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Abstract: In the geometric data model for spatio-temporal data, introduced by Chomicki and Revesz ,
spatio-temporal data are modelled as a finite collection of triangles that are transformed by
time-dependent affinities of the plane. To facilitate querying and animation of spatio-temporal
data, we present a normal form for data in the geometric data model. We propose an algorithm
for constructing this normal form via a spatio-temporal triangulation of geometric data objects.
This triangulation algorithm generates new geometric data objects that partition the given objects
both in space and in time. A particular property of the proposed partition is that it is invariant under
time-dependent affine transformations, and hence independent of the particular choice of coordinate
system used to describe the spatio-temporal data in. We can show that our algorithm works correctly
and has a polynomial time complexity (of reasonably low degree in the number of input triangles
and the maximal degree of the polynomial functions that describe the transformation functions).
We also discuss several possible applications of this spatio-temporal triangulation. The application of
our affine-invariant spatial triangulation method to image indexing and retrieval is discussed and
an experimental evaluation is given in the context of bird images.
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1. Introduction and Summary

1.1. Introduction

At this moment, spatial databases are a well-established area of research. Since most natural and
man-made phenomena have a temporal as well as a spatial extent a lot of attention has also been paid,
during the last decade, to modelling and querying spatio-temporal data [1–9]. Several data models for
representing spatio-temporal data have been proposed already. In this article, we adopt the geometric
data model that was introduced by Chomicki and Revesz [1] and of which closure properties under
boolean operations were later studied by them and the present authors [4,10]. In the geometric data
model, spatio-temporal objects are finitely represented as geometric objects, which in turn are collections
of atomic geometric objects. An atomic geometric object is given by its spatial reference object, which
determines its shape; a time interval, which specifies its lifespan; and a transformation function,
which determines the movement of the object during the time interval.

Although this model is very natural, it is not immediately clear what the spatio-temporal object
represented by some atomic geometric objects looks like. This difficulty has several possible reasons.
To start with, the time domain of the spatio-temporal object has to be computed from the time domains
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of all atomic geometric objects, which might overlap or may contain gaps (i.e., moments when the
spatio-temporal object does not exist). Furthermore, two different sets of atomic geometric objects may
represent the same spatio-temporal object and there may be elements in the set of atomic geometric
objects that do not contribute to the spatio-temporal object at all, as they may be overlapped totally by
other atomic objects. In short, the proposed geometric data model would benefit from a normal form
that supports visualization and describes the objects in a unique way.

1.2. Summary of Results

We propose as a normal form an affine-invariant spatio-temporal triangulation. This triangulation
can be used to preprocess geometric objects in order to facilitate querying and animation in such a way
that queries can be executed much more efficiently and require few additional computations. The main
reason for this is that in a spatio-temporal triangulation the data is partitioned in space as well as
in time. Hence, no objects overlap, thus reducing unnecessary computations. Actually, we deviate
a little from the strict mathematical concept of a triangulation and allow triangles in a spatial and
spatio-temporal triangulation to share boundaries with each other, as is not uncommon (see, e.g., [11]).

Our spatio-temporal triangulation is also invariant under time-dependent affinities. In the area of
spatial database research, much attention has been payed to affine invariance of both data description
and manipulation techniques and queries [12–14]. The main idea of working in an affine invariant way
is to obtain methods and techniques that are not affected by affine transformations of the ambient space
in which the data is situated. This means that a particular choice of origin or some particular, possibly
artificial, choice of unit of measure (e.g., inches, centimeters, ...) and direction of coordinate axis has no
effect on the final result of the method, technique or query. This means that an affine-invariant method
is robust with respect to a particular choice of measuring data.

Also in other areas, invariance under affinities is often relevant. In computer vision, the so-called
weak perspective assumption [15] is widely adopted. This assumption says that when an object is
repeatedly photographed from different viewpoints, and the object is relatively far away form the
camera, that all pictures of the object are affine images of each other, i.e., all images are equal up to
an affinity of the photographic plane. We generalize this assumption for spatio-temporal objects as
follows. If a spatio-temporal event is filmed by two moving observers, relatively far away from the
event, then both films will be the same up to a time-dependent affinity of the plane of the pellicle.
For each time moment, another affinity maps the snapshots of the different movies onto each other.

The weak perspective assumption has necessitated affine-invariant similarity measures between
pairs of pictures [16–18]. Also, in computer graphics, affine-invariant norms and triangulations
have been studied [19]. In the field of spatial and spatio-temporal constraint databases [20,21],
affine-invariant query languages [12–14] have been proposed. For spatial data, there exist several
triangulation algorithms, but, apart from the triangulation of Nielson [19], their output is not
affine-invariant. The method proposed by Nielson to triangulate a set of points in an affine-invariant
way computes an affine-invariant norm using the coordinate information of all points, and then
uses this norm in the triangulation algorithm. We develop a spatial triangulation algorithm that
is more intuitive, that is efficiently computable and that naturally extends to a spatio-temporal
triangulation algorithm.

Affine-invariant measures have also been applied to shape matching, shape retrieval, and
symmetry detection problems [22]; to point matching in aerial imaging [23]; to visual features detection
in computer vision [24]; and object recognition [25].

The main contribution of this paper is an affine-invariant time-dependent triangulation algorithm
that produces a unique and affine-invariant triangulation of a spatio-temporal object given as
a geometric data object. As mentioned before, a geometric input object for this triangulation algorithm,
consists of m atomic geometric objects, given by a triangle, a time interval and a time-dependent
transformation function that we assume to be given as a fraction of polynomial functions of degree at
most d. We show that our triangulation algorithm runs in polynomial time in the size of the input,
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measured by m and d. The worst-case time complexity is of order z(d, ε)dm5 log m, where z(d, ε) is the
complexity of finding all roots of an univariate polynomial of degree d, with accuracy ε. The maximal
number of atomic objects in the resulting triangulation is of order m5d6. For static spatial data the time
complexity of triangulating is of order m2 log m and the number of returned triangles is of order m2.
These results are summarized in Table 1.

Table 1. Summary of the complexity results.

Time Complexity Output Complexity

Spatial data O(m2 log m) O(m2)
Spatio-temporal data O(z(d, ε)dm5 log m) O(m5d)

We remark that such triangulations could also be computed via general purpose cell
decomposition algorithms, most notably cylindrical algebraic decomposition [26]. These algorithms
are not affine-invariant, however, and are therefore not directly suitable for the computational task
that we consider.

In this paper, we also show some applications of the proposed triangulation and show that,
when computed in a preprocessing stage, it facilitates the computation of certain types of queries and
operations. We end this introduction with a description of a number of application scenarios.

1.3. Application Scenarios

There is a range of possible applications for our proposed algorithms. Below we describe briefly
some selected applications from ecology and criminology.

Application Scenario 1: Consider an ornithologist who is exploring a jungle and takes some photos
of some new bird species. Suppose that the ornithologist would like to find in an image database
of already known birds those bird images that are similar to the image of the new bird species.
This content-based image retrieval problem is challenging because the images of the birds from even
the same species may vary slightly, especially in size and due to changing view angles, for example
slightly higher or lower. Hence, the image retrieval algorithm needs to be affine-invariant. In this
paper, we provide the basis for an image retrieval algorithm that retrieves for the ornithologist all the
images of birds that are similar to the image of the new bird species using a similarity measure that is
able to disregard simple scaling and view angle distortions [27].
Application Scenario 2: Consider again the ornithologist. Sometimes closely related bird species can
be best distinguished by their behavior, for example the way of they crack and eat some nut or by
their mating dance. A famous example of this are the Galapagos finches that Charles Darwin has
recognized to be several separate species with only slight changes in appearance (primarily focused on
the shape and the size of their beaks) but with a very marked change in their behavior (the type of
fruits and nuts they eat). Suppose that the ornithologist takes a short video clip of the new bird species
eating some fruit and is interested in looking up in a video database all the known birds which are
similar both in appearance and in their eating behavior. This is an even more challenging problem that
requires the temporal sequence of the images (the video) to match as well while still allowing for the
scaling and the view angle distortions that we mentioned in the previous application scenario.
Application Scenario 3: Videocameras are frequently used for crime control. Hence the appearance
and way of walking of a criminal may be captured on a video and compared to the appearance and
motion of already recorded persons in a video databases.
Application Scenario 4: In spite of all the security cameras, fingerprint analysis remains a major tool
in criminal investigations because while criminals often disguise their appearance, they inadvertently
leave their fingerprints on the objects that they touch. Usually each fingerprint can be broken into
distinctive regions of swirls and arches. An arch could be approximated by a single triangle and
a swirl can be decomposed into a hexagon and further into six equilateral triangles. This gives



ISPRS Int. J. Geo-Inf. 2017, 6, 100 4 of 37

a natural triangulation of fingerprint images. Such a triangulation forms a basis of our image similarity
algorithms as opposed to other algorithms. The advantage of a triangulation is that each triangle can
be further analyzed in more detail. For example, in each triangle of a fingerprint the number and
thickness of the lines that define the tiny groves of the skin is very unique. Hence two fingerprints that
roughly correspond in the location of swirls and arches can be distinguished by the patterns within
each triangle.

Further applications are discussed in Section 5. Application scenarios 1 and 2 are elaborated in
Section 6, where we present an application of our affine-invariant spatial triangulation method to
image indexing and retrieval in the context of bird images.

The outline of this paper is as follows. In Section 2, we explain the geometric data model and
define spatial and spatio-temporal triangulations. We introduce an affine invariant spatial triangulation
method in Section 3. Afterwards, in Section 4, we describe a novel affine-invariant triangulation of
spatio-temporal data. We describe the algorithm in detail and give and prove some properties.
Then, we give some possible applications of the triangulation in Section 5. The application of our
affine-invariant spatial triangulation method to image indexing and retrieval is described in Section 6.
We end with some concluding remarks in Section 7.

2. Preliminaries and Definitions

We denote the set of real numbers by R and the two-dimensional real space by R2. The space
containing moving 2-dimensional objects will be denoted (R2 × R). We will use x and y (with or
without subscripts) to denote spatial variables and t (with or without subscripts) to denote time
variables. The letter T (with or without subscripts) will be used to refer to triangles, which we assume
to be represented by triples of pairs of points in R2.

In this section, we first give the definition of a spatial, a temporal and a spatio-temporal object.
Next, we come back to the need of a normal form. Finally, we define affine triangulations of spatial
and of spatio-temporal data.

2.1. Spatio-Temporal Data in the Geometric Data Model

In this section, we describe the geometric data model as introduced by Chomicki and Revesz [1],
in which spatio-temporal data are modeled by geometric objects that in turn are finite collections of
atomic (geometric) objects. First, we define temporal, spatial and spatio-temporal data objects. In this
definition we work with semi-algebraic sets because these are infinite sets that allow a effective finite
description by means of polynomial equalities and inequalities. More formally, a semi-algebraic set in
Rd is a Boolean combination of sets of the form {(x1, x2, . . . , xd) ∈ Rd | p(x1, x2, . . . , xd) > 0}, where
p is a polynomial with integer coefficients in the real variables x1, x2, ..., xd. Properties of semi-algebraic
sets are well known [28].

Definition 1. A temporal object is a semi-algebraic subset of R, a spatial object is a semi-algebraic subset of R2

and a spatio-temporal object is a semi-algebraic subset of (R2 ×R).

With the time domain of a spatio-temporal object, we mean its projection on the time axis, i.e., on the
third coordinate of (R2 ×R). It is a well-known property of semi-algebraic sets, that this projection is
a semi-algebraic set and can therefore be considered a temporal object [28].

Example 1. The interval [0, 4] and the finite set {0, 1, 2, 3, 4} are examples of temporal objects. The unit circle
in the plane is a spatial object, since it can be represented by the polynomial inequalities ¬(1− x2 − y2 > 0)
∧¬(x2 + y2 − 1 > 0), usually abbreviated by the formula x2 + y2 = 1. The set {(x, y; t) ∈ R2 ×R | x ≥ 2t
∧x ≤ 2 + 2t ∧ y ≥ −t− 1∧ y ≤ −t ∧ t ≥ 0∧ t ≤ 4} is a spatio-temporal object and it represents rectangle
that is translated at constant speed during the time interval [0, 4]. At each moment t in this interval it has corner
points (2t,−t), (2 + 2t,−t), (2 + 2t,−t− 1) and (2t,−t− 1), as illustrated in Figure 1.
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Figure 1. An example of a spatio-temporal object.

