to the Complete Upward procedure, but moving downwards from Step

1 (median estimation) on, replacing (3.7) and its constraint (3.8) by:

minimize

n∑
i=1

1

Ni

Ni∑
j=1

ρτh−1

(
Yij −U

′

ijα
)

+

p∑
k=0

mk∑
`=dk+1

λ(PS)

τh−1,k

∣∣∆dkαk`
∣∣

with respect to α, subject to

α ≤ α̂τh ,

and carrying this out sequentially.

In Section 5 we investigate the performance of this method to ensuring non-crossing

of the estimated quantile curves.

3.4 AHe approach: an adaptation of He’s (1997) approach

Yet another method can be proposed by adapting the approach of He (1997) to our

context of varying-coefficient models. Crucial here are the following assumptions on the

error structure.

(H1): the (conditional) median quantile of the error term ε(t) equals zero: q0.5(ε(t)) =

0 (i.e. a0.5(t) = 0).

(H2): the (conditional) median quantile of the absolute value of the error term ε(t)

equals one: q0.5(|ε(t)|) = 1.

These assumptions are sufficient to ensure identifiability when it comes to estimating the

quantile curves, as well as the variability function. See also Remark 2.2.

The procedure consists of three steps: (i) in a first step the median quantile function

is estimated; (ii) due to the assumptions and the first step this allows to estimate the

function V (t) in a second step; (iii) in a final step the estimation results from the two

previous steps are used to obtain the general quantile regression estimates. More precisely

the various steps in this estimation procedure are as follows.
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Step 1. Under Assumption (H1), the median quantile function under model (2.14) is

given by

q0.5(Y (t) | X(t), t) = β0(t)X(0)(t) + β1(t)X(1)(t) + · · ·+ βp(t)X
(p)(t) = X

′
(t)β(t) ,

with β(t) = (β0(t), . . . , βp(t))
′
.

Using the P-splines estimation method of Andriyana et al. (2014) (with τ = 0.5),

as described in Section 2, we obtain the estimated regression coefficient functions

(β̂0(t), . . . , β̂p(t)), and subsequently the estimated median regression curve:

q̂0.5(Y (t) | X(t), t) = β̂0(t)X(0)(t) + β̂1(t)X(1)(t) + · · ·+ β̂p(t)X
(p)(t) = X

′
(t)β̂(t) ,

Step 2. From Model (2.14) and since V (t) ≥ 0, we have

|Y (t)−X
′
(t)β(t)| = V (t)|ε(t)| ,

and using Assumption (H2) we find that the conditional median of |Y (t)−X
′
(t)β(t)|

equals V (t).

q0.5

(
|Y (t)−X

′
(t)β(t)|

)
= V (t) .

The unknown variability function V (·) can then be estimated using a P-splines

estimation technique, based on the pseudo-observations of the quantity |Y (t) −
X
′
(t)β(t)| resulting from Step 1, i.e. using

∣∣∣Y (tij)−X
′
(tij)β̂(tij)

∣∣∣, for i = 1, . . . , n

and j = 1, . . . , Ni. We therefore approximate the unknown variability function V (·)
by a B-spline basis, in a similar fashion as the approximations in (2.8). We denote

the B-splines basis of degree νV, using uV + 1 equidistant knot points, by BV
` (·; νV),

` = 1, . . . ,mV, with mV = uV + νV. The superscript v is to draw the attention that

this is the B-splines basis for estimation of V (·). In other words, we consider

V (tij) ≈
mV∑
`=1

αV

`B
V

` (tij; ν
V) ,

where (αV
1 , . . . , α

V

mV) denotes the associated coefficient vector that is to be estimated.

The estimator V̂ (t) is then given by

V̂ (t) =
mV∑
`=1

α̂V

`B
V

` (t; νV) , (3.9)

where (α̂V
1 , . . . , α̂

V

mV) is obtained by minimizing

n∑
i=1

1

Ni

Ni∑
j=1

ρ0.5

∣∣∣Y (tij)−X
′
(tij)β̂(tij)

∣∣∣− mV∑
`=1

αV

`B
V

` (tij; ν
V)

+
mV∑

`=dV+1

λV

∣∣∆dVαV

`

∣∣ ,
(3.10)

with respect to αV = (αV
1 , . . . , α

V

mV), where λV > 0 is the penalization parameter,

and where dV is the order of the differencing operator in the penalty term.
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Step 3. Equipped with the estimated vector (β̂0(t), . . . , β̂p(t)) from Step 1 and the es-

timator V̂ (t) from Step 2, and recalling that

Y (t)−X
′
(t)β(t) = V (t)ε(t) ,

we can now herein substitute β(t) by β̂(t) and V (t) by V̂ (t), and approximate the

unknown (conditional) quantile aτh(t) of the error term ε(t) by mh B-spline basis

functions, say of degree νh:

aτh(tij) ≈
mh∑
`=1

αqh,`B
q
` (tij; νh) .

The coefficients (αqh,1, . . . , α
q
h,mh

) in the expansion are obtained again by P-splines

approximation. More precisely minimizing the objective function

n∑
i=1

1

Ni

Ni∑
j=1

ρτh

(
Y (tij)−X

′
(tij)β̂(tij)− V̂ (tij)

mh∑
`=1

αqh,`B
q
` (tij; νh)

)
+

mh∑
`=dqh+1

λqh

∣∣∣∆dqhαqh,`

∣∣∣ ,
with respect to αq

h = (αqh,1, . . . , α
q
h,mh

), where λqh > 0 is the penalization parameter,

and where dqh is the order of the differencing operator in the penalty term for this

quantile estimation. Denote the resulting estimator of αq
h by α̂q

h. The estimator of

aτh(t) is then

âτh(t) =

mh∑
`=1

α̂qh,`B
q
` (t; νh) ,

and the estimated quantile function is given by

q̂τh (Y (t) | X(t), t) = X
′
(t)β̂(t) + V̂ (t)âτh(t) .

Remark 3.1. Some remarks can be made about the above estimation procedure. A first

remark is that the estimator V̂ (t) is not necessarily positive. We do not elaborate on this

point, but just mention that this issue can be addressed in several ways. A first possibility

would be to approximate log(V (t)) by B-splines, instead of V (t). An alternative would be to

include some nonnegativity constraints on the coefficients of the B-spline approximation of

V (·). In our implementations of the methods we apply the first option, and approximate

log(V (t)) with B-splines. A second remark is that in Step 3 it is not granted that the

estimated quantile curves âτh(t), looked upon as functions of τh are non-crossing. But this

is easily ensured by applying the simultaneous estimation technique exposed in Section 3.1,

if needed. A final remark is that an advantage of this method is that the estimation of the

variability function comes as part of it, in Step 2.
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4 Estimation of the error variability function

In Section 3 we focused on estimation of the quantile curves qτ (Y (t) | X(t), t)), and

discussed several methods to ensure non-crossing of the estimated curves. In this section

we pay attention to estimation Task 2: estimating the variability function V (t).

