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HOPF DENSE GALOIS EXTENSIONS WITH APPLICATIONS

JI-WEI HE, FRED VAN OYSTAEYEN AND YINHUO ZHANG

Abstract. Let H be a finite dimensional Hopf algebra, and let A be a left H-module algebra.

Motivated by the study of the isolated singularities of AH and the endomorphism ring EndAH (A),

we introduce the concept of Hopf dense Galois extensions in this paper. Hopf dense Galois

extensions yield certain equivalences between the quotient categories over A and AH . A special

class of Hopf dense Galois extensions consists of the so-called densely group graded algebras,

which are weaker versions of strongly graded algebras. A weaker version of Dade’s Theorem

holds for densely group graded algebras. As applications, we recover the classical equivalence

of the noncommutative projective scheme over a noetherian N-graded algebra A and its d-th

Veronese subalgebra A(d) respectively. Hopf dense Galois extensions are also applied to the study

of noncommuative graded isolated singularities.

Introduction

The study of Hopf algebra actions on Artin-Schelter regular algebras is always an important

subject in the field of noncommutative algebraic geometry. Many interesting results are obtained in

recent years (for instance, [Ue, MU, CKWZ1, CKWZ2, KKZ1, KKZ2, KKZ3, EW, WW] etc.). Let

H be a Hopf algebra, and let A be a left H-module algebra. Assume A is also an Artin-Schelter

regular algebra. In general, the invariant subalgebra AH of A is not regular. Indeed, it was proved

in [KKZ2] that the invariant subalgebra of a finite group action on a quantum polynomial algebra is

regular if and only if the group is generated by quasi-reflections. If the Hopf algebra action satisfies

some good conditions, say the homological determinant of H is trivial (for the terminology, see

[JZ, KKZ1]), then the invariant subalgebra AH is Artin-Schelter Gorenstein (cf. [KKZ1, KKZ3]).

So, in this case, one asks about the properties of the singularities of AH . Ueyama called a noetherian

connected graded algebra A a graded isolated singularity if the quotient category tailA has finite

global dimension (cf. [Ue]). He proved in [Ue] that a finite group action on an Artin-Schelter regular

algebra of global dimension 2 with trivial homological determinant always yields a graded isolated

singularity.

Let G be a finite group which acts homogeneously on an Artin-Schelter regular algebra A. If

the invariant subalgebra AG is a graded isolated singularity, then there is an equivalence of abelian

categories tailA ∗ G ∼= tailAG (cf. [Ue, MU]), where A ∗ G is the skew group algebra of A and G.

More generally, Mori and Ueyama call a finite group action on A ample if there is an equivalence

tailA ∗ G ∼= tailAG (cf. [MU]). We found that the whole theory of graded isolated singularities

and ample group actions on Artin-Schelter regular algebras fits into a more general theory, Hopf

dense Galois extensions, which we will introduce in this paper. Our aim of this paper is to develop

a general theory on Hopf dense Galois extensions, and then in this framework to understand the

finite dimensional Hopf-actions on Artin-Schelter regular algebras.
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Let H be a finite dimensional Hopf algebra, and A a left H-module algebra. We may view A as a

right H∗-comodule algebra with a coaction map ρ : A→ A⊗H∗. Recall that the algebra extension

A/AH is called a right H∗-Galois extension if the map β : A⊗AHA→ A⊗H∗, a⊗b 7→
∑

(b) ab(0)⊗b(1)

is an isomorphism, where ρ(b) =
∑

(b) b(0) ⊗ b(1). When we study H-actions on infinite dimensional

algebras, say Artin-Schelter regular algebras, the canonical map β is not often an isomorphism. So,

we have to modify the definition of the classical Hopf Galois extension. We require that the map β

is almost surjective, that is, the cokernel of β is finite dimensional. In this case, we call A/AH a right

H∗-dense Galois extension (for more details, see Section 1). It turns out that this is an efficient

way to study the noncommutative projective scheme over the invariant subalgebra AH , especially

when AH is a graded isolated singularity.

The paper is organized as follows. In Section 1, we introduce the definition of Hopf dense Galois

extensions. In Section 2, we prove some general equivalences of abelian categories for Hopf dense

Galois extensions. Let H be a finite dimensional semisimple Hopf algebra, and let A be a left

H-module algebra. In the theory of the classical Hopf Galois extensions, the module A#HA is a

projective generator of the category of left A#H-modules, and End(AAH ) ∼= A#H as algebras (cf.

[CFM, Theorem 1.9]). However, for the Hopf dense Calois extensions, these properties are not true

in general. We need more restrictions on the algebra A. In Section 3, we show that if A satisfies

some additional homological properties, then we have an isomorphism End(AAH ) ∼= A#H. The

main results of Sections 2 and 3 are the following theorem (cf. Theorems 2.3 and 3.8). The notions

in the theorem will be introduced in the corresponding sections.

Theorem. Let H be a finite dimensional semisimple Hopf algebra, and let A be a left H-module

algebra. Assume that A is also noetherian (on both sides). Let B = A#H, R = AH and t a nonzero

integral of H. The following statements (i) to (iv) are equivalent.

(i) A/R is a right H∗-dense Galois extension.

(ii) For any finitely generated right B-module M , T (M) is finite dimensional, where T (M) is

the largest t-torsion submodule of M (cf. Section 2).

(iii) B/(BtB) is finite dimensional.

(iv) −⊗B A : QModB −→ QModR is an equivalence of abelian categories.

If we assume further that depthAA ≥ 2, then the above statements implies that

(v) the natural map

A#H −→ End(AAH ), a#h 7→ [b 7→ a(h · b)]

is an isomorphism of algebras (cf. Section 3).

The statement (v) above follows from a more general result about equivalences of quotient cat-

egories (cf. Theorem 3.6). We remark that a part of the theorem above was obtained in [MU,

Theorem 2.13] in the case that H is a finite group algebra and A is N-graded.

A special class of Hopf dense Galois extensions are the so called densely group graded algebras

which we will introduce in Section 4. It is a weaker version of strongly graded algebras (cf. [NV]).

We have the following version of Dade’s Theorem (cf. Theorem 4.7).
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Theorem. Let G be a finite group, and let A = ⊕g∈GAg be a G-graded algebra. Assume that A is

a noetherian algebra. Then the following are equivalent.

(i) A is a densely G-graded algebra.

(ii) For any finitely generated G-graded A-module M = ⊕g∈GMg, if Me is finite dimensional,

then M itself is finite dimensional.

(iii) The functor (−)e : QGrModGA −→ QModAe is an equivalence of abelian categories.

For any Z-graded algebra A = ⊕i∈ZAi, we may view A as a Zd-graded algebra. Indeed, if we set

Bi = ⊕r∈ZArd+i for all i ∈ Zd (0 ≤ i ≤ d− 1), then B = ⊕i∈ZdBi is a Zd-graded algebra. Note that

B0 = A(d) = ⊕r∈ZArd is the dth Veronese subalgebra of A. As an applications of densely graded

aglebras, in Section 5 we recover the classical result about the equivalence of the categories of the

noncommutative projective schemes tailA(d) and tailA. Indeed, we have the following more general

result (cf. Theorem 5.2), which is a consequence of a more general result (cf. Theorem 4.9).

Theorem. Let A = A0⊕A1⊕· · · be a locally finite noetherian N-graded algebra and let d be a fixed

positive integer. The following are equivalent.

(i) There is an integer p > 0 such that, for all n ≥ p and 0 ≤ s ≤ d− 1,

And =
∑

i + j = n

i ≥ 0, j ≥ 1

Aid+sAjd−s.

(ii) For any finitely generated right graded A-module M , if M (d) = ⊕n∈ZMnd is finite dimen-

sional, then M itself is finite dimensional.

(iii) (−)(d) : TailA −→ TailA(d) is an equivalence of abelian categories.

(iv) (−)(d) : tailA −→ tailA(d) is an equivalence of abelian categories.

Note that the condition (i) in the above theorem is relatively easy to verify. For example, if the

graded algebra A is generated by elements in A0 and A1, then (i) is satisfied. Hence we recover the

classical result (cf. Theorem 5.1). We remark that Mori also provided some equivalent conditions for

the equivalence of tailA and tailA(d) in [Mo, Theorem 3.5]. Note that it is assumed in [Mo] that A

is a connected graded algebra satisfying further homological conditions. In our case, we only assume

that A is a locally finite noetherian algebra, and we prove the result in the framework of Hopf dense

Galois extension, which seems to be a new way to understand noncommutative projective schemes.

In Section 6, we provide another application of Hopf dense Galois extensions to graded isolated

singularities. We prove that the invariant subalgebra AH is a graded isolated singularity if A/AH

is a H∗-dense Galois extension and A has finite global dimension (cf. Corollary 6.2). Some further

results about the endomorphism ring of AAH are obtained.

