
Made available by Hasselt University Library in https://documentserver.uhasselt.be

On the realisability of double-cross matrices by polylines in the plane

Peer-reviewed author version

KUIJPERS, Bart & MOELANS, Bart (2017) On the realisability of double-cross

matrices by polylines in the plane. In: JOURNAL OF COMPUTER AND SYSTEM

SCIENCES, 86, p. 117-135.

DOI: 10.1016/j.jcss.2016.12.001

Handle: http://hdl.handle.net/1942/23452

On the realisability of double-cross matrices

by polylines in the plane

Bart Kuijpers1,∗, Bart Moelans1,2,∗

UHasselt – Hasselt University and transnational University Limburg, Belgium

Unleashed, Hasselt, Belgium

Abstract

We study a decision problem, that emerges from the area of spatial reasoning.
This decision problem concerns the description of polylines in the plane by
means of their double-cross matrix. In such a matrix, the relative position
of each pair of line segments in a polyline is expressed by means of a 4-tuple
over {−, 0,+}. However, not any such matrix of 4-tuples is the double-cross
matrix of a polyline. This gives rise to the decision problem: given a matrix of
such 4-tuples, decide whether it is the double-cross matrix of a polyline. This
problem is decidable, but it is NP-hard. In this paper, we give polynomial-
time algorithms for the cases where consecutive line segments in a polyline
make angles that are multiples of 90◦ or 45◦ and for the case where, apart
from an input matrix, the successive angles of a polyline are also given as
input.

Keywords: Spatial reasoning, Double-cross calculus, Qualitative
description of polylines, Computational algebraic geometry, Algorithmic
complexity

∗Corresponding author
1UHasselt – Hasselt University and transnational University Limburg, Databases and

Theoretical Computer Science Research Group, Agoralaan, Gebouw D, 3590 Diepenbeek,
Belgium, bart.kuijpers@uhasselt.be

2Unleashed, Kempische Steenweg 309, Box 1, 3500 Hasselt, Belgium,
bart.moelans@unleashed.be

Preprint submitted to Journal of Computer and System Sciences December 20, 2016

1. Introduction and summary of results

Polylines arise in Geographical Information Science (GIS) in a multitude
of ways. One recent example comes from the collection of moving object data,
where trajectories of moving persons (or animals), that carry GPS-equipped
devices, are collected in the form of time-space points that are registered
at certain (ir)regular moments in time. The spatial trace of this movement
is a collection of points in two-dimensional geographical space, that form a
polyline, when in between the measured sample points, for instance, linear
interpolation is applied (Güting and Schneider (2005)). Another example of
the use of polylines comes from shape recognition and retrieval, which arises
in domains, such as computer vision and image analysis. Here, closed poly-
lines (or polygons) often occur as the boundary of two-dimensional shapes
or regions.

In examples, such as the above, there are, roughly speaking, two very
distinct approaches to deal with polygonal curves and shapes. On the one
hand, there are the quantitative approaches and, on the other hand, there are
the qualitative approaches. Initially, most research efforts have dealt with the
quantitative methods (Bookstein (1986); Dryden and Mardia (1998); Kent
and Mardia (1986); Mokhtarian and Mackworth (1992)). Only afterwards,
the qualitative approaches have gained more attention, mainly supported by
research in cognitive science that provides evidence that qualitative models
of shape representation are much more expressive than their quantitative
counterpart and reflect better the way in which humans reason about their
environment (Gero (1999)). The principles behind qualitative approaches to
deal with polylines are also related to the field of spatial reasoning, which
has as one of its main objectives to present geographic information in a
qualitative way, to facilitate reasoning about it. For an overview of spatial
and for spatio-temporal reasoning, we refer to Chapter 12 in (Giannotti and
Pedreschi (2008). The reason for using a qualitative representation is that
the available information is often imprecise, partial and subjective (Freksa
(1992)).

One of the formalisms to qualitatively describe polylines in the plane is
given by the double-cross calculus. In this method, a double-cross matrix
captures the relative position (or orientation) of any two line segments in a
polyline by describing it with respect to a double cross based on the start-
ing points of these line segments (Freksa (1992); Zimmermann and Freksa
(1996)). For an overview of the use of constraint calculi in qualitative spatial

2

reasoning, we refer to (Renz and Nebel (2007)). In the N ×N double-cross
matrix of a polyline with N line segments (or N+1 vertices), the relative po-
sition (or orientation) of two (oriented) line segments in a polyline is encoded
by means of a 4-tuple, whose entries come from the set {−, 0,+}.

However, not every N×N matrix of 4-tuples from {−, 0,+} is the double-
cross matrix of a polyline with N+1 vertices. This gives rise to the following
decision problem: Given an N ×N matrix of 4-tuples from {−, 0,+}, decide
whether or not it is the double-cross matrix of a polyline (with N+1 vertices),
and if it is, given an example of a polyline that realises the matrix.

To start with, we give a known collection of polynomial (in)equalities
on the coordinates of the vertices of a polyline, that express the information
contained in the double-cross matrix of a polyline. Since first-order logic over
the reals (or elementary geometry) is decidable (Tarski (1951)), it follows
that this decision problem is also decidable. However, we are left with the
question of its time complexity.

In computational algebraic geometry, the problem can be viewed as a
satisfiability problem of a system of quadratic equations in 2(N+1) variables.
However, the known best algorithms to solve our problem (including the
production of sample points) take exponential time. Our decision problem
has many particularities: the polynomials are homogeneous of degree 2; they
use few monomials and each of them uses only six variables. Nevertheless,
the problem is known to be NP-hard (Scivos and Nebel (2001); Renz and
Nebel (2007)). Whether or not this problem is in NP is less obvious, since no
apriori polynomial bound on the complexity of sample points (to be guessed)
is obvious. We discuss this problem in more detail in Section 3.

In this paper, we focus on subclasses of the above decision problem, for
which we can give polynomial time decision algorithms. A first subclass is
obtained by restricting the attention to polylines in which consecutive line
segments make angles that are multiples of 90◦. For this sub-problem, we
give a O(N2)-time decision procedure. Next, we turn our attention to poly-
lines in which consecutive line segments make angles that are multiples of
45◦. To solve the more complicated case of 45◦-polylines, we introduce the
polar-coordinate representation of double-cross matrices. We give two-way
translations between the Cartesian- and the polar-coordinate representations.
Using polar coordinates, our decision problem can be reduced to a linear pro-
gramming problem (with algebraic coefficients, however). For the particular
decision problem of a double-cross matrix M being realisable (or not) by a
45◦-polyline, we can make use of the fact that the entries of M above its diag-

3

onal give exact information on the angles that a polyline, that would realise
M , should have. This one-to-one correspondence between the qualitative
double-cross information and the angle information implies that our decision
problem simplifies to deciding whether or not appropriate segment lengths of
a polyline exist. The latter problem is a linear programming problem, that
can be solved in polynomial time. In fact, we show that this situation can
be generalised and we first show that whenever the consecutive angles of a
polyline are given, it can be decided in polynomial time whether a matrix M
can be realised by a polyline (with the given angle sequence). Next, we apply
this more general result to the case of 45◦-polylines to obtain a polynomial
time decision procedure. This result has some implications on the convexity
of the solution set consisting of all 45◦-polylines that realise a matrix. It is
not the intention of this paper to discuss implementations of and experiments
with the proposed methods.

Organisation. This paper is organised as follows. Section 2 gives the defini-
tion of a polyline, the double-cross matrix of a polyline and the known results
on the algebraic interpretation of the double-cross matrix. In Section 3, we
state our decision problem in a more technical way and discuss some of its
general properties. Section 4 gives a O(N2)-time decision procedure for the
case of 90◦-polylines. In Section 5, we introduce the polar-coordinate rep-
resentation of double-cross matrices. In Section 6, we use the double-cross
conditions in polar form to show the existence of a polynomial-time realis-
ability test in the case where, apart from an input matrix, also the successive
angles of a polyline are given as input. Section 7 gives a polynomial-time
decision procedure for the case of 45◦-polylines. The paper ends with con-
cluding remarks that include variants of our decision problem.

2. Definition and preliminaries

In this section, we give the definitions of a polyline, an α-polyline and of
the double-cross matrix of a polyline. We also give an algebraic interpretation
of the double-cross matrix.

We start with the following notational conventions. Let R denote the
sets of the real numbers, and let R2 denote the two-dimensional real plane.
To stress that some real values are constants, we use sans serif characters:
x, y, x0, y0, x1, y1, Real variables are denoted in normal characters. For
constant points of R2, we use the sans serif characters p, p0, p1, . . .

4

2.1. Polylines and α-polylines

The following definition specifies what we mean by polylines. We define
polylines as a finite sequences of points in R2 (which is often used as their
finite representation). When we add the line segments between consecutive
points we obtain what we call the semantics of the polyline. We also intro-
duce some terminology about polylines.

Definition 1. A polyline (in R2) is an ordered list P = 〈(x0, y0), (x1, y1),
, . . . , (xN , yN)〉 of points in R2. We call the points (xi, yi), 0 ≤ i ≤ N , the
vertices of the polyline. We assume that no two consecutive vertices are
identical, that is: (xi, yi) 6= (xi+1, yi+1), for 0 ≤ i < N .