We investigate several methods for estimating V (t). A first method is the adaptation

of He’s (1997) approach presented in Section 3.4, with the estimator defined in (3.9).

Recall that this method relies on Assumptions (H1) and (H2).

A second method was already discussed in Remark 2.2, and assumes Assumption (B).

A third alternative method is as follows. Suppose now that the intercept coefficient

term is zero, i.e. β0(t) = 0, for all t. We refer to this as Assumption (NI). In that case,

Model (2.14), implies that

Y (t)−
p∑

k=1

βk(t)X
(k)(t) = V (t)ε(t) ,

and (see also (2.16))

βτ0 (t) = V (t)aτ (t) . (4.1)

Assuming (H2), we then obtain that

q0.5

(∣∣∣∣∣Y (t)−
p∑

k=1

βk(t)X
(k)(t)

∣∣∣∣∣
)

= V (t) .

Thus under Assumptions (NI) and (H2), the function V (t) is identifiable, and its esti-

mation can be achieved via the following two-steps procedure.

Step 1. Obtain the estimated coefficient functions β̂k(t), for k = 1, . . . , p, using the

(simultaneous) estimation method of Section 3.1.

Step 2. Use the pseudo-observations from Step 1, denoted by

∣∣∣∣∣Y (tij)−
p∑

k=1

β̂k(tij)X
(k)(tij)

∣∣∣∣∣;
approximate the unknown variability function V (·) by B-splines, and use a P-splines

estimation method with check function ρ0.5(·) to estimate the function V (·), as in

(3.10).

Yet, a fourth method is obtained under the Assumption (NI) and the assumption

(A2): the τ -th order conditional quantile of the error term ε(T ), given T = t,

denoted by aτ (t) is fully known.
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Indeed, from (4.1) it follows that, under Assumptions (NI) and (A2), the variability

function V (·) is identifiable, and can be estimated by

V̂ (t) =
β̂τ0 (t)

aτ (t)
.

Remark 4.1. From the discussions in this and previous sections, several sets of sufficient

conditions for identifiability of the variability function V were provided:

• Assumptions (H1) and (H2) hold;

• Assumptions (NI) and (H2) hold;

• Assumption (B) holds;

• Assumptions (NI) and (A2) hold.

These are just some examples, and other sets of sufficient conditions are possible.

In the simulation study in Section 6 all simulation models satisfy Assumption (NI)

(i.e. no intercept function).

5 Simulation study I: Non-crossing property of quan-

tile curves

Computer codes for the methods described in Sections 3 and 4 have been developed

and are collected in an available R Package QRegVCM that has been developed by the

first author. The package is available at the CRAN website https://cran.r-project.

org/web/packages/ and the codes are also available at http://wis.kuleuven.be/stat/

codes.html.

In this first simulation study we aim to investigate the performances of the methods

ensuring non-crossing estimated quantile curves discussed in Section 3. We therefore

consider simulation models in which V (t) = 1 (or a constant), and the focus is only on

estimation of the quantile functions. We take the general model

Y (tij) = β0(tij) +
3∑

k=1

βk(tij)X
(k)(tij) + ε(tij) ,

and consider different settings for the unknown coefficient functions βk(·), for k = 0, 1, 2, 3

and for the error term structure. See Table 1 for all details.

In all simulation models, we take the sample size n = 100, and for each subject i, (with

i = 1, . . . , n) measurements can happen only at the time points {0, 1, 2, . . . , 49}. From

this fixed set of possible time points, each time point (except for the starting time point

0) has a probability of 40% to be skipped. This creates different numbers of repeated

measurements Ni for each subject i (i = 1, . . . , n). The actual measurement times are

generated by adding a U [0, 0.5] random variable to the non-skipped scheduled times.

21

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/
http://wis.kuleuven.be/stat/codes.html
http://wis.kuleuven.be/stat/codes.html


Table 1: Homoscedastic models.

Model Coefficient functions Error design

1 β0(t) = t2

215
ε(t) = η(t)−q0.5(η(t))

q0.5(|η(t)−q0.5(η(t))|)

β1(t) = cos
(

(t−25)π
20

)
β2(t) = sin(πt)

30
⇒ q0.5(ε(t)) = 0

β3(t) = −4 + (20−t)2
100

⇒ q0.5(|ε(t)|) = 1

2 β0(t) = (t−5)2

1500
ε(t) =

η(t)−q0.5(η(t))+maxtij (|η(t)|)
q0.5(|η(t)−q0.5(η(t))+maxtij (|η(t)|)|)

β1(t) = 1
4

cos
(
t−5
500

)
β2(t) = sin(πt)

1000
⇒ q0.5(ε(t)) = 1

β3(t) = (15−t)2
1000

⇒ q0.5(|ε(t)|) = 1

3 β0(t) = |t−25|3
330

ε(t) = η(t)

β1(t) = 2− 3 cos
(

(t−25)π
15

)
β2(t) = 10 + 2 sin

(
πt
30

)
⇒ q0.5(ε(t)) 6= 0

β3(t) = −4 + (20−t)2
100

⇒ q0.5(|ε(t)|) 6= 1

The covariates X(1)(tij), X
(2)(tij) and X(3)(tij) are independent where X(1)(tij) has a

standard exponential distribution, X(2)(tij) a standard normal distribution, and X(3)(tij)

is uniformly U [−1, 1] distributed.

The error terms are, for each individual, generated from a multivariate normal dis-

tribution, followed by a transformation applied to it, as to fulfill certain assumptions

(regarding its median value or median of its absolute value). More precisely, we start

from generating η(·) from a multivariate normal distribution with covariance structure

Cov(η(tij), η(tij′)) = 30 exp(− |j − j′|). We then transform this error, as indicated in

Table 1, so that the transformed error ε(·) has the indicated median properties.

For the P-splines approximation technique we always used 10 equidistant knot points

and worked with B-splines of degree 3.