Throughout the paper, k is a field of characteristic zero. All the algebras and modules are over

k, and the symbol ⊗ we means ⊗k. For the basic properties of classical Galois extensions, we refer

to the references [CFM] and [Mon]. For the basic properties of quotient categories, we refer to the

books [St] and [PP].
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1. Hopf dense Galois extensions

Let H be a Hopf algebra with the coproduct ∆ and antipode S. Let A be a right H-comodule

algebra, that is, A is an algebra together with a right H-comodule action ρ : A→ A⊗H, satisfying

the compatibility condition

ρ(ab) =
∑

(b)(a)

a(0)b(0) ⊗ a(1)b(1),

where we use Sweedler’s sigma notation. The coinvariants of the H-coaction are defined to be

AcoH = {a ∈ A|ρ(a) = a⊗ 1}, which is a subalgebra of A. If H is finite dimensional, then H∗ is a

Hopf algebra. The right H-coaction on A induces a left H∗-action by setting f ·a =
∑

(a) f(a(1))a(0).

Then A is a left H∗-module algebra. The invariant subalgebra of H∗-action on A is defined to be

AH
∗

= {a ∈ A|f · a = f(1)a, ∀f ∈ H∗}. One has AcoH = AH
∗

in case H is finite dimensional.

Recall from [KT] that the algebra extension A/AcoH is said to be right H-Galois if the map

β : A⊗AcoH A→ A⊗H, a⊗ b 7→ (a⊗ 1)ρ(b)

is surjective. In this case, AcoH shares many common properties with the smash product A#H∗.

Indeed, AcoH is Morita equivalent to A#H∗ (cf. [CFM, Theorem 1.2]). In many interesting examples

in noncommutative algebraic geometry, the algebra extension A/AcoH may not be H-Galois, but still

the coinvariant subalgebra AcoH shares some common properties with A#H∗. It seems necessary

to introduce a more general definition than the one of an H-Galois extension.

We first introduce some terminologies. Let B be an algebra, and M and N left B-modules. Let

f : M → N be a left B-module morphism. We say that f is almost surjective if the image of

f is cofinite, that is, N/ im(f) is finite dimensional. We say that f is almost injective if ker f is

finite dimensional. If f is both almost surjective and almost injective, we say that f is an almost

isomorphism.

Definition 1.1. Let H be a Hopf algebra, and let A be a right H-comodule algebra. We say that

the algebra extension A/AcoH is a right H-dense Galois extension if the map

β : A⊗AcoH A→ A⊗H, a⊗ b 7→ (a⊗ 1)ρ(b)

is almost surjective.

Note that if A is finite dimensional, then any coaction of a finite dimensional Hopf algebra on A

yields an H-dense Galois extension. Hence the definition is trivial for finite dimensional comodule

algebras. When the comodule algebra A is infinite dimensional, there will be many interesting

examples in noncommutative algebraic geometry. We give the following example. More examples

will be given in following sections.

Example 1.2. Let σ =

(
−1 0

0 −1

)
and letG = 〈σ〉 be the cyclic group of order 2. Let A = k[x, y]

be the polynomial algebra. We view A as an N-graded algebra. Then G acts homogeneously on A.

Let kG be the group algebra, and let H = kG∗. Then A is a right H-comodule algebra. Let e be

the unit of G. Then {e, σ} is a basis of kG. Let {e∗, σ∗} be the dual basis of H. Set 1H = e∗ + σ∗

and h = e∗ − σ∗. Then 1H is the unit of H and h2 = 1H . The induced H-coaction ρ : A→ A⊗H
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is defined by

ρ(xiyj) =

{
xiyj ⊗ 1H , i+ j is even;

xiyj ⊗ h, i+ j is odd.

Then one sees that AcoH = ⊕n≥0A2n. The map β : A⊗AcoH A→ A⊗H is as follows

β(xiyj ⊗ xrys) =

{
xi+ryj+s ⊗ 1H , r + s is even;

xi+ryj+s ⊗ h, r + s is odd.

Now it is easy to see that dim((A ⊗ H)/ imβ) = 1. Hence A/AcoH is a right H-dense Galois

extension.

Similar to the case of H-Galois extensions, we have the following property of H-dense Galois

extensions.

Proposition 1.3. Let H be a finite dimensional Hopf algebra, and let A be a left H-module algebra.

Then A/AH is a right H∗-dense Galois extension if and only if the map [ , ] : A ⊗AH A →
A#H, a⊗ b 7→ (a#t)(b#1) is almost surjective, where t is a nonzero integral of H.

Proof. Since H is finite dimensional, the map θ : H∗ → H defined by θ(f) = t ↼ f is a right

H∗-module isomorphism, where ‘↼’ is the right H∗-module action on H. As showed in the proof

of [CFM, Theorem 1.2], [ , ] = (id⊗θ) ◦ β as maps. Hence [ , ] is almost surjective if and only if β

is almost surjective.

2. General equivalences of quotient categories

Let B be a noetherian algebra. We write ModB for the category of right B-modules, and modB

for the full subcategory of ModB consisting of finitely generated right B-modules. Let MB be

a right B-module. We call M a torsion module if for any m ∈ M , the submodule mB is finite

dimensional. Note that every B-module admits a largest torsion submodule. We write TorB for

the full subcategory of ModB consisting of all the torsion modules. Let torB be the intersection

of modB and TorB.

Since B is noetherian, we see that TorB (resp. torB) is a Serre subcategory of ModB (resp.

modB). Define

QModB :=
ModB

TorB
, qmodB :=

modB

torB
.

Then both QModB and qmodB are abelian categories.

Throughout the rest of this section, let H be a finite dimensional semisimple Hopf algebra, and let

A be a left H-module algebra. Set R = AH to be the invariant subalgebra of A, and set B := A#H.

Assume that A is noetherian. Then both B and R are noetherian, moreover, A viewed as a left (or

a right) R-module is finitely generated (cf. [Mon]).

We introduce another torsion class in the category of B-modules. Let t ∈ H be the integral in

H such that ε(t) = 1. Hence t2 = t. We view t as an element of B by identifying t with 1#t. The

ideal of B generated by t is written as BtB. We call a right B-module M a t-torsion module if for

every element m ∈ M we have mBt is finite dimensional. Let T be the full subcategory of ModB

consisting of all the t-torsion modules. By the definition, we see that TorB is a full subcategory
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of T . Let N be a right B-module. Write T (N) for the sum of all the t-torsion submodules of N .

Then T (N) is the largest t-torsion submodule of N . Hence, we indeed obtain a functor

T : ModB → T .

Note that R ∼= tBt as algebras. We have Mt ∈ ModR for any M ∈ ModB.

Lemma 2.1. (i) If M ∈ T is a finitely generated B-module, then Mt is finite dimensional.

(ii) M ∈ T if and only if Mt ∈ TorR.

(iii) T is a localizing Serre subcategory of ModB.

Proof. The first statement is clear.

(ii) Assume M ∈ T . For m ∈ M , we have (mt)R ⊂ mBt. Hence the R-submodule of Mt

generated by mt is finite dimensional. Therefore, Mt ∈ TorR. On the contrary, assume Mt ∈ TorR.

By assumption, A is a noetherian algebra. Hence A, viewed as a rightR-module, is finitely generated.

So, Bt is a finitely generated R-module. Take an arbitrary element m ∈ M . We see that mBt is

finitely generated R-module. On the other hand, mBt ⊂ Mt, implying that mBt is a finitely

generated module in TorR. Hence mBt is finite dimensional. Therefore M ∈ T .

(iii) One sees that T is closed under taking arbitrary direct sums. Let M be a B-module, and

let K be a submodule of M . Consider an exact sequence 0 → K ↪→ M
g→ N → 0. If M ∈ T ,

then one sees both K and N are in T . Assume K and N are in T . Take an element m ∈ M .

The exact sequence above induces an exact sequence 0 → mB ∩K → mB → g(m)B → 0 of right

B-modules, which induces an exact sequence 0 → (mB ∩ K)t → mBt → g(m)Bt → 0 since the

functor (−)t : ModB → ModR is exact. Since K and N are in T , both (mB ∩K)t and g(m)Bt

are finite dimensional. Hence mBt is finite dimensional. Therefore M is in T . �

Consider the bimodules BAR. The functor − ⊗B A : ModB −→ ModR has a right adjoint

functor HomR(BAR,−). Recall that R ∼= tBt as algebras, Bt ∼= A as B-R-bimodules. For any right

R-module N , we have the following isomorphisms of right R-modules

HomR(BAR, N)⊗B AR ∼= HomR(Bt,N)⊗B Bt
∼= HomB(tB,HomR(Bt,N))

∼= HomR(tB ⊗B Bt,N)

∼= N.