The vertices (x0, y0) and (xN , yN) are respectively called the start and
end vertex of P . The line segments connecting the points (xi, yi) and (xi+1,
yi+1), for 0 ≤ i < N , are called the (line) segments of the polyline P . The
semantics of P , denoted sem(P), is the union of the line segments of P . We
call N , the number of line segments, the size of the polyline P . �

Figure 1 gives an example of two polylines, P1 and P2, of size 4 and their
semantics. Further on, we will loosely use the term polyline also to refer to
the semantics of a polyline, although, stricto sensu, a polyline is a ordered
list of points in R2.

We remark that, by the above definition, two polylines with a different
number of vertices, may have the same semantics. We also remark that the
line segments, appearing in the semantics, may intersect in points which may
or may be not vertices. Finally, we remark that it is reasonable to assume
that polylines coming from GIS applications have vertices with rational co-
ordinates (or that are finitely representable in some other way).

We use the following additional notational conventions. As a standard,
for vertices of a polyline, we abbreviate (xi, yi) by pi. The (located) vector 3

from pi to pj is denoted by −−→pipj. The counter-clockwise angle (expressed in
degrees) measured from −−→pipj to −−→pipk is denoted by ∠(−−→pipj,−−→pipk), as illustrated
in Figure 2.

In this paper, we use 45◦- and 90◦-polylines, which are special cases of
α-polylines

3By the located vector from p to q, we mean an ordered pair (p, q) of points of R2,
which we denote −→pq. We use this concept to represent the oriented line segment between
p and q.

5

p0 p1

p2

p3

p4

p0 p1
p2

p4

p3

P1

P2

Figure 1: An example of two polylines, P1 and P2, of size 4 (the dots) and their semantics
(the lines).

\(��!pipj ,
��!pipk)

pj

pi

pk

Figure 2: The counter-clockwise angle ∠(−−→pipj ,−−→pipk) from −−→pipj to −−→pipk.

Definition 2. Let α, 0◦ < α < 360◦, be an angle such that 360◦

α
= kα is

a natural number. Let P = 〈p0, p1, . . . , pN〉 be a polyline. We call P an
α-polyline if all angles ∠(−−−→pipi−1,

−−−→pipi+1) are multiples of α, for 0 < i < N ,
that is, if ∠(−−−→pipi−1,

−−−→pipi+1) is of the form niα, with ni ∈ {0, 1, ..., kα}. �

Figure 3 shows the 90◦-polyline P1 and the 45◦-polylines P1 and P2. In-
deed, in the polyline P1, for instance, the consecutive angles are 90◦, 90◦, 270◦

and 270◦, assuming that the start vertex is at the left bottom.

2.2. The double-cross matrix of a polyline

As mentioned in the Introduction, in the double-cross formalism, the
relative position (or orientation) of two (located) vectors of a polyline is
encoded by means of a 4-tuple, whose entries come from the set {−, 0,+}
(Freksa (1992); Zimmermann and Freksa (1996)). Such a 4-tuple expresses
the relative orientation of two vectors with respect to each other.

6

P1 P2

Figure 3: An example of a 90◦-polyline (P1) and two 45◦-polylines (P1 and P2).

In this section, we define the double-cross matrix of a polyline. We as-
sociate to a polyline P = 〈p0, p1, ..., pN〉 the (located) vectors −−→p0p1,−−→p1p2, . . . ,−−−−−→pN−1pN , representing the oriented line segments between the consecutive ver-
tices of P . Because of the assumption in Definition 1, the vectors −−→p0p1,−−→p1p2,
. . . ,−−−−−→pN−1pN all have a strictly positive length. In the double-cross formalism,
the relative orientation between −−−→pipi+1 and −−−→pjpj+1 is given by means of a 4-
tuple (C1 C2 C3 C4) ∈ {−, 0,+}4. We follow the traditional notation of this
4-tuple without commas. To determine C1, C2, C3 and C4, for pi 6= pj, first
of all, a double cross is defined for the vectors −−−→pipi+1 and −−−→pjpj+1, determined
by the following three lines:

• the line Lij through pi and pj;

• the line Piji through pi, perpendicular on Lij; and

• the line Pijj through pj, perpendicular on Lij.

These three lines are illustrated in Figure 4. These three lines determine
a cross at pi and a cross at pj. Hence the name “double cross.” The entries
C1, C2, C3 and C4 express in which quadrants or on which half lines pi+1 and
pj+1 are located with respect to the double cross.

We now define this more formally and follow the historical use of the
double cross. In this definition, an interval (a, b) of angles, represents the
open interval between a and b on the counter-clockwise oriented circle.

Definition 3. Let P = 〈p0, p1, ..., pN〉 be a polyline with associated vectors−−→p0p1,−−→p1p2, . . . ,−−−−−→pN−1pN . For −−−→pipi+1 and −−−→pjpj+1 with 0 ≤ i, j < N , i 6= j and
pi 6= pj, we define

DC(−−−→pipi+1,
−−−→pjpj+1) = (C1 C2 C3 C4)

7

pi+1

pi

pj

pj+1
PijjPiji

Lij

����!pjpj+1

����!pipi+1

Figure 4: The double cross (in blue): the lines Lij , Piji and Pijj .

as follows:

C1 =


− if ∠(−−→pipj,−−−→pipi+1) ∈ (−90◦, 90◦)
0 if ∠(−−→pipj,−−−→pipi+1) ∈ {−90◦, 90◦}
+ else

C2 =


− if ∠(−−→pjpi,−−−→pjpj+1) ∈ (−90◦, 90◦)
0 if ∠(−−→pjpi,−−−→pjpj+1) ∈ {−90◦, 90◦}
+ else

C3 =


− if ∠(−−→pipj,−−−→pipi+1) ∈ (0◦, 180◦)
0 if ∠(−−→pipj,−−−→pipi+1) ∈ {0◦, 180◦}
+ else

C4 =


− if ∠(−−→pjpi,−−−→pjpj+1) ∈ (0◦, 180◦)
0 if ∠(−−→pjpi,−−−→pjpj+1) ∈ {0◦, 180◦}
+ else.

For −−−→pipi+1 and −−−→pjpj+1, with pi = pj, we define, for reasons of continuity,4

DC(−−−→pipi+1,
−−−→pjpj+1) = (0 0 0 0).

The double-cross matrix of P , denoted DCM(P), is the N × N matrix
with the entries DCM(P)[i, j] = DC(−−−→pipi+1,

−−−→pjpj+1), for 0 ≤ i, j < N . �

4This argumentation is given in (Forbus (1990)).

8

So, in particular, when i = j, we have DC(−−−→pipi+1,
−−−→pjpj+1) = (0 0 0 0).

We remark that the values C1 and C3 describe the location of the point
pi+1 or, equivalently, the orientation of the vector −−−→pipi+1 with respect to the
cross at pi (formed by the lines Lij and Piji). We see that each of the four
quadrants and four half lines determined by the cross at pi are determined
by a unique combination of C1 and C3 values. Similarly, the values C2 and
C4 describe the location of the point pj+1 or, equivalently, the orientation
of the vector −−−→pjpj+1 with respect to the cross at pj (formed by the lines
Lij and Pijj). The quadrants and half lines where C1, C2, C3 and C4 take
different values are graphically illustrated in Figure 5. For example, the 4-
tuple DC(−−−→pipi+1,

−−−→pjpj+1) for the vectors −−−→pipi+1 and −−−→pjpj+1, shown in Figure 4,
is (+ − − −).

pi pj

C1

C3

C2

C4

+

� �

0�

�

0+

0

+

�

�

0

0

+

+

0 0

+ +

�� +

0

0

�

+

Lij

Piji Pijj

�

�

+

+�

+

0 0 0

Figure 5: The quadrants and half lines where C1, C2, C3 and C4 take different values.

For example, the entries of the double-cross matrix of the polylines P1 and
P2 of Figure 1 are given in Table 1. Polylines, such as P1 and P2 of Figure 1,
that have the same double-cross matrix, are called double-cross similar.

This first example can be used to illustrate some properties of this ma-
trix (Kuijpers et al. (2006)). First, we observe that on the diagonal always
(0 0 0 0) appears. We also see that there is a certain degree of symmetry
along the diagonal. If DC(−−−→pipi+1,

−−−→pjpj+1) = (C1 C2 C3 C4), then we have
DC(−−−→pjpj+1,

−−−→pipi+1) = (C2 C1 C4 C3). These two observations imply that it
suffices to know a double-cross matrix above its diagonal.

Input matrices, that do not posses these symmetry properties, are there-
fore, apriori, not realisable.

9

−−→p0p1 −−→p1p2 −−→p2p3 −−→p3p4−−→p0p1 (0 0 0 0) (− + 0 +) (− + + +) (− + + +)
−−→p1p2 (+ − + 0) (0 0 0 0) (− + 0 +) (− + + +)
−−→p2p3 (+ − + +) (+ − + 0) (0 0 0 0) (− + 0 +)
−−→p3p4 (+ − + +) (+ − + +) (+ − + 0) (0 0 0 0)

Table 1: The entries of the double-cross matrix of the polylines P1 and P2 of Figure 1.

2.3. An algebraic interpretation of the double-cross matrix

In this section, we give an algebraic interpretation of the double-cross
matrix. In the following theorem, taken from (Kuijpers et al. (2006)), we use
the function

sign : R→ {−, 0,+} : x 7→ sign(x) =


− if x < 0;
0 if x = 0; and
+ if x > 0.

