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Chapter 1

Introduction and problem

statement

1.1 Introduction

Efficient freight transportation plays a crucial role in modern society. Transporting

goods safely, quickly and cost-efficiently is essential for international trade and eco-

nomic development (Eurostat, 2016a). The need for transportation has increased due

to increasing consumption, economic growth and globalization (Hoff et al., 2010). In

the EU, the transportation sector employed more than 10.5 million people in 2013

(Eurostat, 2016b). Especially in Belgium, the transportation sector is very important.

Many companies have set up a logistics base or distribution center in Belgium because

of its central location in Europe and its dense road network. The transportation and

logistics sector was in 2014 responsible for 5% of the Belgian GDP (Vlaamse overheid,

2016).

Strong competition in the transportation sector enables customers to demand cost

reduction, customer service, timeliness and reactivity (Hoff et al., 2010). To meet

these demands, transportation companies are forced to improve their efficiency. Cli-

mate change and other environmental concerns also encourage transportation compa-

nies to plan their routes more efficiently in order to decrease emissions. Additionally,

by reducing unnecessary long routes, pressure on the road infrastructure diminishes

and the traffic flow improves, for freight as well as passenger transportation (Drexl,

2012). The cost savings of the use of computerized procedures for route scheduling

have been shown in numerous real-world applications (Toth and Vigo, 2002). Benefits

1



2 Chapter 1

of automated route scheduling include operational cost savings, reduced scheduling

time and exclusion of human error from the routing schedule (Drexl, 2012).

Due to its economic importance and because it poses interesting methodological

challenges, vehicle routing has received considerable research attention in the Opera-

tional Research community (Laporte et al., 2013). The Capacitated Vehicle Routing

Problem (CVRP) is introduced in 1959 by Dantzig and Ramser. It considers the

delivery of goods from a depot to customer locations with a homogeneous fleet of ve-

hicles with a fixed capacity (in terms of weight or number of items) (Toth and Vigo,

2002). Common extensions of the CVRP that have been studied extensively include

the CVRP with Time Windows in which intervals may be specified in which deliveries

need to take place and the CVRP with Pickups and Deliveries in which orders may

be picked up and delivered at customer places (Parragh et al., 2008).

The aforementioned routing problems do not correspond to the routing problems

that transportation companies are currently faced with. In real-life, companies need

to consider several additional constraints in their route scheduling which greatly in-

creases the complexity of the problem. Therefore, there is an increasing scientific

focus on the integration of Rich constraints in vehicle routing problems. Rich vehicle

routing problems (RVRP) refer to those problems taking these additional realistic

constraints into account (Battarra et al., 2009). Examples of rich constraints include

time-dependent travel times and legislation concerning driving, working, break and

rest times for drivers (Drexl, 2012). Furthermore, in real-life applications, the vehi-

cle fleet of a transportation company is generally not homogeneous but consists of

several types of vehicles in order to meet varying customer demands. Vehicles in the

fleet may differ in terms of capacity, costs and other factors such as speed and prod-

uct compatibility. Transporters are also faced with loading problems in their route

scheduling. A feasible loading plan is not guaranteed when only total capacity (in

terms of number of pallets or weight) of a vehicle is considered.

In the following section, an overview of loading problems that distributors are

faced with is provided (Section 1.2). In Section 1.3 the research objectives of the

thesis will be discussed. Section 1.4 presents the outline of the thesis.

1.2 Loading problems in vehicle routing

Loading problems arise when goods cannot be placed freely in a container or vehicle

because several constraints have to be taken into account. Current commercial route

scheduling programs do not take into account most loading constraints, which makes



Introduction and problem statement 3

the routing schedules often not feasible in practice. This gives rise to last-minute

changes which may result in additional costs. The development of vehicle routing

models incorporating loading constraints is therefore critical to more efficient route

scheduling.

Common loading problems that are faced by distributors include multi-dimensional

packing constraints, sequence-based loading, stability constraints and weight distri-

bution constraints. Multi-dimensional packing constraints entail that items cannot

overlap and should be completely packed inside the vehicle. In a three-dimensional

loading problem the length, width and height of the vehicle need to be considered to

check this constraint. In a one-dimensional or two-dimensional loading problem only

a single or two dimensions are taken into consideration respectively. Sequence-based

loading ensures that no consignment is placed in such a way that it blocks the removal

of items to be delivered earlier on the route. Stability constraints guarantee vertical

as well as horizontal stability of the cargo in the vehicle. When items are stacked on

top of each other in the vehicle, the items have to be supported by other items or by

the floor to ensure the vertical stability of the cargo. Horizontal stability of the cargo

refers to the support of the lateral faces of items in the container to prevent items

moving around in the container.

Weight distribution constraints ensure the stability of the vehicle by balancing

the cargo weight aboard. Axle weight limits in particular impose a huge challenge

for transportation companies since they are faced with high fines (up to e 75,000

for a violation of more than 3 tonnes) when violating these limits. The axle weight

is the gross weight (cargo weight plus tare weight of the truck) placed on an axle.

This is illustrated in Figure 1.1. When item j is placed onto a vehicle, the weight

of the item is divided over the axles of the tractor and those of the semi-trailer. aFj
represents the weight of item j placed on the first two axles, which are the axles of

the tractor. aRj represents the weight of item j on the rear axles, which are the axles

of the semi-trailer. Since the weight on the axles changes when items are loaded and

unloaded, it is important that axle weights are considered during the entire trip of

the vehicle and not only when the vehicle departs from the depot.

Weigh-In-Motion (WIM) systems on highways increase the chances that axle

weight violations are detected. A WIM system monitors axle weight violations of

trucks while driving. The authorities can thereby focus on trucks with violations ac-

cording to the WIM system, to do a precise measurement. This leads to an enormous

efficiency gain of the controls (Jacob and Feypell-de La Beaumelle, 2010). In Flan-

ders, WIM systems are installed on 10 locations. Since the WIM systems are used

as a preselection system, the efficiency gain of the controls has increased from the
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Figure 1.1: Axle weight tractor and semi-trailer (figure adapted from TruckScience)

usual 15 % - 20 % based on visual inspection to 83 % (Agentschap Wegen en Verkeer,

2016). In 2013, 1,492 overloaded trucks were fined in Flanders, with an average fine

of more than 2000 euro (Vlaams Parlement, 2014).

Axle weight violations are not only important for transportation companies be-

cause of the fines they are faced with, it may also damage the vehicle and put the

truck driver and other road users at risk. Overloading of the axles puts strain on the

tyres of the vehicle which will lead to premature failure. Furthermore, overloading will

make the vehicle less stable and difficult to steer and increases the braking distance

(Driver and Vehicle Standards Agency UK, 2013). This results in more accidents and

since overloading is illegal, the insurance may not intervene in the costs.

Besides transportation companies, the society as a whole may benefit from the

integration of axle weight constraints in route scheduling. External costs of axle weight

violations include accident costs since overloaded axles represent a significant threat

for traffic safety. Furthermore, axle weight violations may cause damage to roads,

bridges and pavements which leads to road infrastructure costs. Finally, congestion

costs will increase due to the increase in road works and accidents caused by vehicles

with overloaded axles.

1.3 Research objectives

Axle weight constraints have not yet been considered in a VRP model. Therefore,

little is known about the impact on solution cost of the integration of axle weight

constraints. Also the effect of the characteristics of the demand and of the vehicle

fleet on the integration of axle weight constraints in route scheduling is not known.

Therefore, this thesis addresses the following central research question.

What is the effect of the integration of axle weight constraints in vehi-

cle routing problems under varying demand characteristics, vehicle fleet

characteristics and objective functions?
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The primary objective of this thesis is directly derived from the central research

question and aims to analyze the effect of axle weight constraints on the objective

value of a vehicle routing problem for varying demand characteristics, vehicle fleet

characteristics and objective functions. Demand characteristics consist of the weight

and size of the customer demand. Fleet characteristics refer to the measurements

and tare weight of the vehicle and to the fleet composition (homogeneous or hetero-

geneous). Finally, the objective functions that are considered are distance minimiza-

tion and transport cost minimization. Distance minimization is traditionally used in

VRP literature while the minimization of total transport cost corresponds more to

the objective that transporters are faced with in real-life. In order to perform this

analysis, the secondary objective of this dissertation aims at the introduction of a

vehicle routing problem with axle weight constraints. More specifically, the CVRP

with sequence-based pallet loading and axle weight constraints is introduced. To an-

alyze the effect of a heterogeneous vehicle fleet, the Fleet Size and Mix VRP with

sequence-based pallet loading and axle weight constraints is introduced, in which an

unlimited heterogeneous vehicle fleet is considered. The tertiary objective is to de-

velop a heuristic solution approach to solve both problems on instances of a realistic

size. For an overview of the existing vehicle routing models with loading constraints

and the solution techniques that are used to tackle these models, the final objective

is to give a state-of-the-art of the combination of routing and loading. Based on this

overview, research gaps and opportunities for future research are identified.

1.4 Thesis outline

The outline of the thesis is presented in Figure 1.2. In Chapter 2, the state-of-the-

art of vehicle routing problems with loading constraints is discussed. Although the

combination of routing and loading problems is a fairly recent domain of research,

contributions to this field have increased immensely over the last couple of years. A

discussion of loading constraints is presented, based on the classification of Bortfeldt

and Wäscher (2013). In case rich (other than loading) constraints are considered, this

is mentioned in the description of the papers. This chapter offers a broad perspective

as it considers road, maritime and air transport as well as the routing of automated

guided vehicles. It discusses the various papers in comparative perspective and iden-

tifies future research directions.

Chapters 3, 4, 5 and 6 introduce and analyze the integration of axle weight con-

straints in a CVRP. The problem considers the delivery of pallets to customer lo-
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Figure 1.2: Outline of the thesis

cations. To avoid moving pallets of other customers when arriving at a customer,

sequence-based loading is imposed. Pallets may be placed in two rows inside the ve-

hicle but cannot be stacked on top of each other because of their weight, fragility or

customer preferences. The resulting problem is the CVRP with sequence-based pallet

loading and axle weight constraints.

In Chapter 3, the calculation of the weight on the axles is described. The cal-

culation depends on the center of gravity of the pallets inside the truck and on

vehicle-specific parameters. Furthermore, two problem formulations for the CVRP

with sequence-based pallet loading and axle weight constraints are presented in this

chapter. The first formulation is a Mixed Integer Linear Programming (MILP) for-

mulation. In the second formulation, the problem is formulated as a Set Partitioning

(SP) model.
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In order to solve realistic-size instances for the CVRP with sequence-based pallet

loading and axle weight constraints, an Iterated Local Search (ILS) metaheuristic

is developed. In Chapter 4, the design of the ILS is presented. The parameters of

the metaheuristic are tuned with an automatic algorithm configuration software. To

analyze the impact of the values of the parameters on the solution quality of the ILS,

a sensitivity analysis is performed.

In Chapter 5, the results of the MILP model, the SP model and the ILS are

compared on instances with up to 50 customers. Furthermore, the ILS is used to

analyze the effect of introducing axle weight constraints in a CVRP on total routing

cost in instances with networks consisting of up to 100 customers. Four problem

classes are defined based on the size of the demand in terms of number of pallets

and total weight to analyze the impact of axle weight constraints for varying demand

characteristics.

Chapter 6 considers the integration of a heterogeneous fleet in the CVRP with

sequence-based pallet loading and axle weight constraints. The resulting problem is

defined as the Fleet Size and Mix CVRP with sequence-based pallet loading and axle

weight constraints. To measure the impact of the vehicle fleet on the integration

of axle weight constraints in a VRP, a heterogeneous fleet with 30-foot and 45-foot

trucks is compared to a homogeneous fleet with 30-foot trucks and a homogeneous

fleet with 45-foot trucks. Furthermore, two scenarios are analyzed for which the

objective function differs: in the first scenario the objective is the minimization of

total distance while in the second scenario the objective is the minimization of total

transport costs. Both objectives are considered to examine whether the objective

function influences the results of the analysis.

Finally, Chapter 7 presents the conclusions of this thesis and future research op-

portunities.
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Chapter 2

State-of-the-art of VRP with

loading constraints

2.1 Introduction

The vehicle routing problem is the most studied combinatorial optimization problem

in transport and logistics. The issue concerns the distribution of goods between depots

and customers (Toth and Vigo, 2002) along a set of routes for a fleet of vehicles where

an objective function (e.g. total distance, total routing cost) is optimized. Customer

demand must be met and vehicle capacities respected. Solving a basic vehicle routing

problem involves two elements: the assignment of all customers to a trip and the

sequence in which each are visited. The basic version of the vehicle routing problem

is called the Capacitated Vehicle Routing Problem (CVRP). The CVRP considers a

homogeneous fleet of vehicles with a fixed capacity (in terms of weight or number of

items) which delivers goods from a depot to customer locations. Split deliveries are

not allowed. The CVRP can be extended to the VRP with time windows (VRPTW)

by specifying time windows in which deliveries need to take place. Another variant

is the VRP with Pickups and Deliveries (VRPPD) in which orders may be picked up

and delivered. For each order, an origin (pickup location) and a destination (delivery

location) are specified (Parragh et al., 2008) while both operations may occur at a

same location. When only a single vehicle is considered, the VRPPD reduces to the

Traveling Salesman Problem with Pickup and Delivery (TSPPD). A third common

extension of the basic CVRP is the VRP with backhauls (VRPB), in which goods

are transported from the depot to linehaul customers and from backhaul customers

9
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Figure 2.1: Outline of the thesis

to the depot (Parragh et al., 2008; Toth and Vigo, 2002).

The classic vehicle routing problem, described in the previous paragraph, has

been studied extensively in the last decades. A review of solution methods can be

found in (Laporte, 2009). In real-life, companies are faced with several additional

constraints which greatly increase the complexity of the problem. Examples of such

complicating constraints or attributes include maximum route length and duration, a

heterogeneous vehicle fleet, incompatibilities between goods and vehicles and loading

constraints. Rich vehicle routing problems (RVRP) refer to those problems taking

some of these additional realistic constraints into account (Battarra et al., 2009).

Vidal et al. (2013) provide a synthesis and analysis of solution methods dealing with

rich vehicle routing problems.
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This chapter 1 focuses on the integration of loading constraints in vehicle routing

problems and reviews the relevant literature (Figure 2.1). The combination of routing

and loading problems is a recent domain of research. Since lori and Martello’s review

(Iori and Martello, 2010) up to 2010 of 31 papers concerning vehicle routing and

loading constraints, contributions to this field have soared over the last couple of

years. This chapter extends these authors’ review by covering 84 papers (including

the 31 papers considered in (Iori and Martello, 2010)). It also discusses the loading

constraints more thoroughly and uses the classification of Bortfeldt and Wäscher

(2013) to identify them. In case rich (other than loading) constraints are included,

mention is made in the description of the models. Besides, this chapter offers a broad

perspective as it does not only focus on road transport, but it also considers maritime

and air transport as well as automated guided vehicles.

Section 2.2 describes relevant problem characteristics for the VRP. Section 2.3

identifies loading problems that may be considered in combination with routing prob-

lems. Section 2.4 provides an overview of the literature concerning vehicle routing

problems in combination with loading problems. Section 2.5 presents conclusions and

opportunities for further research.

2.2 Problem characteristics of VRP

This section describes the main characteristics likely to influence the solution of a

vehicle routing problem, i.e. characteristics of the vehicle fleet and of the cargo, (time

dependent) travel times, the legal framework, transportation requests and the objec-

tive function. The reader is referred to Toth and Vigo (2002), Cordeau et al. (2007)

and Golden et al. (2008) for a general discussion of the VRP.

Characteristics of the vehicle fleet such as vehicle capacity, configuration of

the loading space and unloading possibilities largely determine the solution to the

problem. The capacity of vehicles may be specified in terms of weight, number of

items or volume. The loading space of the vehicle often influences the capacity. The

loading space is determined by the measurements of the vehicle (length, width and

height) and may have a specific configuration. For example, vehicles may be divided

into multiple compartments allowing for the transportation of goods that need to be

kept segregated. Besides, a tank truck may be divided into compartments to prevent

the liquid accumulating in the front of the truck when this comes to a halt (due to

mass in motion). The configuration of the loading space may also make it possible

1This chapter is based on Pollaris et al. (2015).
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to load goods into several piles. Finally, vehicles differ in the ways in which they can

be loaded or unloaded. A vehicle may be loaded via the rear (rear loading), the long

side, and/or via the top side. A homogeneous vehicle fleet consists of vehicles having

the same vehicle characteristics. In a heterogeneous fleet, vehicles may differ in terms

of capacity, loading space or other relevant vehicle characteristics.

Characteristics of the cargo include the measurements and fragility of the

items as well as orientation issues. Measurements may determine whether an item

fits into a container or not. Often items are assumed to have a rectangular shape in two

dimensions and a cuboid shape in three dimensions to make the loading process easier.

Items can be fragile (e.g. porcelain) or non-fragile (e.g. newspapers) which may bear

on the loading possibilities into a container. They may have specific orientation

constraints, e.g. several require a fixed orientation with respect to height. This

means they cannot be placed upside-down but have a pre-determined top. Cargo

may consist of homogeneous or heterogeneous items. In the latter case, compatibility

issues of product pairs may arise. More specifically, certain products are not allowed

to be transported together in the same vehicle or vehicle compartment. Furthermore,

some product types (e.g. frozen or refrigerated items) require to be transported in

adapted containers or container compartments.

Travel time on a certain route may vary at different times of travel (e.g. due to

traffic congestion).

Legal limitations on driving time specify the maximum time a truck driver may

drive each day as well as the minimum duration and frequency of breaks during his

working shift. Next, rules concerning the loading of vehicles (e.g. European Best

Practice Guidelines on Cargo Securing for Road Transport 2) may apply. Road speed

limits are used to regulate the speed of the trucks and may therefore influence the

solution of the VRP.

Transportation requests are either for a pickup, a delivery or both. Split

deliveries or split pickups are mostly not allowed, which implies that each customer is

only visited once. Customers may specify time windows within which the delivery or

pickup must take place. These time windows may be hard or soft. Soft time windows

imply that deliveries may occur outside the time windows, in which case a penalty

cost is incurred by the transportation company, while hard time windows do not allow

delivery outside the time windows.

Multiple objectives are relevant when considering the VRP: the minimization of

the number of vehicles, total cost, total route length and total time are often con-

2http://ec.europa.eu/transport/road_safety/vehicles/doc/cargo_securing_guidelines_

en.pdf
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sidered. In addition, balancing the workload of drivers in terms of required time or

distance traveled and maximization of volume utilization may also feature as objec-

tives.

2.3 Loading constraints

Loading problems arise when goods cannot be placed freely in a container or vehicle

because several constraints have to be taken into account. An overview of packing

problems discussed in the literature can be found in Wäscher et al. (2007). In a state-

of-the-art review of container loading problems, Bortfeldt and Wäscher (2013) identify

several types of loading constraints which are cargo-related, item-related, container-

related or load-related. Cargo-related constraints address a subset of items whereas

item-related constraints refer to individual items. Container-related constraints con-

cern the container or vehicle in which the items are placed. Load-related constraints

relate to the result of the packing process. The following paragraphs briefly discuss

loading constraints that may be relevant in combination with vehicle routing prob-

lems. The classification is mainly based on the taxonomy of Bortfeldt and Wäscher

(2013). The first category ‘Classical (multi-) dimensional packing constraints’ is added

to the taxonomy in this thesis.

2.3.1 Classical (multi-) dimensional packing constraints

This constraint entails that items cannot overlap and should be thoroughly packed in-

side the vehicle. In a three-dimensional loading problem the length, width and height

of the vehicle need to be verified to satisfying the constraint. In a one-dimensional or

two-dimensional loading problem, respectively, a single or two dimensions are taken

into consideration. In a Strip Packing Problem (SPP), items are placed in an open-

ended rectangle with infinite height with the objective to minimize total height. In

a Bin Packing Problem (BPP), items are placed into a minimum number of identical

bins (=vehicles) (Wäscher et al., 2007). In a combined vehicle routing and container

loading problem, the loading problem may be defined as a BPP Bortfeldt and Wäscher

(2013). The loading feasibility of a route is checked by solving a BPP.