The isomorphisms are natural onN . Hence we have a natural isomorphism (−⊗BA)◦HomR(BAR,−) ∼=
idModR.

Consider the quotient category QModR = ModR
TorR . Let π : ModR −→ QModR be the nat-

ural projection functor. Since TorR is a localizing subcategory, π has a right adjoint functor

ω : QModR −→ ModR. Thus we have the following pairs of adjoint functors:

ModB
−⊗BAR // ModR

HomR(BAR,−)

oo
π // QModR
ω

oo .

Let F = π ◦ (− ⊗B AR) and G = HomR(BAR,−) ◦ ω. Then (F,G) is a pair of adjoint functors.

Since (−⊗B AR) ◦HomR(BAR,−) is isomorphic to idModR and π ◦ ω is isomorphic to idQModR, it
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follows that FG is isomorphic to idQModR. Since H is semisimple, BA is a projective module. Hence

− ⊗B AR is an exact functor. Therefore F is an exact functor. Then a classical result of torsion

theory (cf. [PP, Theorem 7.11, Chapter 4]) shows that kerF is a localizing Serre subcategory of

ModB and F induces an isomorphism of abelian categories

(1) F :
ModB

kerF
∼= QModR.

Let us check the objects in kerF . For M ∈ ModB, we have F (M) = π(M ⊗B A) = π(Mt).

Hence F (M) = 0 if and only if Mt ∈ TorR. By Lemma 2.1(ii), M ∈ kerF if and only if M ∈ T .

In summarizing, we have the following result, which may be viewed as a generalization of [VZ,

Theorem 2.4], and also can be compared to [Ga, Theorem 4.6].

Theorem 2.2. Let H be a finite dimensional semisimple Hopf algebra, and let A be a noetherian left

H-module algebra. Let B = A#H and R = AH . Then we have an equivalence of abelian categories

ModB/T ∼= QModR.

Since TorB is a full subcategory of T , it is indeed a Serre subcategory of T . Hence we have a

quotient category T /TorB. Moreover, T /TorB is a full subcategory of QModB. Since −⊗B A is

an exact functor, it induces an exact functor

(2) −⊗BA : QModB −→ QModR.

The exact functor F defined above induces an exact sequence of abelian categories

(3) 0 // T /TorB // QModB
−⊗BA // QModR // 0.

Theorem 2.3. With the same notions as in Theorem 2.2. The following are equivalent.

(i) A/R is a right H∗-dense Galois extension;

(ii) For any finitely generated right B-module M , T (M) is finite dimensional;

(iii) B/(BtB) is finite dimensional;

(iv) −⊗B A : QModB −→ QModR is an equivalence of abelian categories.

Proof. The equivalence of (i) and (iii) is Proposition 1.3. That (ii) implies (iii) is obvious since

B/(BtB) is a t-torsion B-module.

(iii) =⇒ (ii). Let MB be a finitely generated module. Since A is (and hence B is) noether-

ian, T (M) is finitely generated. By Lemma 2.1(i), T (M)t is finite dimensional R-module. Hence

T (M)t ⊗R A is finite dimensional since A is finitely generated as a left R-module. Since the right

multiplication map T (M)t ⊗R A −→ T (M)tA is surjective, it follows that T (M)tA is finite di-

mensional. Note that T (M)tA = T (M)tB since (A#t)(A#1) = BtB. Hence T (M)/(T (M)tA) is

indeed a finitely generated B/BtB-module. By the hypothesis (iii), B/(BtB) is finite dimensional,

hence T (M)/(T (M)tA) is finite dimensional. Together with the property that T (M)tA is finite

dimensional, we obtain that T (M) is finite dimensional.

(ii) =⇒ (iv). Take an object M ∈ T . For an arbitrary element m ∈ M , mB is an object in T .

By the condition (ii), mB = T (mB) is finite dimensional. Hence M ∈ TorB. Therefore TorB = T .

From the exact sequence (3), we obtain that −⊗B A : QModB −→ QModR is an equivalence.
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(iv) =⇒ (ii). The condition (iv) implies TorB = T . If M is a finitely generated B-module, so is

T (M) since B is noetherian. Then T (M) ∈ T = TorB is finite dimensional. �

3. Endomorphism rings

Let H be a finitely dimensional semisimple Hopf algebra, and let A be a left H-module algebra.

Recall from [CFM, Theorem 1.2] that if A is a right H∗-Galois extension, then there is an isomor-

phism EndAH (A) ∼= A#H. In the Hopf dense Galois case, this property is not true in general.

However, we will see that a similar property holds if we put more restrictions on A.

The discussions in this section fit in a more general setting. Let R be a noetherian algebra.

Let ModR be the category of right R-modules, and TorR be the subcategory of torsion modules.

Consider the torsion functor τ : ModR −→ TorR sending each module M ∈ ModR to its largest

torsion submodule. Note that τ is a left exact functor. We write Riτ for the ith right derived

functor of τ .

Let MR be a finitely generated R-module. We define the depth of M to be

depth(M) = min{i|Riτ(M) 6= 0}.

Lemma 3.1. Let R be a noetherian algebra, and MR a finitely generated R-module. Then the

following are equivalent.

(i) depth(M) ≥ d.

(ii) ExtiR(S,M) = 0 for every i < d and every finite dimensional simple module SR.

(iii) ExtiR(K,M) = 0 for every i < d and every finite dimensional module KR.

Proof. (i)⇐⇒ (ii). Take a minimal injective resolution of M as: 0 −→M −→ I0 −→ I1 −→ · · · −→
Ii −→ · · · . Assume depth(M) ≥ d. We claim that Ii is torsion free for all i < d. If d = 0, nothing

needs to be proved. We assume d > 0. Since R0τ(M) = τ(M), we see M is torsion free. Hence the

injective enveloping I0 of M is also torsion free. Let i be the smallest number such that Ii is not

torsion free. Then Soc(Ii)∩ τ(M) 6= 0. Since the injective resolution is assumed to be minimal, we

see Riτ(M) 6= 0, which contradicts to the assumption that depth(M) ≥ d. The claim follows. By

the minimality of the injective resolution again, for any finite dimensional simple module SR, we

have ExtiR(S,M) = HomR(S, Ii) = 0 for all i < d.

On the contrary, assume that ExtiR(S,M) = 0 for every i < d and every finite dimensional simple

module SR. Since the injective resolution is minimal, we have HomR(S, Ii) = ExtiR(S,M) = 0 for

i < d. Hence Ii is torsion free for every i < d, which in turn implies depth(M) ≥ d.

(ii) ⇐⇒ (iii). It suffices to show that (ii) implies (iii). Since any finite dimensional module KR

contains a simple submodule, the result follows from an easy induction on the dimension of K. �

Given noetherian algebras R and B and a B-R-bimodule BMR, we are interested in when M

defines an equivalence between the quotient categories QModR and QModB. We need some ter-

minology.

Let BP be a B-module. We say that BP is almost flat if given finitely generated modules KB

and NB and an injective morphism f : KB → NB , the map f ⊗B P : K ⊗B P → N ⊗B P is almost
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injective. We say that BP is faithful if it satisfies the following condition: for any finitely generated

module NB , if N ⊗B M is finite dimensional then NB itself is finite dimensional. We say BP is

a weaker generator of ModB, if there is a finite index set I and an almost surjective B-module

morphism ⊕i∈IPi −→ B/τ(B), where Pi is a cofinite submodule of BP for every i ∈ I.

We have the following examples of almost flat modules.

Example 3.2. (i) Let B a noetherian algebra. Let BQ be a finitely generated projective B-module.

If BP is a cofinite submodule of BQ, then BP is an almost flat module. Indeed, let XB and YB

be finitely generated modules, and let f : XB → YB be an injective morphism. From the exact

sequence 0 −→ P
ι−→ Q

p−→ Q/P −→ 0, we obtain the following commutative diagram:

Y ⊗B P
Y⊗Bι // Y ⊗B Q

Y⊗Bp// Y ⊗B (Q/P ) // 0

X ⊗B P

f⊗BP

OO

X⊗Bι // X ⊗B Q

f⊗BQ

OO

X⊗Bp// X ⊗B (Q/P )

f⊗B(Q/P )

OO

// 0.

Hence we have (f ⊗BQ)◦ (X⊗B ι) = (Y ⊗B ι)◦ (f ⊗B P ). Since Q is projective, f ⊗BQ is injective.

Hence ker[(f ⊗B Q) ◦ (X ⊗B ι)] = ker(X ⊗B ι). Since Q/P is finite dimensional and XB is finitely

generated, we have that TorB1 (X,Q/P ) is finite dimensional. Then ker(X⊗B ι) is finite dimensional.

Therefore ker[(Y ⊗B ι) ◦ (f ⊗B P )] is finite dimensional, which implies that ker(f ⊗B P ) is finite

dimensional.