We investigate the finite-sample performances of the methods (see Section 3):

• Individual: the individual quantile regression estimator using P-splines (see Sec-

tion 2; and Andriyana et al. (2014));

• Simultaneous (unweighted): the simultaneous objective function method of

Section 3.1, with Wh = 1;

• Simultaneous (weighted): the simultaneous objective function method, with

data-driven weights as in (3.4); see Section 3.1;

• Quantile sheet: the adaptation of the quantile sheet method of Schnabel and

Eilers (2013a); see Section 3.2;

• Stepwise: the complete Up and Down procedure as described in Section 3.3;

• AHe approach: the adaptation of He’s approach; see Section 3.4.
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For each simulation model, we simulate 200 samples, and summarize results based on

these. Simulation results illustrating the problem of crossing estimated quantile curves

are provided in Section C.1 in the Supplementary material.
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Figure 5.1: Homoscedastic models: the average of the weights Ŵh over 200 simulations.

We first report on the performances of the six methods, of which five are designed

for dealing with the issue of crossing curves. For each sample s (s = 1, . . . , Nsim), with

Nsim=200 the number of simulations, consisting of observations (Yij,Xij, tij) we calculate

the empirical root mean integrated squared errors defined as

RMISE(q̂(s)
τh

(·)) =

(
n∑
i=1

1

Ni

Ni∑
j=1

(
q̂(s)
τh

(Yij | Xij, tij)− qτh(Yij | Xij, tij)
)2

)1/2

, h = 1, . . . , H .

(5.1)

Note that we do not write the dependence on the sample s of the second term within

brackets, for not making the notation too heavy. But it is good to realize that due to the

evaluation in the observations, this term also changes with the sample.

Before summarizing (a selection of) the results for each of the models, we look a bit

closer to the simultaneous method with the data-driven weights. In Figure 5.1 we depict

the mean of the data-driven weights Ŵh (over the 200 simulations) for each of the models.

Note that the largest weights are assigned to the most extreme-order quantiles, and that

the median gets in general a smaller weight. All estimated weights have a similar shape

when looked upon as a function of τ .

In Figure 5.2 boxplots report on the values of RMISE(q̂
(s)
τh (·)), for the 200 simulations,

for each of the six methods, for Model 1. Results for Models 2 and 3 are given in Figure

C.1 in Section C.2 in the Supplementary material. From Figure 5.2 we can see that

the unweighted and weighted simultaneous methods perform quite comparable in this

(homoscedastic) model setting. In addition, their performances are quite close to that

of the quantile sheet method, although the latter method has some difficulty for more

extreme-order quantiles (e.g. τ = 0.1 and τ = 0.9). In all three models the stepwise

method and the AHe approach perform less well (with exception of higher order quantiles

23



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

2

3

4

τ

RM
ISE

Methods
Individual Simultaneous Weighted
Quantile sheet Stepwise AHe approach

Figure 5.2: Homoscedastic model 1: boxplots of RMISE(q̂τh) over 200 simulations.

for the AHe approach), with performances that are in fact quite close to that of the

individual quantile estimation method.

For a more detailed evaluation of the quality of the estimated quantile curves, we look

at some representative estimates (among the 200 estimated quantile curves). We present

results for the sample that gave a median performance for the individual estimation

method (according to the empirical root mean integrated squared error criterion in (5.1),

but after averaging over all considered quantile orders τ). Figure 5.3 (d)—(i) depicts

these representative estimates for each of the six methods, for Model 1. For that specific

sample we also plot, in Figures 5.3 (a), the values Yij = Y (tij), when fixing the value of

the covariate vector X(·) to be the maximum over all observed values (i.e. maxi,j X(tij)).

Moreover, the true quantile curves are plotted in Figure 5.3 (b). Similar pictures for the

simulation results for Models 2 and 3 are provided in respectively Figure C.2 and Figure

C.3 in the Supplementary material.

Note that all methods designed for preventing crossing curves are indeed taking care

of the crossings that are noticeable in the panels (d) of Figure 5.3, Figure C.2 and Figure

C.3. The performances of the unweighted and the weighted simultaneous methods as

well as of the quantile sheet method are quite comparable (except for may be the most

extreme quantile orders). In Section C.3 of the Supplementary material we report on

average computing times for each of the discussed six methods. Since the computational

cost is quite high for the quantile sheet method, we do not include this method in the

second part of the simulation study.
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Figure 5.3: Model 1. Top panel: Scatter plots in case of median performance of q̂τh(Y (t) |
X(t), t) for the individual method. Other panels: performances of q̂τh(Y (t) | X(t), t) for

all six methods, applied to the maximum values of the covariates.

6 Simulation study II: heteroscedasticity

Here we consider a simple heteroscedastic model

Y (tij) =
3∑

k=1

βk(tij)X
(k)(tij) + V (tij)ε(tij) ,

with V (·) ≥ 0, and as indicated in Table 2. For identifiability reasons regarding the

function V (·), we do not include an intercept coefficient function (i.e. no β0(·)). Further,
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the covariates and the error terms are generated as in Section 5. We draw 200 times

samples of sizes n = 100 from the various models.

Table 2: Simple heteroscedastic models.

Model Coefficients Error design V (t)

1 β1(t) = cos
(

(t−25)π
1000

)
ε(t) = η(t)−q0.5(η(t))

q0.5(|η(t)−q0.5(η(t))|) V (t) = 1
5

√
t

β2(t) = sin
(
πt
30

)
+ 3 ⇒ q0.5(ε(t)) = 0

β3(t) = −4 + (20−t)2
1000

⇒ q0.5(|ε(t)|) = 1

2 β1(t) = cos
(

(t−25)π
100

)
ε(t) =

η(t)−q0.5(η(t))+maxtij (|η(t)|)
q0.5(|η(t)−q0.5(η(t))+maxtij (|η(t)|)|) V (t) = (50−t)2/3

5

β2(t) = sin
(
πt
100

)
⇒ q0.5(ε(t)) = 1

β3(t) = (20−t)2
100

⇒ q0.5(|ε(t)|) = 1

3 β1(t) = cos
(

(t−25)π
100

)
ε(t) = η(t)−q0.5(η(t))

q0.5(|η(t)−q0.5(η(t))|) V (t) = (25−t)2+3t
100

β2(t) = sin
(
πt
30

)
+ 13 ⇒ q0.5(ε(t)) = 0

β3(t) = −4 + (20−t)2
100

⇒ q0.5(|ε(t)|) = 1

In this part we focus on the estimation of the variability function V (·), and investigate

the performances of two methods for estimating this quantity:

• AHe-based method: the estimator defined in (3.9);

• Two-steps method: the two-steps alternative estimation method described in

Section 4 (utilizing (4.1)).