2.3.2 Cargo-related constraints

Complete-Shipment constraints

In case the vehicle capacity cannot accommodate all items, some items will be left be-
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hind. Complete-shipment constraints may be specified when a subset of items needs

to be shipped together, i.e. either all or none can be loaded (Bortfeldt and Wäscher,

2013). Shipping companies that operate in the tramp market face complete-shipment

constraints in ship scheduling. Tramp shipping companies select cargoes at the spot

market and construct routes to maximize profit (Fagerholt et al., 2013). A single

order on the spot market may consist of several cargoes from different origins, i.e. the

service company must service all of these or none at all.

Allocation constraints

Allocation constraints may be specified when multiple vehicles or containers are con-

sidered. Two types of such constraints have been identified: connectivity and separa-

tion constraints (Bortfeldt and Wäscher, 2013). Connectivity constraints require

that the items of a certain subset are shipped in the same container or vehicle. In

the VRP literature each customer is usually visited only but once and by a single

vehicle (split deliveries are not allowed). All items requested by a customer, there-

fore, need to be shipped in the same vehicle. As a result, connectivity constraints are

incorporated in most VRP models (e.g. Gendreau et al., 2006; Tarantilis et al., 2009;

Fuellerer et al., 2010; Ruan et al., 2013). Separation constraints may be specified

to prevent certain types of products being shipped in the same container or vehicle.

Separation constraints are relevant when different types of goods (e.g. food and toxic

items) may not be transported together in the same vehicle. An example may be

found in Battarra et al. (2009) where a distinction is made between three types of

commodities: vegetables, fresh products (e.g. milk and meat) and non-perishable

items. A variation of this constraint has been investigated in the multi-compartment

VRP. The multi-compartment VRP allows the transport of different types of goods

in separate compartments of the same vehicle. Applications of VRPs with multiple

compartments can be found in the distribution of fuel (different types of petroleum

products transported within the same vehicle) (e.g. Brown and Graves, 1981; Cornil-

lier et al., 2008a), distribution of food (e.g. a refrigerated compartment and a regular

compartment within the same vehicle) (Chajakis and Guignard, 2003), waste collec-

tion (Muyldermans and Pang, 2010), on-farm milk collection (Dooley et al., 2005)

and ship scheduling (Fagerholt and Christiansen, 2000a).

Positioning constraints

The location of the items inside the vehicle may be restricted by positioning con-

straints. Absolute as well as relative positioning restrictions may be specified (Bort-
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feldt and Wäscher, 2013). Relative constraints allow or restrict the placement of the

item relative to the positions of other items. An example of relative constraints may

be found in Lurkin and Schyns (2015), who present an airline container loading prob-

lem in which they specify a minimum distance required within the airplane between

dangerous goods and other goods. In case a vehicle makes use of multiple drop-off

points in a single trip, it requires sequence-based loading which can be seen as a com-

bination of relative and absolute constraints. Sequence-based loading ensures that no

consignment is placed in such a way that it blocks the removal of items to be delivered

earlier on the route. This constraint is commonly used in VRPs (e.g. Iori et al., 2007;

Gendreau et al., 2006; Moura, 2008; Doerner et al., 2007) and is in the literature also

referred to as a Last-In-First-Out (LIFO) constraint. The LIFO policy is relevant

only for the case of a single dimension. In case of higher dimensions, items can be

placed next to each other or on top of other items.

2.3.3 Item-related constraints

Loading priorities

Loading priorities play a role in the packing process when vehicle capacity is not

sufficient to accommodate all items. The decision as to which items are shipped or

left behind may depend on factors such as product shelf life and delivery deadlines

(Bischoff and Ratcliff, 1995). Several papers in the literature on aircraft loading (e.g.

Fok and Chun, 2004; Chan et al., 2006; Vancroonenburg et al., 2014) consider loading

priorities to select the items to be loaded.

The incorporation of priorities in vehicle routing problems is considered in ori-

enteering problems where a score or priority is assigned to each location. Since the

literature on orienteering problems does not consider any other loading constraints,

those papers dealing with the orienteering problem are not considered in what fol-

lows. For a survey of research on the orienteering problem, the reader is referred to

Vansteenwegen et al. (2011) and Gunawan et al. (2016).

Orthogonality constraints

In the literature devoted to packing, it is often assumed that items have a rectangu-

lar shape. When a rectangular shape is assumed (e.g. Gendreau et al., 2006; Moura

and Oliveira, 2009; Iori et al., 2007; Fuellerer et al., 2010), the edges of the items

are assumed to be packed orthogonal or parallel with the edges of the vehicle. This

constraint is often used in combination with two- and three-dimensional loading con-
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straints.

Orientation constraints

The orientation of items may be fixed with respect to the height, width and length of

the vehicle. The vertical orientation is often fixed to prevent the item being damaged

when put upside down in the container. A fixed vertical orientation constraint is

also denoted as a “this-way-up!” constraint, referring to items that are marked with

a “this-way-up!” label (Bortfeldt and Homberger, 2013). The horizontal orientation

of the items may be fixed as well (e.g. Junqueira et al., 2012). This may be neces-

sary when items can only be accessed via a particular side (e.g. pallets that need

to be accessed by forklifts) (Bortfeldt and Wäscher, 2013). However, in most papers

incorporating orientation constraints, it is allowed to rotate the items 90 degrees on

the width-length (horizontal) plane (e.g. Gendreau et al., 2006; Tarantilis et al., 2009;

Fuellerer et al., 2010; Zhu et al., 2012; Ruan et al., 2013). This constraint is frequently

used in VRPs with two- and three-dimensional loading constraints.

Stacking constraints

When items are placed on top of each other in the vehicle, items may be damaged

by the pressure of items placed above them. Stacking constraints (also denoted as

load-bearing strength constraints or fragility constraints) prevent this from happen-

ing. The load-bearing strength of an item is defined as the maximum pressure that

can be applied on the item before damage takes place (Junqueira et al., 2013). The

load-bearing strength may vary across different vertical orientations of the item (Rat-

cliff and Bischoff, 1998). The box contents (solid contents vs. less solid contents)

and loading conditions (humidity, duration of loading, way of stacking ...) may also

influence the load-bearing strength of an item (Bortfeldt and Wäscher, 2013). Frag-

ile items may be defined as items that cannot bear any pressure from other items,

indicating that no item may be placed upon the item. Some models in the litera-

ture (e.g. Gendreau et al., 2006; Tarantilis et al., 2009; Fuellerer et al., 2010; Ruan

et al., 2013) allow for fragile items being placed upon other such items, but forbid

non-fragile items to be placed upon fragile ones. Stacking constraints have been con-

sidered in several papers concerning three-dimensional loading VRPs (e.g. Gendreau

et al., 2006; Tarantilis et al., 2009; Fuellerer et al., 2010; Ruan et al., 2013; Junqueira

et al., 2013).
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2.3.4 Container-related constraints

Weight limits

The total weight of items in the vehicle or container should not exceed the weight

capacity of the vehicle. Weight limits are a standard feature in VRPs. In several types

of vehicles (truck, airplane, ship) weight capacity may be an important restriction

when transporting heavy cargo.

Weight distribution constraints

To ensure the stability of the vehicle, it is important to balance the cargo weight

aboard. Several authors propose to achieve an uniform weight distribution by ensuring

that the center of gravity (CG) of the load should be close to the midpoint of the

container (e.g. Amiouny et al., 1992; Gehring and Bortfeldt, 1997; Davies and Bischoff,

1999; Bortfeldt and Wäscher, 2013; Paquay et al., 2016). Limbourg et al. (2012)

propose an approach for loading ULDs (Unit Loading Devices) into an aircraft. To

ensure its balance, the authors not only take the center of gravity into consideration

but also minimize the moment of inertia. The minimization of the moment of inertia

leads to a more dense packing of the load around the CG, which reduces stress on

the aircraft structure and leads to better aircraft manoeuvrability (Limbourg et al.,

2012). Although weight distribution is an important issue in practice (Davies and

Bischoff, 1999), to our knowledge, it is only considered once in combination with

routing problems. Øvstebø et al. (2011) introduce weight distribution constraints in

a maritime transportation problem. To ensure the stability of the ship, the torque

from the cargo on the ship (making the ship lean sideways) and the distance between

the bottom of the ship and its center of gravity are considered.

Closely related to weight balance aboard is the distribution of the cargo over the

axles of the vehicle. Lim et al. (2013) address axle weight constraints in a container

loading problem. They develop a heuristic method to tackle the single container load-

ing problem with axle weight constraints. Alonso et al. (2017) develop integer linear

programming models to tackle multi-container loading problems with axle weight con-

straints in which items are first packed on pallets and afterwards, pallets are placed

onto trucks.

2.3.5 Load-related constraints

Stability constraints
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Cargo stability may be defined as the ability of each box to maintain the load-

ing position without a significant change during cargo loading and transportation

operations (Ramos, A. G., 2015). When items are stacked on top of each other in

the vehicle, the items have to be supported by other items or by the floor to ensure

vertical (or static) stability of the cargo. Vertical stability constraints specify the

minimum supporting area of each item (e.g. as a percentage of the base area of the

item). Horizontal (or dynamic) stability of the cargo refers to the support of the lat-

eral faces of items in the container to prevent items moving around in the container

(Junqueira et al., 2013). For more information on cargo stability in container loading

problems, the reader is referred to Ramos, A. G. (2015). In this work, static as well

as dynamic stability in container loading is considered. The literature concerning

three-dimensional VRPs often takes vertical stability constraints into account (e.g.

Gendreau et al., 2006; Fuellerer et al., 2010; Bortfeldt, 2012; Zhu et al., 2012; Ruan

et al., 2013). According to our knowledge, horizontal stability constraints have not

yet been considered explicitly in routing models in literature.

2.4 Integration of loading constraints in vehicle rout-

ing problems

The integration of loading constraints in VRPs is a recent domain of research. Both

problems belong to the NP-hard type of optimization problems. Combining these

problems is therefore very challenging but leads to a better overall logistical solution.

This section reviews the literature on the integration of vehicle routing and load-

ing problems. Since loading constraints also apply in a maritime transport context,

papers introducing these constraints in routing problems for maritime transport are

also included. To our knowledge, no literature exists on the integration of loading

constraints in a routing model in an air transport context.

The papers dealing with the combination of routing and loading problems may

be categorized in one of the following categories defined on the basis of the type of

routing problem and the loading characteristics dealt with: Two-Dimensional Load-

ing CVRP (2L-CVRP), Three-Dimensional Loading CVRP (3L-CVRP), multi-pile

VRP, multi-compartments VRP, Pallet Packing VRP (PPVRP), Minimum Multiple

Trip VRP (MMTVRP) with incompatible commodities, Traveling Salesman Problem

with Pickups and Deliveries (TSPPD) with LIFO/FIFO constraints, Double TSP

with Pickups and Deliveries with Multiple Stacks (DTSPMS) and Vehicle Routing
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Problem with Pickups and Deliveries (VRPPD) with additional loading constraints.

This is a classification similar to the classification used by Iori and Martello (2010).

For each category, we give an overview of the loading constraints using the classifica-

tion of Bortfeldt and Wäscher (2013). Table 2.1 overviews the papers on 2L-CVRP

and on 3L-CVRP. Table 2.2 overviews those concerning the multi-pile VRP, multi-

compartments VRP, PPVRP and the MMTVRP with incompatible commodities.

Table 2.3 overviews the papers on the TSPPD with LIFO/FIFO constraints, the

DTSPMS and the VRPPD with additional loading constraints.

Except for one paper (Fagerholt et al., 2013), complete-shipment constraints and

loading priorities do not apply in the models since the capacity of the vehicle fleet

is assumed to be sufficient to accommodate all items. Connectivity constraints, on

the other hand, are standard features in routing models with multiple vehicles since

it is often assumed that all the items of a customer have to be shipped in the same

vehicle. Vertical stability constraints and stacking constraints are only relevant when

the height dimension is taken into account. Orthogonality and orientation constraints

only apply when at least two dimensions are considered.

The papers of each category are discussed below. It generally appears that few

other rich constraints (besides loading constraints) are included in the current VRP

models with loading constraints. When models do include other real-life characteris-

tics (such as time windows or heterogeneity of the vehicle fleet), they are mentioned.

In most papers described in this survey, the objective function is to minimize total

routing costs or travel distance. If not, the objective function is mentioned in the

description of the problem. Another observation is that problems in which more than

one dimension is considered (2L-CVRP, 3L-CVRP, pallet packing VRP) are mostly

solved by means of a two-stage approach. The routing problem acts as the master

problem and iteratively calls exact or heuristic methods to solve the packing subprob-

lem (Tao and Wang, 2015). The methods for solving the packing problem are mostly

based on the the bin packing literature (e.g. Baker et al., 1980; Lodi et al., 1999;

Martello and Vigo, 1998). Maximum touching perimeter (or touching area in the

three-dimensional case) and bottom-left-fill are often used to solve two- and three di-

mensional packing problems heuristically (e.g. Iori et al., 2007; Gendreau et al., 2006;

Tarantilis et al., 2009; Tao and Wang, 2015; Dominguez et al., 2014), while branch-

and-bound methods and lower bounds are usually employed to deal with packing

problems to obtain exact solutions (e.g. Iori et al., 2007; Fuellerer et al., 2009; Gen-

dreau et al., 2008). For each category with multi-dimensional loading, a paragraph

describes how the packing problem is generally dealt with. For the other categories,

the loading part is usually less complex, which does not make it necessary to apply



20 Chapter 2

heuristics for the packing problem. In the latter case, the loading constraints are usu-

ally incorporated in the vehicle routing problem (e.g. Cordeau et al., 2010b; Petersen

and Madsen, 2009; Cherkesly et al., 2015a).

2.4.1 Two-dimensional loading CVRP

In the Two-Dimensional Loading CVRP (2L-CVRP), the customers’ requests and

the measurements of the vehicles are expressed in two dimensions. Width and length

are usually taken into account whereas height is not. In real-life applications, this

problem arises in distribution logistics when items cannot be stacked on top of each

other because of their weight, fragility or large dimensions (Strodl et al., 2010). Ex-

amples of applications may be found in the distribution of large kitchen appliances

such as refrigerators, large mechanical components or fragile items. Two papers pro-

pose an exact method (Iori et al., 2007; Martinez and Amaya, 2013). Most papers

assume sequence-based loading and multiple vehicles (see Table 2.1). When height is

not considered, stacking constraints and vertical stability constraints are not appli-

cable in the problems. Two papers assume a heterogeneous fleet (Leung et al., 2013;

Dominguez et al., 2016) and three papers consider time windows (Attanasio et al.,

2007; Khebbache-Hadji et al., 2013; Martinez and Amaya, 2013). A mathematical for-

mulation for a 2L-CVRP is presented by Martinez and Amaya (2013) and Dominguez

et al. (2014).

Iori et al. (2007) are the first to address a 2L-CVRP. They develop a branch-and-

bound algorithm and solve the problem to optimality for up to 35 customers. Fuellerer

et al. (2009) employ an Ant Colony Optimisation (ACO) method for a similar problem,

with a small alteration in the loading constraints. The items are allowed to rotate 90

degrees on the horizontal plane. Attanasio et al. (2007) consider a variant of the 2L-

CVRP based on a consolidation and dispatching problem of a multinational chemical

company. Each shipment must take place within a multi-day time window, spanning

from the manufacturing date to a given deadline. Attanasio et al. (2007) develop

a heuristic based on a cutting plane framework in which a simplified Integer Linear

Program (ILP) is solved. Items are allowed to rotate and sequence-based loading

is assumed. Strodl et al. (2010) develop a Variable Neighborhood Search (VNS) to

address the routing problem and formulate a heuristic and an exact procedure for

the two-dimensional loading problem. Items have a fixed orientation and sequence-

based loading is not considered. Duhamel et al. (2011) address the 2L-CVRP without

sequence-based loading. They solve the problem using a two-stage approach. First,

the 2L-CVRP is converted into a Resource Constraint Project Scheduling Problem
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Table 2.1: Papers on 2L-CVRP

Ex HV TW CP CS Co Se Po(*) WL WD LP Orth Or St VS HS

2L-CVRP

Iori et al. (2007) x x - x x x - x x - -

Attanasio et al. (2007) x x - x x x - x - -

Gendreau et al. (2008) x - x x x - x x - -

Fuellerer et al. (2009) x - x x x - x x - -

Zachariadis et al. (2009) x - x x x - x x - -

Strodl et al. (2010) x - x x - x x - -

Leung et al. (2011) x - x x x - x x - -

Duhamel et al. (2011) x - x x - x x - -

Leung et al. (2013) x x - x x x - x x - -

Khebbache-Hadji et al. (2013) x x - x x - x x - -

Zachariadis et al. (2013b) x - x x x - x x - -

Martinez and Amaya (2013) (1) x x x - x - - -

Martinez and Amaya (2013) (2) x x - x - - -

Dominguez et al. (2014) x - x x - x x - -

Wei et al. (2015) x - x x x - x x - -

Dominguez et al. (2016) x x - x x - x x - -

3L-CVRP

Gendreau et al. (2006) x - x x x - x x x x

Aprile et al. (2007) x - x -

Moura (2008) x x - x x - x x x

Moura and Oliveira (2009) x x - x x - x x x

Tarantilis et al. (2009) x - x x x - x x x x

Fuellerer et al. (2010) x - x x x - x x x x

Ren et al. (2011) x - x x x - x x x x

Massen et al. (2012) x - x x x - x x x x

Bortfeldt (2012) x - x x x - x x x x

Wisniewski et al. (2012) x - x x x - x x x x

Zhu et al. (2012) x - x x x - x x x x

Miao et al. (2012) x - x x x - x x x x

Ruan et al. (2013) x - x x x - x x x x

Bortfeldt and Homberger (2013) x x - x x x - x x x x

Ceschia et al. (2013) x x - x x x - x x x x

Tao and Wang (2015) x - x x x - x x x x

Junqueira et al. (2013) x x - x x x - x x x x

Bortfeldt et al. (2015) x - x x x - x x x x

Zhang et al. (2015) x - x x x - x x x x

Ex = exact solution method, HV = heterogeneous vehicles, TW = time windows, CP = clas-

sical packing, CS = complete shipment, Co = connectivity, Se = separation constraint, Po =

positioning, WL = weight limits, WD = weight distribution, LP = loading priorities, Orth = or-

thogonality, Or = orientation, St = Stacking (fragility), VS = vertical stability, HS = horizontal

stability

x = considered in the reference, - = not applicable in the reference, ?= not mentioned in the

reference

(*) positioning constraints refer in most papers to sequence-based loading (or LIFO loading)
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Table 2.2: Papers on multi-pile VRP, multi-compartments VRP, Pallet-Packing VRP

and MMTVRP with incompatible commodities

Ex HV TW CP CS Co Se Po(*) WL WD LP Orth Or St VS HS

Multi-pile VRP

Doerner et al. (2007) x - x x - - -

Tricoire et al. (2011) (1) x - x x - - -

Tricoire et al. (2011) (2) x x - x x - - -

Massen et al. (2012) x - x x - - -

Multi-compartments VRP

Brown and Graves (1981) x x - x x - x x - - - - -

Avella et al. (2004) (1) x x - x x - - - - - - -

Avella et al. (2004) (2) x x x - x x - - - - - - -

Cornillier et al. (2008a) x x x - x x - - - - - - -

Cornillier et al. (2008b) x x - x x - ? - - - - -

Cornillier et al. (2009) x x x - x x - - - - - - -

Cornillier et al. (2012) x x x - x x - - - - - - -

Fagerholt and Christiansen (2000a) x x x x x x x - x - - - - - -

Fagerholt and Christiansen (2000b) x x x x x x - x - - - - - -

Chajakis and Guignard (2003) x x x - x x - x - - - - - -

Dooley et al. (2005) x ? ? x - ? - - - - -

El Fallahi et al. (2008) x - x - x - - - - - -

Mendoza et al. (2010) x - x x - - - - - - -

Muyldermans and Pang (2010) x - x x - - - - - - -

Lahyani et al. (2015) x x x - x x - - - - - - -

Pallet Packing VRP

Zachariadis et al. (2012) x x - x - x x x

Zachariadis et al. (2013a) x x - x - x x x

MMTVRP incomp. commodities

Battarra et al. (2009) x x - x x - - - - - -

Ex = exact solution method, HV = heterogeneous vehicles, TW = time windows, CP = classical

packing, CS = complete shipment, Co = connectivity, Se = separation constraint, Po = positioning,

WL = weight limits, WD = weight distribution, LP = loading priorities, Orth = orthogonality, Or

= orientation, St = Stacking (fragility), VS = vertical stability, HS = horizontal stability

x = considered in the reference, - = not applicable in the reference, ?= not mentioned in the

reference

x = considered in the reference, - = not applicable in the reference, ?= not mentioned in the

reference

(*) positioning constraints refer in most papers to sequence-based loading (or LIFO loading)
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Table 2.3: Papers on TSPPD with LIFO/FIFO constraints

Ex HV TW CP CS Co Se Po(*) WL WD LP Orth Or St VS HS

TSPPD with L/F constr.