(ii) Let B be a noetherian algebra. If J is a cofinite left ideal of B, then J , as a left B-module, is

faithful and almost flat. By (i), J is almost flat. Now assume XB is a finitely generated B-module

and X⊗B J is finite dimensional. The exact sequence X⊗B J −→ X −→ X⊗B (B/J) −→ 0 implies

that X is finite dimensional. Hence J is faithful.

Lemma 3.3. Let B be a noetherian algebra, and let BP be a finitely generated B-module. Then

BP is almost flat if and only if for any almost injective B-module morphism f : KB → NB with

KB and NB finitely generated, the kernel of the morphism f ⊗B P is finite dimensional.

Proof. Assume that BP is almost flat. Let f : KB → NB be an almost injective morphism. We have

an injective morphism f : K/ ker f −→ N induced by f . Then ker(f⊗BP ) is finite dimensional. Let

p : K → K/ ker f be the natural projection map. Then the morphism f ⊗B P is the composition

K ⊗B P
p⊗BP−→ K/ ker f ⊗B P

f⊗BP−→ N ⊗B P . Hence we have an exact sequence of B-modules

(ker f) ⊗B P −→ ker(f ⊗B P ) −→ ker(f ⊗B P ) −→ 0. Since f is almost injective, ker f is finite

dimensional. Since BP is finitely generated, (ker f)⊗B P is finite dimensional. Hence ker(f ⊗B P )

is finite dimensional. �

Lemma 3.4. Let R and B be noetherian algebras, and let BMR be a B-R-bimodule which is finitely

generated on both sides. Assume g : XB → YB is an injective B-module morphism where XB and

YB are not necessary finitely generated. If M is almost flat as a left B-module, then the kernel of

the morphism g ⊗B M is a torsion R-module.

Proof. Note that Y = lim
−→

Y ′ where the limit runs over all the finitely generated submodules Y ′

respectively. For any finitely generated submodule Y ′ ⊆ Y , set X ′ = g−1(Y ′ ∩ g(X)). Then we

see X = lim
−→

X ′. By the definition, the kernel of the map g|X′ ⊗B M : X ′ ⊗B M −→ Y ′ ⊗B M is
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finite dimensional, hence it is a torsion module. Let K ′ = ker(g|X′ ⊗B M). So, we have an exact

sequence 0 −→ K ′ −→ X ′ ⊗B M −→ Y ′ ⊗B M . Taking direct limit on these exact sequence and

using the property that direct limits are exact and commute with the tensor functor, we obtain that

the kernel of g ⊗B M is a torsion R-module. �

Lemma 3.5. Let R, B and BMR be as in Lemma 3.4. Assume that BM is a faithful and almost

flat B-module. For a right B-module N , N⊗BM is a torsion R-module if and only if N is a torsion

B-module.

Proof. Assume that N ⊗BM is a torsion R-module. Take any finitely generated submodule KB of

NB , and let ι : K → N be the inclusion map. Since BM is almost flat, ker(ι ⊗B M) is a torsion

R-module by Lemma 3.4. Since KB and MR are finitely generated, K ⊗BM is a finitely generated

R-module. Hence ker(ι ⊗B M) a finitely generated torsion R-module, and therefore it is finite

dimensional. Since N ⊗B M is a torsion R-module, the image of ι ⊗B M is a torsion R-module.

Hence K ⊗B M is a torsion R-module. As K ⊗B M is also finitely generated as an R-module, it

follows that K ⊗B M is finite dimensional. By the assumption, BM is faithful, we obtain that KB

is finite dimensional. Therefore, NB is a torsion module.

Conversely, assume that NB is a torsion B-module. Note that N = lim
−→

K where K runs over all

the finite dimensional submodules of NB . Since direct limits commute with left adjoint functor, we

have N ⊗B M = (lim
−→

K)⊗B M ∼= lim
−→

(K ⊗B M). Since BM is finitely generated, K ⊗B M is finite

dimensional. Hence we obtain that lim
−→

(K ⊗B M) is a torsion R-module. �

Let BMR be a B-R-bimodule which is finitely generated on both sides. Then we have functors

−⊗BM : ModB −→ ModR, and −⊗BM : modB −→ modR. By Lemmas 3.4 and 3.5, the tensor

functor −⊗BM sends torsion B-modules to torsion R-modules and almost isomorphisms to almost

isomorphisms. It induces functors − ⊗BM : QModB −→ QModR and − ⊗BM : qmodB −→
qmodR, such that the following diagrams commute

ModB

π

��

−⊗BM // ModR

π

��

modB

π

��

−⊗BM // modR

π

��
QModB

−⊗BM// QModR qmodB
−⊗BM// qmodR.

Let M ′ be another B-R-bimodule, and let f : M →M ′ be an almost isomorphism of B-R-bimodules.

It is not hard to see that f induces a natural isomorphism −⊗BM−→ −⊗BM′.

We have the following Morita type theorem for quotient categories.

Theorem 3.6. Let R and B be noetherian algebras, and let BMR be a bimodule which is finitely

generated on both sides. Assume depthMR ≥ 2 and depthBB ≥ 2. Then the following are equiva-

lent.

(i) The functor −⊗BM : qmodB −→ qmodR is an equivalence of abelian categories.

(ii) MR is a weaker generator, the natural map B → End(MR), b 7→ [m 7→ bm] is an isomor-

phism of algebras, and the left B-module BM is faithful and almost flat.

(iii) The functor −⊗BM : QModB −→ QModR is an equivalence of abelian categories.
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Proof. (i) =⇒ (ii). Set F = − ⊗B M. By the commutative diagrams above the theorem, we

have F (π(BB)) = π(MR). Let I be a right ideal of B such that B/I is finite dimensional. Since

depthBB ≥ 2, we see HomB(B,B) ∼= HomB(I,B). Hence the projection functor π : modB −→
qmodB induces an isomorphism of algebras End(BB)

π−→ EndqmodB(π(BB)). Similar, since

depthMR ≥ 2, we have an isomorphism of algebra End(MR)
π−→ EndqmodR(π(MR)). By the

commutative diagram above the theorem and the assumption that F is an equivalence of abelian

categories, the natural map B → End(MR) is an isomorphism.

Assume π(R) = F (π(N)) for some N ∈ modB. Since NB is finitely generated, there is a finite

set Λ and an epimorphism g : ⊕i∈ΛBi −→ N , where Bi ∼= B for all i ∈ Λ. By the commutative

diagrams above the theorem again, we obtain an epimorphism % : π(⊕i∈ΛBi ⊗B M) −→ π(R)

in qmodR. Note that there is a cofinite submodule P of ⊕i∈ΛBi ⊗B M and a right R-module

morphism h : P → R/τ(R) such that π(h) = %. Since % is epimorphic, h is almost surjective. Write

Mi = Bi ⊗B M ∼= M . We view Mi as a submodule of ⊕i∈ΛMi through the natural injective map.

Let Pi = Mi∩P for all i ∈ Λ. Since P is cofinite, Mi/Pi is finite dimensional. Since Λ is a finite set,

⊕i∈ΛPi is a cofinite submodule of ⊕i∈ΛMi, which implies that ⊕i∈ΛPi is also a cofinite submodule

of P . Denote by ς : ⊕i∈ΛPi −→ P the inclusion map. Let hi be the restriction h|Pi : Pi → R/τ(R)

for all i ∈ Λ. The maps {hi}i∈Λ define a morphism h′ : ⊕i∈ΛPi −→ R/τ(R) such that hς = h′.

Since both h and ς are almost surjective, h′ is almost surjective. Hence MR is a weaker generator.

For KB ∈ modB, assume K ⊗BM is finite dimensional. Then we see F (π(K)) ∼= π(K ⊗BM) =

0. Since F is an equivalence, π(K) = 0. So, KB is a torsion B-module, and hence K is finite

dimensional. Therefore, BM is faithful. Let g : X → Y be an injective morphism in modB.

From the commutative diagram above the theorem and the assumption that F is an equivalence,

we see that π(g ⊗B M) : π(X ⊗B M) −→ π(Y ⊗B M) is an injective morphism in qmodR. Then

ker(g⊗BM) is a torsion R-module, and hence ker(g⊗BM) is finite dimensional. Therefore BM is

almost flat.