In the geometric data model [1,4], spatio-temporal objects are finitely represented by geometric
objects, which in turn are finite collections of atomic geometric objects. An atomic geometric object
is given by its spatial reference object, which determines its shape; a time interval, which specifies
its lifespan; and a transformation function, which determines the movement of the object during the
time interval.

Several classes of geometric objects were introduced, depending on the types of spatial reference
objects and transformations [1,4]. In this article, we consider spatio-temporal objects that can be represented
as finite unions of triangles moved by time-dependent affine transformations. We refer also to Definition 2.
Other combinations have been studied [4] in which triangles, rectangles or polygons are transformed
by time-dependent translations, scalings or affinities, that, in turn, are given by linear, polynomial or
rational functions of time. The class of geometric objects that we consider is not only the most general
of the classes that were previously studied, it is also one of the few classes that have the desirable
property of being closed under the set operations union, intersection and difference [4]. In Section 4,
we will rely on this closure property.

Definition 2. An atomic geometric object O is a triple (T, I, f ), where

• T ⊂ R2 is the spatial reference object of O, which is a (filled) triangle with corner points that have rational
or algebraic coefficients. For technical reasons, we allow a triangle to degenerate into a line segment or
a point;

• I ⊂ R is the time domain (a point or an interval) of O; and
• f : R2 ×R→ R2 is the transformation function of O, which is a time-dependent affinity of the form

(x, y; t) 7→
(

a11(t) a12(t)
a21(t) a22(t)

)
·
(

x
y

)
+

(
b1(t)
b2(t)

)
,

where aij(t) and bi(t) are rational functions of t (i.e., of the form p1(t)/p2(t), with p1 and p2 polynomials in
the variable t with rational coefficients) and the determinant of the matrix of the aij’s differs from zero for all
t in I.

We remark that this definition guarantees that there is a finite representation of atomic geometric
objects by means of the polynomial constraint description of the time-interval, (the cornerpoints of)
the reference triangle and the coefficients of the transformation matrices. An atomic geometric object
O = (T, I, f ) finitely represents the spatio-temporal object

{(x, y; t) ∈ R2 ×R | t ∈ I ∧ (∃x′)(∃y′)((x′, y′) ∈ T ∧ (x, y) = f (x′, y′; t))},

which we denote as st(O). Atomic geometric objects can be combined to more complex
geometric objects.
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Definition 3. A geometric object is a set {O1, . . . ,On} of atomic geometric objects. It represents the
spatio-temporal object ∪n

i=1st(Oi).

By definition 3, the atomic geometric objects that compose a geometric object are allowed to
overlap in time as well in space. This is a natural definition, but we will see in Section 2.2, that this
flexibility in design leads to expensive computations when we want to query spatio-temporal objects
represented this way.

We define the time domain of a geometric object {O1, . . . ,On} to be the smallest time interval that
contains all the time intervals Ii of the atomic geometric objects Oi (this is the convex closure of these
time intervals, denoted by

⋃n
i=1 Ii).

Remark that a spatio-temporal object is empty outside the time domain of the geometric object
that defines it. Also, within the time domain, a spatio-temporal object is empty at any moment when
no atomic object exists.

Example 2. The spatio-temporal object of Example 1 can be represented by the geometric object {O1,O2},
where O1 is represented by (T1, [0, 4], f ) and O2 equals (T2, [0, 4], f ), with T1 the triangle with corner points
(0, 0), (2, 0), (2,−1), T2 the triangle with corner points (0, 0), (0,−1), (2,−1), and f the transformation
(x, y; t) 7→ (x + 2t + 2, y− t− 1).

Example 3. Figure 2 shows a traffic sign at six moments (seen by an observer walking around it).
This observation can be described by seven atomic geometric objects. During the interval [0, 3], there exist three
atomic objects, two triangles, and one line segment. At the time instant t = 3 there exists one atomic object
that represents the shape of a line. During the interval [3, 5], there exist three atomic objects, two triangles,
and a line segment.

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 2. A spatio-temporal object (a traffic sign) shown at six moments.

To end this subsection, we define the snapshot of a spatio-temporal object at a certain moment
in time. Snapshots are spatial objects that show what a spatio-temporal object looks like at
a certain moment.

Definition 4. Let O be an atomic object. Let τ0 be a time moment in the time domain of O. The snapshot of
O at time τ0, denoted Oτ0 , is the intersection of the spatio-temporal object st(O) with the plane in (R2 ×R)
defined by t = τ0, i.e., the plane R2 × {τ0}.

Let {O1, . . . ,On} be a geometric object. The snapshot of {O1, . . . ,On} at time τ0, denoted {O1, . . . ,On}τ0 ,
is the union of the snapshots at τ0 of all atomic objects that compose {O1, . . . ,On}, i.e., ∪n

i=1O
τ0
i .

As explained in Example 3, Figure 2 shows six snapshots of a geometric object representing
a traffic sign seen by a moving observer.

2.2. The Benefits of a Normal Form

As remarked after Definition 3, the atomic objects that compose a geometric object may overlap
both in space as in time. As a consequence, it is impossible to answer some very basic queries about
a geometric object without a lot of computations.
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To know the time domain of a spatio-temporal object, for example, one needs to check all atomic
objects that describe it, sort the begin and end points of their time domains, and derive the union of all
time domains.

Also, there might be atomic objects that do not contribute at all to the shape of the spatio-temporal
object as they are entirely overlapped by other atomic objects. These objects are taken along
unnecessarily in computations. Furthermore, two geometric objects that represent the same
spatio-temporal object can have a totally different representation by means of atomic objects. It is
computationally expensive to derive from their different representations that they are actually the same.

These drawbacks can be solved by introducing a normal form for geometric objects, that makes
their structure more transparent. This normal form should have the property that it is the same
for all geometric objects that represent the same spatio-temporal object, independent of their initial
representation by means of atomic objects. In this paper, we add the requirement that this normal
form should be invariant under affinities. If two geometric objects are the same up to time-dependent
affinities, we also want their normal form representation to be the same up to these affinities.

2.3. Affine Triangulation Methods

We end this section with the definition of affine spatial and spatio-temporal triangulation methods.
We remark that, in the following definition, we consider filled triangles and we allow a triangle to
degenerate into a closed line segment or a point.

We use the notion of the interior of a set as follows: the interior of a triangle is its topological
interior; the interior of a line segment is the segment without endpoints; and the interior of a point is
the point itself.

Definition 5 (Spatial and spatio-temporal triangulation). Let {O1, . . . ,On} be a geometric object and τ0

be a time moment in the time domain of {O1, . . . ,On}.

• A collection of triangles {T1, T2, . . . , Tm} in R2 is a triangulation of the snapshot {O1, . . . ,On}τ0 if the
interiors of different Ti are disjoint and the union ∪m

i=1Ti equals {O1, . . . ,On}τ0 .
• A geometric object {T1, . . . ,Tm} is a triangulation of a geometric object {O1, . . . ,On} if for each τ0 in

the time domain of {O1, . . . ,On}, {T1, . . . ,Tm}τ0 is a triangulation of the snapshot {O1, . . . ,On}τ0 and if
furthermore st({O1, . . . ,On}) = st({T1, . . . ,Tm}).

We remark that in the second part of Definition 5, at each moment τ0 in the time domain of
{O1, . . . ,On}, T τ0

i may be empty (i.e., τ0 may be outside the time domain of Ti).
In Figure 3, two stars with their respective triangulations are shown. Note that, although

triangulations of spatial sets intuitively are partitions of such sets into triangles, they are not partitions in
the mathematical sense. Indeed, the elements of the partition may have common boundaries. For spatial
data, it is customary to allow the elements of a partition to share boundaries (see for example [11]).

Figure 3. The triangulations of a snapshot (left) and of an affine transformation of the snapshot (right).

A spatial triangulation method is a procedure that on input (some representation of) a snapshot
of a spatio-temporal object produces (some representation of) a triangulation of this snapshot.
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A spatio-temporal triangulation method is a procedure that on input (some representation by means
of geometric objects of) a spatio-temporal object, produces (some representation by means of geometric
objects of) a triangulation of this spatio-temporal object.

Next, we define what it means for such methods to be affine-invariant.

Definition 6 (Affine-invariant triangulation methods). A spatial triangulation method TS is called affine
invariant if and only if for any two snapshots A and B, for which there is an affinity α : R2 → R2 such that
α(A) = B, also α(TS(A)) = TS(B).

A spatio-temporal triangulation method TST is called affine invariant if and only if for any geometric
objects {O1, . . . ,On} and {O′1, . . . ,O′m} for which for each moment τ0 in their time domains, there is an
affinity ατ0 : R2 → R2 such that if ατ0({O1, . . . ,On}τ0) = {O′1, . . . ,O′m}τ0 , also ατ0(TST({O1, . . . ,On})τ0)

= TST({O′1, . . . ,O′m})τ0 .

Example 4. Given a convex polygon as shown in (A) of Figure 4. A spatial triangulation method that takes
the leftmost of the corner points with the smallest y-coordinates of the polygon and connects it with all other
corner points, is not affine invariant. It is not difficult to see that, when an affine transformation is applied to the
polygon, another point may become the leftmost lowest corner point. Part (B) of Figure 4 shows the result of
applying this triangulation method to the convex polygon shown in (A).

A triangulation method that computes the barycenter of a convex polygon and connects it with all corner
points is affine-invariant. An illustration the output of this method applied to the polygon shown in (A) is
shown in (C) of Figure 4.

We now propose an affine-invariant spatial triangulation method for spatial figures that are
snapshots of geometric objects, or, that can be represented as finite sets of triangles.

(A) (B) (C)

Figure 4. Two different triangulations (in (B,C)) of a convex polygon (in (A)).

3. An Affine-Invariant Spatial Triangulation Method

We next propose an affine-invariant triangulation method. Later on, in Section 4, we will use the
technique proposed here to construct a spatio-temporal triangulation algorithm. We first explain the
intuition behind the triangulation method, and then give the details in Algorithm 1. We illustrate the
algorithm with an example, prove its correctness and end with determining the size of the output and
the time complexity of the algorithm.

Intuitively, the algorithm is as follows. The input is a snapshot S, given as a finite set of triangles.
In Figure 5A, for example, a snapshot of a house-like shape is given by four triangles. One of those
triangles is degenerated into a line segment (representing the chimney). To make sure that the
triangulation is independent of the exact representation of the snapshot by means of triangles, the
boundary of the snapshot, i.e., the boundary of the union of the triangles composing S, is computed.
For the snapshot of Figure 5, the boundary is shown in (B). The (triangle degenerated into A) line
segment contributes to the boundary. Therefor, we label it, the reason for this will become clear in
a further stage of the procedure. Also, the (triangles degenerated into) points of the input that are
not part of a line segment or real triangle, i.e., the ones contributing to the boundary, are added to the
output immediately.

The set of all lines through the edges of the boundary partitions the plane into a set of open convex
polygons, open line segments, open (half-) lines and points. The (half-) lines and some of the polygons
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can be unbounded, so we use the convex hull CH(S) of the corner points of all triangles in the input as
a bounding box. In (C) of Figure 5, the grey area is the area inside of the convex hull. The partition of
the area inside the convex hull is computed. The points in this partition are not considered. The points
contributing to the boundary were already added to the output in an earlier stage. For each open line
segments, it is checked whether it is part of a labelled line segment of the input. Recall that only line
segments that contribute to the boundary are labelled in an earlier stage of the algorithm. Only if an
open line segment is part of a labelled segment, as is the case for the one printed in bold in Figure 5D,
its closure (i.e., a closed line segment) is added to the output. For each open polygon in the partition,
we compute the polygon that is its closure and triangulate this polygon using its center of mass (see
Figure 5D for a polygon in the partition and (E) for its triangulation). Some open polygons are only
part of the convex hull of S, but not of the snapshot itself. The polygons shaded in grey in (D) of
Figure 5 are an example of such polygons. If a polygon does not belong to S, we do not triangulate it.
The triangulations of all other polygons are added to the output. Note that we can decide whether a
polygon belongs to the snapshot by first computing the planar subdivision U(S) (which we will define
next) of the input snapshot and then test for each open polygon whether its center of mass belongs to
the interior of a region or face in the subdivision. We will explain this in more detail when analyzing
the complexity of the algorithm.