Theorem 1. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline and let
pi = (xi, yi), for 0 ≤ i ≤ N . Then, DC(−−−→pipi+1,

−−−→pjpj+1) = (C1 C2 C3 C4) with

C1 = − sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi));
C2 = sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj));
C3 = − sign((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)); and
C4 = sign((xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj)).

�

3. Problem statement and discussion

In this section, we state the decision problem, already given in the Intro-
duction, more formally and we devote some theoretical discussion to it.

3.1. Problem statement

In this papers, we address the following decision problem (relative to some
class P of polylines in the plane R2).

Problem 1 (Realisability). Given is an N ×N matrix M of 4-tuples

(C1 C2 C3 C4) ∈ {−, 0,+}4.

10

(a) Decide whether M is the double-cross matrix of some polyline (from a
class P) in R2 of size N ; and

(b) If the answer to question (a) is yes, then produce an example of a
polyline P with DCM(P) = M . �

Initially, we take the class of polylines P as broad as possible. For in-
stance, it is sufficient to look at polylines that have, as first line segment, the
unit interval on the x-axis of R2 and whose vertices have algebraic coordi-
nates.

3.2. Discussion

By Theorem 1, the entries of an input matrix M to Problem 1 can be
translated into sign conditions on quadratic polynomial equalities and in-
equalities. Therefore, Problem 1 is equivalent to deciding the first-order
sentence

∃x0∃y0∃x1∃y1 · · · ∃xN∃yN

∧
0≤i<j≤N


(xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi) αij 0
(xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj) βij 0
(xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi) γij 0
(xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj) δij 0

where αij, βij, γij, δij ∈ {=, <,>}, for 0 ≤ i < j ≤ N are determined by the
input matrix M , over the reals. The minus signs before the equations for C1

and C3 are assumed to be incorporated in the αij and γij. We remark that
the above sentence expresses the entries of the input matrix strictly above
its diagonal (as we can apriori discard non-symmetric input matrices).

The 4N(N−1)
2

equalities and inequalities describe a semi-algebraic subsets
of R2(N+1) (Bochnak et al. (1998)). We make the following observations
about this system:

• there are 2N(N−1) (in)equalities in 2(N+1) variables x0, y0, ..., xN , yN ;

• each polynomial uses 6 variables from x0, y0, x1, y1, ..., xN , yN and has
at most 8 monomial terms;

• each of the polynomials is homogeneous of degree 2;

• all the coefficients of the polynomials are 0, 1 or −1.

11

The first-order theory of the real ordered field is decidable (Tarski (1951))
and various implementations of decision procedures, that are based on Cylin-
drical Algebraic Decomposition (Collins (1975)) or other techniques, for this
theory exist. We refer to QEPCAD (Hong (2000)), Redlog (Dolzmann
and Sturm (1997)) and and Mathematica (Wolfram Research (2015)) as
a few examples. This type of software could be used, in theory, to answer
Problem 1 (a) in practice. If there is a solution, these implementations also
provide, as a byproduct of the above decision problem, sample points, thus,
also, effectively answering question Problem 1 (b). But it is also known that
the above mentioned implementations are slow and fail in practice to pro-
duce answers as soon as the number of variables increases. This is due to
the intrinsic high time complexity of quantifier elimination in the ordered
field of the reals (Heintz et al. (2013)). The theory of computational alge-
braic geometry gives an upper complexity bound. In particular, Theorem
13.13 in (Basu et al. (2006)) gives an upper bound on determining realisable
sign conditions of a collection of polynomials. When applied to our decision
problem, we obtain that there exists an algorithm to compute the set of all
realisable sign conditions of the above system of polynomial (in)equalities
with complexity (2N(N − 1))2N+3 · 2O(N). The complexity of deciding the
satisfiability of the system is the same, as well as that of generating a sam-
ple point in case of non-emptiness. The use of alternative data structures
to codify the polynomials can improve the time complexity, but not below
exponential time (Giusti and Heintz (2001)). For a more recent discussion
on lower bounds of the complexity, we refer to (Heintz et al. (2013)). The
general problem of deciding an existential sentence in the first-order theory
of the reals is known to be NP-hard (and to be in PSPACE) (Canny (1988)).

However, we have the following, negative result: Problem 1 (a) is NP-
hard (Scivos and Nebel (2001); Renz and Nebel (2007)). Whether or not
this problem is in NP is less obvious. It is known that if there is a solution
to the above system of polynomial (in)equalities, there is also an solution
with algebraic coordinates (Basu et al. (2006)). We could, for instance,
try to guess the coordinates of the vertices of a polyline and then verify
whether it satisfies the above system. Guessing algebraic coordinates could
be implemented by guessing a polynomial and a root of this polynomial.
However, an apriori polynomial bound on the complexity of sample points (to
be guessed) is not obvious (Basu et al. (2006)). Above, we have observed that
each polynomial uses at most 6 variables from x0, y0, x1, y1, ..., xN , yN and has
at most 8 monomial terms. This implies our problem is part of the field of

12

“fewnomials” (Khovanskii (1991)), where problems are notoriously difficult.
And our problem and the production of sample points, is not covered by the
known solutions there.

On the positive side, we can remark that, from the definition of the
double-cross matrix in Section 2.2, it is clear that translations, rotations
and scalings of a polyline do not change its double-cross matrix. Double-
cross matrices are, in fact, invariant under similarities of R2. Thus, we can
conclude, that if Problem 1 (a) has a positive answer, we can always find a
polyline, to witness this fact, that starts of with the vertices (x0, y0) = (0, 0)
and (x1, y1) = (1, 0) and in which the other vertices have coordinates that
are algebraic numbers.

4. A realisability test for 90◦-polylines

In this section, we give an efficient solution for a special case of Problem 1,
for P = P90◦ , the class of 90◦-polylines (again with vertices with algebraic
coordinates). As we have remarked, for the problem of realisability, we may
assume, without loss of any generality, that the polyline that realises a matrix
M , if it exists, starts with the unit interval on the x-axis, that is, p0 =
(x0, y0) = (0, 0) and p1 = (x1, y1) = (1, 0).

The following, straightforward, property gives a first necessary condition
for the input to our decision problem, the matrix M .

Property 1. Let P = 〈p0, p1, p2, ..., pN〉 be a polyline. A necessary and suf-
ficient condition for P to be a 90◦-polyline is that for all i, 0 ≤ i < N − 1,
DC(−−−→pipi+1,

−−−−−→pi+1pi+2) =

• (− − 0 0) (reverse turn);

• (− 0 0 −) (right turn);

• (− + 0 0) (straight); or

• (− 0 0 +) (left turn). �

Since we take p0 = (x0, y0) = (0, 0) and p1 = (x1, y1) = (1, 0), all
line segments of the polyline, realising M , should be parallel to one of
the coordinate axis of R2. In fact, we have for each i, 0 ≤ i < N that
xi = xi+1 ∧ (yi < yi+1 ∨ yi > yi+1) or yi = yi+1 ∧ (xi < xi+1 ∨ xi > xi+1). Here,

13

for 0 ≤ i < N , we are in exactly one of the following four situations (always
with `i+1 > 0):{
xi+1 = xi + `i+1

yi+1 = yi;

{
xi+1 = xi − `i+1

yi+1 = yi;

{
xi+1 = xi
yi+1 = yi + `i+1;

{
xi+1 = xi
yi+1 = yi − `i+1.

Before we give an efficient solution to Problem 1 for for P = P90◦ , we prove
a lemma that explains in which quadrant, determined by a line segment of
a polyline, that is parallel to one of the coordinate axis of R2, a vertex of a
polyline is located. For clarity, we state and prove the lemma for segments
of a polyline, that are parallel to one of the coordinate axis of R2 and that
coincide with the unit interval on the x- and y-axis (or their negatives), but
the lemma can be easily extended and applied to any polyline segments that
are parallel to one of the coordinate axis of R2, after applying a scaling and
translation of R2.

Lemma 1. Let P = 〈p0, p1, , . . . , pN〉 be a polyline and assume that pi =
(0, 0) and pi+1 = (±1, 0) or pi = (0, 0) and pi+1 = (0,±1). Let pj = (xj, yj),
for 0 ≤ i ≤ N and i + 1 < j. From the first and third component of
DC(−−−→pipi+1,

−−−→pjpj+1), we can determine sign(xj) and sign(yj).

Proof. First, let pi = (0, 0) and pi+1 = (±1, 0). From Theorem 1 it is
clear that C1 = −sign((xj − 0) · ±1 + yj · 0) = −sign(±xj) and that C3 =
−sign(xj · 0− yj · ±1) = sign(±yj).

Secondly, let pi = (0, 0) and pi+1 = (0,±1). Similarly, Theorem 1 implies
C1 = −sign((xj − 0) · 0 + yj · ±1) = −sign(±yj) and that C3 = −sign(xj ·
±1− yj · 0) = −sign(±xj). �

Theorem 2. It can be decided in time O(N2) whether a N × N matrix M
of 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4 is the double-cross matrix of some
90◦-polyline in R2 of size N . If M this is the case, also witnesses to this can
be produced in time O(N2).

