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Abstract One of the objectives of railway infrastructure managers is to im-
prove the punctuality of their operations, while satisfying safety requirements
and coping with limited capacity. In order to fulfil this objective, capacity
planning and monitoring have become an absolute necessity. Railway infras-
tructure managers possess tremendous amounts of data about the railway
operations, which are recorded in so-called train describer systems. In this pa-
per, a set of methods is proposed to guide the analysis of capacity usage based
on these data. In particular, train connections are categorized according to
the severity of train reroutings as well as the diversity of these reroutings. The
applied method is able to highlight areas in the railway network where trains
have a higher tendency to diverge from their allocated route. The method is
independent from the underlying infrastructure, and can therefore be reused
effortlessly on new cases. The analysis provides a starting point to improve the
planning of capacity usage and can be used to facilitate the communication
between capacity planning at one hand and operations on the other hand. At
the same time, it presents an illustration on how process mining can be used
for analysis of train describer data.
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1 Introduction

Improving the punctuality of railway operations is one of the most impor-
tant objectives of rail infrastructure managers. In reaching this goal, they are
restricted by safety constraints and capacity limitations. As for the latter re-
striction, optimizing capacity planning and monitoring constitutes a major
necessity.

In order to bridge the gap between railway scheduling and execution, it is
necessary to analyse to which extent traffic operators make decisions to deviate
from the planned capacity allocation. Consequently, it needs to be examined
whether these decisions were favourable, thereby possibly pointing at flaws
in the railway planning, or not. While a lot of research on train scheduling
and realtime rescheduling exist, little literature is available on the ex post
analysis of capacity usage. Most research in this area is focussed on train
delays and ensuing conflicts, while limited consideration has been given to the
evaluation of train rescheduling. Nevertheless, railway infrastructure managers
possess tremendous amounts of data about the railway operations, which are
recorded in so-called train describer systems. Because of the abundance of
data, extracting knowledge from it, is a complicated task.

The contribution of this paper is twofold. Firstly, metrics are proposed to
evaluate train scheduling by using train describer data. The metrics allow to
identify areas in the train schedule where reroutings are frequent, and will
provide guidelines to consequently improve the scheduling of trains. Train
describer data recorded by the Belgian railway infrastructure manager Infrabel
will be used to illustrate the workings of the suggested metrics. Secondly, the
paper illustrates the large potential of process mining techniques to analyse
train describer data. Process mining is a relatively young research discipline
which aims at the extraction of process-related knowledge from event data
(van der Aalst, 2011). The metrics used to quantify deviations are drawn from
the field of process mining, which is well suited for the analysis of event data.

The next section will discuss related work. Consequently, a set of metrics
will be developed in Section 3, together with a methodology to use them.
Finally, in Section 4, the methodology will be illustrated using train describer
data recorded by the Belgian railway infrastructure manager Infrabel.

2 Related work

Improving the punctuality of railway operations starts with the development
of a robust train schedule. In this area, the work in Törnquist (2006) should be
noted. The author provides an overview of 48 techniques for railway schedul-
ing. These techniques were categorized according to the plan perspective, the
supported infrastructure, the goal, the level of evaluation and the control strat-
egy. It demonstrates that most attention in literature goes to techniques for
tactical scheduling and less to operational scheduling. Moreover, a consider-
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able amount of techniques can only be applied on line-infrastructures, and not
on more complex and realistic network-infrastructures.

More recently, robust scheduling in a more complex railway infrastructure
was investigated in Dewilde (2014). The main focus of this PhD thesis was on
the robustness of the complex station area of the North-South connection in
Brussels. The author identified the different elements which determined the
robustness of a train schedule, and hereupon defined an approach to improve
the robustness, by taking into account routing decisions, train sequences and
platform allocation.

Once railway schedules are put into service, the performance of the oper-
ations needs to be monitored and evaluated. Train conflicts and delay propa-
gations have been studied extensively in literature of transportation and op-
erations research. The Belgian train describer data used in this paper were
analysed before with respect to train delays (Cule et al, 2011). Using frequent
itemset mining, patterns between train delays were detected. If train A has a
delay of x minutes or more, train B will also have a delay with x minutes or
more, with a certain confidence y.

The use of train describer data for data analysis, as in this paper, has been
done in Kecman and Goverde (2015a) and Kecman and Goverde (2015b). In
this work, the authors aimed at the adaptive prediction of train event times, i.e.
taking into account not only delay but also predicted route conflicts, braking
and acceleration times.

Conte and Schöbel (2008) identified three different types of delay propa-
gation: propagation along the same train, propagation between trains due to
required connections, and propagation between trains due to shared use of
scarce infrastructure capacity. The last type of delay propagation is better
known as knock-on delays (Carey and Kwieciski, 1994; Higgins and Kozan,
1998; Yuan and Hansen, 2007). These three types of propagations were anal-
ysed through the use of stochastic models.

Related to the work of Conte and Schöbel (2008), Flier et al (2009) present
efficient algorithms to detect both resource conflicts and delays from main-
tained connections, within large scale data sets. Further steps which are pro-
posed are a statistical examination and to extend the approach to global de-
pendencies. The latter could for instance lead to the construction of networks
of conflicts between trains.