(ii) =⇒ (iii). Since MR is a weaker generator in ModR, one sees that π(M) is a generator in

QModR. By Popescu-Gabriel’s Theorem (cf. [St, Theorem X.4.1]), the functor HomQModR(π(M),−) :

QModR −→ ModB is fully faithful, and has a left adjoint functor. Since π has a right adjoint func-

tor ω : QModR −→ ModR, one sees that there is a natural isomorphism HomQModR(π(M),−) ∼=
HomR(M,−) ◦ ω. Hence the left adjunction of HomQModR(π(M),−) is π ◦ (−⊗B M) : ModB −→
QModR. Write Ψ for π ◦ (− ⊗B M). Since BM is almost flat, Ψ is an exact functor, and hence

it induces an equivalence of abelian categories ModB/ker Ψ −→ QModR, where ker Ψ is the full

subcategory of ModB consisting of objects K such that Ψ(K) = 0. Since BM is faithful, we see

ker Ψ = TorB by Lemma 3.5. Hence ModB/ker Ψ = QModB. Therefore the functor − ⊗BM
induced by Ψ is an equivalence.

(iii) =⇒ (i). This is clear since qmodB (resp. qmodR) is a full subcategory of QModB (resp.

QModR) consisting of noetherian objects. �

Let us go back to the Hopf dense Galois extensions. Let H be a finite dimensional semisimple

Hopf algebra, and let A be a left H-module algebra. We assume further that A is a noetherian

algebra. As before, set B = A#H and R = AH .

Lemma 3.7. Let A and H be as above. If depthAA ≥ 2, then depthBB ≥ 2 and depthAR ≥ 2.
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Proof. Let KB be a finite dimensional B-module. We view K and B as right A-modules, then

ExtiA(K,B) is a right H-module for all i ≥ 0. By [HVZ, Corollary 2.9], we have ExtiB(K,B) =

ExtiA(K,B)H for all i ≥ 0, where ExtiA(K,B)H is the subspace of invariants of the H-action. Since

B is a free A-module and depthAA ≥ 2, we have ExtiA(K,B) = 0 for all i < 2 by Lemma 3.1.

Therefore ExtiB(K,B) = 0 for all i < 2. Hence by Lemma 3.1 again depthBB ≥ 2.

Let KR be a finite dimensional R-module. We have the following isomorphisms HomB(K ⊗R
AB , B) ∼= HomR(K,HomB(RAB , B)) ∼= HomR(K,BAR). These isomorphisms induce the following

spectral sequence

Epq2 = ExtpB(TorRq (K,RAB), B) =⇒ Extp+qR (K,BAR).

Since KR is finite dimensional and RA is a finitely generated left R-module, TorRq (K,RAB) is finite

dimensional for all q ≥ 0. Since depthBB ≥ 2, we have ExtpB(TorRq (K,RAB), B) = 0 for p < 2 by

Lemma 3.1. Hence ExtiR(K,BAR) = 0 for i < 2. By Lemma 3.1, depth(AR) ≥ 2. �

As a special case of Theorem 3.6, we obtain the following result.

Theorem 3.8. Let H be a finite dimensional semisimple Hopf algebra, and let A be a left H-

module algebra. Assume that A/AH is a right H∗-dense Galois extension. If A is noetherian and

depthAA ≥ 2, then the natural map

A#H −→ End(AAH ), a#h 7→ [b 7→ a(h · b)]

is an isomorphism of algebras.

Proof. This a direct consequence of Lemma 3.7 and Theorems 2.3 and 3.6. �

4. Densely graded algebras

Let G be a group, and let A = ⊕g∈GAg be a G-graded algebra. Recall that A is called a strongly

graded algebra if AgAh = Agh for all g, h ∈ G. We introduce a weaker version of strongly graded

algebra, which is a special class of Hopf dense Galois extensions.

Definition 4.1. Let G be a group, and let A = ⊕g∈GAg be a G-graded algebra. We call A a densely

graded algebra if (i) there are only finitely many elements g ∈ G such that AgAg−1 6= Ae, and (ii)

Ae/AgAg−1 is finite dimensional for all g ∈ G.

Example 4.2. (i) One may check that if G is a infinite group, then the conditions in the definition

imply that A is indeed strongly graded (see Lemma 4.3 below). Hence we are interested in the case

that G is a finite group in this section.

(ii) Let A = k[x, y]/(x2− y2), let G = Z2. We view the polynomial algebra k[x, y] as a G-graded

algebra by setting the degree of x to be 0 and the degree of y to be 1. It follows that the element

x2 − y2 is a homogeneous element of degree 0, which makes A to be a G-graded algebra. We have

A0 = k[x] and A1 = yk[x]. So, A2
0 = A0, A1A0 = A0A1 = A1 and A0/A1A1 has dimension 2.

Hence A is a densely G-graded algebra.

(iii) Let A be an algebra and let M be an A-A-bimodule. Assume ϕ : M ⊗A M −→ A is an

A-A-bimodule morphism such that A/ϕ(M ⊗AM) is finite dimensional and mϕ(n⊗ l) = ϕ(m⊗n)l
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for any m,n, l ∈M . Set B = A⊕M , and define a multiplication on B as follows:

(a,m)(b, n) = (ab+ ϕ(m⊗ n), an+mb), for any a, b ∈ A and n,m ∈M .

Set B0 = A and B1 = M . Then B is a densely Z2-graded algebra. We call B a densely semitrivial

extension of A by M (compared to [NV, Example 1.3.3]).

Lemma 4.3. Let A = ⊕g∈GAg be a densely G-graded algebra. If G is a infinite group, then A is

strongly graded.

Proof. Let S = {g ∈ G|AgAg−1 = Ae}. Then S is a semigroup. Indeed, for any g, h ∈ S, we have

Ae = AgAhAh−1Ag−1 ⊆ AghA(gh)−1 ⊆ Ae. Hence gh ∈ S. Now let K = {g ∈ S|g−1 ∈ S}. Then K

is a subgroup of G. Since G \S is finite, G \K is finite. We claim that G \K = ∅. Otherwise, take

an element g ∈ G but g /∈ K. Then we have gk /∈ K for any k ∈ K, which contradicts with the fact

that G \K is finite. The claim follows. Hence S = K = G, that is, A is strongly graded. �

We have the following equivalent definition of densely graded algebra.

Proposition 4.4. Let G be a finite group, and let A = ⊕g∈GAg be a G-graded algebra. Assume

that Ag is finitely generated as a left Ae-module for every g ∈ G. Then A is a densely graded algebra

if and only if Agh/AgAh is finite dimensional, for any g, h ∈ G.

Proof. The “if” part is trivial. We next prove the “only if” part. For g ∈ G, we have an exact

sequence of right Ae-modules 0 −→ AgAg−1 −→ Ae −→ Ae/AgAg−1 −→ 0. For any h ∈ G, applying

−⊗Ae Agh on the sequence, we obtain the following exact sequence

AgAg−1 ⊗Ae Agh // Agh // (Ae/AgAg−1)⊗Ae Agh // 0,

from which we obtain an isomorphism Agh/(AgAg−1Agh) ∼= (Ae/AgAg−1) ⊗Ae Agh. By Definition

4.1, Ae/AgAg−1 is finite dimensional. Since Agh is a finitely generated Ae-module, (Ae/AgAg−1)⊗Ae
Agh is finite dimensional. Hence Agh/(AgAg−1Agh) is finite dimensional. Note that AgAg−1Agh ⊆
AgAh. We finally obtain that Agh/AgAh is finite dimensional for any g, h ∈ G. �

Let A = ⊕g∈GAg be a G-graded algebra. Define a comodule action ρ : A → A ⊗ kG by

ρ(a) = a⊗ g for any a ∈ Ag and g ∈ G. Then A is a right kG-comodule algebra. On the contrary,

any right kG-comodule algebra A can be viewed as a G-graded algebra by setting components

Ag = {a ∈ A|ρ(a) = a ⊗ g} for every g ∈ G. The following result is a direct consequence of

Proposition 4.4 and the definition of Hopf dense Galois extensions.

Corollary 4.5. With the hypotheses on A and G as in Proposition 4.4, A is a densely G-graded

algebra if and only if A/Ae is a right kG-dense Galois extension.

Let A = ⊕g∈GAg be a G-graded algebra. We denote by GrModGA the category of right G-graded

A-module. One of the most important results for strongly graded algebras is Dade’s Theorem (cf.

[Da, Theorem 2.8], see also [NV]), which establishes an equivalence between the abelian categories

GrModGA and ModAe. In our case, these two categories are no longer equivalent in general. We

next prove a weaker version of Dade’s Theorem.

We may define two torsion classes in the abelian category GrModGA. Let M be a right G-graded

A-module. We call M a G-graded torsion module if the following condition is satisfied: for any cyclic
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graded submodule N = mA generated by a homogeneous element m ∈M , we have that Ne is finite

dimensional. Let TG be the full subcategory of GrModGA consisting of all the graded torsion

modules. For any G-graded right A-module N , we write TG(N) for the sum of all the G-graded

torsion submodule of N . Then TG(N) is the largest G-graded torsion submodule of N . In this way,

we indeed obtain a functor

(4) TG : GrModGA −→ TG.