Ladany and Mehrez (1984) x - x - - x - - - - - -

Pacheco (1997) - x - - x - - - - - -

Levitin and Abezgaouz (2003) x - x - - x - - - - - -

Carrabs et al. (2007a) - x - - x - - - - - -

Carrabs et al. (2007b) (1) x - x - - x - - - - - -

Carrabs et al. (2007b) (2) x - x - - x(a) - - - - - -

Erdog̃an et al. (2009) - x - - x(a) - - - - - -

Arbib et al. (2009) x - x - - x - - - - - -

Cordeau et al. (2010b) x - x - - x - - - - - -

Cordeau et al. (2010a) x - x - - x(a) - - - - - -

Li et al. (2011) - x - - x - - - - - -

Øvstebø et al. (2011)(1) x - x x - - x x - - - - - -

Øvstebø et al. (2011)(2) - x x - - x x - - - - - -

Côté et al. (2012b) - x - - x - - - - - -

Côté et al. (2012a) x - x - - x - - - - - -

DTSPMS

Petersen and Madsen (2009) - x - - x - - - - - -

Felipe et al. (2009) - x - - x - - - - - -

Lusby et al. (2010) x - x - - x - - - - - -

Petersen et al. (2010) x - x - - x - - - - - -

Lusby and Larsen (2011) x - x - - x - - - - - -

Alba et al. (2013) x - x - - x - - - - - -

Felipe et al. (2011) - x - - x - - - - - -

Carrabs et al. (2013) x - x - - x - - - - - -

Iori and Riera-Ledesma (2015) x x x - - x - - - - - -

VRPPD with loading constr.

Xu et al. (2003) x x x - - x x - - - - -

Malapert et al. (2008) x - x x x - x x - -

Cheang et al. (2012) x - - x - - - - -

Fagerholt et al. (2013) x x x x x x - - - - -

Cherkesly et al. (2015a) x x x - x x x - - - - -

Cherkesly et al. (2015b) x x - x x x - - - - -

Cherkesly et al. (2016) x x x - x x x - - - - -

Zachariadis et al. (2016) x - x x x - x x - -

Ex = exact solution method, HV = heterogeneous vehicles, TW = time windows, CP =

classical packing, CS = complete shipment, Co = connectivity, Se = separation constraint, Po

= positioning, WL = weight limits, WD = weight distribution, LP = loading priorities, Orth

= orthogonality, Or = orientation, St = Stacking (fragility), VS = vertical stability, HS =

horizontal stability

x = considered in the reference, - = not applicable in the reference, ?= not mentioned in the

reference

(*) positioning constraints refer in most papers to sequence-based loading (or LIFO loading)
(a) : FIFO
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- CVRP (RCPSP-CVRP) by relaxing the bin packing constraints. The items in the

packing problem are represented by activities in the RCPSP. Each activity has a

duration (length of item) and requirement of resource (width of item). A route is

feasible if the makespan of the RCPSP does not exceed the length of the vehicle

(Duhamel et al., 2011). In the second step, the feasibility of the best RCPSP-CVRP

solutions with the 2L-CVRP constraints are checked by transforming the RCPSP-

CVRP solutions into 2L-CVRP solutions. This approach saves a lot of computation

time because a packing plan is computed only for the best RCPSP-CVRP solutions.

Leung et al. (2013) develop a Simulated Annealing (SA) model to solve the 2L-

CVRP with heterogeneous fleet. The packing constraints that are considered in this

model are the same as in Iori et al. (2007). The vehicles have different weight capacities

and different measurements.

Martinez and Amaya (2013) consider a VRP with multi-trips, time windows and

two-dimensional circular loading constraints. A homogeneous fleet is considered and

sequence-based loading is not assumed. The problem is based on a real-life problem

faced by a home-delivery service transporting perishable circular shaped products. A

Mixed Integer Non-Linear Programming mathematical model (MINLP) is developed

to solve small-size problems (up to 17 customers). Furthermore, a two-step heuristic

method is proposed to handle instances of realistic size. In the first step, an initial

solution is built using a sequential insertion heuristic. In the second step this solution

is improved with a Tabu Search (TS) algorithm.

Dominguez et al. (2014) develop a biased-randomized algorithm for the 2L-CVRP

with and without item rotations. The problem assumes a homogeneous vehicle fleet

and sequence-based loading is not considered. The algorithm uses a multi-start ap-

proach and combines at each restart a biased randomization of a savings-based routing

algorithm as proposed by Clarke and Wright (1964) for the routing part with a multi-

start biased-randomized version of the best fit packing heuristic to check loading

feasibility. In the first biased randomization process, the savings list of the edges is

randomized using a biased probability distribution. For the loading feasibility check,

first a biased randomization is applied on the list of items to be loaded. Next, the

best fit heuristic is used. If after several iterations, the best fit heuristic does not find

a feasible loading scheme, the proposed route is assumed to be infeasible and a new

randomization is applied on the savings list of the edges which will again be followed

by a loading feasibility check. Dominguez et al. (2016) use a similar algorithm for the

2L-CVRP with heterogeneous fleet with and without item rotations.

Finally, Khebbache-Hadji et al. (2013) develop a heuristic solution method to solve

the 2L-CVRP with Time Windows (2L-CVRPTW) without sequence-based loading.
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The packing feasibility check in the above papers consists of a mix of several types

of solution methods (heuristic as well as exact). Commonly used methods include the

bottom-left-fill heuristic (e.g. Iori et al., 2007; Zachariadis et al., 2009; Fuellerer et al.,

2009), maximum touching perimeter (e.g. Zachariadis et al., 2009; Strodl et al., 2010;

Khebbache-Hadji et al., 2013), lower bounds (e.g. Iori et al., 2007; Gendreau et al.,

2006; Fuellerer et al., 2009) and branch-and-bound (e.g. Iori et al., 2007; Gendreau

et al., 2006; Fuellerer et al., 2009; Strodl et al., 2010). If a combination of heuristic

and exact algorithms is used, first the heuristics are applied and when they do not

find a feasible solution, the exact method is used to solve the packing problem.

2.4.2 Three-dimensional loading CVRP

In the Three-Dimensional Loading CVRP (3L-CVRP), the three dimensions of the

vehicle are taken into account and the customers’ demand also consists of three-

dimensional items. Since the height dimension is considered, additional loading con-

straints concerning fragility and vertical stability of the cargo may be specified. This

problem is encountered in distribution logistics when items may be stacked on top of

other items in a container. Examples of applications of the 3L-CVRP are found in the

distribution of furniture, household appliances, soft drinks and staple goods (Ruan

et al., 2013). Sequence-based loading is incorporated in most models as shown in

Table 2.1. Most papers assume a homogeneous fleet, while only three papers consider

time windows (Moura, 2008; Moura and Oliveira, 2009; Bortfeldt and Homberger,

2013). An exact solution method and a formulation of the 3L-CVRP is provided by

Junqueira et al. (2013).

Gendreau et al. (2006) are the first to address the 3L-CVRP. Their model includes

sequence-based loading, stacking and vertical stability constraints and a fixed vertical

orientation of the items in the vehicles (it is allowed to rotate the items 90 degrees

on the width-length plane). Tao and Wang (2015) use a TS method to solve the

3L-CVRP. They employ two mechanisms from the 3D bin packing literature to help

exploiting the loading space better. First, a least waste packing heuristic (Wei et al.,

2009) is employed which aims at minimizing the space wasted when packing an item

into a vehicle. Second, the mechanism for updating new potential points or positions

in the container at which items may be loaded is a combination of normal points and

corner points. An item that is placed in a normal position touches with its bottom

edge either the bottom of the bin or the top edge of an item in the truck, with its left

edge either the left edge of the bin or the right edge of an item in the truck and with

its front edge either the front edge of the bin or the right front of an item in the truck.
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Corner points follow the concept of envelope and are introduced by Martello et al.

(2000) for 3D bin packing. Zhang et al. (2015) consider a variant of the 3L-CVRP in

which fuel consumption is minimized rather than total distance.

Junqueira et al. (2013) propose an exact method to solve the 3L-CVRP. They

assume a homogeneous vehicle fleet, sequence-based loading, stacking constraints,

orientation constraints and stability constraints. Junqueira et al. (2013) take into

account the unloading pattern of the items at customer places. By specifying a

maximum reach length of the worker or forklift, they avoid that items placed on

top of items for other customers cannot be reached. An ILP is proposed to solve

small-sized instances (number of customers < 15).

Bortfeldt and Homberger (2013) develop a two-stage method, called Packing first

- Routing second for the 3L-CVRP with Time Windows (3L-CVRPTW). In the first

stage, the packing problem is solved for each customer separately. The resulting pack-

ing plans minimize the total loading length of the boxes of each customer in a vehicle.

In the second stage, vehicle routes are constructed with the constraint that the sum

of the loading lengths (calculated in the first stage) may not exceed the length of the

loading space of the vehicle. After these stages, a packing plan is determined for the

previously generated routes. Moura (2008) develops a multi-objective Genetic Algo-

rithm (GA) to solve the 3L-CVRPTW. The problem presented has three objectives:

minimization of the number of vehicles, minimization of total distance traveled and

maximization of volume utilization. The model considers sequence-based loading,

orientation constraints and stability constraints. Moura and Oliveira (2009) develop

a sequential and a hierarchical approach to solve the 3L-CVRPTW. The objectives

are to minimize the number of vehicles and the total route time. In the hierarchical

approach, the loading problem is seen as a subproblem of the routing problem. The

routes are planned first and afterwards, for each route, the items are packed into the

vehicles. As in Moura (2008), the model considers sequence-based loading, orienta-

tion constraints and stability constraints. In the sequential approach, the container

loading and the vehicle routes are planned at the same time. The sequence-based

loading constraint is relaxed in this solution approach.

Massen et al. (2012) develop a column generation based heuristic method for

vehicle routing problems with black box feasibility (VRPBB). In the VRPBB the

routes of the basic VRP need to satisfy a number of unknown constraints. A black

box algorithm is used to verify the feasibility of a route. Their approach is tested on

the 3L-CVRP as well as on the multi-pile VRP.

Ceschia et al. (2013) consider the 3L-CVRP with sequence-based loading and a

(weakly) heterogeneous vehicle fleet. They consider stacking and stability constraints,
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orientation constraints, the maximum reach length of a worker or forklift as well as the

possibility of split deliveries. Ceschia et al. (2013) solve the problem in one stage using

a local search approach that combines SA and Large Neighborhood Search (LNS).

Bortfeldt et al. (2015) address the VRP with Clustered Backhauls (VRPCB) and

3D loading constraints. The VRPCB is a variant of the VRP with backhauls in

which all linehaul customers are visited before the backhaul customers in every route.

Bortfeldt et al. (2015) consider the problem combined with three-dimensional loading

constraints, sequence-based loading, stacking and vertical stability constraints and

a fixed vertical orientation of the items in the vehicles (it is allowed to rotate the

items 90 degrees on the width-length plane). Two heuristic algorithms are proposed

to solve the problem. In the first algorithm, the routing procedure is based on the

Adaptive Large Neighborhood Search (ALNS) of Røpke and Pisinger (2006) while in

the second algorithm a VNS algorithm is used for routing vehicles. Both algorithms

integrate the 3D packing procedure by Bortfeldt (2012).

Maximum touching area and bottom-left-fill methods are often employed to check

the loading feasibility in the 3L-CVRP literature (e.g. Gendreau et al., 2006; Fuellerer

et al., 2010; Zhu et al., 2012; Wisniewski et al., 2012; Ruan et al., 2013). These heuris-

tics are extensions of the bottom-left-fill and maximum touching perimeter methods

from the 2D bin packing literature. Tao and Wang (2015) employ a least waste algo-

rithm in combination with maximum touching area. Junqueira et al. (2013) solve the

3L-CVRP with an ILP in which they incorporate the 3D loading feasibility check.

2.4.3 Multi-pile VRP

The Multi-Pile Vehicle Routing Problem (MP-VRP) is introduced by Doerner et al.

(2007) and is based on a real-world transportation problem regarding the transport of

wooden chipboards. For every order, chipboards of the same type (small or large) are

grouped into a unique item, which is placed onto a single pallet. The vehicle is divided

into three piles on which pallets can be stacked. Pallets containing large chipboards

can extend over multiple piles. The other pallets can be placed into a single pile. An

example of a loading plan of a multi-pile vehicle is shown in Figure 2.2 where each

tint represents a particular customer’s items. Because of this specific configuration

of pallets placed into multiple piles, the original problem in three dimensions can be

reduced to a single-dimension problem. All papers on this problem that were found,

assume a homogeneous vehicle fleet. Only a single paper by Tricoire et al. (2011) in

our investigation proposes an exact solution method.
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Figure 2.2: Example of a multi-pile vehicle (figure adapted from (Massen et al., 2012))

2.4.4 Multi-compartments VRP

In the multi-compartments VRP, vehicles with multiple compartments allow the

transportation of heterogeneous products in separate compartments in the same ve-

hicle. A compartment may not always be compatible with every type of product and

certain product pairs cannot be loaded together into the same compartment (Derigs

et al., 2011). Vehicle routing problems with compartments are encountered in indus-

tries like petroleum products and food distribution, waste collection, on-farm milk

collection and ship scheduling. Note that these applications do not only consider the

loading of individual items, but also include continuous loads such as petrol and milk.

This section discusses papers dealing with the multi-compartments VRP. In several

papers, a heterogeneous vehicle fleet and/or time windows are considered and vari-

ous exact solution methods have been developed as shown in Table 2.2. El Fallahi

et al. (2008) present a formulation for the multi-compartments VRP. Cornillier et al.

(2008b), Cornillier et al. (2009) and Cornillier et al. (2012) provide formulations for

respectively the Petrol Station Replenishment Problem (PSRP), the PSRP with Time

Windows (PSRP-TW) and the multi-depot PSRP-TW. Lahyani et al. (2015) present

a formulation for the multi-product, multi-period and multi-compartment VRP.

To our knowledge, Brown and Graves (1981) are the first to consider the dis-

patching of petroleum tank trucks. Each tank truck has several compartments which

may carry different types of petroleum. An automated real-time dispatch system is

developed for the distribution of petroleum products for a major US oil company.

Each order includes several gasoline products, jointly constituting a full truckload.
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Avella et al. (2004) also consider a real-life case of a company that supplies petroleum

products to fuel pumps. Several less than truckload orders may be shipped in a single

truck. They propose a solution method that uses a savings based routing algorithm

for the generation of routes and a best fit decreasing heuristic for the packing problem.

They also develop an exact method that uses a branch-and-price algorithm, based on

a set partitioning formulation, which can solve instances with up to 60 stations. The

PSRP has been studied by Cornillier et al. (2008a), Cornillier et al. (2008b), Cornillier

et al. (2009) and Cornillier et al. (2012). The aim of the PSRP is to optimize the

delivery of several petroleum products to petrol stations. Compartments can only

hold a single type of product and since the compartments do not have flow meters,

the content of one compartment may not be split between petrol stations. Cornillier

et al. (2008b) consider the multi-period PSRP while Cornillier et al. (2012) consider

the PSRP-TW with multiple depots. The exact algorithm of Cornillier et al. (2009)

solves instances with up to 200 stations.

Fagerholt and Christiansen (2000a) consider the Ship Scheduling and Allocation

Problem (SSAP) derived from a real-life case of the transport of mineral fertilizers by

a bulk ship. The problem is similar to a pickup and delivery problem with time win-

dows and multiple compartments. The compartments are flexible and are constructed

by partitioning the loading space. Fagerholt and Christiansen (2000a) present a set

partitioning approach to solve the problem exactly for instances with up to 70 cus-

tomers. Fagerholt and Christiansen (2000b) focus on a subproblem of the SSAP

studied by Fagerholt and Christiansen (2000a). More precisely, they consider the

Traveling Salesman Problem with Allocation, Time Windows and Precedence Con-

straints (TSP-ATWPC). They develop a dynamic programming algorithm to solve

the problem exactly for instances with up to 70 customers.

Chajakis and Guignard (2003) consider the distribution of goods to convenience

stores in vehicles with multiple compartments. They develop two integer program-

ming models for two possible cargo space layouts. Approximation schemes based on

Lagrangian Relaxation are presented to solve these problems exactly for instances

with up to 240 customers. Dooley et al. (2005) use a GA for the on-farm collection

problem of milk. The model may be used to evaluate alternative transport manage-

ment strategies with regards to milk collection.

El Fallahi et al. (2008) construct a memetic algorithm with a post-optimization

phase based on path-relinking and a TS algorithm to solve the VRP with multiple

compartments. El Fallahi et al. (2008) assume that each compartment is dedicated to

a single product. The demand of a customer for a given product type cannot be split

between vehicles, but different product types of the same customer order can be split
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between several vehicles. Since order splitting is allowed, connectivity constraints are

not included in the model. Mendoza et al. (2010) consider the VRP with multiple

compartments and a stochastic demand. Muyldermans and Pang (2010) consider a

one-dimensional co-collection problem of waste. Homogeneous vehicles with multiple

compartments are used to co-collect different types of waste. Lahyani et al. (2015)

introduce and solve a multi-product, multi-period and multi-compartment VRP. The

problem is based on a real-world application arising in the collection of olive oil in

Tunisia. A heterogeneous vehicle fleet is considered with compartments of equal or

different sizes. A branch-and-cut algorithm is proposed to solve the problem exactly.

2.4.5 Pallet packing VRP

The Pallet Packing VRP (PPVRP) is introduced by Zachariadis et al. (2012). Cus-

tomer demand is for three-dimensional rectangular boxes which are first feasibly

stacked onto pallets. These pallets are then loaded into the vehicles. The items

demanded by a single customer must be stacked onto the same pallet. Many real-

world applications of the PPVRP arise in distribution logistics. Examples may be

found in the grocery and pharmaceutical industry. Distribution centers receive orders

from grocery stores and manually pick and palletize the items of the orders for each

store and send them to the store locations (Zachariadis et al., 2012). In the pharma-

ceutical industry, items are grouped into cardboard boxes which are palletized and

transported from the production or distribution center to pharmacies (Zachariadis

et al., 2012). To our knowledge, a formulation for the pallet packing VRP has not

been provided yet.

Zachariadis et al. (2012) develop a local search metaheuristic strategy to solve the

basic PPVRP and the PPVRP with time windows (PPVRPTW). They assume that

every pallet can be unloaded at all times, without the need to move any other pallet.

Because of this assumption, sequence-based loading of the pallets into the vehicle is

not required. Sequence-based loading of the boxes onto the pallets is not assumed

either. Orientation, orthogonality as well as vertical stability constraints are consid-

ered for the loading of the boxes onto the pallets. Zachariadis et al. (2013a) consider

a variant of the PPVRP: the Pickup and Delivery Routing Problem with Time Win-

dows and Pallet loading (PDRP-TWP). The key difference with the PPVRPTW is

that two types of requests are considered in the PDRP-TWP namely delivery requests

and paired pickup and delivery requests. Zachariadis et al. (2013a) extend the meta-

heuristic developed in Zachariadis et al. (2012) in order to deal with the paired pickup

and delivery requests. The model takes into account the same routing and loading
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constraints as in Zachariadis et al. (2012).

With respect to the 3D loading feasibility check for the packing of boxes onto pal-

lets, the above papers employ a heuristic that packs each box in the minimum volume

cuboid that can accommodate this box in addition to the packing heuristics used in

3L-CVRP literature (bottom-left-fill and maximum touching area) (Zachariadis et al.,

2012). This heuristic aims at finding a high degree of pallet volume utilization. The

models also make use of a memory structure that keeps track of feasible and infeasible

packing structures to avoid making the same feasibility check multiple times.