In the same area, D’Ariano (2008) focussed on real-time dispatching. The
objective of this PhD thesis has been to develop a decision support system
for realtime management of railway traffic. The resulting tool, called ROMA,
Railway traffic Optimization by Means of Alternative graphs, assists traffic
managers in choosing the best trajectory, ordering of trains and the optimal
speed of trains. The recommendations done by the system are based on sim-
ulations of the resolution of traffic after certain decisions are taken.

In Weeda and Hofstra (2008), the authors advocate that it is important to
have feedback from operations to planning, to close the controle loop. In order
to achieve this, the performance of the railway operations in the Dutch rail-
way are analysed and this is used as input towards a better planning. In The
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Netherlands, train describer data have been used to identify route conflicts.
The TNV-conflict tool introduced in Daamen et al (2008) defines a train con-
flict as the situation in which a train comes within sight distance of a signal
which is not open, i.e. obliging the train to slow down or halt. Both conflicts
due to scarce capacity and required train transfers were identified, in accor-
dance with the different delay propagations proposed in Conte and Schöbel
(2008). The additional tool TNV-statistics has been developed to look into
the conflicts with more detail, and to link them together in conflict chains or
trees (Goverde and Meng, 2011).

In Sammouri (2014), several data mining techniques are applied on a large
set of censor data generated by railway infrastructure and rolling stock. The
aim of the analysis is to use temporal sequences of recorded events to predict
failure of equipment, as to improve maintenance scheduling. Although not
related to routing conflicts, it shows how much can be learned from analysing
the great amount of data which is available.

Because of the huge expansion of process event data during the last cou-
ple of decades, companies are dealing with the challenge of retrieving useful
insights from it, and apply those to gain competitive advantages. By getting a
better understanding of business processes and improving them, process min-
ing provides ways to reach this goal (van der Aalst, 2011). The birth of pro-
cess mining dates back to the end of the previous century (Agrawal et al, 1998;
Cook and Wolf, 1999), and focused on the retrieval of process control-flow from
event logs containing recorded behaviour. Although the field has become much
broader, control flow discovery is the most mature research track within pro-
cess mining. An overview of existing process discovery algorithms can be found
in De Weerdt et al (2012). In order to measure the quality of a discovered
process model, different quality dimensions have been defined (Rozinat et al,
2007), i.e. fitness, precision, generalization and simplicity. For each of these
dimensions, several metrics have been developed and implemented, of which
an overview can be found in vanden Broucke et al (2013).

3 Design and development of data analysis methods

Apart from the TNV-statistics tool and the work in Cule et al (2011);
Sammouri (2014), little attention has been directed to the analysis of recorded
data. Nevertheless, event data such as train describer data can be used to
extract process-related knowledge using process mining. The minimal require-
ment to pursue process mining is that each event can be related to both a case
and an activity (van der Aalst, 2011). A case refers to a particular instance
of the process, e.g. a specific train trip. Activities are specific types of events.
For instance, activities related to a train trip can be the passing of a signal, or
the adjustment of its trajectory. Furthermore, each event should have a times-
tamp attached to it. Other attributes may be available, which can be related
to the event as well as to the case. Typical additional event attributes relate
to resources. As such, the passing of a signal may also record which signal
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was passed. Case attributes can contain any characteristic information about
the process instance. For instance, the type of rolling stock, or the number of
carriages.

The main focus of this paper is to analyse how recorded train routes de-
viate from the planned route. Thus, two routes are needed for each train: the
planned route and the actual route. In our analysis, the planned routes refer
to the routes which are communicated to the signal area before the entering or
departure of the train. Note that hereby, anticipated changes to the capacity
allocation, e.g. due to infrastructure works, are neutralized. Both planned and
actual routes have been defined at the level of signals. In order to describe
the complete path, also the final track segment has been taken into account.
This is the track where the train arrives in the destination station or where
it leaves the signal area. Considering this track segment is essential since the
train might have different routes after passing the last signal. Reroutings on
this point of the route include platform changes, and should therefore not
be ignored. Formally, we define the actual and planned route as follows. An
overview of the terminology used in this paper is provided in Table 1.

Definition 1 (Preliminaries) We define S as the alphabet of signals and T
as the alphabet of track segments. S∗ is the set of al finite sequences over S.

Definition 2 (Actual route) The actual route of a train i, denoted by σi, is
defined as a sequence of signals plus the destination track segment of the train
within the area. Given an s ∈ S∗ and a t ∈ T , we can define σi as < s, t >.

Definition 3 (Planned route) The planned route of a train i, denoted by
πi, is the allocated route of a train 30 minutes before it enters the signalling
area. It consists of a sequence of signals plus the destination track segment of
the train within the area. Given an s ∈ S∗ and a t ∈ T , we can define πi as
< s, t >.

Given the planned and actual route, rerouting can be formally defined as
follows:

Definition 4 (Rerouting) A rerouting, or deviation, of a train i is defined
as the case where a difference exist between the planned route of a train and
the actual route of a train, i.e. σi 6= πi.

Using the process mining tool Disco1, recorded process behaviour can be
easily visualised as a directed graph. Graphs G1 and G2 in Figure 1 show the
visualisation of two fictitious groups of train trips. The hypothetical underlying
infrastructure is shown in Figure 2. In the directed graphs, each node refers
to a signal which was passed by one or more trains, and each edge refers to
a route from one signal to the next that was taken by at least one train.
Both nodes and edges are annotated with the number of running trains, which
are also visualised by their colour and width, respectively. The darkest path

1 http://fluxicon.com/disco/

http://fluxicon.com/disco/
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Table 1 Terminology used in this paper.