Another torsion class in GrModGA is the graded version of the one defined in previous section.

Denote by GrTorGA the full subcategory of GrModGA consisting of G-graded A-modules M such

that mA is finite dimensional for every homogeneous element m ∈ M . One sees that GrTorGA is

a full subcategory of TG. In general, TG is not equal to GrTorGA. However, we have the following

result.

Lemma 4.6. Let G be a finite group, and let A be a G-graded algebra which is also noetherian. If

A is densely G-graded, then TG = GrTorGA.

Proof. For M ∈ TG, let m ∈ M be a homogenous element. Set N = mA, which is a G-graded

submodule of M . Then Ne is finite dimensional. Since A is noetherian and G is a finite group, Ae

is a noetherian subalgebra of A and Ag is a finitely generated Ae-module on both sides for every

g ∈ G. Then Ne ⊗Ae Ag is finite dimensional for every g ∈ G. The right multiplication of A on N

gives a surjective map Ne ⊗Ae Ag −→ NeAg. Hence NeAg is finite dimensional. For every g ∈ G,

there is an exact sequence

0 −→ Ag−1Ag −→ Ae −→ Ae/Ag−1Ag −→ 0.

Applying the functor Ng ⊗Ae − to the exact sequence, we obtain the following exact sequence

Ng ⊗Ae Ag−1Ag −→ Ng −→ Ng ⊗Ae (A/Ag−1Ag) −→ 0.

Hence Ng⊗Ae (Ae/Ag−1Ag) ∼= Ng/NgAg−1Ag. Since A is a densely G-graded algebra, Ae/Ag−1Ag is

finite dimensional. Since Ag is finitely generated as a right Ae-module for every g ∈ G and N = mA,

we have that Ng is a finitely generated Ae-module. Hence Ng⊗Ae (A/Ag−1Ag) is finite dimensional,

which in turn implies that Ng/NgAg−1Ag is finite dimensional. Note that NgAg−1Ag ⊆ NeAg.

Hence Ng/NeAg is finite dimensional. As NeAg is finite dimensional, it follows that Ng is finite

dimensional for every g ∈ G. Hence N = mA is finite dimensional as G is a finite group. Therefore,

M ∈ GrTorGA. �

If A is a noetherian algebra, then both TC and GrTorGA are localizing Serre subcategories of

GrModGA. Hence we have quotient categories

GrModGA/TG, and QGrModGA :=
GrModGA

GrTorGA
.

The functor (−)e : GrModGA −→ ModAe sending M = ⊕g∈GMg to Me is an exact functor. One

sees that (−)e sends objects in TG to the objects in TorAe. Note that GrTorGA is a full subcategory

of TG. We see that (−)e induces functors (we use the same symbol)

(−)e : GrModGA/TG −→ QModAe, and (−)e : QGrModGA −→ QModAe,
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which make the following diagram commute

(5) QGrModGA

π

��

(−)e // QModAe,

GrModGA/TG
(−)e

77

where π is the natural projection functor.

Theorem 4.7 (Dade’s Theorem). Let G be a finite group, and let A = ⊕g∈GAg be a G-graded

algebra. Assume that A is a noetherian algebra. Then the following are equivalent.

(i) A is a densely G-graded algebra.

(ii) For any finitely generated G-graded A-module M = ⊕g∈GMg, if Me is finite dimensional,

then M itself is finite dimensional.

(iii) The functor (−)e : QGrModGA −→ QModAe is an equivalence of abelian categories.

Proof. Let kG be the group algebra and let H := kG∗ be its dual Hopf algebra. Then A is an

H-module algebra, and AH = Ae. Set B = A#H. It is well known that any G-graded A-module

M can be viewed as a right B-module, and vice versa. Hence we may (and we do) identify the

abelian category ModB with GrModGA. Under this view, we may identify the torsion subcategory

T (cf. Section 2) with TG, and TorB with GrTorGA. Then the torsion functor T : ModB −→
TorB coincides with TG : GrModGA −→ TG. Hence we have GrModGA/TG = ModB/T and

QGrModGA = QModB.

(i) =⇒ (iii). By Corollary 4.5, A/Ae is a right H-dense Galois extension. By Lemma 4.6, we

have T = TG = GrTorGA = TorB. The functor − ⊗B A : QModB → QModAH in Theorem 2.3

coincides with the functor (−)e : QGrModGA → QModAe. Now Theorem 2.3 implies that the

statement (iii) holds.

(iii) =⇒ (ii). By the commutative diagram (5) and Theorem 2.3, we see that the projection functor

π : QGrModGA −→ GrModGA/TG is an equivalence. Hence TG = GrTorGA. Let M = ⊕g∈GMg

be a finitely generated G-graded A-module. If Me is finite dimensional, then M ∈ TG = GrTorGA.

Since M is finitely generated, it follows that M is finite dimensional.

(ii) =⇒ (i). Let M be a finitely generated G-graded A-module. Then TG(M) is also a finitely

generated G-graded A-module. Hence TG(M)e is finite dimensional since TG(M) is a G-graded

torsion module. By (ii) TG(M) is finite dimensional. Hence (i) follows from Corollary 4.5 and

Theorem 2.3 since we identify the torsion functor TG with the torsion functor T of Theorem 2.3. �

Dade’s theorem will imply some further equivalences of quotient categories over group graded

algebras.

Let G and Γ be groups. Let A = ⊕g∈GAg be a G-graded algebra, and let B = ⊕γ∈ΓBγ be a

Γ-graded algebra. Let M = ⊕g∈GMg be a left graded A-module. For g ∈ G, we define the left

graded A-module M(g) by setting M(g)h = Mhg for every h ∈ G. Similarly, if N = ⊕γ∈ΓNγ is

a right graded B-module, we define the right graded B-module N(γ) by setting N(γ)θ = Nγθ for

every γ ∈ Γ.
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Del Rio established a Morita type theorem over the category of right graded A-modules and that

of right graded B-modules (cf. [DR]). Recall that a bigraded A-B-bimodule is an A-B-bimodule

M =
⊕

g∈G,γ∈Γ

gMγ ,

such that amb ∈ g′gMγγ′ for any a ∈ Ag′ , m ∈ gMγ and b ∈ Bγ′ .

Let L = ⊕g∈GLG be a right graded A-module. Define a right graded B-module L⊗̄AM as follows

(we use the notions as introduced in [Sm])

L⊗̄AM =
⊕
γ∈Γ

(L⊗̄AM)γ ,

where the component (L⊗̄AM)γ is the image of
⊕

g∈G Lg−1 ⊗ gMγ through the natural projection

L⊗M → L⊗AM .

Let N = ⊕γ∈ΓNγ be a right graded B-module. Define a right graded A-module Hom
B

(M,N) as

follows

Hom
B

(M,N) =
⊕
g∈G

Hom
B

(M,N)g,

where the component Hom
B

(M,N)g = HomGrModΓ B(g−1M∗, N), in which g−1M∗ =
⊕

γ∈Γ g−1Mγ .

We have a canonical isomorphism (cf. [DR])

(6) HomGrModΓ B(L⊗̄M,N) ∼= HomGrModG A(L,Hom
B

(M,N)).

Hence we obtain a pair of adjoint functors

GrModGA
−⊗̄AM // GrModΓB.

Hom
B

(M,−)

oo

Now let G be a group and let Γ be a normal subgroup of G such that the quotient group G = G/Γ

is finite. Let A = ⊕g∈GAg be a noetherian G-graded algebra. For γ ∈ Γ, set Bγ = Aγ , and let

B = ⊕γ∈ΓBγ . Then B is a Γ-graded algebra. Since G/Γ is finite and A is noetherian, B is

noetherian.

Define a bigraded A-B-bimodule

P =
⊕

g∈G,γ∈Γ

gPγ

by setting gPγ = Agγ . Note that eP∗(:=
⊕

γ∈Γ ePγ) = B as a right graded B-module, and ∗Pγ =

A(γ), which is a shift of the regular graded module AA by degree γ. By the isomorphism (6), we

have a pair of adjoint functors (−⊗̄AP,Hom
B

(P,−)).

Note that as a left graded A-module P =
⊕

γ∈Γ ∗Pγ . For any right graded A-module L, we have

(7) (L⊗̄AP )γ =
⊕
γ∈Γ

(L⊗A (∗Pγ))e =
⊕
γ∈Γ

(L⊗A A(γ))e =
⊕
γ∈Γ

Lγ .
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Hence, for any right graded B-module N , we have the following natural isomorphisms of right

graded B-modules

Hom
B

(P,N)⊗̄AP ∼=
⊕
γ∈Γ

Hom
B

(P,N)γ

∼=
⊕
γ∈Γ

HomGrModΓ B(γ−1P∗, N)

∼=
⊕
γ∈Γ

HomGrModΓ B(⊕θ∈ΓAγ−1θ, N)

∼=
⊕
γ∈Γ

HomGrModΓ B(B(γ−1), N)

∼= N.