2.4.6 Minimum multiple trip VRP with incompatible com-

modities

Battarra et al. (2009) consider the minimum multiple trip VRP (MMTVRP) with

time windows and incompatible commodities. Vehicles may perform multiple routes

within a single trip (i.e. working shift) which is limited in total duration. The objec-

tive is to minimize the total number of multiple trips, which is the total number of

vehicles. Three types of incompatible products (vegetables, fresh products and non-

perishable items) are considered. Incompatibility means that the products cannot

be transported together in a single vehicle. One-dimensional loading is considered.

Battarra et al. (2009) propose a two-phase heuristic which decomposes the problem

into two subproblems. In the first subproblem, a set of routes is determined using a

VRPTW heuristic. In the second subproblem, the routes are aggregated into mul-

tiple trips by means of a packing heuristic. To the authors’ knowledge, an exact

method or a problem formulation have not yet been developed for the MMTVRP

with incompatible commodities.

2.4.7 Traveling salesman problem with pickups and deliveries

with LIFO/FIFO constraints

In a VRPPD, items can both be picked up at and delivered to customers, as op-

posed to the general VRPs in which items are only delivered or only picked up at

customer locations. In the TSPPD a single route needs to be constructed. Appli-

cations of the TSPPD may be found in the routing of automated guided vehicles

which move items between workstations, in dial-a-ride systems where passengers are

transported between different pickup and delivery locations and in less-than-truckload

transportation (Dumitrescu et al., 2010). The literature concerning the TSPPD in-

cludes exact methods as well as heuristics to solve the problem and all consider, to
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the author’s knowledge, one-dimensional loading. The sequence-based loading con-

straint can therefore be reduced to a LIFO constraint. First-in-first-out (FIFO) is

also sometimes assumed as can be seen in Table 2.3. Furthermore, various models in-

clude time windows. Orthogonality constraints, orientation constraints and stacking

constraints are not relevant since only one-dimensional models have been developed.

Formulations for the TSPPD with LIFO loading are presented by Arbib et al. (2009)

and Cordeau et al. (2010b), while a formulation for the TSPPD with FIFO loading

is presented by Erdog̃an et al. (2009) and Cordeau et al. (2010a). Côté et al. (2012a)

present a formulation for the TSPPD with multiple stacks and LIFO loading. Øvstebø

et al. (2011) give a formulation for the TSP on Roll-on/Roll-of (RoRo) ships.

Ladany and Mehrez (1984) make the first contribution to the TSPPD with LIFO

constraints. The motivation for their study is a real-world delivery problem in which

reshuffling of goods inside a container causes costs and time losses. They are the first

to deal with the problem of reshuffling in optimal routing design and are able to solve

instances exactly with up to 3 requests. Later, Pacheco (1997, in (Iori and Martello,

2010)) develops a heuristic method to solve the TSPPD with LIFO constraints, while

Carrabs et al. (2007a) develop a VNS. Carrabs et al. (2007b) develop an additive

branch-and-bound method to solve the same problem exactly for instances with up

to 43 vertices. In the same paper, a branch-and-bound algorithm is applied to the

TSPPD with FIFO loading. Cordeau et al. (2010a) tackle the TSPPD with FIFO

loading with a branch-and-cut method and are able to solve instances with up to 43

vertices. Arbib et al. (2009) present a linear programming formulation of the TSPPD

with LIFO loading. The problem is solved with up to 21 vertices using CPLEX 9.0.

Cordeau et al. (2010b) develop a branch-and-cut method to solve the TSPPD with

LIFO for instances with up to 25 requests. Li et al. (2011) build upon and improve

the VNS of Carrabs et al. (2007a) to solve the problem heuristically.

Levitin and Abezgaouz (2003) consider the routing of an Automated Guided Ve-

hicle (AGV) which is used for carrying multiple pallets between workstations. Each

additional pallet is placed on top of the pallets that are already carried by the AGV.

To avoid rearranging the pallets at the workstations, a LIFO policy is assumed. They

develop an exact algorithm to solve the problem with up to 100 vertices.

Côté et al. (2012b) consider the TSPPD with multiple stacks with LIFO loading.

A LNS is proposed to solve the problem heuristically. Côté et al. (2012a) propose a

branch-and-cut algorithm for the same problem and are able to solve instances with

up to 43 vertices.

Øvstebø et al. (2011) examine a similar problem on Roll-on/Roll-of (RoRo) ships

that transport cargo on wheels. The ship contains several decks and each deck may
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be divided into several lanes in which the cargo may be placed. The lanes may be

compared to stacks in a truck. Sequence-based loading, stability constraints as well

as time windows are considered, of which the former is modeled as a soft constraint.

A penalty cost is incurred if the constraint is violated. This situation corresponds to

reality because although reshuffling cargo represents an inconvenience, this may be

allowed in RoRo setting if supplementary cargo can be carried (Øvstebø et al., 2011).

Two types of stability measures concerning weight distribution are considered. The

first one refers to the torque from the cargo on the ship that makes the ship lean

side-ways which should be within limits at all times. The second stability measure

refers to the distance of the ship’s bottom deck to the center of gravity of the ship

which should be less than some specified ceiling at all times. The aim of the problem

is to maximize the revenue from cargo carried from optional nodes minus a penalty for

cargo not carried from mandatory nodes, a penalty for violating the sequence-based

loading constraint, travel cost, and cost of ship usage.

2.4.8 Double traveling salesman problem with pickups and de-

liveries with multiple stacks

The Double Traveling Salesman Problem with Multiple Stacks (DTSPMS) is proposed

by Petersen and Madsen (2009). Pickup and delivery of goods are performed in two

separate networks. All pickups are made before any delivery can take place. The

goods cannot be repacked. This means that goods can not be moved to another

container or shuffled inside a single container. Vertical stacking is not allowed. The

goods can be placed in several rows (horizontal stacks). In each row the LIFO principle

needs to be obeyed. It is assumed that each order consists of a single item. The

problem is based on a real-world application in which in a first phase a container is

loaded onto a truck to perform pickup operations and returned by that truck to a

depot or terminal. In a second phase, the container is loaded onto a train, ship, plane

or another truck and transported to another depot or terminal. In the depots or

terminals, there are no facilities to repack the items. In the final phase, the container

is again transferred to a truck which performs the delivery operations (Petersen and

Madsen, 2009). A solution for the DTSPMS consists of a pickup and a delivery tour

with a corresponding feasible packing plan for the items in the container. The total

combined distance of the pickup and delivery tour is minimized. In Figure 2.3 an

example of a simple DTSPMS with four items and two stacks is displayed. Items are

picked up in the pickup tour (a) and delivered in the delivery tour (b). A possible

feasible packing plan can be found in the last picture (c). The loading of the items in
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the stack is done from bottom to top and the unloading from top to bottom. In the

loading plan it can be seen that the LIFO constraints in both stacks are satisfied. All

DTSPMS models take into account one-dimensional packing constraints and LIFO

loading in each stack. Several exact solution methods have been developed as shown

in Table 2.3. A formulation of the DTSPMS is presented by Petersen and Madsen

(2009). To our knowledge, none of the papers tackling the DTSPMS include time

windows.

Lusby et al. (2010) propose an exact algorithm to solve the DTSPMS for instances

with up to 18 requests. They first generate a set of pickup tours and a set of delivery

tours. In a second step, combinations of delivery and pickup tours are matched in

the TSP matching problem which verifies whether the combinations generate a fea-

sible packing plan. Only the best delivery and pickup tours in terms of length are

considered. Petersen et al. (2010) propose several different modeling approaches for

an exact solution of the DTSPMS. First, a branch-and-cut approach is used on the

mathematical programming formulation of the problem introduced in Petersen and

Madsen (2009) which is called the ’precedence’ model. Next, a variation of the prece-

dence model is proposed and solved with a branch-and-cut approach. Finally, two

new different mathematical formulations (the flow model and the TSP with Infeasible

Paths (TSPIP)) are developed. To solve the flow model, again a branch-and-cut ap-

proach is used. For the TSPIP a decomposition approach is used to solve the problem.

The solution of the TSPIP with a decomposition approach turned out to be the most

successful approach in which the problem is solved exactly for instances with up to

25 requests. Lusby and Larsen (2011) improve the exact method developed by Lusby

et al. (2010) by including an additional preprocessing technique: the longest common

subsequence between the pickup and the delivery tour. This preprocessing technique

significantly decreases the number of matching problems that need to be solved. This

makes it possible to consider more matching problems in the same amount of time

and dramatically improves the efficiency of the solution method. Instances with up

to 28 requests are solved. Alba et al. (2013) develop a branch-and-cut algorithm to

solve the DTSPMS exactly for instances with up to 25 requests. Felipe et al. (2011)

improve the previously developed VNS in Felipe et al. (2009) by allowing interme-

diate infeasible solutions. Carrabs et al. (2013) consider the double TSP with two

stacks. They develop a branch-and-bound algorithm to solve this problem exactly

for instances with up to 29 requests. Iori and Riera-Ledesma (2015) generalize the

DTSPMS by considering multiple routes. The resulting problem is the Double Vehicle

Routing Problem with Multiple Stacks (DVRPMS). A heterogeneous vehicle fleet is

considered, where the number of stacks as well as the capacity of the stacks may be
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a) b) c)

Figure 2.3: A simple DTSPMS example with a pickup tour (a), a delivery tour (b)

and a loading plan (c) (figure from (Alba et al., 2013))

different.

2.4.9 VRP with pickups and deliveries with additional loading

constraints

We found nine articles in the scientific literature that consider pickup and delivery

problems with multiple vehicles combined with loading constraints. Six of them con-

sider one-dimensional loading. Time windows as well as a heterogeneous vehicle fleet

are sometimes included as shown in Table 2.3. Two papers propose an exact solution

method (Cherkesly et al., 2015a, 2016). Fagerholt et al. (2013) present a formulation

for the VRPPD with time windows, complete-shipment constraints and connectivity

constraints. Cherkesly et al. (2015a) present a formulation for the VRPPD with time

windows and LIFO loading. The VRPPD with multiple vehicles is a generalization

of the TSPPD. As a consequence, all applications (AGVs, dial-a-ride-problems, less-

than-truckload transportation ...) of the TSPPD may be considered by the VRPPD

with the additional possibility of using more than a single vehicle, which is often

encountered in real-life (Braekers et al., 2014).

Xu et al. (2003) present a practical pickup and delivery problem in which they

consider multiple time windows, heterogeneous vehicles, compatibility constraints be-

tween items and vehicle types, separation constraints, driver’s work rules and LIFO

loading. The problem is solved with a hybrid approach in which heuristics are inte-

grated in a column generation framework. Cheang et al. (2012) consider the multiple

vehicle pickup and delivery problem with LIFO loading and distance constraints. A

homogeneous fleet is assumed. A two-stage method is proposed to solve the prob-

lem. In the first stage the number of vehicles required is minimized using a SA and

an ejection pool approach. The second stage minimizes total travel distance using a
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VNS and a probabilistic TS.

Fagerholt et al. (2013) present a VRPPD with time windows and loading con-

straints to solve a real-life ship routing and scheduling problem that arises in tramp

shipping. Complete-shipment constraints, connectivity constraints and a heteroge-

neous vehicle fleet are taken into account. The objective function maximizes the

revenue from the optional spot cargoes minus the variable sailing and port costs

through the scheduling period. A TS heuristic is proposed to solve the problem.

Cherkesly et al. (2015a) consider the VRPPD with time windows and LIFO load-

ing. They develop three branch-price-and-cut algorithms to solve the problem exactly

for instances with up to 75 requests. Cherkesly et al. (2015b) develop a population

based metaheuristic to solve larger instances of the same problem heuristically. In

both papers the number of vehicles is first minimized before minimizing the total trav-

eled distance. A variant of the previous problem is the VRPPD with time windows

and multiple stacks, which is defined by Cherkesly et al. (2016). They develop two

branch-price-and-cut algorithms to solve the problem with one, two and three stacks

to optimality for instances with up to 75 requests.

Zachariadis et al. (2013a) consider the Pickup and Delivery Routing Problem with

Time Windows and Pallet loading (PDRP-TWP) which is discussed in Section 2.4.5.

Malapert et al. (2008) propose a framework to handle the two-dimensional VRPPD

with multiple vehicles and sequence-based loading. Items have to be packed orthog-

onal to the sides of the loading surface and the orientation of the items is fixed. A

constraint programming model is formulated and a variant of the bottom-left-fill is

applied but turned out not to be efficient to solve the problem. Zachariadis et al.

(2016) introduce and solve the VRP with simultaneous pickups and deliveries and

two-dimensional loading constraints. A local search method is used for optimizing

the routes and a two-dimensional packing heuristic is designed for the packing feasi-

bility check.

2.4.10 Benchmark instances

In Table 2.4, an overview of benchmark instances on routing problems with loading

constraints is provided. A distinction is made between different types of problems.

For each benchmark instance, the references of papers that use the instances, the

number of vertices, the number of instances and the link to the website are provided.

These instances are included in order to give a complete overview of the literature

concerning routing and loading. They are however not used for the analyses that are

performed in this thesis.
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2.5 Discussion and research opportunities

The above review of the literature on vehicle routing problems with loading constraints

shows that although classic VRPs have received a lot of research attention, they often

do not reflect the real problems faced by distributors. An important flaw of classic

VRPs is their ignorance of several real-life loading constraints. An overview of load-

ing constraints, mainly based on the classification of Bortfeldt and Wäscher (2013),

is provided. Recently, a number of papers have addressed the integration of loading

constraints in vehicle routing problems. These papers may be placed in the following

categories based on the type of routing problem and the loading characteristics: Two-

Dimensional Loading CVRP (2L-CVRP), Three-Dimensional Loading CVRP (3L-

CVRP), multi-pile VRP, multi-compartments VRP, Pallet Packing VRP (PPVRP),

Minimum Multiple Trip VRP (MMTVRP) with incompatible commodities, Travel-

ing Salesman Problem with Pickups and Deliveries (TSPPD) with LIFO/FIFO con-

straints, Double TSP with Pickups and Deliveries with Multiple Stacks (DTSPMS)

and Vehicle Routing Problem with Pickups and Deliveries (VRPPD) with additional

loading constraints. The latter three categories consider pickup and delivery problems

in which items may be picked up and delivered at customer places. For each category

the relevant loading constraints that are incorporated into the models are described

and the available formulations are discussed. Only a limited number of papers present

a problem formulation. This phenomenon might be explained due to the fact that

including loading constraints in a routing problem, increases the complexity of the

problem formulation. The addition of a three-dimensional loading constraint does not

imply adding a single extra row to the formulation but affects the formulation as a

whole. Additionally, due to the complexity of the problem mostly heuristic methods

are developed which do not often require a problem formulation.

The complexity of the problem not only depends on the complexity of the routing

and loading constraints separately, but is also influenced by the combination of both

types of constraints. For example, sequence-based loading becomes much more com-

plex in a three-dimensional loading problem than in a one-dimensional problem. The

type of transportation request (pickup and delivery of items, or only a single type of

request) influences in return the complexity of the sequence-based loading constraint.

From the literature survey it is observed that, in most models, the loading constraints

are handled as a subproblem of the routing model (e.g. Gendreau et al., 2006; Do-

erner et al., 2007; Tarantilis et al., 2009; Bortfeldt, 2012; Fuellerer et al., 2010; Ruan

et al., 2013). First, solutions of the routing problem are computed, and afterwards,

a feasibility check of the loading constraints is performed. Since loading constraints
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are often complex, a considerable amount of time may be saved by only checking the

best solutions of the routing model. There exist some exceptions to this method of

incorporating loading constraints in VRP models, such as the sequential approach

of Moura and Oliveira (2009) in which the container loading and the vehicle routes

are planned simultaneously. Another example is the Packing First - Routing Second

heuristic of Bortfeldt and Homberger (2013) in which first a feasible packing scheme

for each particular customer is computed after which the routes are constructed, fol-

lowed by an optimization of the overall packing plan of all customers belonging to a

single route.

As the combination of vehicle routing problems with loading constraints is a fairly

recent domain of research, a number of opportunities for future research can be identi-

fied. An interesting path of research could incorporate weight distribution constraints

into VRPs. In the scientific literature, an even weight distribution of the cargo inside

the vehicle is often achieved by placing the center of gravity of the load as close as

possible to the midpoint of the container. Closely related to balancing cargo weight

inside the vehicle is balancing it over the axles of the vehicle. Axle weight limits

pose a challenge to transportation companies as they incur high fines in the event of

non-compliance. Since weight distribution varies with every pickup or delivery, this

should be monitored not just at the point of departure but throughout the journey.

Axle weight constraints have not yet been considered in a VRP despite of its prac-

tical relevance. Therefore, in the next chapters of this dissertation, the CVRP with

sequence-based pallet loading and axle weight constraints is considered. This is a spe-

cial case of 2L-CVRP in which all items are pallets of equal size which may be placed

in two horizontal rows in the vehicle. The problem may also be seen as a special

case of multi-pile VRP in which the horizontal rows represent piles. In the CVRP

with sequence-based pallet loading and axle weight constraints however, pallets are

alternately packed in the left and right row, while this is not a requirement in the

multi-pile VRP.

Another line of future research could focus on pickup and delivery problems with

loading constraints. Except for a single paper (Malapert et al., 2008), the current

literature concerning PDPs only takes one dimension into account.

Next, few solutions methods for PDPs with loading constraints and multiple ve-

hicles have so far been developed. Future research could analyze PDPs with multiple

vehicles and multiple dimensions. As for the multi-compartments VRP, one might

focus on scheduling over multiple periods or over multiple trips in a single tour where

contamination from load residuals may be considered. A compartment carrying a

specific product might not be available after emptying for another product before
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cleaning.

Furthermore, it appears that few exact methods have been devised to solve VRPs

with loading constraints. Hence future research could focus on creating exact methods

to solve VRPs with loading constraints to which heuristic solutions may be compared.

A final observation is that other rich constraints are rarely incorporated into the

current VRP models with loading constraints. Even time windows are not often in-

cluded in the current models. Including time windows or other additional constraints

such as the use of a heterogeneous fleet, maximum route length and duration or

drivers’ regulations in current VRP models with loading constraints would go some

considerable way towards making these more realistic.
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CVRP with sequence-based

pallet loading and axle weight

constraints: Problem

formulation and description

3.1 Introduction

This chapter 1 focuses on the formulation of the VRP with axle weight constraints

(Figure 3.1). Contacts with logistics service providers pointed out that they are

faced with loading problems in their decisions on route scheduling. Current com-

mercial route scheduling software does not take into account most of these loading

constraints, which makes the routes often not feasible in practice. This gives rise to

last-minute and often non-optimal changes. The development of vehicle routing mod-

els that incorporate loading constraints is therefore vital for an efficient scheduling of

routes. The focus of this chapter and the following chapters is on the combination

of a VRP with the loading of pallets inside a vehicle since this is a problem setting

often encountered by distributors. Pallets may be placed in two rows inside the ve-

hicle but cannot be stacked on top of each other because of their weight, fragility or

customer preferences. Sequence-based loading is assumed which ensures that when

arriving at a customer, no items belonging to customers served later on the route

1This chapter is based on Pollaris et al. (2016a).
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Figure 3.1: Outline of the thesis

block the removal of the items of the current customer. Furthermore, the capacity of

a truck is not only expressed in total weight and number of pallets but also consists

of a maximum weight on the axles of the truck.

In this chapter, two problem formulations for the CVRP with sequence-based

pallet loading and axle weight constraints are developed. Section 3.2 describes the

problem characteristics. The calculation of the weight on the axles is described in

Section 3.3. In Section 3.4, the impact of the incorporation of axle weight constraints

in a routing problem is illustrated with an example. A mixed integer linear program-

ming formulation for the CVRP with sequence-based pallet loading and axle weight

constraints is presented in Section 3.5. In Section 3.6, a set partitioning formulation

for the problem is presented. In the final section (Section 3.7), conclusions and future

research opportunities are discussed.
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3.2 Problem Description

The problem of interest in this chapter is a CVRP with sequence-based pallet loading

and axle weight constraints. To the best of the author’s knowledge, it is the first time

that axle weight constraints are incorporated into a VRP. The problem is based on a

real-world distribution problem. Following assumptions are made:

(a) The objective is to minimize total distance traveled.