Terminology Description

Route A route of a train is a sequence of signals, when needed supplemented
with additional details, such as track segments.

Planned route The planned route of a train, based on planning and apriori known
disruptions.

Actual route The actual route of a train, based on train describer data.
Rerouting The case where the actual and planned route of a train differ.
Connection A connection refers to all train trips from station A to station B, when

needed taking into account certain waypoints (in case there are multiple
way to go from A to B). This does not take into account whether the
train stops in all station or just in major cities.

Relation A relation refers to all train trips from station A to station B, and vice
versa, when needed taking into account certain waypoints (in case there
are multiple way to go from A to B). This does not take into account
whether the train stops in all station or just in major cities.

throughout the graph, i.e. the most frequent path, corresponds to the planned
route in this example. When all trains visualised in a graph have the same
planned route, reroutings become readily noticeable.

Based on an exploratory inspection of the recorded train routes and inter-
views with business experts, two dimensions seemed relevant to quantify train
reroutings. Firstly, the severity of the reroutings should be measured. This
refers to both how many deviations occurred and how long they are. Upon
inspection of both graphs, one can see that more reroutings occurred in G1

compared to G2. Furthermore, reroutings in G2 seem to be less severe, as they
take up at most two signals. In contrast, in G1, only about three quarters
of the trains passed through signal AD as planned, and only 2 signals of the
planned routes were never deviated from. The severity of reroutings will be
referred to as the rerouting severity.

Secondly, the complexity and structuredness of the graphs are relevant, as
they represent how many different reroutings have occurred. In Figure 1, the
model on the left is clearly less complex than the model on the right. The
complexity of the model will be used as a proxy for rerouting diversity.

Visual inspection of all planned routes would, however, be a cumbersome
task. Therefore, the next paragraphs suggest metrics to quantify the sever-
ity and diversity of reroutings and to single out the routes which should be
examined more closely.

3.1 Rerouting severity

In order to measure rerouting severity, we draw upon insights of conformance
checking within process mining. Given a process model, conformance checking
determines whether the events that were recorded can be replayed by the pro-
cess model (van der Aalst, 2011). In van der Aalst et al (2012), the alignment-
based fitness measure has been defined, which is one of the best-known met-
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Fig. 1 Fictitious actual routes for two sets of train trips with planned route AA → AB →

AC → AD → AE → AF → AG → AH.
Referred to as G1 (left) and G2 (right)

rics within conformance checking. In general terms, each case is aligned to the
most optimally corresponding execution trace of a process model, according
to a cost-function. For cases which are allowed by the model, the cost of the
alignment is obviously zero. For cases which cannot be replayed by the model,
corrections have to be made. A correction can be an insertion of an event, a
deletion of an event, or the substitution of an event. Note that multiple align-
ments can be made, which each have their own cost. Using default values, a
single insertion or deletion has a cost of 1, while a substitution is allocated
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Fig. 2 Example infrastructure.

a cost of 2. The most optimal alignment will be used to compute the overall
fitness between the recorded behaviour and the model.

In the context of train deviations, suppose we have a group of k trains
which were allocated the same planned route. Let πL be the planned route
of the trains and let L = {σ1, ..., σk} refer to the set of the actual routes
of the trains. For train i, given the actual route σi ∈ L and πL, we define
λπL

(σi) as the optimal alignment for the actual route σi and δ(λπL
(σi)) as

the corresponding cost. It should be noted that there are multiple ways to
align the actual route with the planned route, i.e. different combinations of
insertions and deletions will change the actual route into the planned route.
Here, the optimal one is chosen, i.e. with the lowest cost. The fitness for train
i is then defined as

f(σi, πL) = 1−
δ(λπL

(σi))

|σi|+ |πL|
(1)

where |σi| and |πL| refer to the length of the actual route and planned route,
respectively. In the worst-case scenario, a train followed a completely different
sequence of signals throughout the network. To align such a route, all signals
that were passed by the train need to be removed, while all signals on the
planned route need to be inserted. Consequently, the total cost will equal the
nominator, resulting in a fitness value equal to zero. In the optimal case, when
σi = πL, then δ(λπL

(σi)) = 0, yielding a fitness value of one. Given the fitness
values for all individual trains, the overall fitness value can be computed for a
set of train trips L as follows:

Fitness F (L) =

∑
σi∈L

f(σi, πL)

|L|
(2)

Table 2 Example of an alignment between actual route σ1 and planned route πL.

πL AA ⊥ AB AC ⊥ AD ⊥ AE AF AG AH
σ1 AA AXB ⊥ AC AXD ⊥ AXE ⊥ AF AG AH

Table 2 shows a fictitious example alignment between planned route πL

and actual route σ1 =< AA,AXB,AC,AXD,AXE,AF,AG,AH >. Three
signals of the planned route were not passed and were thus deleted from the
route, as indicated with the ⊥-symbol. Furthermore, three signals were vis-
ited, although they didn’t belong to the planned route, which results in three
insertions. Notice that, in this case, each consecutive pair of one insertion
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and one deletion can also be regarded as a substitution, which would yield an
equivalent optimal alignment according to the default cost-function. However,
in general, it is not obligatory to have one deletion for each insertion, or vice
versa. Since the planned route, as well as the actual route, consists of 8 signals,
Equation (1) results in a fitness value of 0.625.