Proof. We now describe a decision procedure for Problem 1: in a first step,
we determine the relationship (<,=, >) between coordinates of consecutive
vertices. In a second step, we do it for all remaining vertices.

14

Let M be a N ×N matrix of 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4. Since
we want to determine the existence of a 90◦-polyline P = 〈p0, p1, ..., pN〉, with
p0 = (0, 0) and p1 = (1, 0), that realises M , we know that all the segments
of P are parallel to one of the coordinate axis of R2. in the following, we
assume that pi = (xi, yi), for 0 ≤ i ≤ N .

As an apriori step, we check whether M does not have (0 0 0 0) entries
on its diagonal or doesn’t have the “symmetry” properties, discussed in Sec-
tion 2.2. If M fails this symmetry-test, we can already answer no, else we
proceed.

Step 1. First, we inspect all entries M [i, i + 1], 0 ≤ i < N of M . They
should all be of the form

• (− − 0 0) (reverse turn);

• (− 0 0 −) (right turn);

• (− + 0 0) (straight); or

• (− 0 0 +) (left turn).

If this is not the case, we can already answer no. In the other case, we
deduce, from the entries of M above the diagonal, the arrangement5 of the
consecutive x-coordinates xi and xi+1 and of the consecutive y-coordinates yi
and yi+1 of candidate vertices of a polyline. Then we proceed to Step 2.

Step 2. Now, we inspect all entries M [i, j], 1 ≤ i + 1 < j < N of M . Per
entry, two cases, corresponding to the line segment that connects pi and pi+1

being parallel to the y-axis or parallel to the x-axis, have to be considered.
Case 1 (parallel to the y-axis or xi = xi+1): For yi and yi+1, we have only
two possible arrangements: yi < yi+1 or yi > yi+1. We use the “parallel to
the y-axis” version of Lemma 1, to determine, from the matrix entry M [i, j],
the quadrant in which (xj, yj) is located compared to the line segment that
connects pi and pi+1. This gives us the the arrangement of xi and xj on the
one hand and of yi and yj on the other hand.
Case 2 (parallel to the x-axis or yi = yi+1): This case is analogous to Case 1,
but now we use the “parallel to the x-axis” version of version of Lemma 1.

5By arrangement, we mean which of the cases xi < xi+1, xi = xi+1 and xi > xi+1 holds.

15

At this point, we have now complete information on how the x-coordinate
values x0, x1, ..., xN are pairwise arranged (or ordered) and how the y-coordi-
nate values y0, y1, ..., yN are pairwise arranged. We can store this arrangement
information in two matrices (similarly to the double-cross matrix). The first
matrix can be used to verify whether an ordering of x0, x1, ..., xN is possible.
To this purpose, we scan this matrix column per column. The first column
will allow us to place x0 and x1 on the real line (according to their arrange-
ment). This results in at most five locations to place x2 (before; between;
after; or on x0 and x1). The second column of the matrix tells us where. We
repeat this process until all the candidate values x0, x1, ..., xN are placed on
the real line. Next, we use the second matrix to place the y-coordinate values
y0, y1, ..., yN on the y-axis. If, in this process, we find it impossible to find a
location to place one of the xi or yi (due to a contradiction), we answer no. If
we have never found a contradiction and all x- and y-values can be ordered,
we are ready to answer yes. This ordering process takes O(N2) time.

If we have found kx different values x0, x1, ..., xN and ky different values
y0, y1, ..., yN , we can draw an example of a polyline that realises M on the
grid {0, 1, ..., kx − 1} ×R ∪R× {0, 1, ..., kx − 1}, with vertices belonging to
{0, 1, ..., kx − 1} × {0, 1, ..., kx − 1}. This drawing serves as a sample point
and answers Problem 1 (b).

It is clear that the above inspection of the matrix M takes O(N2) time.
The reconstruction of a polyline can be done in the same amount of time.
This completes the proof. �

5. The polar coordinate representation of a polyline

In this section, we define the polar coordinate representation of a polyline
and we describe how to go from the Cartesian coordinate representation to
the polar coordinate representation and vice versa.

Definition 4. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline (in
Cartesian coordinate representation) and let pi = (xi, yi), 0 ≤ i ≤ N . The
polar coordinate representation of the polyline P is the list

〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N〉,
where `i is the length of the line segment pi−1pi and θi is the counter-clockwise
angel at pi between the line connecting pi and pi−1 and the line connecting
pi and pi+1. �

16

If at pi, the polyline turns to the left or goes straight, θi = 180◦ −
∠(−−−→pipi−1,

−−−→pipi+1) and if at pi, the polyline turns to the right or returns,
θi = 180◦ + ∠(−−−→pipi−1,

−−−→pipi+1).
So, θi captures the (counter-clockwise) change in direction when going

from the line segment pi−1pi to the line segment pipi+1. This is illustrated in
Figure 6.

p0
p1

p2

p3

p4
p5

θ1

θ2 θ3

θ4

�1

�2

�3

�4

�5

Figure 6: The polar coordinates 〈`1, θ1, `2, θ2, `3, θ3, `4, θ4, `5〉 (in red) of the polyline
〈p0, p1, p2, p3, p4, p5〉 (in black).

5.1. From the Cartesian coordinate to the polar coordinate representation

To convert a polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 given by the
Cartesian coordinates of its vertices to polar coordinate representation is
easy. For `i, we take the length of the line segment pi−1pi. By definition
θi = 180◦ − ∠(−−−→pipi−1,

−−−→pipi+1) if the polyline turns to the left or goes straight
and θi = 180◦+∠(−−−→pipi−1,

−−−→pipi+1) if the polyline turns to the right or returns.
Therefore, the angle θi is given by the formula

π − arccos (
(xi−1 − xi, yi−1 − yi) · (xi+1 − xi, yi+1 − yi)

|(xi−1 − xi, yi−1 − yi)| · |(xi+1 − xi, yi+1 − yi)|
)

if the polyline turns to the left or goes straight, and by

π + arccos (
(xi−1 − xi, yi−1 − yi) · (xi+1 − xi, yi+1 − yi)

|(xi−1 − xi, yi−1 − yi)| · |(xi+1 − xi, yi+1 − yi)|
)

17

if the polyline turns to the right or returns.6

5.2. From the polar coordinate to the Cartesian coordinate representation

Now, we turn to transforming the polar coordinate representation into
the classical Cartesian coordinate representation, which is more laborious.
Here, we can use some techniques that are also known in the description of
robot arms with multiple joints (see, for instance, Chapter 6 of (Cox et al.
(1997))).

Hereto, we first need some technical results. Let P = 〈(x0, y0), (x1, y1),
, . . . , (xN , yN)〉 be a polyline and let pi = (xi, yi), 0 ≤ i ≤ N . In each
vertex (xi, yi), we create a local coordinate system (Xi, Yi). The origin of this
coordinate system is (xi, yi) and the positive Xi-axis is points from (xi, yi) to
(xi+1, yi+1). The Yi-axis is perpendicular to the Xi-axis in (xi, yi) in the usual
way. This is illustrated in Figure 7.

pi−1

pi

pi+1

θi

�i

X
i−

1

Y i−
1

X
i

Yi

�i+1

Figure 7: The local coordinate systems (Xi−1, Yi−1) (in blue) and (Xi, Yi) (in green) on
the vertices pi−1 and pi of a polyline.

The following property is well known from linear algebra and also from
the field of multiple joint robot arms (see, Chapter 6, page 262, in Cox et al.
(1997)).

6Here, the · in the numerator denotes the inner product of two vectors and the · in the
denominator is the product of norms.

18

Property 2. Let pi−1, pi and pi+1 be three consecutive vertices on a polyline
P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 with pi = (xi, yi), 0 ≤ i ≤ N . If a
point q in R2 has coordinates (ai−1, bi−1) and (ai, bi), respectively, in the
local coordinate systems (Xi−1, Yi−1) and (Xi, Yi), respectively, then ai−1

bi−1
1

 =

 cos θi − sin θi `i
sin θi cos θi 0

0 0 1

 ·
 ai

bi
1

 .

�
For a polyline P , given by its polar coordinate representation 〈`1, θ1, `2,

θ2, ..., `N−1, θN−1, `N〉, we set

Pi =

 cos θi − sin θi `i
sin θi cos θi 0

0 0 1

 .

From now on, we only consider polylines with (x0, y0) = (0, 0) and (x1,
y1) = (1, 0), such that (X0, Y0) is the standard coordinate system.

The following property, based on the previous property, has a straight-
forward induction proof.

Property 3. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline. If a
point q in R2 has coordinates (ai, bi) in the local coordinate system (Xi, Yi),
then it has absolute Cartesian coordinates (a0, b0) in (X0, Y0), with a0

b0
1

 = P1 · P2 · · ·Pi ·

 ai
bi
1

 .

�

The following property tells us what the matrix product P1 ·P2 · · ·Pi looks
like.

Property 4. For 1 ≤ i < N , we have

P1 · P2 · · ·Pi =

 cos Θi
1 − sin Θi

1

∑i
j=1 `j cos Θj−1

1

sin Θi
1 cos Θi

1

∑i
j=1 `j sin Θj−1

1

0 0 1

 ,

where Θj
i abbreviates θi + θi+1 + · · ·+ θj, for i ≤ j.

19

Proof. We proceed by induction on i. For i = 1, we have `1 cos 0 = `1 and
`1 sin 0 = 0, which clearly gives P1.