(b) No time windows are considered.

(c) The vehicle fleet is homogeneous.

(d) Each customer has to be visited exactly once.

(e) The demand of the customers consists of europallets (80x120 cm) and is hetero-

geneous.

(f) Pallets may be placed inside a truck in two horizontal rows and are packed dense

in the truck. This means there cannot be a gap between two consecutive pallets

inside the truck. Pallets are alternately packed in the left and right row. This

implies that the pallets of a single customer cannot be aligned in a single row.

Moreover, the pallets of the last customer are placed at the deepest portion of

the loading area.

(g) All pallets of a single customer have the same weight and the weight is uniformly

distributed inside each pallet i.e. the center of gravity of a pallet lies in its

geometric midpoint.

(h) The truck can only be unloaded at the rear side.

(i) Sequence-based loading is imposed.

(j) Vertical stacking is not allowed.

Assumptions a, b, c and g are the least realistic for real problems. In reality, the

objective of a transportation company is to minimize total costs instead of minimizing

total distance traveled. Furthermore, companies are faced with time windows within

which a delivery must take place. Companies also usually dispose over a heterogeneous

instead of a homogeneous fleet of vehicles. Finally, in most distribution problems,

pallets of a single customer do not necessarily have the same weight.

On the other hand, assumptions d, f and i are common in real problems. Customers

have to be visited exactly once because split deliveries are generally not allowed. Dense
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packing is often used in practice since the stability of the load is much higher when

the pallets are packed dense than when gaps are allowed between pallets. Therefore,

less time needs to be spent on securing the cargo. Sequence-based loading is often

assumed in real problems to avoid moving pallets of other customers when arriving

at a customer.

Assumptions e, h and j are realistic for a number of real problems, but may also be

restrictive for a number of real problems. The demand of the customers may consist

of non-palletized goods. In this case, dense packing may also not always be possible.

Most trucks are loaded and unloaded through the rear side, however there also exist

trucks that may be unloaded through the long side, and/or via the top side. Finally,

vertical stacking of pallets may sometimes be allowed when non-fragile pallets are

considered.

The axle weight is the weight that is placed on the axles of the truck. A truck with

five axles is illustrated in Figure 3.2. The first axle, also called the steering axle, and

the second axle, called the driving axle, both belong to the tractor. The axles of the

semi-trailer are assumed to be tridem axles. Tridem axles are three successive axles

with a distance between the middle of the first axle and the middle of the second axle

and between the middle of the second axle and the middle of the third axle of less

than 1.8 and more than 1 meter. When item j is placed onto a vehicle, the weight of

the item is divided over the axles of the tractor and the axles of the semi-trailer. aFj
represents the weight of the items of customer j placed on the coupling of the truck

(which is the link between the tractor and the semi-trailer), the first axle point. The

weight on the coupling is carried by the axles of the tractor. aRj represents the weight

of the items of customer j on the axles of the semi-trailer, the rear axles of the truck.

As a truck delivers items to several customers on a single route, the weight on the

axles of the truck changes. A load that is placed at the rear of the vehicle (behind

the axles of the semi-trailer), has a negative weight on the axles of the tractor. For

this reason, it is possible that by unloading this item a violation of the weight limits

of the axles of the tractor is induced. It is therefore important that axle weights are

considered during the whole trip of the vehicle and not only when the vehicle departs

from the depot. To our knowledge, Lim et al. (2013) and Alonso et al. (2017) are the

only authors that address axle weight constraints in a container loading problem. Lim

et al. (2013) develop a heuristic method to tackle the single container loading problem

with axle weight constraints. Alonso et al. (2017) develop integer linear programming

models to tackle multi-container loading problems with axle weight constraints in

which items are first packed on pallets and afterwards, pallets are placed onto trucks.
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Figure 3.2: Tractor (with two axles) and semi-trailer (with tridem axles) (figure

adapted from TruckScience)

Information on the vehicle fleet (measurements, capacity, mass, axle weight limits)

is derived from information from a Belgian logistics service provider. In this chapter,

a homogeneous fleet of 30-foot trucks is considered. In total, 22 pallets may be placed

inside a truck in two horizontal rows. The 30-foot trucks consist of a tractor, a semi-

trailer and a container. The length, width and height of the inside dimensions of the

container are respectively 9.12 meters, 2.44 meters and 2.44 meters. The mass of the

empty tractor is 6.82 tonnes of which 4.88 tonnes is carried by the steering axle and

1.97 tonnes is supported by the driving axle. The tare weight of the container is 3

tonnes of which 2 tonnes is supported by the coupling and 1 ton is support by the

axles of the semi-trailer. The mass of the empty trailer is 2 tonnes which is carried

by the axles of the trailer. The maximum weight on the coupling of the tractor is

13.6 tonnes. This is subtracted by the weight of the container carried by the coupling

(2 tonnes), which leads to a maximum weight of the load that may be placed on

the coupling of 11.6 tonnes. 80% of the weight on the coupling is supported by the

driving axles of the tractor, while the remaining 20% is carried by the steering axle.

The maximum weight capacity of the tridem axles of the semi-trailer is 24 tonnes.

This is subtracted by the weight of the semi-trailer (2 tonnes) and the weight of the

empty container carried by the axles of the semi-trailer (1 tonnes) which gives a total

of 21 tonnes. This is the maximum weight of the load that may be carried by the

axles of the semi-trailer. The maximum weight of the vehicle is 44 tonnes. This is

subtracted by the empty weight of the tractor (6.82 tonnes), the tare weight of the

container (3 tonnes) and the weight of the semi-trailer (2 tonnes), which results in a

maximum weight of the load of 32.2 tonnes.
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3.3 Axle weight calculation

In this section, the calculation of the weight on the axles of a truck, in which pallets

are placed in two horizontal rows, is described. The calculation depends on the

center of gravity of the pallets inside the truck and on vehicle-specific parameters. In

Subsection 3.3.1, the formulas for the calculation of the axles weights are presented.

In Subsection 3.3.2, the determination of the center of gravity is described.

3.3.1 Calculation of the weight on the axles of a truck

The calculation of the weight of the pallets on the axles is based on the static equi-

librium condition derived from Newton’s first law of motion. The law may be stated

as follows:

If the resultant force acting on a particle is zero, the particle will remain at rest

(if originally at rest) or will move with constant speed in a straight line (if originally

in motion).

This implies that if the axles are at equilibrium, the net force acting upon the

axles should be zero Newton. Therefore, if all forces are added together as vectors,

then the resultant force (the vector sum) should be zero Newton. Figure 3.3 presents

a truck with a single pallet of customer j.

The mass of the pallet of customer j is denoted by mj . Parameter CGj represents

the distance from the front of the container to the center of gravity of the pallet of

customer j. Parameter c denotes the distance from the front of the container to the

coupling. Parameter d represents the distance between the coupling and the central

axle of the semi-trailer. Figure 3.4 presents a free-body diagram on which the forces

that are applied by the pallet on the coupling (denoted by P1) and on the axles of

the semi-trailer (denoted by P2) are displayed.
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c

d

CGj  

item j

Figure 3.3: Tractor (with two axles) and semi-trailer (with tridem axles) (figure

adapted from TruckScience)

Figure 3.4: Free body diagram

According to the equilibrium condition, following equation holds in P1:

d · F2 − (CGj − c) ·mj · a = 0 (3.1)

With gravitational constant a = 9.81m
s2 .

From this equation, the following formula may be derived for F2:

F2 =
(CGj − c) ·mj · a

d
(3.2)

Since F = m · a (second law of Newton), the mass from the pallet from customer

j that is placed on the axles of the trailer, P2, may be calculated as follows:

mj2 =
(CGj − c) ·mj

d
(3.3)

An analogous reasoning leads to the following formula for the mass of the pallet

from customer j that is placed on the coupling, P1:

mj1 =
(d− (CGj − c)) ·mj

d
(3.4)

This formula may be rearranged to the following:

mj1 = mj −
(CGj − c) ·mj

d
= mj −mj2 (3.5)
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Note that in physics, weight refers to force (F) and is expressed in Newton. How-

ever, in this thesis, weight is used to refer to mass (expressed in tonnes) since this

is common practice in the VRP literature. The general formula for the weight of

the pallets of customer j when traveling from customer i to customer j on the cou-

pling point or the axles of the tractor (aFij) and on the axles the semi-trailer (aRij) is

presented in equations (3.6) and (3.7).

aRij =
(CGj − c)

d
mj (3.6)

aFij = mj − aRij (3.7)

The weight of the pallets is divided over the axles of the semi-trailer and the

axles of the tractor. The distribution of the weight over the axles depends on the

distance between the pallet and the axles. In the first part of equation (3.6) the

percentage of the weight that is assigned to the axles of the semi-trailer is computed

by dividing the distance between the coupling and the center of gravity of the item

by the distance between the coupling and the central axle of the semi-trailer. In the

second part of equation (3.6), this percentage is multiplied by the weight of the item

to compute the weight that is carried by the axles of the semi-trailer. The larger the

distance between the item and the coupling, the higher the percentage of weight that

is distributed to the axles of the semi-trailer will be. The weight on the coupling is

computed in equation (3.7) by subtracting the weight on the axles of the semi-trailer

from the weight of the item.

Based on real-world information, parameters c and d respectively have a value of

1 meter and 5.5 meters in a 30-foot truck. In the next paragraphs, calculations are

expressed in pallet places instead of meters. A pallet place is a length unit and equals

the length of a single pallet inside the container. The europallets (1.20 m x 0.8 m)

are placed in two rows with a width of 1.20 m, which makes the length of each pallet

inside the container (= a single pallet place) equal to 0.8 m. The value of c becomes

1.25 (= 1m
0.8m/palletplace ) pallet places and d has a value of 6.875 (= 5.5m

0.8m/palletplace )

pallet places.

While c, d and mj are parameters which are known beforehand, determining

the value of CGj is less straightforward since the center of gravity depends on the

location of item j in the truck. In the next subsection, the determination of the center

of gravity is discussed.
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Figure 3.5: Top view of a container with indication of starting point (Sj) and center

of gravity (CGj)

3.3.2 Calculation of the center of gravity

The calculation of the center of gravity is illustrated in Figure 3.5 in which the grey

shaded pallets represent pallets that are already in the truck when arriving at customer

j and the black shaded pallets represent the pallets of customer j. Since it is assumed

that the center of gravity lies in the geometric midpoint of the pallets of customer j,

the center of gravity of the eight pallets of customer j in Figure 3.5 equals 3. The

starting point (Sj) is the point at which the first pallet of customer j (when coming

from customer i) is placed inside the vehicle, which is at point 1 in Figure 3.5. The

number of pallets that are already in the truck when traveling from customer i to

customer j is denoted by lij and Lj represents the number of pallets of customer j.

In the following paragraphs, a formula is presented to calculate the center of

gravity of the pallets of a customer. The author is not aware of other sources that use

a similar approach. The calculation of the center of gravity is composed of two parts.

The first part determines the starting point (Sj) at which the first pallet of customer

j will be placed. This depends on lij . If the number of pallets in the truck is even,

Sj =
lij
2 . When the number of pallets already in the truck is odd, Sj =

lij
2 − 0.5. In

Figure 3.5, lij = 2 which results in Sj = 1. The second part of the calculation of the

center of gravity determines the distance between the center of gravity of the pallets

of customer j and Sj . This depends on the value of lij , Lj and the capacity of the

vehicle in terms of pallets, L.
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When lij is even, the second part of the equation for the center of gravity equals

Ej . Ej is the center of gravity of the pallets of customer j when the truck is empty

upon arrival (lij = 0). Ej corresponds to equation (3.8) or (3.9) depending on whether

Lj is respectively even or odd. In equation (3.9), the center of gravity of every pallet

separately is added up and divided by the number of pallets of customer j (Lj).

If Lj is even:

Ej =
Lj

4
(3.8)

If Lj is odd:

Ej =
(
Lj

2 +Max[0, (Lj − 2)] +Max[0, (Lj − 4)] + ...+Max[0, (Lj − (L− 2))])

Lj

(3.9)

When lij is odd, the second part of the equation for the center of gravity equals

Oj . Oj is the center of gravity of the pallets of customer j when a single pallet is

placed in the truck upon arrival (lij = 1). Oj equals equations (3.10) or (3.11) de-

pending on whether Lj is respectively even or odd. The calculation of Oj is similar

to the calculation of Ej . In equation (3.11), the last two terms equal the center of

gravity of the first pallet of customer j that is placed inside the truck.

If Lj is even:

Oj =
Lj

4
+ 0.5 (3.10)

If Lj is odd:

Oj =
(Lj +Max[0, (Lj − 2)] +Max[0, (Lj − 4)] + ...+Max[0, (Lj − (L− 2))]− 0.5)

Lj

(3.11)

Since the number of pallets of customer j (Lj) and the vehicle capacity in terms

of pallets (L) are known in advance, Oj and Ej can be treated as parameters or

constants in the mathematical model in Section 3.5. To integrate equations (3.8),

(3.9), (3.10) and (3.11) and the calculation of Sj into a single formula to define the
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center of gravity, parameter Pj and variable Cij are created. Pj = 1 if Lj is even and

Pj = −1 when Lj is odd. Variable Cij is defined to keep track of the variable lij .

When a vehicle travels from i to j, Cij = 1 when lij is even and Cij = −1 when lij is

odd. When a vehicle does not travel from i to j, Cij = 0.

The integrated formula of CGj is displayed in equation (3.12). Note that this is

a linear equation.

CGj =

∑
i∈V lij

2
− 1

4
· (1−

∑
i∈V

Cij) +Oj ·
1

2
· (1−

∑
i∈V

Cij)

+ Ej ·
1

2
· (1 +

∑
i∈V

Cij)∀j ∈ V

(3.12)

The formula consists of two parts.

∑
i∈V lij

2
− 1

4
· (1−

∑
i∈V

Cij) (3.12.1)

Oj ·
1

2
· (1−

∑
i∈V

Cij) + Ej ·
1

2
· (1 +

∑
i∈V

Cij) (3.12.2)

In equation (3.12.1), the starting point Sj at which the first pallet of customer

j will be placed is determined. When lij is even, Cij = 1 and the second term will

become 0. Only the first term remains. When lij is odd, Cij = −1 and the second

term becomes −0.5. Equation (3.12.2) calculates the distance between the center of

gravity of the pallets of customer j and the front of the container, when no pallets

or a single pallet are inside the truck. This distance equals the distance between the

center of gravity of the pallets and the starting point Sj . When lij is even, Cij = 1

and the first term becomes zero while the second term becomes Ej . When lij is odd,

Cij = −1 and the first term becomes Oj while the second term turns to zero.

3.4 Illustrative example

In this section, the impact of incorporating axle weight constraints in a routing model

with sequence-based loading is illustrated with an example. In Figure 3.6, a depot

with four customers is presented. Each customer has a demand of five europallets.

The total mass of the pallets of customer 1, 2, 3 and 4 is respectively 12 tonnes, 2

tonnes, 2 tonnes and 12 tonnes. The distance matrix of the customer nodes and the

depot may be found in Table 3.1. The shortest route between the depot and customer

locations is computed with and without taking axle weight constraints into account.
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Depot

1

2 3

4

12 tonnes

2 tonnes 2 tonnes

12 tonnes

Figure 3.6: Graphical representation of a depot with four customers

Table 3.1: Distance matrix illustrative example

Depot Customer 1 Customer 2 Customer 3 Customer 4

Depot 0.00 3.16 2.24 2.24 3.16

Customer 1 3.16 0.00 2.24 4.12 6.00

Customer 2 2.24 2.24 0.00 2.00 4.12

Customer 3 2.24 4.12 2.00 0.00 2.24

Customer 4 3.16 6.00 4.12 2.24 0.00

The objective is to minimize total distance traveled. An optimal vehicle route

when axle weight constraints are not considered is graphically represented in Figure

3.7(a). The vehicle starts in the depot, visits customer nodes 1, 2, 3, 4 and returns

to the depot. The loading scheme of the container may be found in Figure 3.8(a). In

Table 3.2, the total mass of the load, the weight of the load on the coupling and on

the axles of the semi-trailer when the truck arrives at each customer node is given.

The weight on the coupling is calculated by taking the sum of the weights on the

coupling of all pallets that are inside the truck. For each customer, the weight of

the pallets on the coupling is calculated with the formula presented in equation (3.6).

Similarly, the weight on the axles of the semi-trailer is calculated by taking the sum

of the weights on the semi-trailer of all pallets that are inside the truck. The weight

of the pallets on the axles of the semi-trailer is calculated for each customer with the

formula presented in equation (3.7).

The total mass of the load is well below the maximum weight capacity (32.2

tonnes) of the vehicle. The cargo weight on the coupling is greater than the weight

limit (11.6 tonnes) when the vehicle departs from the depot until it arrives at the

last customer. This means that the axle weight limits on the axles of the tractor are
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(a) (b)

Figure 3.7: Graphical representation of an optimal vehicle route (a) without axle

weight constraints, (b) with axle weight constraints

Figure 3.8: Loading scheme of a container (in top view) of the optimal route (a) with-

out axle weight constraints, (b) with axle weight constraints. The load of respectively

customer 1, 2 , 3 and 4 is indicated by C1, C2, C3 and C4

violated on the vehicle route. The highest axle weight violation takes place between

customer 1 and customer 2. When the vehicle departs from customer 1, the weight

on the coupling is 18% higher than the limit. Therefore the solution is not feasible for

the distribution company. In this symmetric VRP without axle weight constraints,

visiting sequence 4-3-2-1 (the reverse order of customers from the first solution) is also

an optimal route with the same total distance traveled as visiting sequence 1-2-3-4.

This sequence generates the same axle weight violations as visiting sequence 4-3-2-1.

Table 3.2: Results of the illustrative example without axle weight constraints

Customer Total mass (kg) Weight coupling (kg) Weight axles semi-trailer (kg)

1 28,000 12,727* 15,273

2 16,000 13,731* 2,269

3 14,000 13,200* 800

4 12,000 11,913* 87

* >= 11.6 tonnes
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In Figure 3.7(b), the optimal vehicle route when axle weight constraints are con-

sidered is graphically represented. The vehicle starts in the depot, visits customer

nodes 1, 2, 4, 3 and returns to the depot. In Table 3.3, the total mass of the load

and the weight of the load on the coupling and on the axles of the semi-trailer when

the truck arrives at each customer node is given. Total distance traveled is 14, which

is an increase of 9 percent compared to the optimal solution without axle weight

constraints. The maximum weight on the coupling is 10.2 tonnes which does not

exceed the weight limit on the coupling (11.6 tonnes). The maximum load on the

axles of the semi-trailer is 18.8 tonnes which is below the weight limit on the axles of

the semi-trailer (21 tonnes). In Figure 3.8(b), the loading scheme of the container is

presented. Note that although the change only consists of swapping two customers

(customer 3 and 4) on the route, all axle weight violations have disappeared. This

is because the heavy pallets of customer 4 are no longer at the front of the vehicle

and are therefore not only carried by the coupling, but also partially by the axles of

the semi-trailer. To conclude, considering axle weight constraints in route scheduling

may lead to a higher distance traveled, but ensures a feasible weight distribution of

the load inside the vehicle.

Table 3.3: Results of illustrative example with axle weight constraints

Customer Total mass (kg) Weight coupling (kg) Weight axles semi-trailer (kg)

1 28,000 9,236 18,764

2 16,000 10,240 5,760

4 14,000 9,709 4,291

3 2,000 1,985 15

3.5 Problem formulation: MILP

In this section, a Mixed Integer Linear Programming (MILP) formulation of a CVRP

with sequence-based pallet loading and axle weight constraints is presented. Note

that the considered problem is a delivery problem, as illustrated in Section 3.3. The

calculation for the center of gravity is however less complex when formulated as a

pickup problem. Therefore, the problem in this section is formulated as a pickup

problem. Since we consider a symmetric problem (symmetric distance matrix) and

do not assume time windows, the optimal visiting sequences of the pickup problem
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can be reversed to determine the optimal visiting sequences of the delivery problem.