The overall fitness values for each of the planned routes will be used as a
proxy for the rerouting severity. The lower the fitness value, the more sensitive
the route is towards train reroutings. In Figure 1, it was already clear that,
weighted by the frequencies, slightly more reroutings occurred in G1 compared
to G2. Indeed the Fitness-metric for the set of train trips G1 is 0.8844, while
for G2 it is 0.9175.

An analysis of variance can be performed to see whether deviation severity
differs significantly among different groups of trains. These groups can be
composed in different ways, depending on the purpose of the analysis: e.g.
comparing trains on different itineraries, comparing trains at different times
of the day, etc. Pairwise differences between groups and corresponding p-values
can then be used to identify which specific groups perform significantly worse
or better.

Once the interesting cases have been identified, the reroutings can be scru-
tinized further. For instance, are there only a limited number of distinct devi-
ations, or are there many different ones? How are they distributed along the
route? How many distinct reroutings generally happen at one specific point of
the route, on average? In order to answer these questions, the dimension of
rerouting diversity will be further defined in the next paragraph.

3.2 Rerouting diversity

The aim of this second dimension is to investigate whether trains on a certain
route always deviate in a similar manner or have many different reroutings
over time. In order to measure diversity, we take a new look at the directed
graphs displaying all recorded behaviour, as those shown in Figure 1. The
complexity of these models can be used as proxy for the deviation diversity.

Based on the visual inspection of a series of graphs, it was observed that
diversity cannot be measured in a single metric. For instance, in the lower part
of G2, about 8 different routes have been observed from signal AE to signal
AH. This is remarkably more than the number of different routes observed
at any point in G1. It is therefore said that the reroutings of G2 are wider.
This type of diversity will be referred to as horizontal diversity. Conversely,
deviations inG1 have occurred in a larger part of the itinerary, i.e. on all signals
except for the first and the last. This type of diversity will be referred to as
vertical diversity. Two different process complexity metrics have been adapted
to the specific context of this paper, both taking into account one specific type
of diversity. Both metrics are discussed in the following paragraphs.



10 Gert Janssenswillen et al.

3.2.1 Horizontal diversity

The Extended Cyclomatic Metric (ECyM), or cyclomatic complexity has been
defined by Thomas J. McCabe (McCabe, 1976) as a means to estimate the
testability and maintainability of software systems. It uses a directed graph as
input, consisting of nodes and edges. Given the number of edges e, the number
of nodes n and the number of connected components p, ECyM was defined as

ECyM(e, n, p) = e− n+ 2p (3)

Note that the formula for the cyclomatic complexity differs from the formula
for the cyclomatic number, which is equal to e−n+p. The cyclomatic number
only has a logical interpretation in the context of strongly connected graphs2.
In contrast, the cyclomatic complexity is primarily directed towards graphs
which are not strongly connected, but which have clear start and end points,
as in our case. However, the cyclomatic complexity is equal to the cyclomatic
number of a graph in which and extra edge was added from the end to the
start of every component, in order to make the components strongly connected
(Watson et al, 1996). As a result, e−n+p+p = e−n+2p. As stated in McCabe
(1976), in a strongly connected graph, the cyclomatic number is equal to the
maximum number of linearly independent circuits. Consequently, ECyM is
meant to quantify horizontal diversity.

3.2.2 Vertical diversity

In order to measure vertical diversity, Separability (Π) is introduced.
Mendling et al (2007) defined the notion of Separability, referring to the num-
ber of cut-vertices in a graph. A cut-vertex can be defined as a node which
separates the graph into two parts when it would be deleted. As such, it pro-
vides an estimate of the modularity of a process model. Formally, given a set
of actual train routes L,

Π = |{s ∈ S | ∀ σi ∈ L : s ∈ σi}| (4)

Within the context of train deviations, a cut-vertex s is a signal through which
all actual routes σi ∈ L have passed. When more cut-vertices are present, it
means there is a higher proportion of the planned route which is never deviated
on. However, this only holds under the assumption that each signal on the
planned route was passed by at least one of the trains. If this does not hold, a
cut-vertex can also be a signal through which all trains have passed, although
it did not belong the the planned trajectory. Yet, to measure diversity, it is
irrelevant whether the cut-vertex belongs to the planned route or not.

Complexity, as measured by the metrics discussed above, tends to increase
as the size of the graph increases. This is indeed a desirable property of com-
plexity measures in the context for which they have been defined. However,

2 A graph is strongly connected if there is a path from each node to any other node.
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longer routes will therefore be negatively biased, i.e. obtaining higher com-
plexity scores. To take this into account, both metrics were corrected for the
length of the planned route. Furthermore, the complement of the separability
metric is taken, so that higher values correspond to a higher diversity, as is
the case with ECyM .