(A) (B) (C)

(D) (E)

Figure 5. An illustration of the different steps in the spatial triangulation algorithm. The subfigures
(A–E) are explained in the text.

In the detailed description of the algorithm, we will use some well known techniques. One of
those is the doubly-connected edge list [29], used to store planar subdivisions.

Definition 7 (Planar subdivision). A planar subdivision is a subdivision of the plane into labelled regions
(or faces), edges and vertices, induced by a plane graph. The complexity of a subdivision is the sum of the number
of vertices, the number of edges and the number of faces it consists of.

Next, we describe the doubly-connected edge list, a data structure to store planar subdivisions.
For this structure, each edge is split into two directed half-edges. In general, a doubly-connected edge
list contains a record for each face, edge and vertex of the planar subdivision.

Definition 8 (Doubly-connected edge list). Given a planar subdivision S . A doubly-connected edge list
for S , denoted DCEL(S), is a structure containing a record for each face, edge and vertex of the subdivision.
These records store the following geometric and topological information:
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(i) The vertex record of a vertex a stores the coordinates of a and a pointer to an arbitrary half-edge that has a
as its origin;

(ii) The face record of a face f stores a pointer to an arbitrary half-edge on its boundary. Furthermore, for each
hole in f , it stores a pointer to an arbitrary half-edge on its boundary;

(iii) The half-edge record of a half-edge e stores five pointers. One to its origin-vertex, one to its twin half-edge,
one to the face it bounds, and one to the previous and next half-edge on the boundary on that face.

Example 5. Figure 6 shows a planar subdivision in (B) and its topological structure in (C), that is reflected in
the doubly-connected edge list represented in Table 2.

Algorithm 1 (or TS) gives the triangulation procedure more formally. The input of this
triangulation algorithm is a snapshot S, consisting of a geometric object which we assume to be
given as a finite set of (possibly overlapping and possibly degenerated) triangles. We further assume
that each triangle is represented as a triple of pairs of coordinates, which are rational numbers.

To shorten and simplify the exposition of Algorithm 1, we assume that S is fully two-dimensional,
or equivalently, that points and line segments that are not adjacent to a polygon belonging to S are
already in the output. Including their triangulation in the algorithm would make its description
tedious, as we would have to add, and consider, more node and edge labels.

We use C programming-style notation for pointers to records and elements of records.
For example, Let a = (a1, a2). In the vertex record Va of a, Va.x = a1 and Va.y = a2. Let e be
an edge record. The coordinates of the origin e→ origin of e are e→ origin→ x and e→ origin→ y.

Algorithm 1 TS (Input: S = {T1, T2, . . . , Tk}, Output: {T′1, T′2, . . . , T′`})

1: Out:= ∅.
2: Compute the set B(S) containing all line segments, bounding a triangle of the input, that contribute

to the boundary of S (i.e., that contain an edge of the boundary). Meanwhile, construct the planar
subdivision U(S) induced by the triangles composing S.

3: Compute the convex hull CH(S) of S.
4: Construct the doubly connected edge list DCEL(S), induced by the planar subdivision defined by

the lines through the segments of B(S), using CH(S) as a bounding box.
5: while there are any unvisited half-edges in DCEL(S) left do

6: Let e be an unvisited edge.
7: Σx := 0, Σy := 0, count := 0, Elist := ∅.
8: while e is unvisited do

9: Mark e with the label visited.
10: Elist := Elist ∪ {(e → origin, e → next → origin)}, Σx := Σx + e → origin → x, Σy :=

Σy + e→ origin→ y, count := count + 1.
11: e := e→ next.
12: end while
13: x := ( Σx

count ,
Σy

count ).
14: if the point a in x belongs to a face of U(S) then

15: for all elements (as, ae) of Elist do

16: Out := Out ∪{Taasae}, where Taasae is the (closed) triangle with corner points a, as and ae.
17: end for
18: end if
19: end while
20: return Out.
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Before proving the correctness of the algorithm and determining the size of the output and the
time complexity of the algorithm, we give an example.

v1

v2

v3 v4

T1
T2

v1

v2

v3 v4

v5

v1

v2

v3 v4

v5

f2

f1

f3

f4

e1,5

e2,1

e5,2

(A) (B)

(C) (D)

Figure 6. The different steps of Algorithm 1 applied to S = {T1, T2}. Figure (A) represents the input
data. In this example, all boundary segments of all triangles of S contribute to the boundary of S. The
line arrangement induced by the carriers of the edges of the input triangles is bounded by the convex
hull of the input in (B). A doubly-connected edge list is constructed out of the line arrangement,
storing its topological structure in (C). Finally, the triangulation is computed in (D).

Table 2. The half-edge records of the doubly-connected edge list corresponding to Figure 6.

Half-Edge Origin Twin Incident Face Next Prev

e1,2 v1 e2,1 f5 e2,4 e3,1
e2,1 v2 e1,2 f1 e1,5 e5,2
e1,3 v1 e3,1 f2 e3,5 e5,2
e3,1 v3 e1,3 f5 e1,2 e4,3
e1,5 v1 e5,1 f1 e5,2 e2,1
e5,1 v5 e1,5 f2 e1,3 e3,5
e2,4 v2 e4,2 f5 e4,3 e1,2
e4,2 v4 e2,4 f3 e2,5 e5,4
e2,5 v2 e5,2 f3 e5,4 e4,2
e5,2 v5 e2,5 f1 e2,1 e1,5
e3,4 v3 e4,3 f4 e4,5 e5,3
e4,3 v4 e3,4 f5 e3,1 e2,4
e3,5 v3 e5,3 f2 e5,1 e1,3
e5,3 v5 e3,5 f4 e3,4 e4,5
e4,5 v4 e5,4 f4 e5,3 e3,4
e5,4 v5 e4,5 f3 e4,2 e2,5
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Example 6. Let S be the set {T1, T2}, where T1 is the triangle with corner points v1, v3 and v4, and T2 the
triangle with corner points v2, v3 and v4, as depicted in Figure 6. The doubly-connected edge list corresponding
to (C) is shown in Table 2. We omitted the structures for vertices and faces, as we don’t need them for the second
part of the algorithm.

After the doubly-connected edge list is constructed, we create and output the triangles. This is done by
visiting all half-edges once. Suppose we start with e2,1. The next-pointers lead to e1,5 and e5,2. The next pointer
of the last one points to e2,1, which we visited already. This means we visited all edges of one polygon. The center
of mass can now be computed and the triangles added to the output. This is done for all polygons that are part of
the input. In this example, the polygon with corner points v1, v5 and v2 will not be triangulated, as it is not part
of the input. The algorithm stops when there are no more unvisited edges left.

Note that, as an optimization, we could decide to not triangulate faces that are triangles already.
This does not influence the complexity results, however. Therefor, and also for a shorter and more
clear exposition, we formulated the algorithm in a more general form.

We now prove compute the complexity of both the output and execution time of the triangulation
method described in Algorithm 1 and afterwards show that it is affine-invariant. First, we show that
TS is indeed a triangulation method.

Property 1 (Algorithm 1 is a triangulation method). Let S be a snapshot. The output TS(S) of Algorithm 1
applied to S is a triangulation of S.

Proof. Let the set of triangles {T1, T2, . . . , Tk} determine a snapshot S. It is easy to see that the output
TS(S) = {T′1, T′2, . . . , T′`} of TS is a triangulation. By construction, TS(S) is a set of triangles that either
have no intersection, or share a corner point or bounding segment. It is clear from the algorithm that⋃

i=1k Ti =
⋃

j=1` T′j , because each triangle in TS(S) is tested for membership of S. We are also sure that
S is covered by the output, because initially, the convex hull of S is triangulated, which contains S.

Property 2 (Quadratic output complexity). Let a snapshot S be given by the set {T1, T2, . . . , Tm}, consisting
of m triangles. The triangulation TS(S), where TS is the triangulation method described in Algorithm 1, contains
O(m2) triangles.

Proof. It is well-known (see, e.g., [30]), that an arrangement of m lines in the plane results in
a subdivision of the plane containing O(m2) lines, O(m2) edges and O(m2) faces. It follows that the
structure DCEL(S) will contain O(m2) half-edges, i.e., two half-edges for each edge in the arrangement.
In the worst case scenario, when all faces of the partition of the bounding box belong to S, one triangle
is added to the output for each half-edge in DCEL(S) (connecting that half-edge with the center of
mass of the face it bounds). Therefor, the output contains O(m2) triangles.

In the following analysis of the running time of Algorithm 1, we assume that triangles are
represented as triples of points, and that a point is represented as a pair of rational or algebraic
numbers. We further assume that all basic arithmetic operations on coordinates of points require
constant time.

Property 3 (O(m2 log m) running time). Let a snapshot S be given by the set {T1, T2, . . . , Tm}, consisting
of m triangles. The triangulation method TS, described in Algorithm 1, computes the triangulation TS(S) of S
in time O(m2 log m).

Proof. Let a snapshot S be given by the set {T1, T2, . . . , Tm}. Using a plane-sweep algorithm [31],
we compute both the list of segments contributing to the boundary of S and the planar subdivision
U (S) induced by

⋃m
i=1 Ti. This takes O(m2 log m), as there are at most m2 intersection points between

boundary segments of triangles of S.
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The m triangles composing S together have at most 3m different corner points. Computing the
convex hull of m points in the plane can be done in time O(m log m) (see [32]). The same authors
propose, in [30], an algorithm to compute a doubly-connected edge list, representing an arrangements
of m lines, in time O(m2). We next show that the changes we make to this algorithm do not influence
its running time. So, as B(S) contains at most all 3m line segments, it induces an arrangement of at
most 3m lines. Hence, Step 3 of Algorithm 1 also takes time O(m2).

We changed the original algorithm [30] for computing the doubly-connected edge list of
an arrangement of lines as follows:

(i) We computed the convex hull of the input to serve as a bounding box instead of an axis-parallel
rectangle containing all intersection points of the arrangement. The complexity of computing such
an axis-parallel rectangle is higher (O(m2)) than that of computing the convex hull (O(m log m)).

(ii) The cost of constructing the doubly-connected edge list of the convex hull is O(m), as the convex
hull contains at most 3m corner points and the algorithm for computing it, as described in [32],
already outputs the corner points of the convex hull in circular order. In the original algorithm [30]
with an axis-parallel bounding rectangle, computing the doubly-connected edge list of this
rectangle only takes constant time. This extra time does, however, not affect the overall complexity.

(iii) The next step of both algorithms involves finding the intersection points between the lines
to be inserted and the partial arrangement induced by the previously inserted lines. In the
original algorithm, this is easier only for the intersection of a line with the bounding box. For the
intersections with all other lines in the arrangement, the cost is the same.

The next part of Algorithm 1 (starting from Line 5) takes time O(m2 log m). Each half-edge of the
doubly-connected edge list is visited only once. Also, each half-edge is only inserted once into the set
Elist, and consulted only once therein to create a triangle. As an arrangement of m lines in the plane
results in O(m2) edges, the number of half-edges in DCEL(S) also is O(m2). We can, in time O(m2),
preprocess U (S) into a structure that allows point location in O(log m) time [33]. Therefor, testing
for each of the O(m2) centers of mass whether they are part of the input takes O(m2 log m). We can
conclude that all parts of Algorithm 1 run in time O(m2 log m).

Table 3 summarizes the computational complexity of the various parts of Algorithm 1.

Table 3. The time complexity of the various parts of Algorithm 1, when the input is a snapshot
represented by n triangles.

Line(s) Step Time Complexity

2 Compute B(S) and U (S) O(m2 log m)
3 Compute CH(S) O(m log m)
4 Compute DCEL(S) O(m2)

5–19 Polygon extraction and triangulation O(m2 log m)

Overall time complexity O(m2 log m)

Property 4 (TS is affine-invariant). The triangulation method TS is affine-invariant.

Proof. According to the definition of affine-invariance of spatial triangulation methods (Definition 6),
we have to prove the following. Let A be a snapshot given by the set of triangles {Ta,1, Ta,2, . . . , Ta,k}
and B be a snapshot given by the set of triangles {Tb,1, Tb,2, . . . , Tb,`}, such that there exists an affinity
α : R2 → R2 for which B = α(A). Then, for each triangle T of TS(A), it holds that the triangle α(T) is
a triangle of TS(B).

We prove this by going through the steps of the triangulation procedure TS. Let A and B be
as above.