For a given simulated sample s (s = 1, . . . , Nsim, with Nsim = 200) the performance of a

method is evaluated via the empirical root mean integrated squared error, defined as

RMISE(V̂ (s)(·)) =

(
n∑
i=1

1

Ni

Ni∑
j=1

(
V̂ (s)(tij)− V (tij)

)2
)1/2

.

Table 3: Estimation of V (·): the averages (and standard deviations) of RMISE(V̂ (t)) over

200 simulations, for Methods 1 and 2.

Method Model 1 Model 2 Model 3

1. AHe-based method 0.69 (0.17) 14.78 (0.28) 2.79 (0.80)

2. Two-steps method 0.69 (0.17) 0.78 (0.19) 2.75 (0.81)

Table 3 summarizes the simulation results for Models 1–3. Presented in the table

are the mean and the standard deviations of the empirical root mean integrated squared

errors for the AHe-based method (Method 1) and the two-steps method (Method 2).
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(d) Model 1, Method 2.
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Figure 6.1: Simple heteroscedastic models: three representative estimates for V̂ (·) (solid

curve), according to the 5-th, 50-th, and 95-th percentiles of RMISE(V̂ (t)); results for

Method 1 and Method 2. Top panels: results for Method 1; Bottom panels: results for

Method 2.

Depicted in Figure 6.1 are some representative estimated variability curves for each

of the methods. These representative estimates correspond to the 5-th, 50-th, and 95-th

percentiles of the evaluation criterion RMISE over the 200 simulated samples (and this

for each method and each model).

Note, from Table 3 and Figure 6.1, that the performances of the AHe-based method

and the two-steps method are quite comparable for Models 1 and 3, but that the AHe-

based method seems to fail for Model 2. Recall that for the latter model the median of

the error term does not equal zero, and hence Assumption (H1) is not satisfied here. The

two-steps method does not rely on this assumption, and hence it performs well.

In what follows we use the two-steps method to estimate the variability function V (·)
when needed. This is for example the case when applying the weighted simultaneous

estimation method. To save space we do not present averages of the data-driven weights

Ŵh, since they look very similar to the plots given in Figure 5.1. This is to be expected,

given that the error terms ε(t) have the same distribution, and given the good quality of

the estimation of V (·).
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(c) Heteroscedastic model 3

Figure 6.2: Simple heteroscedastic models: boxplots of RMISE(q̂τh) over 200 simulations

for all models.

To finish we present some pictures that illustrate the performances in estimation of the

quantile curves in case of simple heteroscedastic models. For each of the five methods,

and all three models, we present the boxplots of the RMISE evaluation criterion (see

(5.1)). See Figure 6.2. Note that in case of these simple heteroscedastic models, the

weighting can lead to improvements in the simultaneous method, in particular for the

higher-order quantiles. In such cases the weighted version is also less variable (despite the

extra estimation of the variability function). The stepwise method and the AHe approach

have a more or less comparable performance. In terms of criterion (5.1) there is no
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Figure 6.3: Simple heteroscedastic model 1. Top panel: Scatter plots on the median perfor-

mance of q̂τh(Y (t) | X(t), t). Bottom panel: estimated quantile curves q̂τh(Y (t) | X(t), t)

applied to the maximum values of the covariates, with median RMISE-performances. Re-

sults are for the weighted simultaneous method and the stepwise method.

real gain when comparing the individual quantile estimation method with the methods

designed to prevent for crossing curves. The stepwise method and the AHe approach

method give, in case of Model 2, better performances than the simultaneous methods (see

Figure 6.2(b)). Recall that for the simultaneous methods one either takes Wh = 1 for all

h (in the unweighted simultaneous method) or uses the data-driven weights (see (3.4);

in the weighted simultaneous method), in which obviously the quality of estimation of

the variability function V (·) will play a role. For Model 2, a possible poor estimation of

the variability function influences the performance of the weighted simultaneous quantile

estimation method. These choices of weights explain why both simultaneous methods

perform, in this model, considerably worse than the other three methods, which do not

rely on choices of weights and/or on an estimator for the variability function. Figure C.1(a)

in Section C.2 of the Supplementary material presents the boxplots for the conditional

quantile estimators for the homoscedastic Model 2. Comparing Figures 6.2(b) and C.1(a)

we see in the latter a good performance of both simultaneous methods.

Finally we depict for each of the models: a typical scatter plot of the terms V (t)ε(t);

and a typical scatter plot of the observed response, as a function of time. These can
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be found in the top panels of Figures 6.3 and 6.4, and in Figure C.4 in Section C.2 of

the Supplementary material. For brevity we only present representative (median perfor-

mance) estimates of the quantile curves for two (out of the five) methods: the weighted

simultaneous method (which involves the estimated variability function) and the stepwise

method (see Section 3.3). See the bottom panels of Figures 6.3, 6.4 and Figure C.4.
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Figure 6.4: Simple heteroscedastic model 3. Top panel: Scatter plots on the median perfor-

mance of q̂τh(Y (t) | X(t), t). Bottom panel: estimated quantile curves q̂τh(Y (t) | X(t), t)

applied to the maximum values of the covariates, with median RMISE-performances. Re-

sults are for the weighted simultaneous method and the stepwise method.

In Section C.2.3 of the Supplementary material we present simulation results for two

additional models: (i) Model 1 but where the error is lognormal distributed; and (ii) a

simulation model that is not of a location-scale type. From these additional simulation

results we can conclude that also for such very difficult settings the discussed methods

continue to work for the quantile estimation task. Obviously the AHe approach inherently

assumes a location-scale model and is inapplicable for estimating a variability function

outside this modelling structure.
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7 Real data example: CD4 data

The data that we consider here are a subset of the data collected in the Multicenter

AIDS Cohort Study. This study concerns the investigation of the evolvement of an AIDS

infection over time, and involves 283 homosexual men who became HIV-positive in a

period of 6 years (1984 to 1991). For each of the subjects in the study, one has repeated

measurements on physical examination characteristics, on laboratory results, on CD4 cell

counts and on CD4 percentages. The number of repeated measurements ranges, over

the different individuals, from 1 to 14, with a median of 6 and a mean of 6.57. The

number of distinct time points, across the individuals, is 59. More details on the data

can be found in Kaslow et al. (1987). In this application we investigate the effect of the

covariates cigarette smoking status, pre-HIV infection CD4 cell percentage and age at HIV

infection, on the quantiles of the CD4 percentage after infection (the response variable).