ECyM ′(e, n, p) =
e− n+ 2p

|πL|
(5)

Π ′ = 1−
|{s ∈ S | ∀ σi ∈ L : s ∈ σi}|

|πL|
(6)

While values of Π ′ are generally in the range from 0 to 1, values of ECyM ′

are not. In theory, a graph with n nodes can have as many as n(n−1)
2 edges. In

such a case, the nominator of ECyM ′ would be equal to n
2
−3n+4
2 . Assuming

that half of the nodes in the graph are actually on the planned route, ECyM ′

is equal to n − 3 + 4/n. Consequently, the diversity of such a graph would
be a nearly linear function of its size, even when the length of the reoute
is incorporated. This means that the range of ECyM ′ is not really limited.
However, in reality, not all nodes, i.e. signals, are connected with each other,
since the infrastructure is limited. The upper bound of the ECyM ′ metric is
thus dependent on the corresponding infrastructure.

In order to calculate the ECyM ′ of each graph in Figure 1, the number
of nodes and edges needs to be counted. G1 contains 20 nodes and 25 edges,
while G2 contains 12 nodes and 18 edges. Thus, ECyM ′(G1) = 0.875 and
ECyM ′(G2) = 1. To compute the adjusted separability-measure Π ′, it can
be seen that G1 contains only 2 cut-vertices, while G2 contains 6. As a result,
Π ′(G1) is equal to 0.750 and Π ′(G2) is equal to 0.250.

This illustration shows that both measures of diversity take into account
different aspects of the reroutings which occurred. The reroutings in G2 are
assessed by Π ′ to have a much lower diversity, as they only occur at the end
of the trajectory. However, G2 is allocated a higher diversity score by ECyM ′,
as the reroutings in the lower part of the graph are judged to be broader then
those in G1. It can indeed be observed that G1 is more structured, whereas
the lower part of G2 is more dense.

In order to further illustrate the meaning of ECyM ′ and Π ′, Figure 3
shows graphs with combinations of low and high values for both metrics. The
x-axis depicts the level of horizontal diversity while the y-axis depicts the
level of vertical diversity. In the upper right graph, reroutings are wide and
well spread along the route, resulting in high values for both the metrics.
Meanwhile, in both lower graphs, reroutings are not spread along the whole
route, yielding a low value for separability. The graphs in the right part of the
table are relatively wide, leading to a high value for the ECyM ′ metric.

After having identified the instances which are the most sensitive to rerout-
ing, their values for the diversity metrics can be computed. Consequently plot-
ting them on a xy-scatterplot allows the data analyst to map the different
instances to the different types of graphs in Figure 3. As such, one can have a



12 Gert Janssenswillen et al.

High ECyM ′ = 0.333
Π′ = 0.667

ECyM ′ = 1.000
Π′ = 0.667

Low ECyM ′ = 0.333
Π′ = 0.167

ECyM ′ = 1.000
Π′ = 0.333

Π′

ECyM ′ Low High

Fig. 3 Typical graphs for low and high values of the diversity metrics.

preliminary idea of how the different graphs look like, without having to look
at each of them individually. The analyst can then decide which instances are
the most interesting to inspect further.

3.3 Discovering patterns

So far, the methods and metrics proposed are able to both identify which
groups of trains are the most sensitive to reroutings and to map different
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groups of trains to different types of graphs. Finally, the question might be
asked which patterns can be found in the reroutings? In other words, under
what circumstances are certain reroutings occurring? For instance, do specific
types of deviations always occur at the same time of day?

When the diversity is low, e.g. like in the lower left graph in Figure 3, it
is very easy to see which reroutings occur when, since there are only a lim-
ited number of distinct reroutings. However, when moving to the upper right
graph in Figure 3, distinguishing the different types of reroutings gets more
difficult. However, using clustering techniques, reroutings can be grouped into
different clusters of similar instances. This can be done using a hierarchical
clustering design, in which the distance between two routes is measured using
the Sequence Alignment Method (SAM) (Hay et al, 2004). The SAM-measure
calculates the difference between two sequences based on the number of inser-
tions and deletions that have to be performed on one sequence, in order to be
equal to the other sequence. An hierarchical clustering can be conducted using
average linkage, where the number of clusters can be decided for each cluster-
ing by inspecting the dendogram. The clusters can subsequently be compared
to each other along different characteristics: the time of day, day of week, type
of rolling stock, etc. This will yield a first understanding as to when and why
certain deviations occur. In the next paragraphs, the discussed methods will
be illustrated using data from the Belgian train describer system, provided by
Infrastructure Manager Infrabel.

4 Application: Belgian train describer data

In the context of the Belgian railway network, the need to optimize capacity
usage is amplified by several factors. Firstly, the railway network has a high
density, containing many bifurcations within short distances from each other,
and it is star-shaped with Brussels at its gravity centre. At a daily basis,
57% of the railway passengers travels to or through Brussels. Secondly, the
amount of passengers has risen steadily over the last decades, mounting up to
230 million a year in 2013. Meanwhile, annual punctuality has been decreas-
ing gradually over the last couple of years until 2013. The complexity of the
network makes it a non-trivial task to identify the causes of certain delays.
As stated in Cule et al (2011), it might not be clear whether a structural de-
lay is the result of ordinary busy traffic or of certain decisions that are made
consistently by traffic operators who are unaware of its negative impact.