The convex hull and boundary of spatial figures are both affine-invariant (more specific,
the boundary is a topological invariant). Intersection points between lines and the order of intersection
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points on one line with other lines are affine-invariant (even topological invariant). The subdivision of
the convex hull CH(B) of B induced by the arrangement of lines through the boundary of B is hence
the image under α of the subdivision of the convex hull CH(A) of A induced by the arrangement of
lines through the boundary of A. The doubly-connected edge list only stores topological information
about the arrangement of lines, i.e., which edges are incident to which vertices and faces. Naturally,
this information is preserved by affine transformations. The center of mass of a convex polygon is an
affine invariant. Finally, the fact that a triangle is inside the boundary of the input and the fact that it is
not are both affine-invariant. This completes the proof.

Summarizing this section, we proposed a spatial triangulation method that, given a snapshot
consisting of m triangles, returns an affine-invariant triangulation of this snapshot containing O(m2)

triangles, in time O(m2 log m).
We remark here that the idea of using carriers of boundary segments to partition figures was

also used in an algorithm to decompose semi-linear sets by Dumortier, Gyssens, Vandeurzen and
Van Gucht [34]. Their algorithm is not affine-invariant, however.

In the next section, we will use the affine triangulation for snapshots to construct a triangulation
of geometric objects.

4. An Affine-Invariant Spatio-Temporal Triangulation Method

In this section, we present an spatio-temporal triangulation algorithm that takes as input
a geometric object, i.e., a finite set of atomic geometric objects. We will adapt the spatial triangulation
method TS, described in Algorithm 1, for time-dependent data.

The proposed spatio-temporal triangulation algorithm TST will have three main construction
steps. First, in the partitioning step, the time domain of the geometric object will be partitioned into a set
of points and open time intervals. For each element of this partition, all its snapshots have an isomorphic
triangulation, when computed by the method TS. We refer to Definition 9 below for a formal definition
of this isomorphism. Second, in the triangulation step, the spatio-temporal triangulation is computed for
each element in the time partition, using the fact that all snapshots have isomorphic triangulations. Third,
in the merge step, we merge objects when possible, to obtain a unique (and minimal) triangulation.

We will start this section by defining isomorphic triangulations. Then we explain the different
steps of the algorithm for computing a spatio-temporal affine-invariant triangulation of geometric
objects separately. We illustrate the algorithm with an example and end with some properties of the
triangulation.

Intuitively, two snapshots S1 and S2 are called TS-isomorphic if the triangles in TS(S1) ∪
TS(CH(S1) \ S1) and TS(S2) ∪ TS(CH(S2) \ S2) have the same (topological) adjacency graph.
In particular, if S1 and S2 are equal up to an affinity of R2, then they are TS-isomorphic.

Definition 9 (TS-isomorphic snapshots). Let S1 and S2 be two snapshots of a geometric object. We say that
S1 and S2 are TS-isomorphic, denoted S1 ≡TS S2, if there exists a bijective mapping h : R2 → R2 with the
following property: A triangle T = (a1, a2, a3) of TS(S1) is incident to the triangles T1,2, T2,3 and T3,1 (where
each Ti,((i+1) mod 3) is either a triangle of TS(S1) that shares the segment aia((i+1) mod 3) with T, a triangle
of TS(CH(S1) \ S1) that shares the segment aia((i+1) mod 3) with T, or is ε, which means that no triangle
shares that boundary segment with T) if and only if, the triangle h(T) = (h(a1), h(a2), h(a3)) belongs to
TS(S2) and is bounded by h(T1,2), h(T2,3) and h(T3,1). Moreover, if Ti,((i+1) mod 3) is a triangle of TS(S1),
then h(Ti,((i+1) mod 3)) is a triangle of TS(S2) that shares the line segment h(ai)h(a((i+1) mod 3)) with h(T),
if Ti,((i+1) mod 3) is a triangle of TS(CH(S1) \ S1), then h(Ti,((i+1) mod 3)) is a triangle of TS(CH(S2) \ S2)

that shares the line segment h(ai)h(a((i+1) mod 3)) with h(T) and if Ti,((i+1) mod 3) equals ε, then so does
h(Ti,((i+1) mod 3)).
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Example 7. The triangulations shown in Figure 3 are TS-isomorphic to each other. In Figure 7, all snapshots
shown except the one at time moment t = 3 are TS-isomorphic. The snapshot at time moment t = 3 is clearly
not isomorphic to the others, since it consists only of one line segment.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Figure 7. Snapshots of a traffic sign as seen by an observer circularly moving around it.

Remark that for Figure 3, the mapping h is an affinity. In Figure 7, this is not the case.
Now, we introduce a spatio-temporal triangulation method TST that constructs a time-dependent

affine triangulation of spatio-temporal objects that are represented by geometric objects. We will
explain its three main steps, i.e., the partitioning step, the triangulation step and the merge step
separately in the next subsections.

We will illustrate each step on the following example.

Example 8. Let O = {O1,O2} be a geometric object, where O1 is given as (((−1, 0), (1, 0), (0, 2)), [0, 4], Id)
and O2 is given as (((−3, 1), (−1, 1), (−2, 3)), [0, 4], f ) and f is the mapping given by (x, y, t) 7→ (x + t, y).
Figure 8 shows the snapshots of O at time moments t = 1

4 (A), t = 1
2 (B), t = 1 (C), t = 3

2 (D), t = 2 (E),
t = 5

2 (F), t = 3 (G), t = 7
2 (H) and t = 4 (I).

(A) (B) (C) (D) (E)

(F) (G) (H) (I)

Figure 8. The snapshots at time moments t = 1
4 (A), t = 1

2 (B), t = 1 (C), t = 3
2 (D), t = 2 (E), t = 5

2 (F),
t = 3 (G), t = 7

2 (H) and t = 4 (I) of the geometric object of Example 8.

Let O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,Om = (Sm, Im, fm)} be a geometric object.
We assume that the Si are given as triples of points (i.e., pairs of rational or algebraic numbers), the Ii
as structures containing two rational or algebraic numbers and two flags (indicating whether the
interval is closed on the left or right side) and, finally, the fi are affinities given by rational functions,
i.e., fractions of polynomials with integer coefficients (that we assume to be given in dense or sparse
representation), for i = 1, . . . , m.

4.1. The Partitioning Step

Let O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,Om = (Sm, Im, fm)} be a geometric object. In the
first step of TST , the time domain I of O, i.e., the convex closure

⋃m
i=1 Ii of the union of all the time
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domains Ii(i = 1, . . . , m) is partitioned in such a way that, for each element of that partition, all its
snapshots are TS-isomorphic.

Below, we refer to the set of lines that intersect the border of fi(Si, τ) in infinitely many points,
the set of carriers of the snapshot fi(Si, τ) and denote it car( fi(Si, τ)), (i = 1, . . . , m).

In [4], we defined the finite time partition P of the time domain of two atomic objects in such
a way that for each element P of P , the carrier sets of each snapshot of P are topologically equivalent.
This definition can easily be extended to an arbitrary number of atomic objects. Also the property
stating that the finite time partition exists, still holds in the extended setting.

Definition 10 (Generalized finite time partition). We call a finite time partition of a geometric object
O = {O1,O2, . . . ,Om} any partition of the interval I =

⋃m
i=1 Ii into a finite number of time intervals

J1, . . . , Jk such that for any τ, τ′ ∈ J` (and all 1 ≤ ` ≤ k),
⋃m

i=1 car( fi(Si, τ)) and
⋃m

i=1 car( fi(Si, τ′)) are
topologically equivalent sets in R2.

Here, two subsets A and B of R2 are called topologically equivalent when there exists
an orientation-preserving homeomorphism h of R2 such that h(A) = B.

The proof of the following property follows the lines of a proof in [4].

Property 5 (Existence of a generalized finite time partition). LetO = {O1,O2, . . . ,Om} be a geometric
object.There exists a finite time partition of O.

We now proceed with the partitioning step of the spatio-temporal triangulation algorithm. In this
step, a generalized finite time partition of O is computed, using the information of the time-dependent
carriers of the atomic objects inO. Each time an intersection point between two or more time-dependent
carriers starts or ceases to exist, or when intersection points change order along a line, a new time
interval of the partition is started. Given three continuously moving lines, the intersection points of the
first line with the two other lines only change order along the first line, if there exists a moment where
all three lines intersect in one point. Algorithm 2 describes the partitioning step in detail.

We will show later that the result of the generalized finite time partition is a set of intervals during
which all snapshots are TS-isomorphic. This partition is, however, not the coarsest possible partition
having this property, because there might be atomic objects that, during some time, are completely
overlapped by other atomic objects. Therefor, we will later, after the triangulation step, again merge
elements of the generalized finite time partition, whenever possible.

We illustrate Algorithm 2 on the geometric object of Example 8.

Example 9. Recall from Example 8 that O = {O1,O2}, where O1 is given as (((−1, 0), (1, 0), (0, 2)), [0, 4],
Id) and O2 is given as (((−3, 1), (−1, 1), (−2, 3)), [0, 4], f ) and f is the affinity mapping triples (x, y, t) to
pairs (x + t, y).

We now illustrate the partitioning algorithm on input O. First, the list χ will contain the time moments
0 and 4. The list C will contain six elements. Table 4 shows these segments and the formulas describing their
time-dependent carriers. All pairs of segments have an intersection that exists always, except for the pairs
(Oc,2,Oc,5), (Oc,3,Oc,6) and (Oc,1,Oc,4). The intersections of Oc,2 with Oc,5 and Oc,3 with Oc,6 exist only at
respectively t = 5

2 , t = 3
2 . The segments Oc,1 and Oc,4 never intersect. Of all possible triples of carriers, only

two triples have a common intersection within the interval [0, 4]. The carriers of Oc,2, Oc,4 and Oc,6 intersect at
t = 1

2 and the carriers of Oc,3, Oc,4 and Oc,5 intersect at t = 7
2 . The partitioning step will hence return the list

χ = (0,
1
2

,
3
2

,
5
2

,
7
2

, 4).
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Algorithm 2 Partition (Input: O = {O1, ...,On}, Output: χ = (τ1, τ2, . . . , τm))

1: Let χ = (τ1 ≤ τ2 ≤ . . . ≤ τk) (with 2 ≤ k ≤ 2n) be a sorted list of time moments that appear either
as a begin or endpoint of Ii for any of the objects Oi = (Si, Ii, fi), 1 ≤ i ≤ n.

2: C = ∅.
3: for all atomic objects Oi = (Si, Ii, fi), 1 ≤ i ≤ n do

4: Add the new atomic objects (Si,1, Ii, fi), (Si,2, Ii, fi) and (Si,3, Ii, fi) to C, where Si,1, Si,2 and Si,3
are the boundary segments of Si.

5: end for
6: for all pairs of objects (Si,`1 , Ii, fi) and (Sj,`2 , Ij, f j) of C (1 ≤ i < j ≤ n; 1 ≤ `1, `2 ≤ 3) do
7: if Ii ∩ Ij 6= ∅ then

8: Compute the end points of the intervals during which the intersection of the carriers of both
time-dependent line segments does exist. Add those such end points that lie within the
interval Ii ∩ Ij to χ, in a sorted way.

9: end if
10: end for
11: for all triples of objects (Si,`1 , Ii, fi), (Sj,`2 , Ij, f j) and (Sk,`3 , Ik, fk) of C (1 ≤ i < j < k ≤ n; 1 ≤

`1, `2, `3 ≤ 3) do
12: if Ii ∩ Ij ∩ Ik 6= ∅ then
13: Compute the end points of the intervals during which the carriers of the three time-dependent

line segments intersect in one point. Add those such end points that lie within the interval
Ii ∩ Ij ∩ Ik to χ, in a sorted way.

14: end if
15: end for
16: Return χ.

Table 4. The elements of the list C during the execution of the partitioning algorithm (Algorithm 2) on
the geometric object from Example 9.