Denote by tij the time in years (after HIV infection) of the j-th measurement on the

i-th individual and by Yij the i-th individual’s CD4 percentage at time point tij. The

covariates are X
(1)
i the smoking status of the i-th individual (1 or 0 if the individual ever

or never smoked cigarettes), X
(2)
i the centered (with the median) age at HIV infection for

the i-th individual and X
(3)
i the centered (with the median) pre-infection CD4 percentage.

In Andriyana et al. (2014) the median quantile curve for the post infection CD4

cell percentage was estimated. See that paper for, among others, the estimated baseline

function, as well as the estimated coefficient functions for the median regression curve.

With the methods developed here, we can ensure that various estimated quantile curves

do not cross, and we can also further investigate the variability in the data, using the

simple heteroscedastic modelling framework. As in Andriyana et al. (2014), we use B-

splines of degree 3 with 10 equidistant knots on the time interval and take differencing

order 1 everywhere.

We first report on estimating several quantile curves (for τ = {0.1, 0.2, . . . , 0.9}).
We present, for brevity, the results for two of the developed methods: the weighted

simultaneous method and the AHe approach. The estimated quantile curves are depicted

in Figures 7.1 (b) and (c). As we can see in Figure 7.1 (a), there is a clear issue of crossing

estimated curves when one uses the individual objective function method. This problem

is solved when using any of the other methods, as is seen from Figures 7.1 (b) and (c).

Next we can wonder about the variability aspects. If we want to make the assump-

tion that the error term has median zero (assumption (H1)) then we should include an

intercept term, since from Andriyana et al. (2014), we have learned that the estimated

baseline function differs from zero. We apply the AHe-based method for estimating the

variability function. The estimated curve is plotted in Figure 7.2 (a). In Figure 7.2 (b) we

plot the standardized residuals, together with estimated regression quantile curves (for

quantile orders 0.05, 0.25, 0.50, 0.75 and 0.95). As can be seen the estimated median
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(c) AHe approach.

Figure 7.1: CD4 data. Estimated CD4 percentage quantile curves for τ =

0.05, 0.25, 0.5, 0.75, 0.95 at the maximum values of all covariates using the methods: (a)

Individual quantile estimation, (b) (weighted) Simultaneous quantile estimation, and (c)

AHe approach.
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(b) Standardized residuals.
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Figure 7.2: CD4 data. (a). The estimated variability curve using the AHe-approach;

(b) & (c). Median regression applied to the standardized residuals (using the estimated

variability function) and to the absolute value of the standardized residuals.

regression curve is close to the constant 0. Furthermore the quantile curves are close

to being horizontal, showing no obvious dependence anymore on the covariates. Figure

7.2 (c) depicts the absolute value of the standardized residuals, with a median regression

estimator applied to it, revealing indeed a constant median value of 1.

In Section D in the Supplementary material the methods developed in this paper are

used to analyze air pollution data.
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8 Further discussion

A first aim of this paper was to develop quantile estimation methods for varying-coefficient

models, based on P-splines approximations, that ensure that the estimated quantile curves

do not cross. An alternative approach could be to apply rearrangement techniques such

as these used by Chernozhukov et al. (2009).

A second aim of the paper was to deal with quantile regression allowing for het-

eroscedasticity. The focus in this paper was on a location-scale type of modelling. Distin-

guishing between location models, location-scale models and more general heteroscedastic

models is an important issue when it comes to building and choosing statistical models.

Tests for testing homoscedasticity versus heteroscedasticity, specification tests, testing for

errors being independent of covariates, among others, have been developed in a nonpara-

metric regression context without time varying-coefficients. See, for example, Einmahl

and Van Keilegom (2008), Neumeyer (2009) and Birke et al. (2013). Developing such

tests in the context of varying-coefficient models would be of interest, and is a possible

direction for future research.

Concerning the P-splines approximation we did not discuss the choice of the order of

the differencing operators, and took them always one or two in the simulation studies and

real data applications. Of course, this choice together with the choice of other procedure

parameters, such as the number of knot points and the degree of the B-spline, do matter

in practice. For a detailed study on the complex interplay between these procedure

parameters, see for example Gijbels and Verhasselt (2010), and references therein.
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Supplementary material to the paper
Quantile regression in varying-coefficient models: non-crossing quantile

curves and heteroscedasticity
by

Andriyana, Y., Gijbels, I. and Verhasselt, A.

This supplementary material consists of the following additional material.

1. In Section A we establish that non-crossing of the estimates quantile curves is guar-

anteed for a specific covariates and time setting;

2. Section B presents the data-driven choices for the tuning parameters (λ(NC), and λ(PS)

τh,k
,

for h = 1, . . . , H and k = 0, . . . , p) that is used for all methods;

3. In Section C we provide more details on the results of the extensive simulation study,

and we also report on results for two additional simulation models.

4. The methods developed in the paper are applied to a second data example, the Air

Pollution data, in Section D.

A Guaranteed non-crossing at a specific covariates

and time setting

In this section we establish that for the P-splines estimation method non-crossing of the

estimated quantile curves is guaranteed for a specific fixed mean value of the covariates

and the time (under some conditions).

Recall that the optimization problem to solve is

minimize

n∑
i=1

1

Ni

Ni∑
j=1

ρτ

(
Yij −X

′

ijβ(tij)
)

+

p∑
k=0

mk∑
`=dk+1

λk
∣∣∆dkαk`

∣∣
with respect to α; or equivalently (see (2.8)) minimize

n∑
i=1

1

Ni

Ni∑
j=1

ρτ

(
Yij −X

′

ijβ(tij)
)

+

p∑
k=0

λkJk(βk) , (A.1)

with respect to the set of functions β; where we denoted the penalty term

applied to each function with a generic notation Jk, where the dependence on

k comes from the fact that the difference order dk may be different for the

various component functions βk.

1



Important to note is that Jk(βk) ≥ 0. The solution of the minimization problem depends

of course on the specific value of τ considered. The above equivalence only formally holds

if the approximation in (2.8) is an equality, meaning that the function βk(·) belongs to

the space spanned by the B-splines functions Bk1(·), . . . , Bkmk
(·), for k = 0, . . . , p. In that

case, the penalization is also superficial.

Theorem A.1 states that the non-crossing of the conditional quantile estimate is guar-

anteed in a specific fixed value for (X(t), t) that corresponds to some mean value of the

observed (X(tij), tij) where the mean is obtained via the B-splines basis functions.