The data selected for the analyses conducted in this paper were recorded in
the signal area of Leuven. With on average 32.247 departing passengers each
day (2014), the station of Leuven is the 6th most important railway station
in Belgium. Furthermore, the signal area constitutes an important gateway to
Brussels, and is also responsible for all trains to and from the national airport.
The data were recorded during the period from 15 December 2013 to 15 March
2014. The logbook used for the analyses consists of three main categories of
events: train movements, user commands and auxiliary functions. The train
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movement events were used to reconstruct the actual trajectory of the train.
On the other hand, specific message events conveyed the planned trajectory
of a train.

A total amount of 5.36 million train describer events were recorded during
the three month period. Together, these records describe the history of 75 382
trains trips. On average, circa 950 train trips through the signal area were
recorded on a working day, and approximately 600 train trips on a typical
weekend day. Given this abundance of available data, there is a clear need
for scalable methods in order to produce useful insights about the railway
operations. The actual train trajectories covered a total number of 394 different
signals and approximately 160 track segments. Note that this area only covers a
small percentage of the total railway infrastructure in Belgium. Nevertheless,
since the used methods require no a priori knowledge of the infrastructure,
scalability of the approach is a clear advantage.

Different types of train movement recordings, related to signals on the one
hand and to track segments on the other, were transformed into one standard-
ized format. These events constitute the building blocks of the actual train
routes. Table 3 shows the events which are related to train number 1234 on
the 10th of January 20143. Each train trip is considered as one instance or
case of the process. Each case is identified by the date and the train number.
Each row in Table 3 is an event, which has both a timestamp and a location
attached to it. The location may refer to both a signal, which is a combina-
tion of letters, or a track segment, which is a number. Recall that only the
destination segment is taken into account.

Table 3 Trajectory of train 1234 on January 10th, 2014.

Date Train number Timestamp Location

2014-01-10 1234 6:23:17 AB
2014-01-10 1234 6:24:15 AC
2014-01-10 1234 6:25:49 AD
2014-01-10 1234 6:27:02 100

Next to the actual routes, the planned routes are extracted from specific
communication messages. These messages deliver the planned trajectory to
the traffic control system as the train approaches the area. Table 4 shows this
record for the corresponding train. The message column contains the original
encapsulation of the planned route, while the last column shows the route after
the extraction and cleaning. This route was send to the signal box at 6:14am,
about 10 minutes before the arrival of the train in the area.

The analysis of rerouting severity and diversity can be conducted at differ-
ent levels of abstraction. The rerouting severity can be calculated at the level
of a planned route, at the level of a connection, or at the level of relation. A
relation contains all trains between two specific locations, in either direction.

3 Both train numbers and signals have been anonymised.
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Table 4 Example extraction of the planned trajectory.

Date Train number Time Message Planned trajectory

2014-01-10 1234 6:14:36 2E1234 :AB *>> AC
*>> AD 20K *>>

100 AE

AB,AC,AD,100

Each relation can be further divided into two connections, by taking into ac-
count the direction of the train. For each connection, one or more planned
routes might exists.

The selection of the appropriate abstraction level encompasses a certain
trade-off. Focussing on a low level, i.e. planned route, will yield very precise
results but there can still be an abundance as many planned routes might exist.
Focussing at the higher level of relations will limit the number of instances,
but might create the risk that certain problem cases remain hidden. Indeed,
when a relation consists of 10 planned routes, of which one has an extremely
high severity of reroutings, while the other 9 hardly contain reroutings, the
problematic route will probably remain unnoticed in a high-level analysis. A
recommended approach would be to start the analysis at a high level, and
subsequently lowering the unit of analysis, while at each step discarding the
most uninteresting cases from the analysis.

The planned route was extracted for all regular trains, excluding empty
train rides, freight trains, and working trains. This resulted in the selection of
58042 train trips. Consequently, these were grouped based on their planned
route. For each group, a set of train describer records was constructed con-
taining the actual route. In order to make sure the results of the analysis
were reliable, only those groups which contained at least 50 instances were
considered. The resulting selection contained 54635, i.e. 94.13%, of all regu-
lar trains. Among these trains, 7.75% contained reroutings. For each planned
route, a corresponding model was constructed. Both the model and the actual
trajectories are the main input to the analysis conducted in the next section.

A total number of 109 different planned routes were considered. They were
categorized along 22 relations. The relations considered are listed in Table 5
and schematically visualized in Figure 4. For some pairs of locations multiple
relations exists, which are distinguished by certain intermediate points4. Note
that in this paper only the high-level route is used to distinguish train trips,
and not their stops or the type of the train (interregional trains vs intercity,
etc.). In the remainder of the analysis, the specific connections are treated
anonymously. Next to the 109 different planned routes, 590 different actual
routes were found. Thus, for each planned route, on average 5.73 reroutings
existed, with a minimum of zero (no reroutings) and a maximum of 29. The

4 Notice that some of the waypoints indicated in Table 5 are not visually distinguished in
Figure 4, since they are very local in nature, most commonly in the dense corridor between
the National Airport and Brussels.
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length of the routes varied between 2 and 23 signals, with an average of 8
signals.

Table 5 Train connections considered in the analysis.