Now, we proceed from i to i+1. By the induction hypothesis, P1·P2 · · ·Pi·
Pi+1 equals cos Θi

1 − sin Θi
1

∑i
j=1 `j cos Θj−1

1

sin Θi
1 cos Θi

1

∑i
j=1 `j sin Θj−1

1

0 0 1

 ·
 cos θi+1 − sin θi+1 `i+1

sin θi+1 cos θi+1 0
0 0 1

 ,

which is  a11 a12 a13
a21 a22 a23
a31 a32 a33


with

• a11 = cos Θi
1 · cos θi+1 − sin Θi

1 · sin θi+1 = cos (Θi
1 + θi+1) = cos (Θi+1

1);

• a12 = − cos Θi
1·sin θi+1−sin Θi

1·cos θi+1 = − sin (Θi
1 + θi+1) = − sin (Θi+1

1);

• a13 = `i+1 cos Θi
1 +

∑i
j=1 `j cos Θj−1

1 =
∑i+1

j=1 `j cos Θj−1
1 ;

• a21 = sin Θi
1 · cos θi+1 + cos Θi

1 · sin θi+1 = sin (Θi
1 + θi+1) = sin (Θi+1

1);

• a22 = − sin Θi
1 ·sin θi+1+cos Θi

1 ·cos θi+1 = cos (Θi
1 + θi+1) = cos (Θi+1

1);

• a23 = `i+1 sin Θi
1 +

∑i
j=1 `j sin Θj−1

1 =
∑i+1

j=1 `j sin Θj−1
1 ;

• a31 = 0 + 0 + 0 = 0;

• a32 = 0 + 0 + 0 = 0; and

• a33 = 0 + 0 + 1 = 1;

where we have used the well-known formulas for cosinus and sinus of the sum
of angles. This gives the desired matrix and concludes the proof. �

The following theorem tells us how to translate from polar coordinates to
Cartesian coordinates.

20

Theorem 3. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline that is
given by its polar coordinate representation 〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N〉.
If we assume that (x0, y0) = (0, 0) and (x1, y1) = (1, 0), then{

xi =
∑i

j=1 `j cos (θ1 + · · ·+ θj−1)

yi =
∑i

j=1 `j sin (θ1 + · · ·+ θj−1)

for 2 ≤ i ≤ N .

We remark that we could also have written{
xi = 1 +

∑i
j=2 `j cos (θ1 + · · ·+ θj−1)

yi =
∑i

j=2 `j sin (θ1 + · · ·+ θj−1)

in the statement of this theorem, since `1 = 1, cos 0 = 1 and sin 0 = 0. For
esthetic reasons, we will stick to the earlier expressions.

Proof. In the local coordinate system (Xi−1, Yi−1), the coordinates op pi =
(xi, yi) are (`i, 0). By Property 3, the coordinates of pi in the standard coor-
dinate system (X0, Y0) are given by xi

yi
1

 = P1 · P2 · · ·Pi−1 ·

 `i
0
1

 .

By Property 4, this means

 xi
yi
1

 =

 cos Θi−1
1 − sin Θi−1

1

∑i−1
j=1 `j cos Θj−1

1

sin Θi−1
1 cos Θi−1

1

∑i−1
j=1 `j sin Θj−1

1

0 0 1

 ·
 `i

0
1


or

{
xi = `i cos Θi−1

1 +
∑i−1

j=1 `j cos Θj−1
1 =

∑i
j=1 `j cos Θj−1

1

yi = `i sin Θi−1
1 +

∑i−1
j=1 `j sin Θj−1

1 =
∑i

j=1 `j sin Θj−1
1

which concludes the proof. �

21

5.3. The double-cross conditions for polar coordinates

For a polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 with pi = (xi, yi), 0 ≤
i ≤ N , Theorem 1, gives us sign conditions on polynomials for C1, C2, C3 and
C4 in DC(−−−→pipi+1,

−−−→pjpj+1) = (C1 C2 C3 C4). Now, if the polyline P = 〈(x0, y0),
(x1, y1), , . . . , (xN , yN)〉 is given by its polar coordinate representation 〈`1, θ1,
`2, θ2, ..., `N−1, θN−1, `N〉, Theorem 1 allows us to translate these conditions
into polar coordinates.

Where needed, we use the abbreviations{
ci = cos Θi

1 = cos (θ1 + · · ·+ θi);
si = sin Θi

1 = sin (θ1 + · · ·+ θi).

to control the length of the expressions.
The following theorem gives the double-cross conditions in polar form.

Theorem 4. If now the polyline P = 〈p0, p1, . . . , pN〉 is given by its polar
coordinate representation 〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N〉, and if we assume
that p0 = (0, 0) and p1 = (1, 0), then DC(−−−→pipi+1,

−−−→pjpj+1) = (C1 C2 C3 C4),
for 0 ≤ i < j < N , are expressed in polar coordinates as follows:

C1 = − sign(
∑j

k=i+1 `k cos (θi+1 + · · ·+ θk−1));

C2 = sign(
∑j

k=i+1 `k cos (θk + · · ·+ θj));

C3 = − sign(
∑j

k=i+1 `k sin (θi+1 + · · ·+ θk−1)); and

C4 = sign(
∑j

k=i+1 `k sin (θk + · · ·+ θj)),

where we agree that the empty sum of angles equals 0.

Proof. Let P be as in the statement of the theorem. From Theorem 3, we
get {

xi =
∑i

k=1 `k cos (θ1 + · · ·+ θk−1)

yi =
∑i

k=1 `k sin (θ1 + · · ·+ θk−1),

22

for 0 ≤ i ≤ N . So, we obtain, for 0 ≤ i < j < N ,

xj − xi =
∑j

k=1 `k cos (θ1 + · · ·+ θk−1)−
∑i

k=1 `k cos (θ1 + · · ·+ θk−1)

=
∑j

k=i+1 `k cos (θ1 + · · ·+ θk−1)

yj − yi =
∑j

k=1 `k sin (θ1 + · · ·+ θk−1)−
∑i

k=1 `k sin (θ1 + · · ·+ θk−1)

=
∑j

k=i+1 `k sin (θ1 + · · ·+ θk−1)

xi+1 − xi =
∑i+1

k=1 `k cos (θ1 + · · ·+ θk−1)−
∑i

k=1 `k cos (θ1 + · · ·+ θk−1)
= `i+1 cos (θ1 + · · ·+ θi)

yi+1 − yi =
∑i+1

k=1 `k sin (θ1 + · · ·+ θk−1)−
∑i

k=1 `k sin (θ1 + · · ·+ θk−1)
= `i+1 sin (θ1 + · · ·+ θi)

xj+1 − xj =
∑j+1

k=1 `k cos (θ1 + · · ·+ θk−1)−
∑j

k=1 `k cos (θ1 + · · ·+ θk−1)
= `j+1 cos (θ1 + · · ·+ θj)

yj+1 − yj =
∑j+1

k=1 `k sin (θ1 + · · ·+ θk−1)−
∑j

k=1 `k sin (θ1 + · · ·+ θk−1)
= `j+1 sin (θ1 + · · ·+ θj).

If we plug these identities in the equations of Theorem 1, we get

C1 = − sign(
∑j

k=i+1 `k(cick−1 + sisk−1)

= − sign(
∑j

k=i+1 `k cos (θi+1 + · · ·+ θk−1));

C2 = sign(
∑j

k=i+1 `k(cjck−1 + sjsk−1)

= sign(
∑j

k=i+1 `k cos (θk + · · ·+ θj));

C3 = − sign(
∑j

k=i+1 `k(sick−1 − cisk−1)

= − sign(
∑j

k=i+1 `k sin (θi+1 + · · ·+ θk−1)); and

C4 = sign(
∑j

k=i+1 `k(sjck−1 − cjsk−1)

= sign(
∑j

k=i+1 `k sin (θk + · · ·+ θj)).
In the last equalities we used the well-known formulas sin (α± β) =

sinα cos β ± cosα sin β and cos (α± β) = cosα cos β ∓ sinα sin β. This con-
cludes the proof. �

We remark that all the double-cross conditions in the above theorem
are linear expressions in the lengths `1, ..., `N−1. We also remark that an
alternative way to write these conditions is

C1 = − sign(`i+1 +
∑j

k=i+2 `k cos (θi+1 + · · ·+ θk−1));

C2 = sign(
∑j

k=i+1 `k cos (θk + · · ·+ θj));

C3 = − sign(
∑j

k=i+2 `k sin (θi+1 + · · ·+ θk−1)); and

C4 = sign(
∑j

k=i+1 `k sin (θk + · · ·+ θj)).

23

We end this section with a remark about the double cross entries for
consecutive line segments.

Because of the special location of (x0, y0) = (0, 0) and (x1, y1) = (1, 0), we
look at a special case of this theorem, namely i = 0 and j = 1. Here, we
have DC(−−→p0p1,−−→p1p2) = (C1 C2 C3 C4), with

C1 = − sign(1) = −;
C2 = sign(`1 + `2c1 − 1) = sign(`2c1);
C3 = − sign(0) = 0; and
C4 = sign(`2s1);

Because, by the assumption in Definition 1, two consecutive vertices in
a polyline are never identical, we have `2 > 0, we can simplfy conditions C2

and C4 and we get

C1 = −
C2 = sign(cos θ1)
C3 = 0 and
C4 = sign(sin θ1).