Theorem A.1. If βk(·) in Model (2.14) belongs to the space spanned by the B-splines

functions Bk1(·), . . . , Bkmk
(·), for k = 0, . . . , p, then it holds that

for all 0 ≤ τ1 < τ2 ≤ 1 : q̂τ1(Y (t∗) | X(t∗), t∗) ≤ q̂τ2(Y (t∗) | X(t∗), t∗) , (A.2)

where (X(t∗), t∗) is such that X
′
(t∗)B(t∗) =

n∑
i=1

1

Ni

Ni∑
j=1

X
′

ijB(tij).

Proof. The proof is along the same lines as the proof of Theorem 2.5 of Koenker (2005),

but needs several adaptations for the varying-coefficient model setting.

Let 0 ≤ τ1 < τ2 ≤ 1. We start by evaluating the first term in (A.1), and look at the

differences of this first term for the two values of τ considered. Using the definition of ρτ
in (2.10) we get, for a given set of β functions,

n∑
i=1

1

Ni

Ni∑
j=1

[
ρτ2

(
Yij −X

′

ijβ(tij)
)
− ρτ1

(
Yij −X

′

ijβ(tij)
)]

=
n∑
i=1

1

Ni

Ni∑
j=1

[
τ2(Yij −X

′

ijβ(tij))
+ + (1− τ2)(Yij −X

′

ijβ(tij))
− − τ1(Yij −X

′

ijβ(tij))
+

−(1− τ1)(Yij −X
′

ijβ(tij))
−
]

=
n∑
i=1

1

Ni

Ni∑
j=1

[
(τ2 − τ1)(Yij −X

′

ijβ(tij))
+ + [(1− τ2)− (1− τ1)](Yij −X

′

ijβ(tij))
−
]

= (τ2 − τ1)
n∑
i=1

1

Ni

Ni∑
j=1

(Yij −X
′

ijβ(tij)) .

In conclusion:

n∑
i=1

1

Ni

Ni∑
j=1

ρτ1

(
Yij −X

′

ijβ(tij)
)

+ (τ2 − τ1)
n∑
i=1

1

Ni

Ni∑
j=1

(Yij −X
′

ijβ(tij))
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=
n∑
i=1

1

Ni

Ni∑
j=1

ρτ2

(
Yij −X

′

ijβ(tij)
)
. (A.3)

Denote by β̂τ the solution of minimization problem (A.1). Then

n∑
i=1

1

Ni

Ni∑
j=1

ρτ1

(
Yij −X

′

ijβ̂
τ1(tij)

)
+

p∑
k=0

λkJk(β̂
τ1
k )

≤
n∑
i=1

1

Ni

Ni∑
j=1

ρτ1

(
Yij −X

′

ijβ̂
τ2(tij)

)
+

p∑
k=0

λkJk(β̂
τ2
k ) .

Adding to both sides the term (τ2 − τ1)
n∑
i=1

1

Ni

Ni∑
j=1

(Yij −X
′

ijβ
τ2(tij)) and applying twice

equation (A.3), we obtain

n∑
i=1

1

Ni

Ni∑
j=1

ρτ1

(
Yij −X

′

ijβ̂
τ1(tij)

)
+ (τ2 − τ1)

n∑
i=1

1

Ni

Ni∑
j=1

(Yij −X
′

ijβ
τ2(tij)) +

p∑
k=0

λkJk(β̂
τ1
k )

≤
n∑
i=1

1

Ni

Ni∑
j=1

ρτ1

(
Yij −X

′

ijβ̂
τ2(tij)

)
+ (τ2 − τ1)

n∑
i=1

1

Ni

Ni∑
j=1

(Yij −X
′

ijβ
τ2(tij)) +

p∑
k=0

λkJk(β̂
τ2
k )

=
n∑
i=1

1

Ni

Ni∑
j=1

ρτ2

(
Yij −X

′

ijβ̂
τ2(tij)

)
+

p∑
k=0

λkJk(β̂
τ2
k )

≤
n∑
i=1

1

Ni

Ni∑
j=1

ρτ2

(
Yij −X

′

ijβ̂
τ1(tij)

)
+

p∑
k=0

λkJk(β̂
τ1
k )

=
n∑
i=1

1

Ni

Ni∑
j=1

ρτ1

(
Yij −X

′

ijβ̂
τ1(tij)

)
+ (τ2 − τ1)

n∑
i=1

1

Ni

Ni∑
j=1

(Yij −X
′

ijβ̂
τ1(tij)) +

p∑
k=0

λkJk(β̂
τ1
k ) .

Subtracting the first and third term from both sides, we find

n∑
i=1

1

Ni

Ni∑
j=1

X
′

ijβ̂
τ2(tij) ≥

n∑
i=1

1

Ni

Ni∑
j=1

X
′

ijβ̂
τ1(tij) . (A.4)

Now recalling that

β̂τk (tij) =

mk∑
`=1

α̂τklBk`(tij; νk) .

and using the matrix notations in (2.11), the inequality in (A.4) can be rewritten as(
n∑
i=1

1

Ni

Ni∑
j=1

X
′

ijB(tij)

)
α̂τ2 ≥

(
n∑
i=1

1

Ni

Ni∑
j=1

X
′

ijB(tij)

)
α̂τ1

which proves (A.2).
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B Data-driven choice of the tuning parameters

The minimization problems, such as this involving S2(α) in (3.2) require the choice of

H(p + 1) + 1 tuning parameters, λ(NC) and λ(PS)

τh,k
, for h = 1, . . . , H and k = 0, . . . , p. A

practical data-driven method that was experienced to give a good performance consists

of first choosing a global parameter λ and then refining this further, taking into account

guesses of the specific irregularities of the unknown univariate functions. More precisely,

the two steps of this data-driven tuning parameter selection are

Step 1. First take λ(NC) = λ(PS)

τh,k
= λ for all h = 1, . . . , H and k = 0, . . . , p, and from

a given grid of λ-values, choose the λ that minimizes the Schwarz Information

Criterion

SIC(λ) = log

(
1

nH

H∑
h=1

n∑
i=1

1

Ni

Ni∑
j=1

ρτh (Yij − q̂τh(Yij|Xij, tij))

)
+

log(N)

2N
pλ ,

where pλ is the size of the elbow set Eλ, where

Eλ = {(i, j, h) : Yij − q̂τh(Yij|Xij, tij) = 0} ,

i.e. the set of all fits which led to a perfect fitted value q̂τh(Yij|Xij, tij) for the

observed response value Yij.

Denote the resulting choice of λ by λ̂.