Note that the drawback of this formulation is that if the problem is extended with

time windows or other realistic features such as time-dependent routing, the pickup

routes cannot be simply reversed to find the delivery routes.

To formulate the problem the following notation is used:

V = {0, 1, ..., n+ 1} set of vertices with customers (node 1, . . . , n) and

depot (node 0, n+ 1 ) (indices i, j, k)

E = set of edges (i, j) where i, j ∈ V and i ̸= j

cij = travel distance on edge(i, j)

Lj = number of pallets demanded by customer j

L = maximum number of pallets per vehicle

Qj = total mass of the pallets of customer j

Q = maximum mass capacity of each vehicle

Ej = center of gravity of the pallets of customer j when the container is empty upon arrival at customer j

Oj = center of gravity of the pallets of customer j when 1 pallet is in the container upon arrival at customer j

AF = maximum weight on the coupling

AR = maximum weight on the axles of the semi-trailer

WT = mass of the empty truck

WTD = weight of the empty truck on the driving axle

WTR = weight of the empty truck on the axles of the semi-trailer

h = fraction of the weight on the coupling that is carried by the driving axle

c = distance between the front of the container and the coupling

d = distance between the coupling and the center of the axles of the semi-trailer

Pj =

 1 if Lj even

−1 if Lj odd

The decision variables are defined as:
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xij =

 1 if a vehicle travels from i to j with (i, j) ∈ E

0 otherwise

CGj = center of gravity of the pallets of customer j

lij =

 total number of pallets on this link if a vehicle travels from i to j

0 otherwise

qij =

 total cargo mass on this link if a vehicle travels from i to j

0 otherwise

aFij =

 total cargo weight on the coupling on this link if a vehicle travels from i to j

0 otherwise

aRij =

 total cargo weight on the axles of the semi-trailer on this link if a vehicle travels from i to j

0 otherwise

Cij =


1 if lij even and a vehicle travels from i to j

−1 if lij odd and a vehicle travels from i to j

0 otherwise

The problem is formulated as follows:

min
∑

(i,j)∈E

cijxij (3.13)

Subject to∑
i∈V

xij = 1 ∀j ∈ V \{0, n+ 1} (3.14)∑
j∈V

xij = 1 ∀i ∈ V \{0, n+ 1} (3.15)

xn+1,j = 0 ∀j ∈ V (3.16)

xj,0 = 0 ∀j ∈ V (3.17)

l0j = 0 ∀j ∈ V (3.18)

lij ≤ Lxij ∀(i, j) ∈ E (3.19)∑
i∈V

lij + Lj =
∑
k∈V

ljk ∀j ∈ V \{0, n+ 1} (3.20)
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q0j = 0 ∀j ∈ V (3.21)

qij ≤ Qxij ∀(i, j) ∈ E (3.22)∑
i∈V

qij +Qj =
∑
k∈V

qjk ∀j ∈ V \{0, n+ 1} (3.23)

C0j = xoj ∀j ∈ V (3.24)

Cij ≤ xij ∀(i, j) ∈ E (3.25)

Cij ≥ −xij ∀(i, j) ∈ E (3.26)∑
i∈V

CijPj =
∑
k∈V

Cjk ∀j ∈ V \{0, n+ 1} (3.27)

aF0j = 0 ∀j ∈ V (3.28)

aR0j = 0 ∀j ∈ V (3.29)

aFij ≤ AFxij ∀(i, j) ∈ E (3.30)

aRij ≤ ARxij ∀(i, j) ∈ E (3.31)

aFij ≥ −WTDxij ∀(i, j) ∈ E (3.32)

aRij ≥ −WTRxij ∀(i, j) ∈ E (3.33)

aFijh+WTD ≥ 0.25(WT + qij) ∀(i, j) ∈ E (3.34)∑
i∈V

aFij +Qj −
(CGj − c)Qj

d
=
∑
k∈V

aFjk ∀j ∈ V \{0, n+ 1} (3.35)

∑
i∈V

aRij +
(CGj − c)Qj

d
=
∑
k∈V

aRjk ∀j ∈ V \{0, n+ 1} (3.36)

CGj =

∑
i∈V lij

2
− 1

4
· (1−

∑
i∈V

Cij) +Oj ·
1

2
· (1−

∑
i∈V

Cij)

+ Ej ·
1

2
· (1 +

∑
i∈V

Cij)∀j ∈ V

(3.37)

xij ∈ {0, 1} (3.38)

lij ≥ 0 ∀(i, j) ∈ E (3.39)

qij ≥ 0 ∀(i, j) ∈ E (3.40)

The objective function (3.13) aims to minimize total distance traveled. Constraints

(3.14) and (3.15) ensure that each customer is visited exactly once. Constraints (3.16)
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make sure that no route begins in the destination depot (node n+1), while constraints

(3.17) ensure that no route arrives in the start depot (node 0). Constraints (3.18)

initialize the value of l0j to 0 since no pallets are inside a container when it departs

from the start depot. Constraints (3.19) limit lij to the maximum number of pallets

that may be placed in each vehicle. Constraints (3.20) keep track of lij by adding

up the number of pallets in the vehicle when arriving at customer j (lij) with the

number of pallets of customer j (Lj). Constraints (3.21) initialize the values of q0j

to 0 since a container is empty when it departs from the start depot. Constraints

(3.22) limit qij to the maximum mass capacity (Q) of the vehicle. Constraints (3.23)

keep track of qij by adding up the weight of the load in the container when arriving

at customer j (lij) with the pallet weight of customer j (Qj). In constraints (3.24),

the value of the variable C0j is set to 0 if x0j=0 and set to 1 if x0j=1. Since a

container is empty when it departs from the start depot, it has an even number of

pallets (0 pallets). Constraints (3.25) and (3.26) guarantee that Cij can only have a

non-zero value when a vehicle travels from i to j. Constraints (3.27) keep track of

Cij by multiplying the value of Cij when arriving at customer j with parameter Pj .

Constraints (3.28) and (3.29) initialize the values of the weight on the coupling (aFij)

and the weight on the rear axles (aRij) to zero. Constraints (3.30), (3.31), (3.32) and

(3.33) ensure that aFij and aRij only have a non-zero value when a vehicle travels from

i to j. Constraints (3.30) and (3.31) also specify the upper bounds of respectively

aFij and aRij . The values of the upper bounds AF and AR depend on the vehicle

characteristics and are specified by legislation. The lower bound of aFij may also be

fixed in legislation. Belgian legislation (KB 15.03.1968 art 32bis) specifies that the

mass corresponding to the load on the driving axle must be at least 25 percent of

the total mass of the loaded truck which is captured in constraints (3.34). On the

left-hand side of constraints (3.34), the weight of the empty truck on the driving

axle (WTD) is added up with parameter h (percentage of the weight on the coupling

that is carried by the driving axle of the tractor) multiplied by the weight of the

load that is placed on the coupling (aFij). On the right-hand side 25 percent of the

total mass of the empty truck and the total weight of the load is computed. Since

there are no guidelines concerning the lower bound of the weight on the axles of the

semi-trailer, constraints (3.33) ensure that this should be at least equal to −WTR to

avoid a negative axle weight on the rear axles. Constraints (3.35) keep track of aFij
by adding up the weight on the coupling when arriving at customer j (aFij) with the

weight on the coupling of the pallets of customer j. Constraints (3.36) keep track of

aRij in a similar way. Constraints (3.37) determine the center of gravity of the pallets

of customer j (CGj) as a function of Cij and lij . This constraint is the same as
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equation (3.12) and is explained in Section 3.3. Finally, constraints (3.38) to (3.40)

define the domain of the decision variables.

3.6 Problem formulation: set partitioning formula-

tion

In this section, a Set Partitioning (SP) formulation for the CVRP with sequence-based

pallet loading and axle weight constraints is presented. This formulation is introduced

because the MILP is only able to solve instances with up to 20 customers, as will be

discussed in Chapter 5. The main drawback of a SP model is the exponential number

of variables when the instance size increases because each feasible route results in an

additional variable. In the current work however, the number of customers in a route

is limited because the maximum number of europallets inside a vehicle is limited (in

a 30-foot truck a maximum of 22 pallets may be placed). The number of feasible

routes is therefore smaller than for traditional CVRP problems. For this reason, a SP

formulation is a promising option for the CVRP with sequence-based pallet loading

and axle weight constraints.

Balinski and Quandt (1964) originally proposed a SP formulation for solving a

CVRP. First all feasible routes are enumerated. A route is feasible if the vehicle

capacity in terms of number of pallets and total weight is not exceeded and if the

axle weight limits are not violated. Next, a set partitioning model is solved for all

feasible routes. Let the index set of all feasible routes be R = {1, 2, ..., R}. Let cr be

the length of route r. Define the parameter air for each customer i ∈ V and for each

route r ∈ R:

air =

 1 if customer i is served in route r

0 otherwise

Define the decision variables for each route r ∈ R as:

yr =

 1 if route r is selected

0 otherwise
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The SP model is defined as follows:

min
∑
r∈R

cryr (3.41)

Subject to∑
r∈R

airyr = 1 ∀i ∈ V \{0, n+ 1} (3.42)

yr ∈ {0, 1} ∀r ∈ R (3.43)

(3.44)

The objective function (3.41) aims to minimize total distance traveled. Constraint

(3.42) ensures that each customer i must be present in exactly a single route. Con-

straint (3.42) ensures that yr is a binary variable.

The set of feasible routes R and the corresponding travel distance matrix cr of

each route r are constructed as follows. In the first step, all routes with a single

customer are considered and checked for feasibility. In the next step, all routes with

two customers are considered, etc. Each combination of customers that may be

visited feasibly on a single route, is inserted into the set R and the corresponding

travel distance is inserted in the travel distance matrix cr. When a combination of

customers may lead to multiple feasible routes, the travel distance of the shortest

feasible route is inserted in the travel distance matrix. The process is terminated

either when the step number (i.e. the number of customers that are considered in a

route) equals the number of customers in the network or when in a step every possible

route exceeds the vehicle capacity in terms of number of pallets or total weight.

The feasibility check consists of two stages. First, the capacity of the vehicle in

terms of number of pallets and total weight is checked. If the sum of the pallets or the

pallet weight of the customers in the route exceed vehicle capacity, the combination

of these customers is no longer considered, also not in future steps. In the second

stage, for each combination all visiting sequences are listed and tested in terms of axle

weight violations. If at least a single visiting sequence leads to a feasible route without

axle weight violations, the combination is feasible. Note that it is possible that for

a combination of customers no feasible route can be created without an axle weight

violation, while in the next step when another customer is added to this combination,

a feasible route may be created.
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3.7 Conclusions

Axle weight limits have become an increasingly important issue for transportation

companies. Transporters are faced with high fines when violating these limits, while

commercial scheduling programs do not incorporate these constraints. Although re-

search has been done on Vehicle Routing Problems (VRP) combined with loading

constraints, axle weight constraints have not yet been integrated in a VRP.

This chapter therefore introduces the CVRP with sequence-based pallet loading

and axle weight constraints. The calculation of the weight on the axles of a truck in

which pallets are placed in two horizontal rows is described. The calculation depends

on the center of gravity of the pallets inside the truck and on vehicle-specific parame-

ters. An illustrative example shows that the integration of axle weight constraints in a

vehicle routing problem may lead to a higher distance traveled, but ensures a feasible

weight distribution of the load inside the vehicle. Two problem formulations for the

CVRP with sequence-based pallet loading and axle weight constraints are presented.

The first formulation is a Mixed Integer Linear Programming formulation. In

the second formulation, the problem is formulated as a set partitioning model. Both

formulations are tested on small-size instance sets in Chapter 5. Since the CVRP

is NP-hard, finding an exact solution within a reasonable time limit for large-size

instances will be difficult. Therefore, in Chapter 4, a heuristic method is presented

to solve large-size instances.
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Chapter 4

CVRP with sequence-based

pallet loading and axle weight

constraints: Heuristic design

and parameter setting

4.1 Introduction

In the previous chapter, the capacitated vehicle routing problem with sequence-based

pallet loading and axle weight constraints has been presented. Two problem formula-

tions have been proposed to solve the problem to optimality for small-size networks.

In order to solve realistic-size instances for the CVRP with sequence-based pallet

loading and axle weight constraints, an Iterated Local Search (ILS) metaheuristic is

developed. In this chapter 1, the design of the ILS is presented in detail and a sensitiv-

ity analysis of the parameters of the ILS is performed (Fig 4.1). In the next chapter,

the computational results of the ILS and the problem formulations will be discussed.

The remainder of this chapter is organized as follows. In Section 4.2 the generation

of the problem instances that are used to test the ILS on are described. Section 4.3

describes the ILS. In Section 4.4, the parameter tuning of the ILS is investigated.

Section 4.5 provides a sensitivity analysis of the parameters of the algorithm. Section

4.6 presents the conclusions of this chapter.

1This chapter and the next chapter are based on Pollaris et al. (2017).
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Figure 4.1: Outline of the thesis

4.2 Generation of problem instances

To analyze the performance of the ILS, 192 instances are created with networks con-

sisting of 10, 15, 20, 50, 75 and 100 customers. For each network size, 32 instances are

considered with randomly generated coordinates (x, y) with x ∈ [0, 10] and y ∈ [0, 10].

The position of the depot is fixed to position (5,5). Travel distances are computed

by taking the Euclidean distance between the coordinates of each node pair. Four

different problem classes are created by varying the values for the number of pallets

of each customer (Li) and the total mass of the pallets of each customer (Qi). In

Table 4.1, the problem classes are presented. The number of pallets may have a low

variation (4 - 7 pallets per customer) or a high variation (1 - 15 pallets per customer).

With respect to the weight of the pallets, axle weight constraints do not play a role
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when only light pallets (100 - 500 kg) are considered. Therefore a distinction is made

between customer demands of only heavy pallets (1000 - 1500 kg) and a fifty-fifty

percent mix between customer demands with light pallets (100 - 500 kg) and cus-

tomer demands with heavy pallets. The number of pallets and total weight for each

customer are generated randomly in the intervals specified in Table 4.1, depending on

the problem class. For each network size, eight instances are created in each problem

class.

Table 4.1: Problem classes based on parameters Qi and Li

Heavy pallets
Mix between light

and heavy pallets

Low variation Problem class 1 Problem class 3

High variation Problem class 2 Problem class 4

4.3 Design of a solution method based on the ILS

framework

The proposed solution method is based on an Iterated Local Search (ILS) framework

which is proven to be a highly effective heuristic for routing problems (Lourenço et al.,

2010). The ILS consists of four procedures (Generate initial solution, Local Search,

Perturbation, Acceptance). The general structure is presented in Algorithm 1. First,

an initial solution (so) is constructed. Second, this solution is improved using local

search until a local optimum is reached. The local search is performed by a Variable

Neighborhood Descent (VND) method. Third, the following steps are performed

iteratively. In order to escape from the local optimum, a new starting point for the

local search is generated by perturbing the current solution (s). This solution is

improved using local search. Then, the acceptance criterion determines with which

solution the process continues. The ILS stops after a number of α consecutive non-

improving iterations. A non-improving iteration (non improving it) is an iteration

in which no new best solution was found. For more information regarding the general

ILS framework, the reader is referred to Lourenço et al. (2010). Note that since

the local search is performed by a VND, the algorithm may also be called Iterated

Variable Neighborhood Descent, as used in Chen et al. (2010).

The framework of ILS is chosen because iteratively building upon an embedded

heuristic (in this case a VND) has been proven to lead to far better solutions than
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random restarts of that heuristic (Lourenço et al., 2010). This is confirmed during

the construction of our metaheuristic, since the perturbation phase has proven to

work very well. Because of this, ILS was chosen instead of a multi-start heuristic.

Furthermore, ILS is simple, easy to implement, robust and highly effective.

To improve the efficiency of the algorithm, a pool of feasible and infeasible routes

is constructed. Each time a route is proven to be (in)feasible in terms of loading,

this route is stored in the appropriate pool. This avoids duplicate loading feasibility

checks of a single route. In the following subsections, the implementation of the ILS

is described.

Algorithm 1 Steps of the ILS

Initialization

1: so ← Generate initial solution

2: s, sb ← Local search on so

3: repeat

s← Perturbation on s

s← Local search on s

s, sb ← Acceptance criterion

4: until non improving it > α

4.3.1 Initial solution

Routes are constructed by inserting nodes one by one. To obtain a feasible initial solu-

tion, special attention is given to the insertion of difficult nodes. Nodes are considered

difficult if they cannot be inserted feasibly in the front of a truck because the mass

of the pallets exceeds the capacity of the axles of the tractor. These axles typically

have the lowest axle weight capacity. The load of those nodes should therefore be

placed more towards the end of the truck. Since sequence-based loading is assumed

and no gaps are allowed between the front of the truck and the load due to the dense

packing constraint, these nodes can only be feasibly inserted after the insertion of one

or several other (non-difficult) nodes in a route. A classical insertion heuristic for the

VRP (such as regret-2 insertion) does not take this into account. Therefore, in order

to obtain a feasible initial solution, following methodology is used to ensure that all

difficult nodes are feasibly inserted.

For each difficult node, a list is constructed with all options consisting of nodes or

combinations of two nodes that would lead to a feasible packing scheme when the load

of these (and only these) nodes precede the load of the difficult node. To decide for
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each difficult node which option is chosen, a binary constraint satisfaction problem

(BCSP) is solved. The following notation is used:

Ω = set of difficult nodes (index j)

Φ = set of non-difficult nodes (index i)

Ψj = set of options for difficult node j (index a)

kjai =

 1 if non-difficult node i belongs to option a of difficult node j

0 otherwise

The decision variables are defined as:

xaj =

 1 if option a is chosen for difficult node j

0 otherwise

The constraints are as follows:∑
a∈Ψj

xaj = 1 ∀j ∈ Ω (4.1)

∑
j∈Ω

∑
a∈Ψj

kjai · xaj ≤ 1 ∀i ∈ Φ (4.2)

No objective function is specified since the only goal is to find a solution that

meets all constraints. Constraint (4.1) ensures that for every difficult node, a single

option is chosen. Constraint (4.2) makes sure that each non-difficult node i can only

be inserted once. The BCSP is solved with CPLEX 12.6 with the default parameters.

Preliminary tests have shown that a solution can often already be obtained when

allowing only a single non-difficult node to precede each difficult node. Additionally,

for some instances, considering both a single and a combination of two non-difficult

nodes, considerably increases computation time. Therefore, the BCSP is first solved

with options consisting of a single non-difficult node only. When the BCSP is not

able to not find a feasible solution, a combination of two nodes is allowed as well.

When the BCSP finds a feasible solution, each difficult node is inserted into a

route along with the node(s) from the corresponding option that was selected by the

BCSP. Therefore, as many routes as difficult nodes are created. The remaining non-

difficult nodes are inserted with a regret-2 insertion heuristic (Røpke and Pisinger,
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2006). The regret value of a node is defined as the absolute difference in objective

value between the cheapest insertion of a node and the second cheapest insertion of

that node into another route. In each iteration, insertions in the existing routes are

considered as well as in an additional empty route. The node with the highest regret

value is inserted in its best insertion position. This procedure continues until all nodes

are feasibly inserted into a route.

The need for the BCSP in the generation of the initial solution is demonstrated

by generating an initial solution with three different insertion methods for the 192

instances which are described in Section 4.2. In the first method, an initial solution

is generated by using a regret-2 insertion heuristic without giving special attention to

difficult nodes. In the second method, a BCSP with options existing out of a single

non-difficult node is solved, followed by a regret-2 heuristic. The third method solves

a BCSP with options existing out of a single node or combinations of two nodes

followed by a regret-2 heuristic. Appendix A reports for each instance whether a

feasible solution is found for each insertion method. The regret-2 insertion heuristic

was able to find a feasible solution in 132 out of 192 instances. The instances for

which no feasible solution was found are instances containing customers with large

demands in terms of number of pallets. In 187 out of 192 instances, a feasible solution

was found when considering only a single non-difficult node in each option. For the

remaining five instances a feasible initial solution was found when a single node and

a combination of two non-difficult nodes was allowed in each option. These instances

contain besides demands with a high number of pallets also only demands with heavy

pallets. Furthermore, the number of customers in the network in these instances is

small and ranges from 15 to 20.