More generally, we look at the following special case of consecutive line
segments of a polyline.

Corollary 1. If now the polyline P = 〈p0, p1, . . . , pN〉 is given by its polar
coordinate representation 〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N〉, and if we assume
that p0 = (0, 0) and p1 = (1, 0), then DC(−−−→pipi+1,

−−−−−→pi+1pi+2) = (C1 C2 C3 C4),
for 0 ≤ i < N − 1, are expressed in polar coordinates as follows:

C1 = −;
C2 = sign(cos θi+1);
C3 = 0;
C4 = sign(sin θi+1).

�

6. A polynomial-time realisability test for the case where the suc-
cessive angles of a polyline are given

In this section, we use the double-cross conditions in polar form, from
Theorem 4, to show the existence of a polynomial-time realisability test in the

24

case where, apart from an N ×N input matrix M , also the successive angles
θ1, θ2, ..., θN−1 of a polyline are given as input. In this setting, the problem
is to decide whether M is the double-cross matrix of some polyline of size N
in R2 with polar representation 〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N〉. Essentially,
this decision problem ask whether there exist lengths `1, `2, ..., `N−1, `N > 0
that satisfy the conditions expressed by the matrix M . For the problem of
realisability, here again, we may assume, without loss of generality, that a
polyline that realises a matrix M , if it exists, starts with the unit interval
on the x-axis. This permits us to use the results on the polar representation
from Section 5.

However, since the given angles θ1, θ2, ..., θN−1 are part of the input, we
need to impose some restrictions concerning their finite representability. We
also need to impose some further technical conditions on these angles and
on their finite sums, that appear in Theorem 4. The role of these technical
restrictions will become clear in the proof of Theorem 5. To capture these
restrictions, we define the notion of a “degree-bounded set of angles.” In the
following, Q denotes the set of the rational numbers. A set Θ of angles is
degree-bounded if

1. Θ is closed under addition;

2. for any θ ∈ Θ, sin θ (and thus, cos θ) is an algebraic number;7

3. there exists a natural number d such that for any finite subset {θ1, ...,
θk} of Θ, the field extension Q(sin θ1, ..., sin θk, cos θ1, ..., cos θk) has a
degree less or equal to d over Q; and

4. there exists a natural number E such that any θ ∈ Θ has an encoding
of size less or equal to E.8

7A real number a is called algebraic if there exists a polynomial F with rational coef-
ficients such that F (a) = 0. In this case, a is also the root of a unique, monic polynomial
over the rationals, called the minimal polynomial of a and the degree of a is defined to be
the degree of its minimal polynomial (Lang (1986)).

8An real algebraic number a can be encoded by a triple (F, q1, q2), where F is the
minimal polynomial of a and q1 and q2 are rational numbers such that a is the unique root
of F in the interval [q1, q2]. Since q1 and q2 can be determined within a time complexity
that is polynomial in the bit size of the coefficients of F , the total bit size of the coefficients
of F can then be taken as a measure for the encoding size of a. For further details, we
refer to (Adler and Beling (1994)).

25

For a degree-bounded set of angles Θ, we refer to the above d and E as the
extension degree bound of Θ and the encoding bound of Θ, respectively.

Now, we give examples of degree-bounded sets of angles, that are relevant
to this paper. We show that, for any angle α, 0◦ < α < 360◦, such that
360◦

α
= kα is a natural number (see Definition 2), the set

Θkα = {j · α | 0 ≤ j < kα}

is degree-bounded. Indeed, such sets are closed under addition of angles
and sin (j · α) and cos (j · α) are algebraic numbers for 0 ≤ j < kα. The
latter follows from the well-known equality (cosα+ i sinα)kα = 1 of complex
numbers. Expanding the real part of the left side of this equality gives a
polynomial equation in cosα and sin2 α = 1− cos2 α, which shows that cosα
is an algebraic number. By looking at the imaginary part, we see that sinα
is also algebraic. Since the set of algebraic numbers form a field, it follows
from the well-known formulas for sines and cosines of sums of angles that
also sin (j · α) and cos (j · α) are algebraic numbers for 0 ≤ j < kα. In fact,
this argumentation shows that the sines and cosines of any rational multiple
of 180◦, the so-called trigomometric numbers, are algebraic numbers.

From the above equation, it also follows that the degrees of these numbers
are bounded by kα. Thus, for any finite subset {θ1, ..., θk} of Θkα , the degree
of the field extension Q(sin θ1, ..., sin θk, cos θ1, ..., cos θk) over Q is bounded
by k2kα , which, in its turn, is bounded by k2kαα (which can serve as d). The
algebraic numbers sin (j · α) and cos (j · α) are related to the cyclotomic in-
tegers and for a uniform bound on their encoding size, we refer to Section 4
of (Adler and Beling (1994)).

Thus, the sets of angles, that are of interest to this paper, are degree-
bounded and in Section 7, we show, in more detail, that Θ90◦ = {0◦, 90◦,
180◦, 270◦} and Θ45◦ = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦} are degree-
bounded.

Now, we state and prove the main theorem of this section.

Theorem 5. Let Θ be degree-bounded set of angles. There is a polynomial-
time decision procedure that determines, on input an N × N matrix Mof
4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4 and a sequence of angles θ1, θ2, ..., θN−1
from Θ, whether M is the double-cross matrix of a polyline of size N with
successive angles θ1, θ2, ..., θN−1 in its polar representation. If the answer is
positive, also witnesses to this fact can be produced in polynomial time.

26

Proof. Let Θ be a degree-bounded set of angles with extension degree bound
d and encoding bound E.

We describe a procedure for the decision problem in the statement of this
theorem. Let the input be an N × N matrix M of 4-tuples (C1 C2 C3 C4)
∈ {−, 0,+}4 and a sequence of angles θ1, θ2, ..., θN−1 from Θ. Our decision
procedure determines whether there exist lengths `1, `2, ..., `N > 0, such that
M is the double-cross matrix of the polyline (that starts with the unit interval
on the x-axis, as its first line segment) with polar representation 〈`1, θ1, `2,
θ2, ..., `N−1, θN−1, `N〉.

As an apriori step, we check whether M does not have (0 0 0 0) entries on
its diagonal or does not have the “symmetry” properties, discussed in Sec-
tion 2.2. We also check, whether the given sequence of angles θ1, θ2, ..., θN−1
satisfies the entries M [i, i + 1], 0 ≤ i < N , of M . Hereto, we can use
Corollary 1. So, C1 should be − and C3 should be 0. And the entries
C2 = sign(cos θi) and C4 = sign(sin θi) in all M [i, i + 1] should be con-
sistent with the given angles θi. If any of these tests fail, we can already
answer no. In the other case, we proceed to determine if there exist lengths
`1, `2, ..., `N > 0 that satisfy the other conditions expressed by the matrix M .

We have already remarked that, since the given angles θ1, θ2, ..., θN−1 be-
long to Θ, all the cosine values cos (θi+1 + · · ·+ θk−1) and cos (θk + · · ·+ θj)
and all the sine values sin (θi+1 + · · ·+ θk−1) and sin (θk + · · ·+ θj), that ap-
pear in the expressions given in Theorem 4, are algebraic numbers. This
implies that the double-cross conditions, given by Theorem 4, together with
the constraints that the `i are strictly positive lengths, can be seen as linear
constraint conditions in `1, `2, ..., `N of the form


− ∑j

k=i+1 `k cos (θi+1 + · · ·+ θk−1) αij 0 (0 ≤ i < j < N)∑j
k=i+1 `k cos (θk + · · ·+ θj) βij 0 (0 ≤ i < j < N)

− ∑j
k=i+1 `k sin (θi+1 + · · ·+ θk−1) γij 0 (0 ≤ i < j < N)∑j
k=i+1 `k sin (θk + · · ·+ θj) δij 0 (0 ≤ i < j < N)

`i > 0 (0 < i ≤ N)

(∗)

with αij, βij, γij, δij ∈ {=, <,>}, determined by the entries of the matrix
M . Since all the cosines and sines in these expressions are algebraic constants,
all these conditions are linear in `1, `2, ..., `N . Therefore, (∗) can be seen as

27

a linear programming problem, or at least almost. Normally, in a linear
programming problem, linear polynomial conditions of the form

a1`1 + a2`2 + · · ·+ aN`N ≥ 0,

with rational coefficients ai, are expected to appear, together with the addi-
tional conditions

`i ≥ 0 (0 ≤ i ≤ N).

So, we are left with three problems to see (∗) as a traditional linear
programming problem:

(1) we have `i > 0 for 0 < i ≤ N and not the traditional `i ≥ 0;

(2) we have αij, βij, γij, δij ∈ {=, <,>} and not the traditional ≥; and

(3) we possibly have irrational coefficients ai.

The linear polynomial condition

a1`1 + a2`2 + · · ·+ aN`N = 0

is obviously equivalent to

a1`1 + a2`2 + · · ·+ aN`N ≥ 0 and a1`1 + a2`2 + · · ·+ aN`N ≤ 0.

This solves the case of equality. Obviously,

a1`1 + a2`2 + · · ·+ aN`N < 0

is equivalent to
−a1`1 − a2`2 − · · · − aN`N > 0.