Step 2. Using λ̂, obtain λ(PS)

τh,k
for all h = 1, . . . , H and k = 0, . . . , p, from

λ̂(PS)

τh,k
= λ̂

(
R(β̂τh,Bk (·))

)−κ
where β̂τh,Bk (t) is the quantile regression estimator of βτhk (t) using B-splines (so with

individual objective function putting λ(PS)

τh,k
= 0), R(β̂τh,Bk (·)) is the range of all values

β̂τh,Bk ((tij)), and κ > 0 is a given number (in our simulations we take κ = 0.5).

The rational behind the second step is that a larger value of λ(PS)

τh,k
can be used for a

function βk(·) that is smoother (more regular); and the correction factor
(
R(β̂τh,Bk (·))

)−κ
to the data-driven global choice λ̂ for λ from the first step, aims to achieve this. A very

rough guess of the ‘irregularity’ of the unknown function βk(·) is obtained by considering

the range of all estimated realized function values β̂τh,Bk ((tij)). By taking a negative power

of this rough guess, we hint for obtaining larger data-driven values for λ(PS)

τh,k
when βk(·) is

less irregular.

4



C More details about the simulation study

C.1 Illustration of the problem of crossing estimated quantile

curves

To illustrate the problem of possible crossings of individually estimated quantile curves,

we calculate for the individual method the percentages of average number of crossings (in

observation points) for each two estimated quantile curves, i.e.

percentage of average number of crossings =

(
1

Nsim

Nsim∑
s=1

#crossing-points

N

)
× 100% ,

where Nsim = 200 denotes the number of simulations, and N =
∑n

i=1Ni the total number

of observations. Tables C.1 and C.2 report on these percentages, for Models 2 and 3, for

each set of two estimated quantile curves. Obviously the problem is more pronounced

for estimated quantile curves with subsequent orders as compared to orders further apart

(for example for the τ = 0.6 and τ = 0.7 curves, as compared to the τ = 0.1 and τ = 0.7

curves). The problem of crossing curves is more severe for Model 3 than for Model 2.

Table C.1: Homoscedastic Model 2: Percentages of average number of crossings in the

individually estimated quantile curves, based on 200 simulations.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 . 12.27 4.27 1.70 1.11 0.70 0.23 0.16 0.04

0.2 . 10.63 3.46 1.25 0.55 0.21 0.16 0.14

0.3 . 10.82 4.00 1.34 0.46 0.34 0.12

0.4 . 13.19 3.95 1.46 0.70 0.25

0.5 . 11.96 4.14 1.38 0.59

0.6 . 13.02 3.95 1.82

0.7 . 10.33 3.76

0.8 . 11.51

0.9 .
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Table C.2: Homoscedastic Model 3: Percentages of average number of crossings in the

individually estimated quantile curves, based on 200 simulations.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 . 26.00 15.58 9.96 6.68 4.60 3.19 2.02 1.49

0.2 . 25.99 15.21 9.91 6.77 4.35 2.55 1.88

0.3 . 24.72 16.00 9.81 6.62 4.06 3.31

0.4 . 26.39 16.04 10.53 6.97 4.78

0.5 . 26.19 16.53 10.20 6.77

0.6 . 27.00 15.05 10.18

0.7 . 24.69 15.35

0.8 . 26.77

0.9 .

C.2 Additional simulation results

C.2.1 Simulation study I

Boxplots reporting on the values of RMISE(q̂
(s)
τh (·)) for Models 2 and 3 are given in Figure

C.1. A more detailed impression on the performances for quantile estimation for the six

discussed methods can be obtained from Figure C.2 and Figure C.3.

C.2.2 Simulation study II

Pictures reporting on the performances of the quantile estimators for the simple het-

eroscedastic model 2 are to be found in Figure C.4.

C.2.3 Additional simulation study

Asymmetric errors

In the simulation studies presented so far the error structure was always coming from a

multivariate normal distribution. In order to investigate the performance of the methods

in case of an asymmetric error structure, we consider simulation model 1, but now with

lognormal errors.

We consider the simple heteroscedastic Model 1 of Section 6, but with variability

function V (t) = 10−7
√
t. The error terms are now, for each individual, obtained by gen-

erating η(·) from a lognormal distribution with covariance structure Cov(η(tij), η(tij′)) =

30 exp(− |j − j′|). We then transform this error, in correspondence to the model assump-

tions listed in the third column of Table 2.
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Figure C.1: Homoscedastic models 2 and 3: boxplots of RMISE(q̂τh) over 200 simulations.

This is a very challenging and difficult simulation setting. As can be seen from Figure

C.5 (a) the error structure is a very difficult one. In Figure C.5 (b) we only plot the

points Y (t) on a restricted vertical range ([0, 22]) to allow to see the structure. The

maximum value of Y (t) was close to 1000 in this setting. In Figure C.6 we present the

boxplots of RMISE(q̂τh), but on a vertical log-scale for a better visual impression. As can

be seen all methods show a high estimation variance, which is even more pronounced in
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Figure C.2: Model 2. Top panel: Scatter plots in case of median performance of q̂τh(Y (t) |
X(t), t) for the individual method. Other panels: performances of q̂τh(Y (t) | X(t), t) for

all six methods, applied to the maximum values of the covariates.

the higher quantiles. Since the highest quantiles tend to get more weights in the weighted

simultaneous method (see Section 5), this method suffers in particular from this.

A simulation model that is not a location-scale model

So far we always focussed on location-scale models. However, the methods developed in

this paper are also applicable to models that are not of a location-scale type. At least as

long as it concerns the estimation of conditional quantile curves.

We therefore consider a gamma model. Denote by Gi a vector of Ni independent

8
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Figure C.3: Model 3. Scatter plots for the sample with median performance of q̂τh(Y (t) |
X(t), t) for the individual method. Other panels: performances of q̂τh(Y (t) | X(t), t) for

all six methods, applied to the maximum values of the covariates.