4.3.2 Local Search

The local search is performed by a VND in which four neighborhoods are used. The

exchange operator (Waters, 1987) swaps two nodes which can be either from the same

route or from different routes. The 2-opt operator (Croes, 1958) removes two arcs

of a single route and generates two new arcs in such a way that the section between

the removed arcs is reversed. Only arc-pairs which are separated with at least four

customers are considered in this neighborhood to avoid scanning the same moves as

the exchange operator. As an example, consider the move from route A (0-1-2-3-0) to

route B (0-3-2-1-0). This move may be performed by a 2-opt operator by removing the

first and the last arc and reversing the section between the arcs and by an exchange

operator by swapping nodes 3 and 1.
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The cross-exchange operator (Taillard et al., 1997) interchanges two segments of

different routes while preserving the orientation of the segments and the routes. At

least one of two segments needs to be of size greater than one to avoid scanning the

same moves as in the exchange neighborhood. As an example, consider the move

from solution 1 containing routes (0-1-2-0) and (0-3-0) to solution 2 containing routes

(0-3-2-0) and (0-1-0). This move may be performed by an exchange operator (swap

nodes 1 and 3) and by a cross-exchange operator (interchange segment -1- and -3-).

There is no upper bound on the size of the segments.

Algorithm 2 Local search

Neighborhoods = {exchange, 2-opt, cross-exchange, relocate}
s = initial solution

s′ := s

stop := 0

repeat

for i := 1 to 4 do

next neighborhood = 0

repeat

s′′ ← Local search with Neighborhoods[i] on s′

if s′ = s′′ then

next neighborhood := 1

else

s′ := s′′

end if

until next neighborhood = 1

end for

if s = s′ then

stop := 1

else

s := s′

end if

until stop = 1

Finally, the relocate operator (Waters, 1987) removes a node from its route and

reinserts it in another place in its original route or in another route. This move may

reduce or increase the number of routes in the solution, since relocation to an empty

route is also considered. For each neighborhood, all possible moves are identified
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after which a best improvement strategy is applied. An overview of the local search

procedure is presented in Algorithm 2.

Relocate, exchange and two-opt are classical local search operators often used in

the CVRP literature. In the state-of-the-art algorithms for the 2L-CVRP of Wei et al.

(2015), Leung et al. (2013) and Zachariadis et al. (2013b) these operators are used as

well. The cross-exchange operator is implemented in order to allow for the exploration

of solutions which are substantially different from the neighborhoods explored by the

other three operators since this operator allows to exchange segments of customers

between different routes. This operator is also frequently used in the VRP literature

(e.g. Strodl et al., 2010; Tricoire et al., 2011; Bräysy, 2003).

The sequence of the neighborhoods is fixed. Since relocate is also used in the

perturbation phase, this operator is placed last in the local search procedure to prevent

that changes made during perturbation can easily be undone. When a local optimum

is reached for a neighborhood, the local search proceeds to the next neighborhood.

When a local optimum is reached for the last neighborhood, the local search procedure

is repeated until no further improvement is found in any of the neighborhoods.

4.3.3 Perturbation

In the perturbation phase, the relocate operator is considered once for each customer,

using a randomized objective function. The effect of relocating a customer to another

position is randomized by adding a noise factor to the insertion cost. The insertion

cost is calculated as the sum of the length of the arcs that are created when inserting

a customer in a new position minus the length of the arcs that are removed. Similar

to Røpke and Pisinger (2006), the noise value is calculated as a random number in the

interval [−η∗maxD, η∗maxD] where η ∈ ]0,+∞[ is a parameter to control the amount

of noise and maxD is the maximum distance between two nodes in the network.

When the randomized insertion cost is positive or zero, the next insertion position

for the customer is considered. When the randomized insertion cost is negative, the

move is immediately implemented and the perturbation process continues with the

next customer. Codenotti et al. (1996) apply a similar method in the perturbation

phase of the ILS, but instead of adding noise directly to the insertion costs, the

coordinates of the cities are changed which also results in changes in the insertion

cost matrix.

The general framework of the perturbation procedure is presented in Algorithm 3.

Customers are considered in a random order sequence. For each customer, a first

improvement strategy is used because the goal of the perturbation phase is merely to
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change the current solution. It is therefore not necessary to choose the move with the

largest improvement. The insertion positions of a customer are considered in random

order, i.e., the first route that is considered for insertion is chosen randomly and in

each route, the first position that is considered is also chosen randomly.

Initially, the value for η is determined by the value of parameter η0. If the per-

turbation does not change the solution s, η is increased with the value of parameter

ηincr and the perturbation is repeated. After δ consecutive non-improving iterations

(non improving it) of the ILS, a heavy perturbation is applied. This means that η

increases with the parameter value of ηheavy to increase the level of diversification.

When an improvement is found after the local search procedure, the number of con-

secutive non-improving iterations becomes 0 (as may be seen in Algorithm 4) and the

value for η is set to the value of η0.

Algorithm 3 Perturbation

if non improving it > δ then

η := η0 + ηheavy

else

η := η0

end if

repeat

s′ ← Relocate for each customer on s with noise η

η := η + ηincr

until s ̸= s′

s := s′

4.3.4 Acceptance Criterion

An overview of the acceptance procedure is presented in Algorithm 4. The accep-

tance criterion that is used in this ILS algorithm is based on record-to-record travel,

introduced by Dueck (1993). The solution s obtained after local search is always

accepted to become the new incumbent solution s of the next ILS iteration if the

objective value is smaller than the objective value of the current best solution sb.

When the objective value of s is higher than the objective value of sb and no heavy

perturbation will be applied in the next iteration of the ILS (i.e. non improving it <

δ), the solution is still accepted if the worsening is smaller than a certain threshold

value. This threshold value corresponds to a fraction β of the objective value of sb.

In case a heavy perturbation will be applied in the next ILS iteration, a worsening is
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never accepted in order not to deviate too far from the current best solution. In case

s is not accepted to become the new incumbent solution, the search continues from

sb. The acceptance of worse solutions appears to have a positive impact on solution

quality, as shown in the sensitivity analysis in Section 4.5.

Algorithm 4 Acceptance criterion

if objectivevalue[s] < objectivevalue[sb] then

sb := s

non improving it := 0

else

non improving it := non improving it+ 1

if (objectivevalue[s] > objectivevalue[sb] · (1 + β)) or (non improving it > δ)

then

s := sb

end if

end if

4.4 Parameter tuning

This section presents the parameter tuning of the algorithm described in the previ-

ous section. Parameter tuning is important because the value of the parameters may

have a substantial impact on the efficacy of a heuristic algorithm (Hoos, 2012). Pel-

legrini and Birattari (2011) compared the performance of five metaheuristics (tabu

search, simulated annealing, genetic algorithm, iterated local search and ant colony

optimization) with and without automated parameter tuning on a VRP with stochas-

tic demands. The parameters from the non-tuned algorithms were randomly drawn

within a given range while the parameters from the tuned versions were obtained

through an automatic configuration process based on the F-Race algorithm (Birat-

tari et al., 2002). For every metaheuristic, the tuned version achieves significantly

better results than the corresponding non-tuned version. While traditionally param-

eter values have been set manually using expertise and experimentation, recently

several automated tuning methods have been proposed (Rasku et al., 2014). Rasku

et al. (2014) compare the performance of seven state-of-the-art algorithm configura-

tion methods on different routing metaheuristics. Their findings confirm the results

of Pellegrini and Birattari (2011) that the performance of the routing algorithm can

be clearly improved by using parameter tuning. The results also reveal that there is
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no single best tuning method for routing algorithms, but that the Iterated F-Race

algorithm seems to be the most robust. Iterated F-race also performed very well

on the ILS metaheuristic (Rasku et al., 2014) and other metaheuristics (Balaprakash

et al., 2007; Birattari et al., 2002). Therefore, Iterated F-race will be used for the

parameter tuning of the ILS in this chapter.

The Iterated Local Search algorithm makes use of a set of six parameters (α, δ, η0,

ηheavy, ηincr, β). The number of consecutive non-improving iterations after which the

ILS is stopped is denoted by α. δ represents the number of non-improving iterations

of the ILS after which a heavy perturbation is applied. η0 controls the initial amount

of noise in the perturbation phase. ηheavy represents the increase in noise during a

heavy perturbation. The increment in the value of noise when the solution is not

changed during the perturbation phase is denoted by ηincr. Finally, β is the factor

which determines the threshold value in the acceptance criterion.

For the tuning of the parameters, 20 test instances with sizes ranging from 20 to

75 customers are used. The instances are generated in a similar way as the instances

that are described in Section 4.2. The value for parameter α is determined based on

the results of a single run of the test instances, in which no substantial improvement

was found after more than 220 consecutive non-improving iterations. The values

of the other parameters were determined for this run based on preliminary tests.

Since this value was the result of a single run, α is set to 250, to incorporate a

margin of 10 %. The parameter space for the remaining five parameters of the ILS

algorithm is denoted by X = {δ, η0, ηheavy, ηincr, β}. Each parameter Xd ∈ X may

take different values within a specified range [xd, xd]. A configuration of the algorithm

θ = {x1, x2, x3, x4, x5} is a unique assignment of values to these parameters (López-

Ibáñez et al., 2016). The tuning problem is stated by Birattari (2009) as the problem

of finding the configuration θ that provides the lowest expected cost on a set of

problem instances. In order to find this configuration, the irace package provided

by López-Ibáñez et al. (2016) is used. The irace package is designed for automatic

algorithm configuration and implements the iterated racing procedure, which is an

extension of the Iterated F-race procedure (López-Ibáñez et al., 2016). Irace is also

successfully used by other authors for the tuning of heuristic algorithms in similar

applications to ours such as by Ceschia et al. (2013) and François et al. (2016). The

iterated racing procedure is presented in Algorithm 5.

The input of the iterated racing procedure consists of an instance set I, parameter

space X, a cost function C and a tuning budget B. The cost function returns the

cost of configuration θ on instance i. The tuning budget refers to the number of

calls to the ILS that irace will perform. Based on the number of parameters that



74 Chapter 4

Algorithm 5 Iterated Racing (López-Ibáñez et al., 2016)

Require: I = {I1, I2, ...},
1: parameter space: X,

2: cost measure: C(θ, i) ∈ R,
3: tuning budget: B

4: Θ1 ∼ SampleUniform(X)

5: Θelite := Race(Θ1, B1)

6: j := 2

7: while Bused ≤ B do

8: Θnew ∼ Sample(X,Θelite)

9: Θj := Θnew ∪Θelite

10: Θelite := Race(Θj , Bj)

11: j := j + 1

12: end while

are tuned (Nparam), an estimation of the number of iterations N iter is made with

N iter = ⌊2 + log2 N
param⌋. Since five parameters are tuned in our algorithm, the

value for N iter = 4. Note that N iter is an estimation of the number of iterations. In

case, after N iter iterations, there is still enough budget to perform a new race, the

algorithm continues. The tuning budget Bj for iteration j depends on the tuning

budget B, the tuning budget that is already used in previous iterations Bused, N
iter

and the iteration number j:

Bj =
B −Bused

N iter − j + 1
(4.3)

In the first step of the first iteration (j = 1) of the iterated racing procedure,

candidate configurations Θ1 are sampled according to a uniform distribution in the

parameter space X (line 4 in Algorithm 5). In the second step, a racing procedure

is used to select elite candidate configurations Θelite from the configurations sampled

in the previous step (line 5). The racing procedure consists of several steps. In each

step of the race, the candidate configurations are evaluated on a set of instances

by means of a cost measure C. The order in which the instances are considered

is randomized. For the evaluation of the candidate configurations, the rank-based

Friedman test is used. If a candidate configuration performs statistically worse than

at least one other configuration, this configuration is discarded in the next step. The

racing procedure is terminated when a minimum number of surviving configurations

is reached (Nsurv
j ≤ Nmin) or when the number of surviving configurations Nsurv

j
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exceeds the remaining tuning budget Bj for race j.

At the end of the race, the surviving configurations are ranked according to the

mean cost and are assigned to a rank value rz. The set of the elite configurations

Θelite is composed of the Nelite
j = min(Nsurv

j , Nmin) configurations with the lowest

rank. For the generation of a new candidate configuration for the next race, a parent

configuration θz is sampled from the set of elite configurations Θelite with a probability

pz proportional to its rank rz. A higher ranked elite configuration has a higher

probability of being selected as a parent:

pz =
Nelite

j−1 − rz + 1

Nelite
j−1 · (Nelite

j−1 + 1)/2
(4.4)

A new value is sampled for each parameter Xd within the given range according

to a normal distribution N (xz
d, σ

j
d) (line 8). For the integer parameter δ, the sampled

value is rounded to the nearest integer. The mean of the distribution xz
d is the value

of parameter Xd in elite configuration θz. The standard deviation σj
d decreases at

each iteration j and depends on the value of the standard deviation in the previous

iteration (σj−1
d ), the number of newly sampled configurations (Nnew

j ) and the number

of parameters to be tuned (Nparam). The parameter σ1
d is set to (xd − xd)/2.

σj
d = σj−1

d ·

(
1

Nnew
j

)1/Nparam

(4.5)

The new set of candidate configurations consists of Nelite
j−1 elite configurations

from the previous iteration Θelite and the Nnew
j newly sampled configurations (line

9). These configurations are used in a new racing procedure to select elite candidate

configurations Θelite (line 10).

This process (lines 8 to 11) is repeated until the number of experiments Bused

exceeds the maximum number of experiments specified in the tuning budget B. The

number of candidate configurations Nj in iteration j depends on the tuning budget

Bj , the iteration number j and parameter µ:

Nj =
Bj

µ+min(5, j)
(4.6)

Parameter µ has a default value of 5 in irace. This value may be changed in order

to influence the ratio between budget and number of configurations. At each iteration,

the number of candidate configurations Θj decreases to allow for more evaluations

per candidate configuration in later iterations. After five iterations, the number of
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candidate configurations remains constant at value Θ5 in order to avoid having too

few configurations in a single race. For more information regarding the tuning process,

the reader is referred to López-Ibáñez et al. (2016).

Irace is run with default parameter values on the ILS heuristic. A tuning budget

B of 5000 runs is specified. The parameters tuned by irace may be found in Table 4.1,

along with the type, range and tuned value. δ is integer (i), while η0, ηheavy, ηincr, β

are real parameters (r). The ranges for the parameters are intuitively determined. The

upper bound of δ is equal to 250, which is the value for α. For the other parameters,

the upper bound was increased when the tuned value was close to an upper bound.

The lower bound of β is set to zero to test the case in which a deterioration of the

solution value is not accepted as new incumbent solution. The lower bound of ηheavy

is also set to zero to test the case without a heavy perturbation. The lower bound of

η0 is greater than 0 since there must be a non-zero value for noise in the perturbation

phase to escape from the local optimum. For the real parameters (η0, ηincr, ηheavy,

ηincr, β), two decimal places are considered.

Name Description Type Range Tuned value

δ # non improving it heavy perturbation i (1, 250) 196

η0 initial value η r (0.01, 0.80) 0.33

ηheavy increase η heavy perturbation r (0.0, 1.0) 0.14

ηincr
increase η when solution is not changed

during perturbation
r (0.0, 0.50) 0.22

β threshold value r (0.0, 0.50) 0.10

Table 4.2: Parameter list

Both the introduction of a heavy perturbation as the acceptance of a worse solution

based on record-to-record appear to have a positive influence on solution quality since

ηheavy and β have non-zero tuned values. In the next section, this influence is further

analyzed by means of a sensitivity analysis.

4.5 Sensitivity analysis

In this section, the performance of the algorithm in terms of solution quality is tested

with respect to different parameter values. The purpose of this analysis is to verify
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whether the parameter tuning produced logical results as well as to test the impor-

tance of the parameter values for the efficacy of the ILS algorithm. For each param-

eter, different values are tested on four instance sets while keeping other parameters

at their tuned value. The first instance set consists of the 20 instances used for the

tuning of the algorithm with instance sizes ranging from 20 to 75 customers. To

test wether the tuned parameter configuration also performs well on other instances,

three additional instance sets are considered. The second instance set consists of 32

instances of size 20 and is used to test the effect of the parameters of the ILS on

small-size instances. The third and fourth instance sets consist of 12 instances of

size 50 and 12 instances of size 75, respectively, to evaluate the parameter setting

on realistic-size instances. Note that these instance sets are smaller than the second

instance set because the CPU time for each run is considerably longer. The size of

the instance sets is however sufficient for the purpose of the sensitivity analysis. The

instances in the four instance sets only differ in network size. Other characteristics

such as pallet weight and number of pallets per customer are assigned in a similar

way to all instance sets. The instances in instance set 2, 3 and 4 are also used in

Section 4.3.1. The performance of each parameter setting is measured with five in-

dependent runs. The best and average increase in objective compared to the lowest

objective value found over all experiments for that instance are plotted. Note that

for each instance set a different scale is used on the vertical axis of the graph because

of the large difference in increase in objective value between the different instance

sets. Instances with a high number of customers tend to have a higher increase in

objective value than instances with a low number of customers. For all graphs of the

same instance set however, the same scale on the vertical axis is maintained for the

sensitivity analyses of the average and best objective value of all parameters.

4.5.1 Sensitivity analysis of η0

The impact of η0, the initial value for noise, on the solution quality of instance sets 1,

2, 3 and 4 are plotted in Figures 4.2, 4.3, 4.4 and 4.5 respectively. The following values

are considered for η0: 0.01, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.80 and 1.0. The tuned

configuration in which η0 has a value of 0.33 is also included. As expected, in the first

instance set, the tuned value (η0 = 0.33) renders the best results. For the instances of

set 2, the increase in objective value drops significantly when η0 increases from 0.01

to 0.30. After this point, an increase in η0 does not have an influence on solution

quality. For the instances of set 3, we see that when η0 increases beyond 0.40, the

solution quality deteriorates. For the instances of set 4, we have a similar trend, but
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here the solution quality already deteriorates when η0 increases beyond 0.30. Because

of the difference in influence of η0 on the small-size instances in instance set 2 and the

instances of size 50 and 75 in instance sets 3 and 4, it may be concluded that there

is an interaction effect between the size of the network and the impact of the initial

value of noise.

The variation in solution quality for the instances of sets 3 and 4 with respect

to changes in the initial value of noise is explored by means of boxplots which are

presented in Figures 4.6 and 4.7. In each boxplot the first, second (median) and third

quartile as well as the minimum and maximum increase in objective value over all

instances in the instance set are indicated. Note that a different scale is used on

the vertical axis since the maximum increase in objective value highly exceeds the

average increase in objective value over all instances in the instance set reported in

the previous graphs. The current scale however is maintained for all the analyses with

boxplots. Figure 4.6 shows that the variation in solution quality for the instances of

set 3 decreases when η0 increases to 0.40. For the instances of set 4, the variation

decreases when η0 increases to 0.30, as displayed in Figure 4.7. For this instance set,

the variation increases rapidly when η0 increases beyond 0.30, while for the instances

of set 3, this increase only starts from a value of 0.6 and is much smaller. This

confirms the above finding that there is an interaction effect between network size

and the impact of η0 on solution quality.

4.5.2 Sensitivity analysis of β

For the sensitivity analysis of β, the factor that determines the threshold value in the

acceptance criterion, values between 0.0 and 0.5 are considered in steps of 0.10. To

have an idea of the effect of a very high value of β, the value 1.0 is also considered. In

this setting, a solution with a distance traveled twice as high as the distance of the best

known solution will still be accepted as the incumbent solution in the next iteration

of the ILS. Figure 4.8 shows as expected that for the tuning instances (instance set 1),

the lowest objective value increment (average and best) may be found at the tuned

value β = 0.1, although the difference with the other values for β is very small. For

the instances of size 20 of instance set 2, depicted in Figure 4.9, the solution quality

improves when a worsening solution is accepted (β > 0.0). Based on the figure it

appears that the tuned value 0.10 leads to the best solution quality although the

difference with higher values of β is again very small. In Figure 4.10, a similar trend

may be observed for the instances of set 3. The solution quality clearly benefits from

accepting worse solutions and in addition, the tuned value (β = 0.1) renders the best
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Figure 4.2: Sensitivity of η0 on instance set 1 (tuning instances)

Figure 4.3: Sensitivity of η0 on instance set 2 (20 customers)
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Figure 4.4: Sensitivity of η0 on instance set 3 (50 customers)

Figure 4.5: Sensitivity of η0 on instance set 4 (75 customers)
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Figure 4.6: Boxplot of the objective value increase in function of η0 in instance set 3

(50 customers)

Figure 4.7: Boxplot of the objective value increase in function of η0 in instance set 4

(75 customers)
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solution quality although the difference with higher values of β is small. For the

instances in set 4, illustrated in Figure 4.11, we see a small improvement in solution

quality when β = 0.10 in comparison with β = 0.0. However, when β further increases

to 0.20 and higher, there is a deterioration in solution quality compared to the case

in which the threshold value is zero.