Therefore, we see

(8) (−⊗̄AP ) ◦Hom
B

(P,−) ∼= idGrModΓ B .

From the equations in (7), we see that the functor −⊗̄AP can be written in a simpler way. We

write A(Γ) for B = ⊕γ∈ΓAγ . Let L be a right graded A-module, define L(Γ) = ⊕γ∈ΓLγ . Then L(Γ)

is a right graded A(Γ)-module. By the equations (7), we have

(9) (−)(Γ) = −⊗̄AP : GrModGA −→ GrModΓA
(Γ).

Clearly, (−)(Γ) is an exact functor, and sends torsion modules to torsion modules. Hence it induces

a functor (use the same symbol)

(−)(Γ) : QGrModGA −→ QGrModΓA
(Γ).

Lemma 4.8. With the notions as above. The following are equivalent.

(i) For any finitely generated right graded A-module L, if L(Γ) is finite dimensional, then so is

L.

(ii) The functor (−)(Γ) : QGrModGA −→ QGrModΓA
(Γ) is an equivalence of abelian categories.

Proof. Consider the following functors

GrModGA
(−)Γ

// GrModΓB
Hom

B
(P,−)

oo
π // QGrModΓB,ω

oo

where π is the projection functor and ω is the right adjoint functor of ω. We see the functor

Φ = π ◦ (−)(Γ) is left adjoint to Ψ = Hom
B

(P,−) ◦ ω, and moreover Φ ◦ Ψ ∼= idQGrModΓ B by

equations (8) and (9). By [PP, Theorem 7.11, Chapter 4], we have QGrModΓB
∼= GrModG A

ker Φ .

(i)=⇒(ii). We have to show ker Φ = GrTorGA. Clearly, GrTorGA ⊆ ker Φ since A is assume to

be noetherian. Let L be a right graded A-module such that Φ(L) = 0. Then L(Γ) is a Γ-graded

torsion A(Γ)-module. For any homogeneous element x ∈ L, (xA)(Γ) is a finitely generated A(Γ)-

submodule of L(Γ) since by assumption G/Γ is a finite group. Hence (xA)(Γ) is finite dimensional.

By the condition (i), we obtain that xA is finite dimensional. So, L ∈ GrTorGA.

That (ii) implies (i) is clear. �
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Note that we assume the quotient group G = G/Γ is finite. For any g ∈ G, we write g for the

image of g through the projection map p : G → G. Let ι : G → G be a map such that p ◦ ι = id.

We view the G-graded algebra A as a G-graded algebra in the following way. For α ∈ G, set

Dα =
⊕

γ∈ΓAι(α)γ . Let D =
⊕

α∈GDα. Then we see that D is a G-graded algebra, and De = A(Γ)

as a Γ-graded algebra.

As a consequence of Dade’s Theorem 4.7, we have the following result, which was suggested to

us by the anonymous referee. We appreciate the referee’s comments very much!

Theorem 4.9. Let G be a group, and let Γ be a normal subgroup of G such that G = G/Γ is a

finite group. Let A = ⊕g∈GAg be a noetherian G-graded algebra, and let D be the G-graded algebra

defined as above. The following are equivalent.

(i) D is a densely G-graded algebra.

(ii) For any finitely generated right graded A-module L, if L(Γ) is finite dimensional, then so is

L.

(iii) The functor (−)(Γ) : QGrModGA −→ QGrModΓA
(Γ) is an equivalence of abelian categories.

Proof. The equivalence of (ii) and (iii) has been showed in Lemma 4.8.

(i)=⇒(ii). Let L be a finitely generated right graded A-module. We may view L as a right graded

D-module in the following way. For α ∈ G, set L′α = ⊕γ∈ΓLι(α)γ and L′ = ⊕α∈GL′α. Then L′ is

a right graded D-module. Note that De = A(Γ) and L′e = L(Γ). If L(Γ) is finite dimensional, then

L′e is finite dimensional. Hence L′ is finite dimensional by Theorem 4.7. Equivalently, L is finite

dimensional.

(ii)=⇒(i). By Corollary 4.5 and Definition 1.1, it suffices to show that the map β : D⊗De D −→
D ⊗ kG, defined by a⊗ b 7→ ab⊗ α for a ∈ D and b ∈ Dα, is almost surjective.

The cokernel of the map β is cokerβ =
⊕

α∈G(
⊕

α′∈G
Dαα′
DαDα′

⊗kα′). For a fixed α ∈ G, we note

that
⊕
α′∈GDαα′⊕
α′∈GDαDα′

=
⊕

α′∈G
Dαα′
DαDα′

. Temporarily, we set X =
⊕
α′∈G

Dαα′ =
⊕

α′∈G,γ∈Γ

Aι(αα′)γ and

Y =
⊕
α′∈G

DαDα′ =
∑

α′∈G,γ,γ′∈Γ

Aι(α)γAι(α′)γ′ . Since pι(α) = α and pι(α′) = α′, it follows ι(αα′)Γ =

ι(α)ι(α′)Γ. So, X =
⊕

α′∈G,γ∈Γ

Aι(α)ι(α′)γ . We see that both X and Y are right graded A-module.

Indeed, X is just the regular right graded A-module AA, and Y is the graded A-submodule of X

generated by Dα∈G =
⊕

γ∈ΓAι(α)γ . Set Z = X/Y . Note that dimZ = dim
⊕

α′∈G
Dαα′
DαDα′

⊗ kα′.
Let Z(ι(α)) be the A-module obtained from Z by a shift of degree ι(α), that is, Z(ι(α))g = Zι(α)g

for every g ∈ G. Applying (−)(Γ) to Z(ι(α)), we have Z(ι(α))(Γ) =
⊕

γ∈Γ Z(ι(α))γ =
⊕

γ∈Γ Zι(α)γ .

Note that ι(α)ι(α′)γ ∈ ι(α)Γ with γ ∈ Γ implies ι(α′) ∈ Γ. We have

⊕
γ∈Γ

Zι(α)γ =

⊕
γ∈ΓAι(α)γ∑

γ,γ′∈ΓAι(α)γAγ′
=

⊕
γ∈ΓAι(α)γ⊕
γ∈ΓAι(α)γ

= 0,

that is, Z(ι(α))(Γ) = 0. By the condition (ii), we have Z(ι(α)) is finite dimensional. Equivalently,⊕
α′∈G

Dαα′
DαDα′

⊗ kα′ is finite dimensional for every α ∈ G. Since G is finite, we see cokerβ is finite

dimensional. Hence (i) follows. �
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5. Application I: Projective schemes associated to Veronese subalgebras

Throughout this section, A = A0 ⊕ A1 ⊕ · · · is an N-graded algebra. We assume that A is

noetherian and that A is locally finite, that is, dimkAi <∞ for all i ≥ 0.

Given an integer d ≥ 1, the dth Veronese subalgebra is define to be the N-graded algebra A(d)

whose nth component is And. Since A is noetherian, then A(d) is also noetherian. Similarly, if M is

a Z-graded right A-module, we have M (d) = ⊕n∈ZMnd, which is a right graded A(d)-module.

Let GrModZA be the category of the Z-graded right A-modules. An object M ∈ GrModZA

is said to be a Z-graded torsion module if mA is finite dimensional for every m ∈ M . Let

GrTorZA be the full subcategory of GrModZA consisting of all the Z-graded torsion modules. Let

grmodZA be the category of the finitely generated right Z-graded A-modules, and let grtorZA =

grmodZA
⋂

GrTorZA.

Since A is noetherian, GrTorZA (resp. grtorZA) is a Serre subcategory of GrModZA (resp.

grmodZA). Hence we have a quotient category

TailA :=
GrModZA

GrTorZA
( resp. tailA :=

grmodZA

grtorZA
),

which is usually called the noncommutative projective scheme associated to A (cf. [AZ, Ve]).

There are strong relations between the noncommutative projective scheme associated to A and

that associated to A(d). Indeed, there is a natural functor

(−)(d) : GrModZA −→ GrModZA
(d), M 7→M (d).

Restrictions to the finitely generated modules, we have

(−)(d) : grmodZA −→ grmodZA
(d).

Since (−)(d) is exact and sends torsion modules to torsion modules, we obtain functors (use the

same symbol)

(−)(d) : TailA −→ TailA(d), and (−)(d) : tailA −→ tailA(d).

The following result is fundamental in noncommutative geometry, which firstly appeared in [Ve]

(see also, [AZ, Po, Mo]).

Theorem 5.1. Assume A is generated by A0 and A1. Then (−)(d) : TailA −→ TailA(d) and

(−)(d) : tailA −→ tailA(d) are equivalences of abelian categories.