Gamma-distributed variables (corresponding to individual i) with specific shape and scale

parameter. Then Yi = RiGi, with RiR
′
i the variance-covariance matrix (the same as for

all other models) with (j, j′) element equal to 30 exp(− |j − j′|). The shape parameter

is taken to be exp{(X(1)(tij)β1(tij) +X(2)(tij)β2(tij) +X(3)(tij)β3(tij))/10} and the scale

parameter equals exp{(X(1)a1(tij)+X(2)(tij)a2(tij)+X(3)(tij)a3(tij))/10} for a given data

point (X∗(tij), tij). Herein the functions β1(·), β2(·), and β3(·) are the same as in the simple
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Figure C.4: Simple heteroscedastic model 2. Top panel: Scatter plots on the median perfor-

mance of q̂τh(Y (t) | X(t), t). Bottom panel: estimated quantile curves q̂τh(Y (t) | X(t), t)

applied to the maximum values of the covariates, with median RMISE-performances. Re-

sults are for the weighted simultaneous method and the stepwise method.
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Figure C.5: Simple heteroscedastic model 1 with lognormal error structure: typical scatter

plots of the data.
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Figure C.6: Simple heteroscedastic model 1 with lognormal error structure: boxplots of

RMISE(q̂τh) over 200 simulations. The vertical axis is on a log-scale.

heteroscedastic model 1, and the functions a1(·), a2(·) and a3(·) are given by

a1(t) =

(
t

100

)3

+ 1 a2(t) = 0.1 t+ 0.5 a3(t) = 0.5
√
t .

Also this simulation setting is very challenging as can be sensed from Figure C.7 which

shows increasingly more widely spread data when moving to the right in the picture. From

the boxplots in Figure C.8 (where again we used a log-scale for the vertical axis) it is seen

that the quality of quantile estimation decreases with increasing quantile order.
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Figure C.7: Gamma model: Plot of Y (t) versus maxij X(tij).

C.3 Computing times

Table C.3 presents average computing times (average over all 200 simulations) for all

discussed methods. The computational cost is smallest for the AHe approach, and is

largest for the quantile sheet method.

Table C.3: Computing times (in minutes)

Methods Homoscedastic Models Heteroscedastic Models

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Individual 1.25 1.22 1.38 1.20 1.27 1.37

Simultaneous 1.66 1.64 1.74 2.18 2.68 2.85

Weigthed Simultaneous 3.52 3.89 3.21 4.29 5.23 5.10

Quantile sheet 10.03 8.29 9.38 not included

AHe-approach 0.40 0.36 0.44 0.38 0.37 0.43

Stepwise 1.19 1.09 1.22 1.18 1.26 1.29

D Additional real data example: Air Pollution data

The data are a subsample of 500 observations from a data set that originates in a study

where air pollution at a road is related to traffic volume and meteorological variables. The

data were collected by the Norwegian Public Roads Administration, measured at Alnabru

in Oslo, Norway, between October 2001 and August 2003. During each of the 273 days,

measurements were performed at different time points (hours), with a range of 1 to 6 mea-

surements per day, and a median of 2 measurements per day. Information about the data

can be found at StatLib (http://lib.stat.cmu/edu) and also in the truncSP R-package

(see Karlsson and Lindmark (2014)). Guo et al. (2012) analyzed these data considering

12
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Figure C.8: Gamma model: boxplots of RMISE(q̂τh) over 200 simulations. The vertical

axis is on a log-scale.

also a varying-coefficient model, but in an i.i.d. setting (considering all observations as

being independent realisations of a same population random vector). In contrast, in our

analysis, we consider the day being the subject and the different measurements per day as

the repeated measurements, allowing as such possible dependence between measurements

on the same day. The response variable Y (t), consists of hourly values of the logarithm of

the concentration of PM10. PM10 is a particle pollution known as “particulate matter”,

one of the main constituent air pollutants with negative effect on human health. It is

a mixture of solid and liquid droplets with diameter less than 10 micrometers. See for

example Aldrin and Hobaek Haff (2005) and Oftedal et al. (2009) for studies on air pol-

lution involving PM10 and other particle pollutants. In their analysis Guo et al. (2012)

considered two covariates, X1(t) the logarithm of the number of cars per hour and the

13



second covariate, X2(t), the wind speed (meters/second). For the illustration here we also

consider only these two covariates.

To analyze this data set, we use B-splines of degree 3 with 10 equidistant knot points

on the time interval with differencing order 1. The estimated quantile curves, using the

individual objective function method, and two of the developed methods (with guaranteed

non-crossing estimated quantile curves)– the weighted simultaneous objective function

approach and the adaptation of AHe approach, are depicted in Figures D.1 (a)—(c).
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(b) Weighted simultaneous.
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(c) AHe approach.

Figure D.1: Air Pollution Data. Estimated log(concentration of PM10) quantile curves for

τ = 0.05, 0.25, 0.5, 0.75, 0.95 at the maximum values of all covariates using the methods:

(a) Individual quantile estimation, (b) (weighted) Simultaneous quantile estimation, and

(c) AHe approach.
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(a) Baseline function (β̂0(t)).
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(b) Coefficient of cars (β̂1(t)).
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(c) Coefficient of wind (β̂2(t)).

Figure D.2: Air Pollution Data. The estimated coefficient functions, using the AHe

method.

The estimated coefficient functions β0(t), β1(t) and β2(t) are shown in Figures D.2

(a), (b) and (c), respectively. It should be noted that Guo et al. (2012) did not include

an intercept term in their model (but standardized, in their i.i.d. setting the Y , X1 and

X2 variables, not the T variable). This should be kept in mind when comparing the

14



estimated coefficient functions. The shapes of the estimated coefficient functions β1(t)

and β2(t) are somewhat similar (with ours being more smooth), showing the largest effect

of both covariates from early morning till late in the afternoon, and with a reduced effect

on particle pollution for higher wind speeds (see the negative values of the estimated

coefficient β2(t)).

In Figure D.3 (a) we plot the estimated variability function, revealing that the esti-

mated variability is lowest between 5 and 7 in the morning, but then increases steadily

during the rest of the day.
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Figure D.3: Air Pollution Data. (a) The estimated variability curve; (b) QQ-plots of the

τ -th quantile of the standardized residuals using (D.1) versus estimation via the approach

in Section 3.4.

Analyzing these data in a general longitudinal data setting provides some additional

insights, compared to previous analysis. Guo et al. (2012) also estimate a kind of variabil-

ity function, but when doing so they assume that the (i.i.d.) errors are standard normally

distributed. Translated to our setting this would mean

βτ0 (t) = β0(t) + V (t)qτN ,

where qτN denotes the τth quantile of a standard normal distribution. Based on all known

quantiles, an estimator for the variability function is then

V̂GTZ(t) =
1

H − 1

H∑
h=2

β̂τh0 (t)− β̂τh−1

0 (t)

qτhN − q
τh−1

N

. (D.1)

In Figure D.3(b) we plot the quantiles of the standardized residuals, using an estimated

variability function following Guo et al. (2012), relying on (D.1), versus the quantiles of
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the standardized residuals using our approach. As can be seen here, the further from the

median, the more differences are noticeable between the two quantiles, revealing that the

normality assumption is questionable, which is also confirmed by tests for normality.
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