Element Carrier

Oc,1 = (((−1, 0), (1, 0)), [0, 4], Id) y = 0
Oc,2 = (((−1, 0), (0, 2)), [0, 4], Id) y = 2x + 2
Oc,3 = (((0, 2), (1, 0)), [0, 4], Id) y = −2x + 2
Oc,4 = (((−3, 1), (−1, 1)), [0, 4], f ) y = 1
Oc,5 = (((−3, 1), (−2, 3)), [0, 4], f ) y = 2x + 7− 2t
Oc,6 = (((−2, 3), (−1, 1)), [0, 4], f ) y = −2x− 1 + 2t

We analyze both the output complexity and sequential time complexity of the partition step.
First remark that the product of ` univariate polynomials of degree d is a polynomial of degree `d.
Let the transformation function of an atomic object consists of rational coefficients, being fractions of
polynomials of degree at most d. It follows that the time-dependent line segments and carriers can
be defined using fractions of polynomials in t of degree O(d). Also, the time-dependent intersection
point of two such carriers and the time-dependent cross-ratio of an intersection point compared to two
moving end points of a segment, can be defined using fractions of polynomials in t of degree O(d).

Property 6 (Partition: output complexity). Given a geometric object O = {O1 = (S1, I1, f1),
O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting of n atomic objects. Let d be the maximal degree of
any polynomial in the definition of the transformation functions fi, 1 ≤ i ≤ n. The procedure Partition,
as described in Algorithm 2, returns a partition of I =

⋃n
i=1 Ii containing O(n3d) elements.
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Proof. It is clear that the list χ contains O(n) elements after Line 1 of Algorithm 2. Indeed, at most two
elements are added for each atomic object. The list C will contain at most 3n elements. For each atomic
object with a reference object that is a “real” triangle, 3 elements will be added to C. In the case that
one or more corner points coincide, one or two objects will be added to C.

Now we investigate the number of time moments that will be inserted to χ while executing
the for-loop starting at Line 6 of Algorithm 2. The intervals during which the intersection of two
time-dependent carriers exists are computed. The intersection of two time-dependent line segments
doesn’t exist at time moments where the denominator of the rational function defining it is zero.
Because this denominator always is a polynomial P in t, it has at most deg(P) zeroes, where deg(P)
denotes the degree of P. Accordingly, at most deg(P) = O(d) elements will be added to χ. Hence,
in total, O(n2d) time moments are added in this step.

For the intersections of three carriers, a similar reasoning can be used. Hence, during the execution
of the for-loop starting at Line 11 of Algorithm 2, O(n3d) elements are added to χ.

We can conclude that the list χ will contain O(n3d) elements.

Now we analyze the time complexity of Partition. We first point out that finding all roots of an
univariate polynomial of degree d, with accuracy ε can be done in time O(d2 log d log log( 1

ε )) [35].
We will use the abbreviation z(d, ε) for the expression O(d2 log d log log( 1

ε )). Note also that, although
the product of two polynomials of degree d is a polynomial of degree 2d, the computation of the
product takes time O(d2). To keep the proofs of the complexity results as readable as possible, we will
consider the complexity of any manipulation on polynomials (computing zeros, adding or multiplying)
to be z(d, ε), where a precision of ε is obtained.

Property 7 (Partition: computational complexity). Given a geometric object O = {O1 = (S1, I1, f1),
O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting of n atomic objects. Let d be the maximal degree of any
polynomial in the definition of the transformation functions fi, 1 ≤ i ≤ n and let ε be the desired precision for
computing the zeros of polynomials. The procedure Partition, as described in Algorithm 2, returns a partition of
I =

⋃n
i=1 Ii in time O(n3(z(d, ε) + d log n)).

Proof. Let O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} be a geometric object. Let d
be the maximum degree of any of the polynomials used in the definition of the functions fi, 1 ≤ i ≤ n.

Constructing the initial list χ, on Line 1, takes time O(n log n) (it is well known that the inherent
complexity of sorting a list of n elements is O(n log n)). Computing the set C can be done in time
O(nd): all n elements of O are considered, and the time needed to copy the transformation functions
fi depends on the maximal degree the polynomials defining them have. Recall that C contains at most
3n elements.

The first for-loop, starting at Line 6 of Algorithm 2 is executed O(n2) times. One execution of its
body takes z(d, ε). Indeed, computing the formula representing the time-dependent intersection,
checking whether its denominator is always zero and finding the zeros of the denominator
(a polynomial of degree linear in d) have all time complexity z(d, ε). Therefor, the first for-loop
takes time O(n2z(d, ε)) in total.

The second for-loop has time complexity O(n3z(d, ε)). The reasoning here is the same as for the
previous for-loop.

Finally, sorting the list χ, which contains O(n3d) elements at the end, requires O(n3d log(nd)).
If we summarize the complexity of all the separate steps, we obtain O(n3(z(d, ε) + d log n)).

We now proceed with the triangulation step.

4.2. The Triangulation Step

Starting with a geometric object O = {O1 = (S1, I1, f1),O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)},
the partitioning algorithm identifies a list χ of time moments that is used to partition the time domain
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I =
⋃n

i=1 Ii of O into points and open intervals. For each element in that partition (point or open
interval), we now triangulate the part of O restricted to that point or open interval.

The triangulation of the snapshots of O at the time moments in χ is straightforward. For each of
the time moments τ of χ, the spatial triangulation method TS is applied to the snapshot Oτ . For each
of the triangles T in TS(Oτ), an atomic object is constructed with T as reference object, the singleton
{τ} as time domain and the identity as its transformation function.

The triangulation of the parts of O restricted to the open intervals in the time partition requires
a new technique. We can however benefit from the fact that throughout each interval, all snapshots
of O have an TS-isomorphic triangulation. For each of the open intervals ]τj, τ(j+1)[ defined by two
subsequent elements of χ, we compute the snapshot at the middle τm = 1

2 (τj + τ(j+1)) of [τj, τ(j+1)] and
its triangulation TS(Oτm). Each triangle boundary segment that contributes to the boundary of Oτm at
time moment τm, will also contribute to the boundary of O at the snapshot of O at any time moment
τ ∈ [τj, τ(j+1)]. So, the moving line segment can be considered a boundary segment throughout
[τj, τ(j+1)]. If two carriers of boundary segments intersect at time moment τm, the intersection of the
moving segments will exist throughout [τj, τ(j+1)], and so on. Therefor, we will compute the spatial
triangulation of the snapshot Oτm using the procedure TS, but we will copy every action on a point or
line segment at time moment τm on the moving point of line segment of which the point or segment is
a snapshot. The triangles returned by the spatial triangulation algorithm when applied to Oτm will
be reference objects for the atomic objects, returned by the spatio-temporal triangulation algorithm.
These atomic objects exist during the interval [τj, τ(j+1)]. Knowing the functions representing the
time-dependent corner points of the triangles (because of the copying), together with the time interval
and the reference object, we can deduce the transformation function and construct atomic objects
(the formula computing this transformation was given in [4]).

Next, a detailed description of the spatio-temporal triangulation is given in Algorithm 3. In this
description of the spatio-temporal triangulation procedure, we will use the data type Points which is
a structure containing a (2-dimensional) point (represented using a pair of real numbers), a pair of
rational functions of t (a rational function is represented using a pair of vectors of integers, denoting
the coefficients of a polynomial), representing a moving point, and finally a time interval (represented
as a pair of real numbers and two flags indicating whether the interval is open or closed at each
end point). We will only use or fill in this time information when mentioned explicitly. Given an
element Pt of type Points, we address the point it stores by Pt → Point, the functions of time by
Pt → fx and Pt → fy respectively, and the begin and end point of the time interval by Pt → Ib and
Pt→ Ie. The flags Pt→ Cb and Pt→ Ce are true when the interval is closed at its begin or end point
respectively. A pair of elements of the type Points is denoted an element of the type Segments.

We again illustrate the spatio-temporal triangulation algorithm on the geometric object of
example 8.
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Algorithm 3 Triangulate (Input: O = {O1, ...,On}, χ = (τ1, . . . , τk), Output = {O′1, . . . ,O′`})
1: for all time moments τj, j = 1 . . . k, of χ do

2: for all triangles T in TS(Oτj) do

3: return the atomic element (T, {τj}, Id).
4: end for
5: end for
6: Let S< be the list containing all atomic objectsOi = (Si, Ii, fi), 1 ≤ i ≤ n, sorted by the begin points

Ii,b of their time domains.
7: Let SActive be a list of elements of the type Segments, SActive = ().
8: for all pairs (τj, τj+1), j = 1 . . . (k− 1)), in χ do

9: τm:= 1
2 (τj + τj+1).

10: Remove all elements (Pt1, Pt2) of SActive for which τj = Pt1 → Ie = Pt2 → Ie.
11: for all elements (Pt1, Pt2) remaining in SActive do
12: Ptr → Point := (Ptr → fx(τm), Ptr → fy(τm)), r = 1, 2.
13: end for
14: for all Oi = (Si = (a1, a2, a3), Ii, fi) in S< for which Ii,b is τi do

15: Construct three Points Pt1, Pt2 and Pt3 such that Ptr → Point = ar, Ptr → fx = fi(ar,x, τm),
Ptr → fy = fi(ar,y, τm) and Ptr → Ib and Ptr → Ie respectively contain τj and τj+1 (r =
1, . . . , 3).

16: Construct three Segments St1, St2 and St3, containing two different elements from the set
{Pt1, Pt2, Pt3}. Add them to SActive.

17: end for
18: Compute the set Bt(SActive) of elements of the type Segments, using only the constant point

information of the elements of SActive. Meanwhile, construct the subdivision U (Oτm).
19: Compute the convex hull CHt(SActive), using only the constant point information of the elements

of SActive, a list of elements of the type Points.
20: Construct DCELt(SActive), where each half-edge (resp. origin) is now an element of the type

Segments (resp. Points). Use CHt(SActive) as a bounding box. Each time the intersection of two
constant carriers is computed, also compute the formula representing the moving intersection
point.

21: while there are any unvisited Segments St in DCELt(S) left do

22: Compute the list Etlist of Segments that form a convex polygon. Compute the Points structure
Ptm containing both the constant and time-dependent center of mass of that polygon

23: if Ptm → Point belongs to a face of U(Oτm) then

24: for all elements St = (Pt1, Pt2) of Etlist do

25: Output the atomic object (S, I, f ), where S is the triangle with corner points Pt1 → Point,
Pt2 → Point and Ptm → Point and I is ]τj, τj+1[. The transformation function f is
computed using the functions Pt1 → fx, Pt1 → fy, Pt2 → fx, Pt2 → fy, Ptm → fx and
Ptm → fy.

26: end for
27: end if
28: end while
29: end for

Example 10. Recall from Example 8 that O = {O1,O2}, where O1 is given as (((−1, 0), (1, 0), (0, 2)), [0, 4],
Id) and O2 is given as (((−3, 1), (−1, 1), (−2, 3)), [0, 4], f ) and f is the affinity mapping triples (x, y, t) to
pairs (x + t, y).
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From Example 9, we recall that the output of the procedure Partition on input O was the list
χ = (0, 1

2 , 3
2 , 5

2 , 7
2 , 4).

The triangulation of the snapshots at one of the time moments in χ are shown in Figure 9. To keep the
example as simple as possible, we did not further triangulate convex polygons that are triangles already.

The open intervals to be considered are ]0, 1
2 [, ]

1
2 , 3

2 [, ]
3
2 , 5

2 [, ]
5
2 , 7

2 [ and ] 7
2 , 4[. We illustrate the triangulation

of the interval ]0, 1
2 [. During the time interval ]0, 1

2 [, the triangulation will always look like the one shown
in Part (A) of Figure 9. Hence, O2 will not change, and O1 will be partitioned into seven triangles. The top
one will not change, so the atomic object (((0, 2), (1, −1

2 ), (1, 1
2 )), [0, 1

2 ], Id) will be part of the output. For the
others, we have to compute the time-dependent intersections between the carriers and afterwards apply the
formula from [4]. We illustrate this for O2. the snapshot of O2 at the middle point 1

4 of [0, 1
2 ] is the triangle with

corner points (−11
4 , 1), (−3

4 , 1) and (−7
4 , 3). Its time-dependent corner points are (−3 + t, 1), (−1 + t, 1) and

(−2 + t, 3). Solving the matrix equation

−11
4 1 0 0 1 0
0 0 −11

4 1 0 1
−7
4 3 0 0 1 0
0 0 −7

4 3 0 1
−3
4 1 0 0 1 0
0 0 −3

4 1 0 1





a(t)
b(t)
c(t)
d(t)
e(t)
f (t)


=



−3 + t
1

−2 + t
3

−1 + t
1


gives the transformation function f ′ that maps triples (x, y, t) to pairs (x− 1

4 + t, y).

We also give the output complexity and time complexity for this triangulation step.