So, we are left with a1`1 + a2`2 + · · · + aN`N > 0. To solve the problem
of the strict inequalities in (1) and (2), there is a known trick from the
linear programming literature that we can use (see page 22 of Matousek and
Gärtner (2007)). We introduce a new variable δ, which stands for the “gap”
between the left and the right side of each inequality and we try to make this
gap as large as possible. We consider the linear program

maximize δ
subject to a1`1 + a2`2 + · · ·+ aN`N − δ ≥ 0

and δ ≥ 0

28

and observe that a1`1 + a2`2 + · · · + aN`N > 0 is equivalent to the opti-
mal solution δ of this linear program being strictly positive. Furthermore,
a single δ can be used to deal with several strict inequalities all at once.
Indeed, the linear program has now an extra variable δ and the optimal δ is
strictly positive exactly when the original system with strict inequalities has
a solution.

We define the sets S=, S< and S> to consists of all the linear polynomials
(in `1, `2, ..., `N), that appear in the first four lines of (∗) and for which
αij, βij, γij, δij is, respectively, =, < and >.

Now, we can see that the existence of `1, `2, ..., `N that satisfy (∗) is equiv-
alent to the optimal solution δ of the following linear programming problem
being strictly positive:

maximize δ
subject to P (`1, `2, ..., `N) ≥ 0, for P ∈ S=

−P (`1, `2, ..., `N) ≥ 0, for P ∈ S=

P (`1, `2, ..., `N)− δ ≥ 0, for P ∈ S>
−P (`1, `2, ..., `N)− δ ≥ 0, for P ∈ S<

and `i − δ ≥ 0, for 0 < i ≤ N.

What remains is Problem (3), namely that we may have the irrational
coefficients in our linear programming problem. However, a result by Adler
and Beling (Adler and Beling (1994)) shows that linear programming with
algebraic coefficients also has a time complexity that is a polynomial of

(i) the “rank” of the linear system of inequalities, which, applied to our
example, is O(N2);

(ii) the degree of the field extension of the rationals in which we work,
which, in our case, is bounded by the constant d (the field extension
degree bound of Θ); and

(iii) the encoding size of Θ, which, in our case, is bounded by the constant
E (the encoding bound of Θ).

So, the above linear programming problem has a solution that can be
determined in polynomial time in N , d and E. Since, for given Θ, d and E are
constants, we conclude that our linear programming problem can be solved

29

in polynomial time in N . Solving the above linear program, also produce
example lengths `1, `2, ..., `N (if they exist). This completes the proof. �

7. A realisability test for 45◦-polylines and some remarks on con-
vexity

In this section, we describe how it can be decided whether a given N ×N
matrix is realisable in the plane by a 45◦-polyline. That is, we look at
Problem 1 for P = P45◦ , the class of 45◦-polylines (again, with vertices
with algebraic coordinates). At the end of this section, we discuss some
implications of our result on the convexity of the solution set, determined by
a matrix that is realisable in the plane by a 45◦-polyline.

7.1. A realisability test for 45◦-polylines

For the problem of realisability, here again, we may assume, without loss
of any generality, that the polyline that realises a matrix M , if it exists,
starts with the unit interval on the x-axis, that is, p0 = (x0, y0) = (0, 0) and
p1 = (x1, y1) = (1, 0). This also permits us, to use the results on the polar
representation from Section 5 and the results of the previous section, that
depend on it.

The proof of the following theorem relies on the fact that, when we restrict
the angles that appear in a polyline to be multiples of 45◦, there is a one to one
correspondence between the qualitative and the quantitative representation
(modulo the lengths of the segments). More specifically, the entries above the
diagonal of an input matrix M uniquely determine the angles of a polyline
that can realise M . This correspondence, in combination with the result of
the previous section, implies the main result of the paper: the realisability
problem for 45◦-polylines is solvable in polynomial time.

Theorem 6. It can be decided in polynomial time whether an N×N matrix
Mof 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4 is the double-cross matrix of some
45◦-polyline of size N in R2. If this is the case, also witnesses to this can be
produced in polynomial time.

Proof. We now describe a decision procedure that solves Problem 1 for
P = P45◦ . Let M be a N × N input matrix of 4-tuples (C1 C2 C3 C4)
∈ {−, 0,+}4. In a first step, we determine the polar angles of the polyline,

30

we attempt to construct. Once these angles have been determined, in a
second step, we decide, using the method of Theorem 5, whether appropriate
lengths of the line segments can be found. As before, as an apriori step, we
check whether M doesn’t have (0 0 0 0) entries on its diagonal or doesn’t
have the “symmetry” properties, discussed in Section 2.2. If M fails this
symmetry-test, we can already answer no, else we proceed.

Step 1 (Determining the angles θ1, θ2, ..., θN−1). First, we inspect the
entries M [i, i + 1], 0 ≤ i < N of M . Hereto, we use Corollary 1. So, C1

should be − and C3 should be 0. If this is not the case, we can already
answer no. From C2 and C4 in all entries M [i, i + 1], we can determine the
angles θi as is shown in the following table.

C2 C4 θi

0 0 answer no
0 + 270◦

0 − 90◦

+ 0 180◦

+ + 225◦

+ − 135◦

− 0 0◦

− + 315◦

− − 45◦

Obviously, if both C2 = sign(cos θi) and C4 = sign(sin θi) are 0, we have an
impossible situation (see Corollary 1). So, at this point, or we have answered
no, or we know all the angles θ1, θ2, ..., θN−1 of a possible realisation of M .
In the latter case, we proceed to Step 2.

Step 2 (Determining `1, `2, ..., `N). Once, we have determined the an-
gles θ1, θ2, ..., θN−1, we can compute all the values cos (θi+1 + · · ·+ θk−1),
cos (θk + · · ·+ θj), sin (θi+1 + · · ·+ θk−1) and sin (θk + · · ·+ θj) that appear
in the expressions given in Theorem 4. Since all these sums of angles are
multiples of 45◦, these cosines and sines will take values as shown in the
following table.

31

α cosα sinα

0◦ 1 0

45◦
√
2
2

√
2
2

90◦ 0 1

135◦ −
√
2
2

√
2
2

180◦ −1 0

225◦ −
√
2
2
−
√
2
2

270◦ 0 −1

315◦
√
2
2

−
√
2
2

This means that the double-cross conditions given by Theorem 4, to-
gether with the constraints that the `i are strictly positive lengths, can be
seen as linear constraint conditions in `1, `2, ..., `N . To this system of linear
polynomial (in)equalities, the method of Theorem 5 can be applied. Indeed,
as we have observed in Section 6, the set of angles Θ45◦ = {0◦, 45◦, 90◦, 135◦,
180◦, 225◦, 270◦, 315◦} is degree-bounded.

The degree of the extension of the rationals in which the linear pro-
gramming problem has its coefficients is, in this case, 2. Indeed, we have
(Q(
√

2) : Q) = 2, since the minimal polynomial of
√

2 is x2 − 2. So, we
have extension degree bound d = 2. As discussed in the previous section,
the encoding bound E depends on the number of bits needed to encode the
coefficients

√
2
2

and −
√
2
2

. An encoding of
√
2
2

is given by (x2 − 1
2
, 0, 1), since

√
2
2

is the only root of the polynomial x2 − 1
2

in the interval [0, 1]. Six bits
are needed to encode the coefficients of this polynomial and the boundary
points of this interval. We have a similar bound for −

√
2
2

. Depending on
the particular way we encode polynomials (for instance, in sparse or dense
encoding), this shows that also the encoding bound E can be taken to be a
small constant. For further details, we refer to Section 4 of (Adler and Beling
(1994)).

Thus, Theorem 5, applied to this setting, tells us that our linear program-
ming problem can be solved in polynomial time in N . The linear programm,
as discussed in the proof of Theorem 5, can also produce example lengths
`1, `2, ..., `N (if they exist). This completes the proof. �

32

7.2. Convexity properties of 45◦-polylines

From Step 1 of the proof of Theorem 6, it follows that a matrix M that is
realisable by a 45◦-polyline determines the angles θi uniquely for 0 < i < N .
This proves the following corollary.

Corollary 2. If an N ×N matrix Mof 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4
is realisable by two 45◦-polylines P1 and P2, that start with the line segment
connecting (0, 0) and (1, 0) and have polar-coordinate representations 〈`1,
θ1, `2, θ2, ..., `N−1, θN−1, `N〉 and 〈`′1, θ′1, `′2, θ′2, ..., `′N−1, θ′N−1, `′N〉, respectively,
then θi = θ′i for 0 < i < N . �

Also from the proof of Theorem 6, the following property follows.

Corollary 3. If an N ×N matrix Mof 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4
is realisable by two 45◦-polylines P1 and P2, that start with the line segment
connecting (0, 0) and (1, 0) and have polar-coordinate representations 〈`1,
θ1, `2, θ2, ..., `N−1, θN−1, `N〉 and 〈`′1, θ′1, `′2, θ′2, ..., `′N−1, θ′N−1, `′N〉, respectively,
then for any real numbers α1, α2 > 0, the 45◦-polyline given by the polar
coordinate representation 〈α1 · `1 +α2 · `′1, θ1, α1 · `2 +α2 · `′2, θ2, ..., α1 · `N−1 +
α2 · `′N−1, θN−1, α1 · `N + α2 · `′N〉 also realises M .