Relation Number of trains

National Airport ↔d Brussel 6301
Mechelen ↔ Leuven 5980
Luik ↔c Brussel 5562
Aarschot ↔ Leuven 5418
Leuven ↔ Brussel 4841
Hasselt ↔ Brussel 3108
Luik ↔ Brussel 2657
Mechelen ↔ Brussel 2246
Aarschot ↔ Brussel 1982
Landen ↔b Mechelen 1937
Mechelen ↔c National airport 1897
Leuven ↔b Brussel 1747
National airport ↔a Brussel 1301
Luik ↔ Landen 1039
Leuven ↔b Brussel 872
Leuven ↔ National airport 465
Aarschot ↔a Brussel 461
Waver ↔ Leuven 457
Landen ↔ Aarschot 370
Landen ↔ Brussel 169
Hasselt ↔ Landen 117
Mechelen ↔b Leuven 114

a Via fast track b Via National airport c Via high speed line d Via default track

Table 6 shows some statistics for the rerouting severity and diversity met-
rics for the different relations, which are visualised in Figure 5. It can be
observed that on average, the rerouting severity of the different relations is
quite low, with an average fitness-value of 0.984. By comparing the mean and
the median, it can be observed that the distribution is left-skewed, with the
mass of the observations in the close vicinity of 1. As such, most relations only
contain a limited number of reroutings, while some unfavourable outliers exist.

The values for ECyM ′ are located in the range from 0.181 to 1.761, with
a mean of 0.601. It is not unsurprisingly to find diversity levels to be low for

Table 6 Measures of locality and spread for the deviation severity and diversity measures.

Deviation severity Deviation diversity
Fitness ECyM ′ Π′

Min 0.878 0.181 0.085
Mean 0.984 0.601 0.527
Median 0.994 0.508 0.631
Max 0.999 1.761 0.869
Std. Dev. 0.032 0.405 0.279
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Fig. 5 Boxplots showing the distribution of the metrics.

the majority of the connections, as they are dependent on the extent that
reroutings have occurred on these connections. The values for separability are
distributed between 0.085 and 0.869. On average, 52.7% of the planned signals
is deviated from by at least one train.

The pairwise correlation coefficients between the different metrics are
shown in Table 7. It can be seen that, like expected, a negative correlation
is found between fitness on the one hand, and ECyM ′ and Π ′ on the other
hand. As such, when fitness decreases, i.e. rerouting severity increases, the
rerouting diversity increases. However, the correlation between fitness and
Π ′ was not found to be statistically significant. Finally, both measures for
diversity were found to be significantly positively correlated, which seems le-
gitimate.
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Table 7 Pairwise correlations between deviations severity and diversity measures.

Fitness ECyM ′ Π′

Fitness

ECyM ′ -0.526***
Π′ -0.191 0.614***

*** p < 0.001

4.1 Rerouting severity

In order to identify relations with a remarkable severity of reroutings, an
analysis of variance can be done for the fitness values, to analyse differences
between group means. This means that all trains are grouped according to
their relation, and for each train the fitness is computed,using Equation (1).
However, two of the underlying assumptions for ANOVA were not satisfied
(Iversen and Norpoth, 1987): (1) the dependent variable (i.e. fitness) is not
normally distributed within each group and (2) the population variances of the
fitness values within each group are not equal. For these reasons, the Kruskal-
Wallis test, a non-parametric alternative, was used (Kruskal and Wallis, 1952).
Since this test is rank-based, it disregards the magnitude of the differences in
fitness. The Kruskal-Wallis test has theoretically less power than the para-
metric ANOVA when the ANOVA’s assumptions are met. However, this is not
necessarily true when they do not hold (Demšar, 2006).

The test was able to reject the null hypothesis that there were no differences
in rerouting severity among the different relations at a 0.001 significance level.
Consequently, a post-hoc Nemenyi test was conducted (Nemenyi, 1963), of
which the pairwise results are visualized in a heatmap in Figure 6. The bar
chart on the right shows the deviation severity for each relation, ordered from
best to worst. The matrix on the left demonstrates whether pairs of relations
are significantly different from each other in terms of rerouting severity. A pair
of relations with a red cell has a statistically significant difference in rerouting
severity at the 0.001 significance level. All the pairs with a green cell are not
found to be significantly different with regards to the rerouting severity. It can
be concluded that relation 2 has a far higher severity to deviations than all
the other connections, followed by connection 3 and 8. These connection are
thus identified as the main problem cases requiring further analysis.

4.2 Rerouting diversity

Figure 7 shows a scatter plot based on the two diversity metrics ECyM ′ and
Π ′. The horizontal and vertical line display the mean of both metrics. The
size of the points refers to the rerouting severity; bigger points having a higher
severity. Comparing this plot to Figure 3 gives an overall idea of how the
graphs containing the actual behaviour within each relation look like. It can
thus be observed that graphs like the one in the lower right of Figure 3 do not
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seem to occur. Furthermore, the low diversity of reroutings along relation 3 is
remarkable in this figure, as it is the second most sensitive to reroutings. As
such this will provide a very interesting case, as the low diversity indicates the
existence of a limited set of deviations which occur very often. In the remainder
of this section, these results will be drilled-down further.

As pointed out before, relations are composed of two connections, one in
each direction. In Figure 8 the diversity values are shown for each connection
within the selected relations. Connections are distinguished with the letters
A and B. This shows that the two diversity metrics are not always in agree-
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ment with each other within a relation, especially relation connection 2. E.g.
Connection 2A has a higher diversity than 2B according to ECyM ′, but lower
according to Π ′. As such, reroutings on 2A are expected to differ more in
their width but are slightly more concentrated along the route, compared to
2B. Furthermore, it can be seen that both connections of relation 3 have a
relatively low diversity.