(A) (B) (C) (D) (E)

(F) (G) (H) (I)

Figure 9. The triangulations of the objects of Example 8 at time moments t = 1
4 (A), t = 1

2 (B), t = 1 (C),
t = 3

2 (D), t = 2 (E), t = 5
2 (F), t = 3 (G), t = 7

2 (H) and t = 4 (I).

Property 8 (Triangulation step: output complexity). Given a geometric object O = {O1 = (S1, I1, f1),
O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting of n atomic objects and a finite partition χ of its time
domain into k time points and k− 1 open intervals. The procedure Triangulation, as described in Algorithm 3,
returns O(n2k) atomic objects.

Proof. The number of atomic objects returned by the triangulation procedure for one time interval
is the same as the number of triangles returned by the spatial triangulation method on a snapshot in
that interval. We know from Property 2 that the number of triangles in the triangulation of a snapshot
composed from n triangles is O(n2). Since their are O(k) moments and intervals for which we have to
consider such a triangulation, or a slightly adapted version of it, this gives O(n2k).
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Property 9 (Triangulation step: computational complexity). Let a geometric object O = {O1 =

(S1, I1, f1), O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting of n atomic objects and a finite partition
χ of its time domain into k time points and k − 1 open intervals be given. Let d be the maximal degree
of any polynomial in the definition of the transformation functions fi, 1 ≤ i ≤ n and let ε be the desired
precision for computing the zeros of polynomials. The procedure Partition, as described in Algorithm 2, returns
a spatio-temporal triangulation of O in time O(kz(d, ε)n2 log n).

Proof. The first for-loop of Algorithm 3 is executed k times. The time needed for computing the
snapshot of one atomic object at a certain time moment is z(d, ε). The spatial triangulation algorithm
TS runs in time O(n2 log n), as was shown in Property 3. So we can conclude that the body of the
first for-loop needs O(n2 log n + nz(d, ε)) time. Sorting the atomic objects by their time domains takes
O(n log n).

The second for loop is executed once for each open interval, defined by two consecutive elements
of χ. In the body of this loop, first the list SActive is updated. Each insertion or update takes time
z(d, ε). At most all objects are in the list SActive, so this part, described in the Lines 10 through 18 of
Algorithm 3, needs time O(nz(d, ε)). The next part, described in the Lines 19 through 29 essentially
is the spatial triangulation algorithm, but, any time the intersection between two line segments is
computed, also the rational functions defining the time-dependent intersection of their associated
time-dependent line segments are computed. Computing those functions takes time z(d, ε). So the
second part of the body of the second for loop requires O(z(d, ε)n2 log n).

If we add up the time complexity of two for-loops and the sorting step, we have
O(k(nz(d, ε) + n2 log n) + n log n + kz(d, ε)(n + n2 log n)), which is O(kz(d, ε)n2 log n).

4.3. The Merge Step

We already mentioned briefly in the description of the partitioning step that the partition of the
time domain, as computed by Algorithm 2, might be finer than necessary. The partitioning algorithm
takes into account all line segments, also those of objects that, during some time span, are entirely
overlapped by other objects. To solve this, we merge as much elements of the time partition as possible.

The partition of the time domain is such that the merging algorithm will either try to merge a time
point τ and an interval of the type ]τ, τ′) or (τ′, τ[, or two different intervals of the type (τ′′, τ] and
[tau, τ′) or (τ′′, τ] and [τ, τ′). Here, we use the (unusual) notational convention that ( and ) can be
either [ or ].

The simplest case is when a time moment and an interval have to be tested. Assume that these
are (τ′, τ] and τ, respectively. These elements can be merged if there is a one to one mapping M from
the atomic elements with time domain (τ′, τ] to those with time domain {τ} in the triangulation.
Furthermore, for each pair of atomic objects O1 = (S1, (τ′, τ], f1) and O2 = (S2, {τ}, Id), O2 = M(O1)

if and only if the left limit limt→τ f1(S1, t) = S2. We note that, for rational functions f of t, limt→τ f (t)
equals f (τ), provided that τ is in the domain of f . We also note that τ is in the domain of f only if all
coefficients of the transformation function f are well-defined for t = τ and if the determinant of f is
nonzero for t = τ.

When two intervals are to be merged, the procedure involves some more tests. Let (τ′′, τ]

and [τ, τ′) be the intervals to be tested. First, we have to verify that for each atomic object
O1 = (S1, (τ′′, τ], f1), [τ, τ′) is in the domain of f1 and that for each atomic object O2 = (S2, [τ, τ′), f2),
(τ′′, τ] is in the domain of f2. Second, we have to test whether (τ′′, τ] can be continuously expanded to
(τ′′, τ]. This involves the same tests as for the simple case where an interval and a point are tested.
Finally, two atomic object can only be merged if the combined atomic object again is an atomic object.
This means that, if S2 would have been chosen as a reference object for O1, then f1 would be equal to
f2, and vice versa. This can be tested ([4]).
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This merge step guarantees that the atomic objects exist maximally and that the resulting
triangulation is the same for geometric objects that represent the same spatio-temporal object.
Algorithm 4 shows this merging step in detail.

Algorithm 4 Merge (Input: O = {O1, ...,On}, χ = (τ1, τ2, . . . , τk), Output: {O′1,O′2, . . . ,O′`}
1: Sort all atomic objects Oi by their time domains.
2: Let χ′ be the list (τ1, ]τ1, τ2[, τ2, . . . , ]τk−1, τk[, τk).
3: Let J1 be the first element of χ′ and J2 the second.
4: while there are any elements in χ′ left do

5: S1 (resp. S2) is the set of all objects having J1 (resp. J2) as their time domain.
6: if J1 is a point then

7: Preprocess the reference objects of the elements of S1 such that we can search the planar
subdivision U1 they define.

8: let Found be true.
9: for all objects Oi = (Si, J2, fi) in S2 do

10: Check whether J1 is part of the time domain of fi.
11: Compute their snapshot at time J1 (which is a triangle T).
12: Do a point location query with the center of mass of T in U1 and check whether the triangle

found in S1 has the same coordinates as T. If not, Found becomes false.
13: if Found is false then

14: break;
15: end if
16: end for
17: if found is true then

18: remove all elements of S1 fromO and extend the time domain of all elements of S2 to J1 ∪ J2.

19: J1 = J1 ∪ J2 and J2 is the next element of χ′ if any exists.
20: else

21: J1 = J2 and J2 is the next element of χ′, if any exists.
22: end if
23: else

24: if J2 is a point then

25: do the same as in the previous case, but switch the roles of J1 and J2.
26: else

27: Let J′1 be the element of {J1, J2} the form (τ′′, τ[ and J′2 the one of the form [τ, τ′).
28: Check whether (τ′′, τ[ and {τ} can be merged.
29: if this can be done then

30: Check for each pair of matching atomic objects whether their transformation functions
are the same ([4]).

31: end if
32: end if
33: end if
34: end while
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We illustrate Algorithm 4 on the geometric object of Example 8.

Example 11. Recall from Example 8 that O = {O1,O2}, where O1 is given as (((−1, 0), (1, 0), (0, 2)), [0, 4],
Id) andO2 is given as (((−3, 1), (−1, 1), (−2, 3)), [0, 4], f ) and f is the linear affinity mapping triples (x, y, t)
to pairs (x + t, y).

From Example 9, we recall that the output of the procedure partition on input O was the list
χ = (0, 1

2 , 3
2 , 5

2 , 7
2 , 4). This resulted in a partition of the interval [0, 4] consisting of the elements {0}, ]0, 1

2 [,
{ 1

2}, ] 1
2 , 3

2 [, { 3
2}, ] 3

2 , 5
2 [, { 5

2}, ] 5
2 , 7

2 [, { 7
2}, ] 7

2 , 4[ and {4}. For each of these elements, (a snapshot of) their
triangulation is shown in Figure 9.

During the merge step, the elements t = 0 and ]0, 1
2 [ of the time partition will be merged.

It is straightforward that the output and input of the merging algorithm have the same order of
magnitude. Indeed, it is possible that no intervals are merged, and hence no objects. We discuss the
computational complexity of the algorithm next. Note that the complexity is expressed in terms of the
size of the input to the merging algorithm, which is the output of the spatio-temporal triangulation step.

Property 10 (Merge step: computational complexity). Given a geometric object O = {O1 = (S1, I1, f1),
O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)}, which is the output of the triangulation step, and a finite partition χ

of its time domain into K time moments and open intervals. Let d be the maximal degree of any polynomial in
the definition of the transformation functions fi(1 ≤ i ≤ n) and let ε be the desired precision for computing the
zeros of polynomials. The procedure Merge, as described in Algorithm 4, merges the atomic objects in O in time
O(n log n

K + nz(d, ε)).

Proof. Sorting all atomic objects by their time domains can be done in time O(n log n). Computing the
list χ′ can be straightforwardly done in time O(K). This list will contain 2K− 1 elements. We assume
that K > 1 (in case K = 1 the merging algorithm is not applied). The while-loop starting at Line 4 of
Algorithm 4, is executed at most 2K− 2 times. Indeed, at each execution of the body of the while-loop,
one new element of χ′ is considered. The if-else structure in the body of the while-loop distinguishes
three cases. All cases have the same time complexity, as they are analogous. We explain the first case
in detail.

The number of atomic objects having the same time domain is of the order of magnitude of O( n
K ).

This follows from Property 8. The preprocessing of the snapshot takes O( n
K ) time [33]. The for-loop,

starting at Line 9 of Algorithm 4 is executed at most O( n
K ) times. The time needed for checking

whether an atomic object exists at some time moment and computing the snapshot (a triangle) is z(d, ε).
Because of the preprocessing on the snapshot at time moment J1, testing the barycenter of the triangle
against that snapshot can be done in O(log n

K ) time [33]. In case the snapshots are the same, adjusting
the time domains of all atomic objects takes time O( n

K ). Summarizing, the time complexity of the first
case is O( n

K log n
K + n

K z(d, ε)).
Combining this with the fact that the while-loop is executed O(K) times, and the time complexity

of the first two steps of the algorithm, we get an overall time complexity of O(n log n
K + nz(d, ε)).

Finally, the spatio-temporal triangulation procedure TST combines the partition, triangulation
and merging step. Algorithm 5 combines all steps.

The following property follows from Property 6 and Property 8.

Property 11 (TST : output complexity). Given a geometric objectO = {O1 = (S1, I1, f1),O2 = (S2, I2, f2),
. . . ,On = (Sn, In, fn)} consisting of n atomic objects. Let d be the maximal degree of any polynomial in the
definition of the transformation functions fi(1 ≤ i ≤ n). The spatio-temporal triangulation method TST ,
as described in Algorithm 5, returns O(n5d) atomic objects.
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Algorithm 5 TST (Input: O = {O1, ...,On}, Output: {O′1,O′2, . . . ,O′`})
1: χ = Partition(O);
2: {O′′1 ,O′′2 , . . . ,O′′m} = Triangulate(O, χ);
3: if χ has more than one element then

4: {O′1,O′2, . . . ,O′`} = Merge({O′′1 ,O′′2 , . . . ,O′′m}, χ);
5: return {O′1,O′2, . . . ,O′`}.
6: else

7: return {O′′1 ,O′′2 , . . . ,O′′m}.
8: end if

The next property follows from Property 7, Property 9 and Property 10. Table 5 summarizes the
time complexity of the different steps.

Table 5. The output and time complexity of the various parts of Algorithm 5, when the input is
a geometric object, composed of n atomic objects, where the maximal degree of the polynomials
describing the transformation functions is d and the desired precision for computing the zeros of
polynomials is ε.

Step Time Complexity Output Complexity

Partition O(z(d, ε)n3 log n) O(n3d)
Triangulate O(z(d, ε)dn5 log n) O(n5d)
Merge O(n5d(log n + z(d, ε))) -
Overall O(z(d, ε)dn5 log n) O(n5d)

Property 12 (TST : computational complexity). Given a geometric object O = {O1 = (S1, I1, f1),
O2 = (S2, I2, f2), . . . ,On = (Sn, In, fn)} consisting of n atomic objects. Let d be the maximal degree of
any polynomial in the definition of the transformation functions fi(1 ≤ i ≤ n) and let ε be the desired
precision for computing the zeros of polynomials. The spatio-temporal triangulation method TST , as described in
Algorithm 5, returns a spatio-temporal triangulation of O in time O(z(d, ε)dn5 log n).