Proof. Corollary 2 takes care of the angles. From Step 2 of the proof of the
previous theorem it follows that if P1 and P2 are realisations of a matrix M
their lengths satisfy the same set of linear conditions of the form a1`1+a2`2+
· · ·+ aN`N α 0, with α ∈ {<,=, >}. Suppose that we have

{
a1`1 + a2`2 + · · ·+ aN`N > 0 and
a1`
′
1 + a2`

′
2 + · · ·+ aN`

′
N > 0

for P1 and P2, for any of these linear conditions. Since both α1 > 0 and
α2 > 0, we also have

{
α1 · (a1`1 + a2`2 + · · ·+ aN`N) > 0 and
α2 · (a1`′1 + a2`

′
2 + · · ·+ aN`

′
N) > 0.

33

So, also the sum of the two left hand sides,

α1 · (a1`1 + a2`2 + · · ·+ aN`N) + α2 · (a1`′1 + a2`
′
2 + · · ·+ aN`

′
N)

will be strictly larger than 0. The same argument hold when α is = or <.
This completes the proof. �

We end this chapter with the following convexity property for 45◦-polylines.

Corollary 4. The set of 45◦-polylines, that start with the line segment con-
necting (0, 0) and (1, 0), and that realise an N×N matrix M of 4-tuples (C1

C2 C3 C4) ∈ {−, 0,+}4, is a convex set.

Proof. Let M be a N ×N matrix of 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4. If
M cannot be realised by a 45◦-polyline (that start with the line segment con-
necting (0, 0) and (1, 0)), or by exactly one such polyline, then the statement
is trivially true.

On the other hand, let P1 and P2 be two 45◦-polylines that realise M .
We have to show that if P1 and P2 have polar-coordinate representations 〈`1,
θ1, `2, θ2, ..., `N−1, θN−1, `N〉 and 〈`′1, θ′1, `′2, θ′2, ..., `′N−1, θ′N−1, `′N〉, respectively,
then for any λ, with 0 ≤ λ ≤ 1, the 45◦-polyline given by the polar coordinate
representation

〈λ · `1 + (1− λ) · `′1, λ · θ1 + (1− λ) · θ′1,
λ · `2 + (1− λ) · `′2, λ · θ2 + (1− λ) · θ′2, ..., λ · `N−1 + (1− λ) · `′N−1,

λ · θN−1 + (1− λ) · θ′N−1, λ · `N + (1− λ) · `′N〉

also realises M .
From Corollary 2, it is clear that λ ·θi+(1−λ) ·θ′i = θi = θ′i for 0 < i < N .

For λ with 0 ≤ λ ≤ 1, we observe that if we take λ = 0, we get P2 and if
we take λ = 1, we get P1. This leaves us with the case 0 < λ < 1. But
here, both λ and 1−λ are strictly larger than 0 and Corollary 3 applies with
α1 = λ and α2 = 1− λ. This completes the proof. �

8. Conclusion and discussion

We have studied the decision problem that asks whether a N ×N matrix
of 4-tuples from {−, 0,+} is the double-cross matrix of a polyline with N line

34

segments. This problem is, in general, NP-hard. In this paper, we have given
a conceptually easy O(N2)-time algorithms for the case where the attention
is restricted to polylines in which consecutive line segments make angles that
are multiples of 90◦. Next, we have given a more complicated algorithm
that solves the question for 45◦-polylines. For this more complicated case
of 45◦-polylines, we have introduce the polar-coordinate representation of
double-cross matrices.

We emphasise that in both examples, the key to avoid the exponential
blow-up, relies on the fact that the entries of the input matrix above its
diagonal completely determine the angles between two consecutive segments
(in linear time). This one-to-one correspondence between the qualitative
double-cross information and the angle information implies that our decision
problem simplifies to deciding whether or not appropriate segment lengths
of a polyline exist.

If we would be interested, for instance, in the realisability question for
30◦-polylines, we would, no longer, be able to rely on such a one-to-one
correspondence between a part of the matrix and the angles. In fact, in this
case, we would have to consider two possibilities per quadrant of the double
cross (essentially corresponding to 30◦ and 60◦). This options between two
possible values for each of the angles would lead to an exponential blow-
up in N . It is not clear how such a blow-up can be avoided, unless a richer
formalism than the double-cross method would be used. If instead of working
with crosses, we would work with star-shaped divisions that would divide the
space around each vertex into 8 regions instead of 4, we could also apply the
methods of this paper to obtain a polynomial-time decision procedure for
30◦-polylines.

Acknowledgements

The authors would like to thank the anonymous reviewer, whose comments
helped to improve the presentation of the paper considerably.

35

Adler, I., Beling, P. A., 1994. Polynomial algorithms for linear programming
over the algebraic numbers. Algorithmic 12 (6), 436–457.

Basu, S., Pollack, R., Roy, M.-F., 2006. Algorithms in Real Algebraic Geom-
etry (Algorithms and Computation in Mathematics). Springer-Verlag New
York, Inc.

Bochnak, J., Coste, M., Roy, M.-F., 1998. Real Algebraic Geometry. Vol. 36
of Ergebenisse der Mathematik und ihrer Grenzgebiete. Folge 3. Springer-
Verlag.

Bookstein, F. L., 1986. Size and shape spaces for landmark data in two
dimensions. Statistical Science 1, 181–242.

Canny, J., 1988. Some algebraic and geometric computations in PSPACE.
In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing (STOC 1988). ACM, pp. 460–467.

Collins, G., 1975. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In: Brakhage, H. (Ed.), Automata Theory and
Formal Languages. Vol. 33 of Lecture Notes in Computer Science. Springer,
pp. 134–183.

Cox, D. A., Little, J., O’Shea, D., 1997. Ideals, varieties, and algorithms
- an introduction to computational algebraic geometry and commutative
algebra (2. ed.). Undergraduate texts in mathematics. Springer.

Dolzmann, A., Sturm, T., 1997. Redlog: Computer algebra meets computer
logic. ACM SIGSAM Bulletin 32 (2), 2–9, (see also redlog.dolzmann.de/).

Dryden, I., Mardia, K. V., 1998. Statistical Shape Analysis. Wiley.

Forbus, K. D., 1990. Qualitative physics: past present and future. In: Read-
ings in qualitative reasoning about physical systems. Morgan Kaufmann,
pp. 11–39.

Freksa, C., 1992. Using orientation information for qualitative spatial rea-
soning. In: Spatio-Temporal Reasoning (GIS’92). pp. 162–178.

Gero, J. S., 1999. Representation and reasoning about shapes: cognitive and
computational studies in visual reasoning in design. In: et al., K. (Ed.),

36

Proceedings of the International Conference on Spatial Information Theory
(COSIT’99). Vol. Lecture Notes in Computer Science, 2825. Springer, pp.
315–330.

Giannotti, F., Pedreschi, D., 2008. Mobility, Data Mining and Privacy.
Springer.

Giusti, M., Heintz, J., 2001. Kronecker’s smart, little black boxes. In: De-
Vore, R., A., I., Suli, E. (Eds.), Foundations of Computational Mathemat-
ics. Cambridge University Press, Cambridge, pp. 69–104.

Güting, R. H., Schneider, M., 2005. Moving Objects Databases. Morgan
Kaufmann.

Heintz, J., Kuijpers, B., Paredes, A. R., 2013. Software engineering and
complexity in effective algebraic geometry. Journal of Complexity 29 (1),
92–138.

Hong, H., 2000. QEPCAD. www.usna.edu/CS/qepcadweb/B/QEPCAD.html.

Kent, J. T., Mardia, K. V., 1986. Shape, procrustes tangent projections and
bilateral symmetry. Biometrika 88, 469–485.

Khovanskii, A., 1991. Fewnomials. Translations of mathematical mono-
graphs. American Mathematical Society.

Kuijpers, B., Moelans, B., Van de Weghe, N., 2006. Qualitative polyline sim-
ilarity testing with applications to query-by-sketch, indexing and classifi-
cation. In: Proceedings of the 14th annual ACM International Symposium
on Advances in Geographic Information Systems. ACM, pp. 11–18.

Lang, S., 1986. Algebraic Number Theory (2nd ed.). No. 110 in Graduate
Texts in Mathematics. Springer.

Matousek, J., Gärtner, B., 2007. Understanding and Using Linear Program-
ming. No. v. 36 in Universitext. Springer.

Mokhtarian, F., Mackworth, A. K., 1992. A theory of multiscale, curvature-
based shape representation for planar curves. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (TPAMI) 14, 789–805.

37

Renz, J., Nebel, B., 2007. Qualitative spatial reasoning using constraint cal-
culi. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (Eds.), Handbook
of Spatial Logics. Springer.

Scivos, A., Nebel, B., 2001. Double-crossing: Decidability and computational
complexity of a qualitative calculus for navigation. In: Spatial Information
Theory: Foundations of Geographic Information Science, International
Conference, COSIT 2001. pp. 431–446.

Tarski, A., 1951. A Decision Method for Elementary Algebra and Geometry.
University of California Press.

Wolfram Research, 2015. Mathematica 9. www.wolfram.com.

Zimmermann, K., Freksa, C., 1996. Qualitative spatial reasoning using ori-
entation, distance, and path knowledge. Applied Intelligence 6 (1), 49–58.

38