We will see that this result is a direct consequence of Theorem 4.9. Indeed, Theorem 4.9 also

provides a necessary and sufficient condition for the functor (−)(d) : TailA −→ TailA(d) to be an

equivalence.

Let G = Z and Γ = dZ. Then Γ is a normal subgroup of G and G/Γ = Zd is finite. The elements

of Zd are written as {0, 1, . . . , d− 1}. We view A as a G-graded algebra by setting Ai = 0 for

every i < 0. As we did in Theorem 4.9, we define a Zd-graded algebra D =
⊕d−1

s=0 Ds by setting

Ds =
⊕

j∈ZAjd+s for every 0 ≤ s ≤ d − 1. Note that A(Γ) = D0 =
⊕

j∈ZAjd is just the Veronese

subalgebra A(d) of A. Moreover, we also have GrModΓA
(Γ) = GrModZA

(d), QGrModΓA
(Γ) =
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TailA(d) and the functor (−)(Γ) in Theorem 4.9 coincides with the functor (−)(d). Then we have

the following result.

Theorem 5.2. Let A = A0 ⊕ A1 ⊕ · · · be a locally finite noetherian N-graded algebra and let d be

a fixed positive integer. The following are equivalent.

(i) There is an integer p > 0 such that, for all n ≥ p and 0 ≤ s ≤ d− 1,

And =
∑

i + j = n

i ≥ 0, j ≥ 1

Aid+sAjd−s.

(ii) For any finitely generated right graded A-module M , if M (d) = ⊕n∈ZMnd is finite dimen-

sional, then M itself is finite dimensional.

(iii) (−)(d) : TailA −→ TailA(d) is an equivalence of abelian categories.

(iv) (−)(d) : tailA −→ tailA(d) is an equivalence of abelian categories.

Proof. With the notions above the theorem, the Zd-graded algebra D is densely graded if and only

if D0/DsDd−s is finite dimensional for all s ∈ Zd, which is equivalent to the condition (i). The

conditions (ii) and (iii) coincide with corresponding ones in Theorem 4.9. Hence (i)⇐⇒(ii)⇐⇒(iii)

follows.

That (iii) implies (iv) is because tailA (resp. tailA(d)) consists of noetherian objects of TailA

(resp. TailA(d)).

(iv) =⇒ (ii). For any finitely right graded A-module M , write M for π(M). Note that M(d) =

π(⊕n∈ZMnd). If ⊕n∈ZMnd is finite dimensional, then M(d) = π(⊕n∈ZMnd) = 0. Since (−)(d) is an

equivalence, we have M = 0 in tailA, and hence M ∈ grtorZA. Since M by assumption is finitely

generated, M has to be finite dimensional. Therefore the condition (ii) holds. �

Remark 5.3. (i) If A is generated by A0 and A1, then one sees that the condition (i) of Theorem

5.2 is satisfied. Hence in this case, we recover the classical Theorem 5.1.

(ii) More generally, if there is an integer p > 0 such that AiAj = Ai+j for all i + j ≥ p, then

condition (i) of Theorem 5.2 is also satisfied. Hence in this case, (−)(d) : TailA −→ TailA(d) is an

equivalence of abelian categories.

(iii) Mori also provided some equivalent conditions for the functor (−)(d) to be an equivalence

in [Mo, Theorem 3.4]. Note that in that paper, A is assumed to be a coherent connected graded

algebra satisfying further homological conditions. In our case, we only assume that A is a locally

finite noetherian algebra. Moreover, we obtain the result under the framework of Hopf dense Galois

extension, which is a new way to understand noncommutative projective schemes.

6. Application II: Noncommutative isolated singularities

Throughout this section, A = ⊕n∈NAn is always a locally finite noetherian N-graded algebra.

Following [Ue], A is called a graded isolated singularity if the abelian category tailA has finite global

dimension, that is, there is an integer p ≥ 0 such that ExtitailA(M,N ) = 0 for all i > p and all

M,N ∈ tailA.
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Let H be a finite dimensional semisimple Hopf algebra. Assume that A is a left H-module

algebra, and that the H-action preserves the grading of A. Then B(:= A#H) is also an N-graded

algebra by setting the degree of elements of H to be zero. Since H is finite dimensional, A can

be viewed as a right H∗-comodule algebra. Note that the comodule action ρ : A −→ A ⊗H∗ also

preserves the grading of A. We may replace the module categories in Theorem 2.3 by the categories

of Z-graded modules. Then Theorem 2.3 reads as follows.

Theorem 6.1. Let A = A0 ⊕A1 ⊕ · · · be a locally finite noetherian N-graded algebra, and let H be

a finite dimensional semisimple Hopf algebra. Assume that A is a left H-module and the H-action

preserves the grading of A. Set B = A#H and R = AH , and let t be the integral of H such that

ε(t) = 1. Then the following are equivalent.

(i) A/R is right H∗-dense Galois extension.

(ii) For any finitely generated Z-graded right B-module, if Mt is finite dimensional, then M

itself is finite dimensional.

(iii) B/BtB is finite dimensional.

(iv) −⊗B A : TailB −→ TailR is an equivalence of abelian categories.

(v) −⊗B A : tailB −→ tailR is an equivalence of abelian categories.

Proof. The statements (i), (iii) and (iv) are exactly the graded versions of the statements (i), (iii)

and (iv) of Theorem 2.3. The graded version of the statement (ii) of Theorem 2.3 can be stated as

follows: for any finitely generated right Z-graded B-module M , TZ(M) is finite dimensional, where

TZ(M) is the largest Z-graded B-submodule of M such that TZ(M)t is finite dimensional. Since B

is noetherian, this is equivalent to the statement (ii) in this theorem. Hence (i), (ii), (iii) and (iv)

are equivalent.

That (iv) implies (v) is because tailA (resp. tailR) is full subcategory of TailA (resp. TailR)

consisting of noetherian objects, and the restriction of −⊗B A to tailA is densely onto tailR.

(v) =⇒ (ii). Let M be a finitely generated right Z-graded B-module. If Mt is finite dimensional,

then π(M)⊗BA ∼= π(Mt) = 0 in tailR. Since −⊗BA is an equivalence, π(M) is finite dimensional.

Hence M is finite dimensional. �

With assumptions as in Theorem 6.1, we obtaing the following.

Corollary 6.2. If A is of finite global dimension and A/AH is a right H∗-dense Galois extension,

then AH is a graded isolated singularity.

Proof. If A is of finite global dimension, then so is B. Then the global dimension of tailB is

finite. By Theorem 6.1, tailAH has finite global dimension, and hence AH is a graded isolated

singularity. �

Remark 6.3. (i) Note that we also have the graded version of Theorem 3.8.

(ii) A general theory of graded isolated singularities was established by Ueyama [Ue] and Mori-

Ueyama [MU]. Many interesting examples were presented in those papers in the case that A is a

Artin-Schelter regular algebra and H is a cyclic group algebra.

(iii) It is well known that finite subgroups of SL2(k) acting on the polynomial algebra k[x, y]

yield isolated singularities. As for the noncommutative case, finite dimensional Hopf actions on
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quantum planes are well understood by Chan, Kirkman, Walton and Zhang in [CKWZ1]. If G is a

finite group which acts homogeneous on a quantum plane A and the homological determinant of G

is trivial, then the condition (iii) of Theorem 6.1 is always satisfied (cf. [Ue]). Hence the invariant

subalgebra AG is graded isolated by Corollary 6.2.

Recall from [MM] that a locally finite noetherian N-graded algebra A is called an Artin-Schelter

Gorenstein algebra if injdimAA =injdimAA = n <∞, and

ExtiA(A0, A) ∼=

{
0, i 6= n

A∗0(l), i = n

both in GrModZA and in GrModZA
op, where (l) is the degree shift functor.

Corollary 6.4. Let H be a semisimple Hopf algebra, and let A be an N-graded left H-module

algebra. Assume that the H-action preserves the grading of A, and that A is an Artin-Schelter

Gorenstein algebra with injective dimension injdimAA =injdimAA = n ≥ 2. If A/AH is a Hopf

H∗-dense Galois extension, then the natural map

A#H −→ End(AAH ), a#h 7→ [b 7→ a(h · b)]

is an isomorphism of N-graded algebras.

Proof. Since A is Artin-Schelter Gorenstein and the injective dimension of A is not less than 2,

it follows that depthAA ≥ 2 (we remark that in graded case, the depth of A is considered in

GrModZA). By the graded version of Theorem 3.8 (cf. Remark 6.3 (i)), we have A#H ∼= End(AAH )

as graded algebra. �

Finally, we remark that a similar result was already obtained in [MU, Theorem 3.7] under the

much stronger assumptions that A is a noetherian Artin-Schelter regular algebra and H is a finite

group algebra.
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