We now show that Algorithm 5 describes an affine-invariant spatio-temporal triangulation
method. We remark first that the result of the procedure TST is a spatio-temporal triangulation.
Given a geometric object O. It is clear that each snapshot of TST(O) is a spatial triangulation. Also,
st(O) = st(TST(O)). This follows from the fact that the time partition covers the whole time domain
of O and that the method TS produces a spatial triangulation.

Property 13 (TST is affine-invariant). The spatio-temporal triangulation method TST , described in
Algorithm 5, is affine-invariant.

Proof. (Recall Definition 6 for affine-invariance.) Let O = {O1, . . . ,On} and O′ = {O′1, . . . ,O′m} be
geometric objects for which for each moment τ0 in their time domains, there is an affinity ατ0 : R2 → R2

such that ατ0({O1, . . . ,On}τ0) = {O′1, . . . ,O′m}τ0 .
It follows from the construction of the spatio-temporal triangulation that TST({O1, . . . ,On})τ0 =

TS({O1, . . . ,On}τ0) and also TST({O′1, . . . ,O′m})τ0 = TS({O′1, . . . ,O′n}τ0). The property now follows
from the affine-invariance of the spatial triangulation method TS.

The following corollary follows straightforwardly from Property 13:
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Corollary 1. Let O = {O1, . . . ,On} and O′ = {O′1, . . . ,O′m} be two geometric objects such that there is an
affinity α : R2 → R2 such that, for each moment τ0 in their time domains α(Oτ0) = O′τ0 holds. Then, for each
atomic element (S, I, f ) of TST(O), the element (α(S), I, f ) belongs to TST(O′).

This shows that the partition is independent of the coordinate system used to represent the
spatio-temporal object. The affine partitions of two spatio-temporal objects that are affine images of
each other only differ in the coordinates of the spatial reference objects of the atomic objects.

Remark also that, in practice, either most of the original objects have the same time domain,
making the number of intervals in the partition very small, or all different time domains, which greatly
reduces the number of objects existing during each interval. So, in practice, the performance will be
better than the worst case suggests.

5. Applications

We now describe some applications that we believe can benefit from the triangulation described
in Algorithm 5. We first say what we mean by a spatio-temporal database.

Definition 11. A spatio-temporal database is a set of geometric objects.

For this section, we assume that each atomic object is labelled with the id of the geometric object
it belongs to.

5.1. Efficient Rendering of Objects

When a geometric object that is not in normal form has to be displayed to the user, there are two
tasks to perform. First, the snapshots of the geometric object at each time moment in the time domain
of the object have to be computed. This can be done in a brute force way by computing the snapshots
of all atomic objects. Since some will be empty, this approach might lead to a lot of unnecessary
computations. Another algorithm could keep track of the time domains of the individual atomic
objects and keep a list of active ones at the moment under consideration, which has to be updated
every instant. If the geometric object is in normal form, the atomic objects can be sorted by their time
domains, and during each interval in the partition of time domain, the list of active atomic objects will
remain the same.

The second task is the rendering of the snapshot. If the geometric object is not in normal form, the
snapshots of the atomic objects overlap, so pixels will be computed more than once. Another solution
is computing the boundary, but this might take too long in real-time applications. When a geometric
object is in normal form, no triangles overlap, so each pixel will be computed only once.

5.2. Moving Object Retrieval

The triangulation provides a means of automatic affine invariant feature extraction for moving
object recognition. Indeed, the number of intervals in the time domain indicates the complexity
of the movement of the geometric object. This can be used as a first criterium for object matching.
For objects having approximately the same number of intervals in their time domains, the snapshots at
the middle of each time interval can be compared. If they are all similar, which can be, for example,
defined as TS-isomorphic, the objects match. Or, if more exact comparison is needed, one can extract
an affine-invariant description from the structure of the elements of the triangulation of the snapshot
(see also Section 5.6).

5.3. Surveillance Systems

In some applications, e.g., surveillance systems, it is important to know the time moments when
something changed, when some discontinuity appeared. This could mean that an unauthorized person
entered a restricted area, for example, or that a river has burst its banks. Triangulating the contours of
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the recorded images and reporting all single points and end points of intervals of the partition of the
time domain indicates all moments when some discontinuity might have occurred.

5.4. Precomputing Queries

If we do not triangulate each geometric object in a database separately, but use the contours
of all geometric objects together in the triangulation, the atomic objects in the result will have the
following nice property. For each geometric object in the original database, an atomic object will either
belong to (or be a subset of) it entirely, or not at all. This means that we can label each element of the
spatio-temporal triangulation of the database with the set of id’s of the geometric objects it belongs
to. We illustrate this for the spatial case only in Figure 10. Suppose we have two triangles A and B.
The set A is the union of the light grey and white parts of the figure, the set B is the union of the dark
grey and white parts of the figure. After triangulation, we can label the light grey triangles with {A},
the white triangle with {A, B}, and the dark grey triangles with {B}.

A

B

Figure 10. The set operations between objects are pre-computed in the triangulation.

Using this triangulation of databases in a preprocessing stage, means that the results of queries
that ask for set operations between geometric objects are also pre-computed. Answering such a query
boils down to checking labels of atomic objects. This means a lot of gain in speed at query time. Indeed,
even to compute, for example, the intersection of two atomic objects, one has to compute first the
intervals where the intersection exists, and then to consider all possible shapes the intersection can
have, and again represent it by moving triangles.

5.5. Maintaining the Triangulation.

If a geometric object has to be inserted into or removed from a database (i.e., a collection of
geometric objects), the triangulation has to be recomputed for the intervals in the partition of the time
domain that contain the time domain of the object under consideration. This may require that the
triangulation in total has to be recomputed.

However, the nature of a lot of spatio-temporal applications is such that updates involve only
the insertion of objects that exists later in time than the already present data. In that case, only the
triangulation at the latest time interval of the partition should be recomputed together with the new
object, to check whether the new data are a continuation of the previous. Also, data is removed only
when it is outdated. In that case a whole time interval of data can be removed. Examples of such
spatio-temporal applications are surveillance, traffic monitoring and cadastral information systems.

5.6. Affine-Invariant Querying of Spatio-Temporal Databases

An interesting topic for further work is to compute a new, affine-invariant description of geometric
objects in normal form, that does not involve coordinates of reference objects. The structure of the



ISPRS Int. J. Geo-Inf. 2017, 6, 100 28 of 37

atomic objects in the spatio-temporal triangulation can be used for that. Once such a description is
developed, a query language can be designed that asks for affine-invariant properties of objects only.

6. An Application of Affine-invariant Triangulation to Image Retrieval

In this section, we describe an application of the affine-invariant spatial triangulation algorithm of
Section 3 to the problem of image indexing and retrieval. We start by describing some affine-invariant
color feature extraction methods in Section 6.1. Next, in Section 6.2, we describe the implementation
and application for image retrieval in the context of bird images. Finally, in Section 6.3, we discuss
an experimental evaluation of the proposed method.

6.1. Affine-Invariant Color Feature Extraction

We start with the description of two methods for color feature extraction. The primary color ratio
measure computes the ratios of the sum of the red, respectively green and blue color values of all pixels,
whereas the rainbow color ratio measure defines N colors a priori and computes the ratios of the areas of
the picture filled with each color. We show that both measures are affine-invariant. We assume that
each image is represented as a set of colored points. Most pixel-based image representations allow 256
different shades of green, red and blue.

6.1.1. The Primary Color Ratio Similarity Measure

Let RA (respectively GA, BA) be the sum of all red (respectively green, blue) color values of the
pixels of an image A. Then the ratios RA

GA
and BA

GA
(if GA 6= 0) are independent of each other. Hence, we

can describe each image A as a two-dimensional vector VA = ( RA
GA

, BA
GA

), which we call the primary color
ratio vector. It is very unlikely that all three values RA, GA and BA are zero for some image A. This
would mean that the image is completely black. Therefore, we can always find one of RA, GA and BA
that is not zero and use this value in the denominator for computing the ratios. We assume that each
image has some green in it.

We now prove that the primary color ratios are affine-invariant.

Property 14. Let RA, GA and BA be the sums of the red, green and blue pixel values of image A. Let α be
an affinity. Then Rα(A) = |α|RA, Gα(A) = |α|GA and Bα(A) = |α|BA, where |α| is the determinant of the
transformation matrix of α.

Proof. Let RA be the sum of the red values of the pixels of image A. Then we can write RA as ∑p r(p),
where p ranges over all pixels of A and r(p) is the red value of pixel p.

Let |A| be the number of pixels in image A. There are 256 different possible values of red,
so the amount of different values of red in image A is at most min(|A|, 256). For each value of
red ri in image A, we can compute the number of pixels Nri occupied by that value. We have that
RA = ∑p r(p) = ∑i ri Nri , where i ranges over all different values of red in the image.

If we apply transformation α to image A, we know from Chapter 21 of [21] that for each area
composed of pixels with red value ri, the area occupied by the pixels with red value ri in α(A) equals
|α|Nri , where |α| is the determinant of the transformation matrix of α.

This means that:

Rα(A) = ∑
i

ri|α|Nri = |α|∑
i

ri Nri = |α|∑
p

r(p) = |α|RA.

The same reasoning applies for the sum of the green, respectively blue, color values.

Property 15. Let RA, GA and BA the sums of the red, green and blue pixel values of image A. Let α be
an affinity. Then all ratios of two of these values are affine-invariant.
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Proof. We only prove the Property for the ratios RA
GA

and BA
GA

. More specific this means we have to
prove that

RA
GA

=
Rα(A)

Gα(A)
and

BA
GA

=
Bα(A)

Gα(A)
.

We know from Property 14 that Rα(A) = |α|RA, Gα(A) = |α|GA and Bα(A) = |α|BA, where |α| is
the determinant of the transformation matrix of α. By taking the ratios we get the required result.
The proofs for all other ratios are similar.

Definition 12. Let VA and VB be the primary color ratio vectors of images A and B, respectively. Then the
primary color ratio similarity measure defines the distance between A and B as the distance between the
two-dimensional vectors VA and VB.

Remark that any distance measure can be used. In our implementation we use the Euclidean
distance between the primary color ratio vectors.

6.1.2. The Rainbow Color Ratio Similarity Measure

The rainbow color ratio similarity measure was first introduced in Chapter 21 of [21]. From all
possible red, green and blue values of the image pixels, a large set of colors of the rainbow can be
defined. Suppose we classify each part of an image as having one of N different colors. The ratio of
the total areas of any pair of colors is affine-invariant [21].

Suppose that we have a set of N different colors. We can derive M = N − 1 ratios that are
independent of each other, e.g. by fixing one color and use it as the denominator for all ratios. We can
describe each image as a vector of M values where the ith entry corresponds to the value of the ith

rainbow color ratio.
The rainbow color ratio similarity measure is defined as follows [21]:

Definition 13. Let VA and VB be the vectors of the rainbow color ratios in images A and B, respectively.
Then the distance between A and B is defined as the Euclidean distance between VA and VB.

The primary color ratio measure treats the red, green and blue color values independently, but is
a very global method. The rainbow color ratio measure results in a higher-dimensional feature vector,
hence the vectors are possibly more sparsely distributed. However, the definition of colors out of
their red, green and blue values implies that they are not completely independent from each other. In
Section 6.3.1 we compare both methods experimentally.

6.1.3. Indexing Feature Vectors

The primary color ratio measure and rainbow color ratio measures described above construct
a feature vector from an image. There exist several efficient techniques for indexing multidimensional
points. In general, spatial access methods (SAM) can be divided into two classes: data-driven
and space-driven. Examples of data-driven techniques are R−trees [36], R∗−trees [37] and
Hilbert-R−trees [38]. Those are all based on a hierarchy of minimum bounding rectangles (MBRs).
Quad trees [39] are an example of a space driven indexing technique. Quad trees, in the case of
two-dimensional points, recursively partition the plane into four equal parts, until each part only
contains one element. Quad trees are generally used when the feature vectors are two-dimensional,
but they can be extended for higher dimensions too.

6.2. Implementation and Application for Image Retrieval of Bird Images

In previous sections, we introduced an affine-invariant comparison method for both color and
shape information of an image. We now propose a two-level indexing structure based on both
methods. First, a color ratio measure is used to group all images with comparable color schemes (up to
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some threshold). Within such a group of similar images, shape information is used for more refined
comparison.