Figure 9 contains two graphs of actual routes, one belonging to each direc-
tion of relation 2, each having a similar level of rerouting severity. The graph
on the left, belonging to direction A is indeed wider than the graph belonging
to direction B. However, the right graph displays reroutings on every signal,
while in the left graph the first three signals are never deviated from. It is
clear that both graphs fall into the upper right category of Figure 3, having
both a relatively high ECyM ′ and Π ′.

In the right graph, some reroutings appear to be relatively systematic. For
example OYD > MYD > CYE is taken 8.5% of the cases. Definitely, an in
depth analysis should be performed to reveal when and why this rerouting
occurs.

Analogously, Figure 10 shows graphs of two routes belonging to connection
3, one in both directions. As was apparent from Figure 7, relation 3 has a very
low diversity of reroutings. Indeed, it can be observed that in both directions
only one single rerouting has occurred, albeit relatively often. It therefore
corresponds to the lower left category in Figure 3. The above-average rerouting
severity in accordance with a low deviation diversity yields some interesting
inquiries: are there any patterns in the occurrence of this deviation? Why does
it occur so often? And were the occurrences beneficial for the operations?

The first question can be easily answered by looking at the data. For in-
stance, it could be observed in the data that about 70% of the reroutings in
the left graph in Figure 10 took place at six in the morning. The reason for
the deviation can be discovered in different ways. Firstly, one could focus on
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Fig. 9 Actual routes on relation 2 along direction A (left) and direction B (right). Only
the most frequent planned route for each direction is selected.

the detailed infrastructure at the location of the rerouting and simulate the
movement of the trains in this area at the time of rerouting. As such, replay-
ing history can give insights about why certain decisions were taken. Secondly,
observations and interviews at the signal box can be clarifying.

The last question, whether the rerouting was beneficial for the overall per-
formance of the network, is much more harder to assess. It involves the linking
of reroutings with each other and with impacts on performance measures, such
as train punctuality.

Finally, a closer look will be given to relation 8. Just as relation 3, it has an
above-average severity to rerouting. While the diversity of reroutings was still
rather low, there did not seem to be only a single rerouting. For instance, along
one of the planned routes, still 10 different deviations occurred. Nevertheless,
relating rerouting to specific characteristics of both train and time can still be
meaningful. In order to do so, all rerouting along the planned routes underlying
the relation were clustered.

On the routes of connection 8A, four different clusters were found. For sim-
plicity’s sake, the precise composition of the clusters is abstracted from. The
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Fig. 10 Actual routes on relation 3 along direction A (left) and direction B (right). Only
the most frequent planned route for each direction is selected.

distribution of the clusters over the timespan of a day is shown in Figure 11. It
can be observed that reroutings belonging to cluster 3 are more likely to occur
in the evening, while reroutings from cluster 0 are more likely to occur in the
early morning. It could be further investigated why these reroutings occurred a
their specific moments, by replaying history and interviewing business experts,
and how they influenced the network operations.

5 Conclusions and Further Research

This paper proposed and illustrated a set of metrics and methods which can
be used as a guide for an exploratory analysis of train reroutings, using train
describer data. The techniques suggested are able to highlight interesting cases
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and to point out various paths to conduct further analysis. To this end, mea-
sures used in process mining and process modelling were applied to quantify
the severity of train reroutings, entitled reroutings severity, as well as the vari-
ation of the reroutings which occurred, referred to as reroutings diversity. The
analysis was centred around different train relations. A Kruskal-Wallis test
was able to detect differences in the severity to reroutings among the different
train relations. Subsequently, inspection of the most remarkable connections
validated the correct assessment of the proposed metrics.

The results of these analyses provide a basis for potential improvements of
the capacity allocation. Nonetheless, closer investigation by business experts
is needed in order to decide whether the reroutings have been beneficial for
the overall performance or not. As a first step in understanding the detected
reroutings, a cluster analysis has been suggested. By clustering similar devia-
tions into different groups, patterns can be found in their occurrences.

The main advantage of the techniques used in this paper is that they are
independent of the underlying railway infrastructure. As the infrastructure
is not required as input, the techniques can be easily reused on new cases.
Moreover, this allows the metrics to be used on every sort of infrastructure,
whereas many existing algorithms are typically limited to a certain set of
infrastructure characteristics.

Notwithstanding their proper functioning, some improvements to the met-
rics can still be made. One would be to allocate costs to the different signals,
as a means to make certain reroutings more severe than others. These costs
can be determined based on expert knowledge, thereby implicitly requiring
input about the infrastructure. Alternatively, costs can be determined based
on the data. For instance, signals which are located in an area with a lot of
traffic might get a higher cost attributed to it, as reroutings in these areas
might have more far-reaching consequences.

Another improvement might be needed in order to accommodate the
ECyM metric with a proper scale. In order to scale the metric between 0
and 1, an upper bound needs to be calculated. This upper bound can be de-
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termined by looking at the infrastructure, i.e. what would be the maximum
number of nodes n and edges e when all possible reroutings would have oc-
curred. When the information on the infrastructure is not provided, these
numbers can be estimated by looking at all the behaviour which has occurred,
on the condition that data is recorded over an sufficient amount of time.
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