We now describe in more detail the implementation of the measures. We used Intel’s openCV
library for image processing functions. The test set consists of colored drawings of birds, all having
a white background. The images are obtained from http://www.clipart.com. The test set consists of
292 different images, and 10 of them have 9 distortions. The distortions include three rotations, two
scalings, two sheer transformations and two reflections. Figure 11 shows an image and its distortions.

Figure 11. An example of an image representing a cockatiel and its distortions.

6.2.1. Implementation of the Primary Color and Rainbow Color Ratio Measures

The implementation of the primary color ratio measure is straightforward. We used the ratios R
G

and B
G . For the rainbow color ratio measure, we defined 9 colors: red, green, blue, yellow, turquoise,

purple, white, gray and black. Their respective areas are denoted R, G, B, Y, T, P, W, Gr and Bl
respectively.

The definition in terms of primary color range for the nine colors we used for the rainbow color
ratio measure are as follows:

Color Formula

red (R− G) ≥ 50∧ (R− B) ≥ 50
yellow R ∼=c G ∧ (R− B) ≥ 50
green (G− R) ≥ 50∧ (G− B) ≥ 50
turquoise B ∼=c G ∧ (B− R) ≥ 50
blue (B− G) ≥ 50∧ (B− R) ≥ 50
purple R ∼=c B ∧ (R− G) ≥ 50
white R ∼=c G ∼=c B ∧max(R, G, B) ≤ 30
grey R ∼=c G ∼=c B ∧ ¬(max(R, G, B) ≤ 30∨max(R, G, B) ≥ 220)
black R ∼=c G ∼=c B ∧max(R, G, B) ≥ 220.

In the above, the expression X ∼=c Y denotes that the absolute value of the difference between the
values X and Y is at most 20.

For each image, we take out the background. Let I be the total area of the picture without its
background. The rainbow color ratio vector of each image consists of the ratios R

I , G
I , B

I , Y
I , T

I , P
I , Gr

I
and Bl

I .
For both methods, we do not take into account the pixel values of the background of the image.

6.2.2. Implementation of the Shape Comparison Measure Based on the Affine Triangulation

As we use digital images, we don’t have an exact description of the shape by means of boundary
line segments. We extract the boundary information of an image and compute the triangulation using
the Affine Shape Comparison (ASC) Algorithm (Algorithm 6).

In our experiments, we reduce the number of lines L to 10. Figure 12 shows a parrot and the lines
which result using Algorithm 1 of Section 3.
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Algorithm 6 The ASC Algorithm
Step 1. The image is converted into black and white to abstract from all color information and get the
shape silhouette;

Step 2. The shape boundary is detected using a Canny edge detector operation. This method, proposed
by Canny [40], is considered the most efficient method for edge detection. It is implemented in the
openCV library;

Step 3. From this boundary, lines are extracted using the Simple Hough Transform (SHT) [41]. This is
a popular method for extracting geometric primitives. Each line in an image corresponds to a point
(ρ, θ) in the Hough space such that the equation of the line is ρ = xcos(θ) + ysin(θ). Given a threshold
τ, the Hough transform returns (ρ, θ)−pairs corresponding to lines that contain at least τ boundary
points.

Step 4. The lines are then clipped against the image frame and merged.
The nature of the Hough transform is such that it returns a lot of redundant lines. If the image contains
a strong line, then it is detected as a bundle of lines that vary only slightly. Ideally, there would be only
a limited amount of lines. Otherwise, the triangles resulting from the triangulation become very small
and the chance that two different images match increases because of the small triangles. Therefore,
we merge the lines until there are at most L left. The input of the merging procedure is a set of line
segments. First, all lines receive weight one. The weight of line segment p, q is denoted W(p, q). A
threshold is initialized on one pixel. Repeatedly this threshold is increased until no more than L lines
are left. For each value of the threshold, all pairs of line segments pq and rs are tested whether their
end points are closer together than the threshold value. If so, the pair of segments is replaced by one
segment uv that is computed as follows:

u =
W(p, q)

W(p, q) + W(r, s)
p +

W(r, s)
W(p, q) + W(r, s)

r

and

v =
W(p, q)

W(p, q) + W(r, s)
q +

W(r, s)
W(p, q) + W(r, s)

s.

Step 5. The four segments bounding the image frame are added and the triangulation is computed as
described in Algorithm 1 of Section 3.

Figure 12. The detected lines after reduction.

Since we are dealing with very approximate boundary information, it is not robust to compare
the exact topological information of the triangulations of the two images. Instead, we compute the
color ratio vectors of the N biggest polygons (i.e., we don’t compute the last step of the triangulation
algorithm). As relative areas are affine-invariant, it is true that if p1, p2, . . . , pN are the N biggest
polygons in the triangulation of image A, and α is an affine transformation, then α(p1), α(p2), . . . , α(pN)

are the biggest polygons of the triangulation of image α(A).
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Finding a one-to-one mapping between the biggest polygons would have to deal with the case
that several polygons have Reni, we take the weighted average of the N feature vectors for each image,
and compare those. We call those vectors weighted color ratio vectors. The weight of each polygon
is the ratio of the area of that polygon and the total area of the three biggest polygons (hence the
weight is also an affine invariant). If N is large, then there could be a large difference in the size of the
biggest and the smallest polygons. If N is small, then in general there is only a small difference and
in that case the weight may be even eliminated without a significant loss of performance. The shape
similarity measure is defined as the distance (e.g., the Euclidean distance) between two weighted color
ratio vectors.

6.3. Experimental Results

We now describe the experiments and their results.

6.3.1. Comparison of the Color Ratio Methods

We compare the primary color ratio and the rainbow color ratio measure. We compare the
distribution of the values of the distances between all pairs of images. Also, we test for each of the
10 images of which there are distortions in the database, how accurate all distortions can be found
using each method.

We first compare the distribution of the values of the distances between all pairs of images.
Figure 13 shows this distributions for each method. The horizontal axis shows the range of the distance
values. The vertical axis shows the number of image pairs that have a distance within a certain range.
It appears that the rainbow color ratio measure has a smaller range of distance values, they are all
smaller than 1.3. For the primary color ratio measure, the values range between zero and 2.7 (for clarity,
in the graph of Figure 13, all values greater than 2 are put in one category).

Figure 13. Comparison of both color measures: distribution of the distance values.

We now compute, for each of the 10 test images, the distances to all other images and sort
the other images by that distance. We count the maximal distance between each image and its
9 distortions, and the number of images (called rank) we have to return in order to get all relevant
matches, i.e., the 9 distortions. These calculations are shown in the table below, for both the primary
color ratio and the rainbow color ratio. Figure 14 shows for both measures the closest images for
a parrot, corresponding to image one in the table. The upper row is the result for the primary color
ratio measure, the lower row is the rainbow color ratio measure. We see that the primary color ratio
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measure has better performance. The average distance of the primary color ratio measure is only half
that of the rainbow color ratio measure. If we compute the efficiency of both methods we have that
the rainbow color ratio measure has an efficiency of 60%, where the efficiency of the primary color
ratio is 89%. The following table gives an overview.

Primary Rainbow Combined

id rank dist. rank dist. rank scan

1 11 0.0486 14 0.2172 9 14
2 9 0.1793 10 0.9633 9 10
3 9 0.0293 11 0.0931 9 11
4 9 0.0096 21 0.1203 10 21
5 10 0.0274 9 0.0337 9 10
6 9 0.0619 10 0.0919 9 10
7 16 0.0212 31 0.1511 9 31
8 9 0.1078 23 0.1027 9 23
9 10 0.0413 10 0.0411 9 10

10 9 0.0253 10 0.0664 9 10
max 16 0.1793 31 0.2172 10 31
avg 10.1 0.0552 14.9 0.1018 9.1 15

If we combine all information, we can say that the primary color ratio measure both spreads the
distances over a bigger range (although the feature vectors have a lower dimension than those of the
rainbow color ratio method) and puts the distortions of the same image closer to each other. So the
primary color ratio measure can distinguish better between images that are distortions of each other
and images that have a similar color scheme but a different shape.

Figure 14. Comparison of the both color measures: closest images.

In Figure 14, we can see that the extra images found by both color methods are different. Images 7
and 10 of the first are different from images 7, 10, 11 or 12 from the second row. This leads to the novel
idea of combining both the primary color ratio measure and the rainbow color measure by taking the
intersection of the nearest neighbors found by the two methods. In the rainbow and primary color ratio
measure, we still need to distinguish the relevant from the nonrelevant images in the output. This can
be done either by the user of the system, or by some automatic method, for example an affine-invariant
shape comparison method.

We first search the matching images by means of both the rainbow color ratio and the primary
color ratio, and then reduce the output using the following simplification algorithm (Algorithm 7).
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Algorithm 7 Simplification Algorithm

Step 1. Let L1 be the output of the primary color ratio measure, containing m images. (The number m
is the number of images returned that guarantees that 100% of the relevant images are found. In our
previous experiments, m = 31 when using the rainbow color ratio method.) Let L2 be the output of the
rainbow color ratio measure, containing m images. Let L′1, L′2 and Out be lists of image ID’s, initialize
both lists to the empty list.

Step 2. Sequentially scan L1 and L2 in parallel. The first time, take 2 elements of L2 such that we always
read one element ahead in that list. Add each element that had been viewed to L′1 or L′2, corresponding
to the list it originates from. Each time an element from both lists is read, check of L′1 and L′2 contain
any common elements. If so, add the common element to Out and remove it from both L′1 and L′2.

Step 3. Return Out.

In the Table above, we show again the number of elements we have to return in order to obtain
100% relevance. We can see that, except for image number 4 (i.e., in 90% of the cases), the first 9
elements of the intersection are the 9 distortions of the image (column 6). Column 7 shows how far we
have to scan both lists before the number of intersections in column 6 of the corresponding row are
found. This is the same as the maximum of the ranks for the primary and the rainbow color measure.
The efficiency of the combination is significantly better than the efficiency of the primary color ratio
method. We obtain that 98.9% of the returned images is relevant. In Figure 15, the performance of all
three methods is combined into one graph.

Figure 15. Comparison of the performance of the three color measures.

6.3.2. Comparing Shapes

As we already mentioned in the previous subsection, when the system returns the best matched
to the user, either the user or some other technique needs to separate the relevant from the nonrelevant
images. We now look if we can use the shape comparison method to do this separation. For the primary
color ratio method we apply the shape comparison on the 16 nearest neighbors found by the primary
color ratio method. For the rainbow color ratio method we search amongst the 31 nearest neighbors.

The following table shows the experimental results for the shape measure. We computed the
distance for N = 1, i.e., the biggest polygon only is considered.
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Distance
Rainbow Primary

Color Rank Color Rank

1 0.1938 13 10
2 0.3986 16 11
3 0.4059 30 15
4 0.5903 29 10
5 0.5936 30 16
6 0.2126 10 10
7 0.2898 24 9
8 0.1999 23 12
9 0.7869 30 16

10 0.6930 31 15
max: 0.7869 31 16
avg: 0.4364 23.6 12.4

It seems that the shape comparison cannot add any value to the rainbow color ratio and primary
color ratio measures. There are two explanations for this. First, the primary color and rainbow color
ratio measures perform very well. Secondly, the boundary detection method used (i.e., the Hough
transform) is not very accurate.

Without more accurate boundary detection algorithms, it seems that the applications of the
affine-invariant triangulation lie mainly in the field of constraint databases [20,21]. Here, the exact
equations that define the boundary of figures are known.

7. Concluding Remarks

We adopted the hierarchical data model of Chomicki and Revesz [1] for moving objects, since
it is natural and flexible. However, this model lacks a normal form, as different sets of objects might
represent the same spatio-temporal set in R2 ×R. Furthermore, we are interested in affine-invariant
representation and querying of objects, as the choice of origin and unit of measure should not affect
queries on spatio-temporal data.

We first introduced a new affine-invariant triangulation method for spatial data. We then extended
this method for spatio-temporal data in such a way that the time domain is partitioned in intervals for
which the triangulations of all snapshots are isomorphic.

The application of our affine-invariant spatial triangulation method to image indexing and
retrieval is described in Section 6.

The proposed affine-invariant triangulation is natural and can serve as an affine-invariant normal
form for spatio-temporal data. Further work includes the affine-invariant finite representation of
data and the design of an affine-generic spatial/spatio-temporal query language to query such
a normal form.
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