Figure 4.12 presents the variation in solution quality for the instances of set 3

with respect to changes in the threshold value. The boxplot of the objective value

increase of the tuned value of β clearly lies lower than the boxplot of the configuration

with a threshold value of β = 0.0, except for the minimum values which are equal

for both configurations. When β increases to a value higher than 0.1, no clear trend

can be distinguished in the graph. The variation of the objective value increase of

the instances in set 4 for the different values for β are presented in Figure 4.13.

The median of the configuration with a threshold value of 0.0 is lower than the

median of the other configurations. This is different from the findings from instance

set 3. Based on this observation and on the small improvement in average solution

quality for instance set 4 when β increases from 0.0 to 0.10, it can be concluded that

incorporating a record-to-record procedure seems to have a smaller effect on solution

quality for instances with 75 customers than for instances with 50 customers or fewer.

4.5.3 Sensitivity analysis of δ and ηheavy

The impact of δ, the number of non-improving iterations of the ILS after which a

heavy perturbation is applied, on solution quality is measured simultaneously with

the impact of ηheavy, the increase in η during a heavy perturbation. To this end, ten

combinations are created by varying the values for δ and ηheavy. The first combination

represents the situation in which no heavy perturbation is applied. In Table 4.3, the

remaining nine combinations are presented. δ may have a low (50), medium (125)

or high (200) value. Similarly, ηheavy is assigned to a low (0.10), medium (0.30) and

high (0.60) level. The tuned values of δ and ηheavy are 196 and 0.14 which correspond

most to combination 4 with a high value of δ combined with a low value of ηheavy. In

Figure 4.14, the average solution quality is plotted for each of the combinations for the

instances of the first instance set. Combinations 2, 3 and 4 with a low value for ηheavy

have the best solution quality although the difference with the other combinations is

small. The solution quality of the combinations with a high value for ηheavy is slightly

worse than the solution quality of combination 1 in which no heavy perturbation is

applied. No clear trend may be distinguished for the value of δ.

Figure 4.15 shows that for the instances of size 20 in instance set 2 there are on
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Figure 4.8: Sensitivity of β on instance set 1 (tuning instances)

Figure 4.9: Sensitivity of β on instance set 2 (20 customers)
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Figure 4.10: Sensitivity of β on instance set 3 (50 customers)

Figure 4.11: Sensitivity of β on instance set 4 (75 customers)
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Figure 4.12: Boxplot of the objective value increase in function of β in instance set 3

(50 customers)

Figure 4.13: Boxplot of the objective value increase in function of β in instance set 4

(75 customers)
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average only small differences in solution quality between the combinations. Figure

4.16 plots the average solution quality of the instances of instance set 3 with respect

to the different combinations. A similar trend as for the first instance set may be

distinguished in which the combinations with a low value of ηheavy have a higher

solution quality than the other combinations. Furthermore, when a moderate or high

value of ηheavy is considered, the value of δ also seems to influence the objective

value. A low value of δ appears to have a negative effect on solution quality. Note

that, surprisingly, combination 1 in which no heavy perturbation is applied has the

best solution quality although the difference with the combinations with a low value

of heavy noise is negligible. The introduction of heavy noise therefore does not appear

to have a positive impact on solution quality for the instances of size 50 in instance

set 3. The average solution quality for the instances of size 75 from instance set 4

for the different combinations is presented in Figure 4.17. The combinations with

a low value of heavy noise, clearly outperform the other combinations including the

first combination without heavy noise. Based on this figure, one can also distinguish

a trend for the value of δ. For each value of ηheavy, the solution quality seems to

increase when δ increases.

Table 4.3: Combinations heavy noise based on the values of δ

and ηheavy

δ = 50 δ = 125 δ = 200

ηheavy = 0.1 combination 2 combination 3 combination 4

ηheavy = 0.3 combination 5 combination 6 combination 7

ηheavy = 0.6 combination 8 combination 9 combination 10

4.5.4 Sensitivity analysis of ηincr

As discussed in Section 4.3, in case the solution is not changed during the perturbation

phase, the value of noise is incremented with ηincr and the perturbation is repeated.

However in all runs of the instances of size 50 and 75, the solution changes during

every perturbation. Therefore the value of ηincr does not have an impact on the

solution quality of the instances in set 3 and 4. In 5 % of the instances of size 20

a single or several noise increments are performed. To measure the impact on even

smaller size instances, a fifth and sixth instance set are considered, each containing
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Figure 4.14: Sensitivity of ηheavy and δ on instance set 1 (tuning instances)

Figure 4.15: Sensitivity of ηheavy and δ on instance set 2 (20 customers)
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Figure 4.16: Sensitivity of ηheavy and δ on instance set 3 (50 customers)

Figure 4.17: Sensitivity of ηheavy and δ on instance set 4 (75 customers)
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Figure 4.18: Sensitivity of ηincr on instance set 1 (tuning instances)

32 instances of size 10 and 15. In 70 % of the instances of size 10 and in 28 % of the

instances of size 15 a single or several noise increments are performed. The reason

for this may be that for very small-size instances, it is more difficult to find a feasible

neighboring solution. The likelihood of finding another solution in the perturbation

phase is therefore much smaller for instances of size 10 compared to instances of size

20 or 50. Because ηincr is primarily used on instances of size 10, instance set 5 is

considered in the sensitivity analysis of this parameter. The impact of ηincr on the

solution quality of instance sets 1, 2 and 5 are plotted in Figures 4.18, 4.20 and 4.19,

respectively. Instance sets 3 and 4 are not considered because ηincr is never used in

the instances contained in these sets. The following values are considered for ηincr:

0.0, 0.20, 0.40 and 0.60. The tuned configuration in which ηincr has a value of 0.22 is

also included. The value for ηincr only has a very small impact on the solution quality

of the instances of the tuning set. This may be explained by the fact that the tuning

set contains instances ranging from 20 to 75 customers. For the instances of size 10,

an increase in solution quality is detected when the value for ηincr increases. For the

second instance set with 20 customers, the impact on solution quality is negligible.

This is expected since on average in only 5 % of the instances, a noise increment is

performed.
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Figure 4.19: Sensitivity of ηincr on instance set 5 (10 customers)

Figure 4.20: Sensitivity of ηincr on instance set 2 (20 customers)
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4.5.5 Sensitivity analysis of α

The impact of the number of consecutive non-improving iterations after which the

ILS is stopped (α) on solution quality and CPU time is illustrated in Figures 4.21,

4.22, 4.23 and 4.24 for respectively the instances of the first, second, third and fourth

instance set. Values between 50 and 500 with a step of 50 are considered for α. As

one can expect, if α increases, CPU time and solution quality also increase. The

largest gains in solution quality are obtained when α is small. For instance sets 1

and 2, an increment in α beyond the tuned value 250 does not lead to a significant

increase in solution quality. For the instances of instance set 3, solution quality does

not increase much beyond α = 300. For the instances of set 4, the solution quality

does not increase beyond α = 350.

4.5.6 Contribution of local search operators

In this section, the contribution to solution quality of the local search algorithm and

the different local search operators is analyzed. Five variants of the ILS are analyzed

on the instance sets that were used for the sensitivity analysis of the parameters. In

the first variant, only an initial solution is generated. No local search is performed.

In the other variants, each time a single local search operator is removed from the

search.

Five independent runs of the variants of the ILS are performed on each instance.

Table 4.4 gives an overview of the results. When the local search is removed, the

average gap with the original algorithm is very large, ranging from 69.51% to 98.24%

as can be expected. Individually, the local search operators also have a contribution

to solution quality although much smaller. The influence of the local search operators

is larger on realistic size instances with 50 and 75 customers from instance sets 3 and

4 than on the first two instance sets. The relocate operator seems to have the largest

influence on the results for the realistic-size instances. Note that interaction effects

between local search operators are ignored in this analysis.

4.5.7 Conclusions sensitivity analysis

To conclude, it appears that there is an interaction between the size of the network

and the effect of the parameters on the solution quality of the metaheuristic. As a

result, the acceptance of worse solutions based on record-to-record travel, the heavy

noise perturbation and the noise increment do not have an added value for instances

of all sizes. The analysis points out however that in these cases the solution quality
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Figure 4.21: Sensitivity of α on instance set 1 (tuning instances)

Figure 4.22: Sensitivity of α on instance set 2 (20 customers)
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Figure 4.23: Sensitivity of α on instance set 3 (50 customers)

Figure 4.24: Sensitivity of α on instance set 4 (75 customers)
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Table 4.4: Contribution of the local search operators

Average gap with original algorithm

Instance set 1

(tuning)

Instance set 2

(20 customers)

Instance set 3

(50 customers)

Instance set 4

(75 customers)

No local search (only initial solution) 69.51% 69.60% 96.50% 98.24%

No exchange 0.03% 0.00% 0.25% 0.53%

No 2-opt 0.01% 0.00% 0.20% 0.52%

No cross-exchange -0.05% -0.01% 0.10% 0.46%

No relocate -0.01% 0.02% 0.27% 0.68%

is also not negatively influenced. The algorithm needs to perform well on instances of

all sizes and these mechanisms all have proven to contribute to the solution quality

for at least a subset of instances.

The initial value of noise η0 has the largest impact on solution quality. For all

instance sets, the solution quality greatly improves when η0 increases to a value of

0.30. For the tuning instances and the instances of size 20, the solution quality does

not change when η0 further increases. For the instances of size 50 and 75 however, the

solution quality reaches a maximum when η0 reaches 0.30 and 0.40 respectively. The

solution quality decreases when η0 further increases. The value of β has a considerable

impact on instances with 20 or 50 customers. For these instances, the solution quality

greatly improves when β has a non-zero value. The tuned value β = 0.10 renders the

best solution quality, although the difference with higher values of β is very small. For

the instances of size 75, the tuned value also renders the best solution quality, where

higher values of β produce worse solutions than the configuration where β = 0.0.

The impact of δ and ηheavy on solution quality is investigated simultaneously. The

impact of these parameters on small-size instances of set 2 is rather small, while for

the instances of sets 1, 3 and 4, the configurations with a low value of ηheavy produced

a higher solution quality than the configurations with a moderate and high value of

ηheavy. Furthermore, in these instance sets a low value of δ appears to have a negative

effect on solution quality, especially when combined with a moderate or a high value

for ηheavy. The value of ηincr is only relevant in very small-size instances. The reason

for this is that an increment is only performed when the perturbation does not change

the solution, which does not occur in the instances with 50 or 75 customers and occurs

only rarely in the instances of size 20. The analysis shows that for instances of size

10, a value for ηincr of 0.4 or 0.6 has the highest solution quality.

As a result, the sensitivity analysis shows that the tuned setting for the parameters

tuned by irace (δ, η0, ηheavy, ηincr, β) renders a good solution quality for all instance
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sizes. With regards to the value of α, it may be concluded that on instance sets 1 and

2 the increase in α beyond the tuned value of 250 does not yield a quality increase.

For the instances of set 3 and 4, the solution quality does not increase much beyond

α = 300 and α = 350, respectively. Based on these results, α is set to 300.

The relevance of the algorithmic components of the ILS has been demonstrated

in the foregoing analyses. The contribution of the acceptance of worse solutions

based on record-to-record travel, the heavy noise perturbation and the noise increment

is analyzed in the sensitivity analysis of the parameters. Record-to-record travel

has a positive influence on solution quality since for all instance sets, a threshold

value (β) of 0.10 leads to a higher solution quality than a threshold value equal to

zero. A high value of noise after a number of consecutive non-improving iterations

also has a positive effect on solution quality, although this effect appears to depend

on the instance size. A noise increment after a perturbation that did not change

the solution is only relevant in very small-size instances. The contribution of this

component can only be demonstrated in instances of size 10. For larger instances,

this component has no influence on solution quality. For the contribution of the

local search operators, it appears that the relocate operator has the largest impact

on solution quality for realistic size instances. The impact on solution quality of the

local search operators individually does not seem to be very large. Interaction effects

between local search operators have however not been considered. Furthermore, there

is an interaction effect between the size of the network and the contribution of the

local search operators.

Note that although the analysis shows that all algorithmic components contribute

to the solution quality for at least a subset of instances, it may be interesting to

look at the possibility of using a simplified heuristic method consisting of less local

search operators while maintaining or even increasing the efficiency of the solution

method. Christiaens and Vanden Berghe (2016) obtain high-quality results on bench-

mark instances of the CVRP with a heuristic method consisting of a single destroy

operator and a single repair operator. This heuristic outperformed more complicated

state-of-the-art algorithms for the CVRP on known benchmark instances.

4.6 Conclusions

In this chapter, a metaheuristic algorithm for the capacitated vehicle routing problem

with sequence-based pallet loading and axle weight restrictions is proposed. The

design and analysis of an Iterated Local Search (ILS) algorithm is presented. The
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parameters of the metaheuristic are tuned with an automatic algorithm configuration

software which implements an iterated racing procedure, which is an extension of

the Iterated F-race procedure (López-Ibáñez et al., 2016). Furthermore, a sensitivity

analysis is performed to analyze the impact of the values of the parameters of the ILS

and to test the contribution of the algorithmic components of the ILS on solutions

quality.

Although the results show that the tuned configuration renders a good solution

quality for all instance sizes, the sensitivity analysis also points out that the impact

of the parameter values depends on the size of the network. Furthermore, the contri-

bution of the algorithmic components seems to interact with the instance size.

In the current research, the aim is to develop an algorithm which performs well

on instances of all sizes. However, future research may focus on making a distinction

during the tuning process of the algorithm between networks of different sizes. The

differences from the current algorithm to algorithms designed for a specific network

size may be analyzed. In the next chapter, the performance of the ILS is analyzed by

comparing the results to the optimal solutions. Furthermore, the effect of introducing

axle weight constraints in a CVRP on travel distance is examined.
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CVRP with sequence-based

pallet loading and axle weight

constraints: Computational

experiments

5.1 Introduction

In this chapter 1, computational experiments on the CVRP with sequence-based pallet

loading and axle weight constraints are presented (Figure 5.1). In the previous chap-

ters, three solution methods for the CVRP with sequence-based pallet loading and

axle weight constraints are presented. The Mixed Integer Linear Programming model

(MILP) of the problem and the Set Partitioning (SP) model designed in Chapter 3

are used to obtain an optimal solution for small-size instances (10 to 20 customers)

and instances with 50 customers, while the ILS method developed in Chapter 4 is

used to obtain a heuristic solution for instances with up to 100 customers.

This chapter is organized as follows. Section 5.2 describes the test setting and the

generation of the instances. In Section 5.3, the computational experiments are dis-

cussed. First, the results of the MILP model, the SP model and the ILS are compared

on instances containing 10 to 50 customers. Next, the effect of axle weight constraints

in a CVRP is analyzed on instances with 10 to 100 customers. In Section 5.4, con-

1This chapter and the previous chapter are based on Pollaris et al. (2017).

97
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Figure 5.1: Outline of the thesis

clusions and future research opportunities are discussed.

5.2 Test Setting

For the computational tests, the 192 instances that are described in Section 4.2 are

used. It was not possible to transform current benchmark instances in such a way that

the optimal solution is not affected. In existing benchmark instances of the CVRP,

demand and capacity are expressed in a (single) number of fictive units. For example,

vehicle capacity = 100, demand customer 1 = 23, demand customer 2 = 56. In our

problem, demand and capacity are expressed both in terms of total weight (in kg)

and in number of pallets. Transforming a classic CVRP instance to an instance for
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our problem would firstly require to transform the fictive units to weight units (in

kilogram). A transformation to number of pallets is not possible since this needs to be

an integer value. Secondly, a number of pallets should be attributed to each customer

in such a way that the optimal solution is not affected. This is necessary in order

to compare the objective value to other solutions methods used for the benchmark

instance. For most benchmark instances, the number of customers in the vehicle

routes of the final solutions is at least 10 (although usually even more). The capacity

of a 30-foot truck is 22 pallets. This leads to customer demands consisting of on

average 2 pallets, which is very low. Furthermore, in the optimal solutions in the

benchmark instances, the capacity utilization of the vehicles is very high (90% or

higher). After transformation of the instances, this leads to certain pallets weighing

more than 2000 kg, which is not feasible.

Also the benchmark instances mentioned in Table 2.4 which were designed for

specific types of VRPs with loading constraints are not suited for our problem. In

the benchmark instances for the 2L-CVRP, customer demand is expressed in length

and width of the cargo and vehicle capacity is expressed in length and width of the

loading area, which cannot be transformed to total weight and number of pallets. In

the benchmark instances of the multi-pile VRP, the demand consist of different types

of items (long and small chipboards).

An unlimited number of vehicles is considered. Characteristics of the vehicle fleet

(measurements, capacity, mass, axle weight limits) are based on information from a

Belgian logistics service provider. The vehicle type that is considered is a 30-foot truck

that consists of a two-axle tractor (steering axle and driving axle) and a semi-trailer

with tridem axles. In total, 22 pallets may be placed inside the truck. The total

weight capacity of the truck consists of 32.2 tonnes. No more than 11.6 tonnes may

be placed on the coupling, while no more than 21 tonnes may be placed on the tridem

axles of the semi-trailer. The distance from the front of the container to the coupling

(parameter c in equations (3.6) and (3.7)) equals 1 meter. The distance between the

coupling and the central axle of the semi-trailer (parameter d in equations (3.6) and

(3.7)) equals 5.5 meters. For more information regarding the vehicle characteristics,

the reader is referred to the problem description in Chapter 3.

The experiments of the MILP are performed with AIMMS 3.13 (using CPLEX

12.5) on a 2.5 GHz Intel Core i5 laptop with 4 GB RAM. The set partitioning model

is implemented in Python 2.7 and uses CPLEX 12.6 on a Xeon E5-2680v3 CPU at

2.5 GHz with 64 GB of RAM. The Iterated Local Search algorithm is implemented

in Python 2.7 on a Xeon E5-2680v3 CPU at 2.5 GHz with 64 GB of RAM.

Because the experiments of the MILP are performed on a different computer



100 Chapter 5

than the experiments of the SP and ILS, hardware benchmarking is used in order

to compare the speed of the algorithms. The computation times of the MILP that

are reported in this chapter are recalculated to align with the result if the MILP

would have been run on a Xeon E5-2680v3 CPU at 2.5 GHz. For information on the

CPU speed of both computers, www.cpubenchmark.net is consulted. On this website,

the values for the CPU speed are determined from thousands of performance tests

benchmark results.

The parameters of the ILS algorithm are set to their tuned values, as described in

Section 4.4. The value of α, the number of consecutive non-improving iterations of

the ILS is set to 300 as a result of the sensitivity analysis described in Section 4.5.

5.3 Experimental results

In this section, the experimental results of the CVRP with sequence-based pallet

loading and axle weight constraints are discussed. In Subsection 5.3.1, the results of

the MILP model, the SP model and the ILS are compared on the instances of size 10

to 50. In Subsection 5.3.2, the effect of axle weight constraints in a CVRP is analyzed.

5.3.1 Comparison of MILP, SP and ILS

In this section, the results of the MILP model, the SP model and the ILS are com-

pared for the CVRP with sequence-based pallet loading with and without axle weight

constraints. A maximum computation time of 30 hours is considered for the exact

approaches. For the instances of size 75 and 100, no optimal solutions were obtained.

Results of both CVRPs (with and without axle weight constraints) for each prob-

lem class on networks of 10, 15, 20 and 50 customers are presented in Tables 5.1, 5.2,

5.3 and 5.4. The computation times of the MILP, SP and ILS are reported (t(s)).

The computation time of the SP model includes the time for the generation of the

routes and the time to solve the SP with CPLEX. The optimal solutions of the in-

stances of size 50 in 5.4 are only obtained by the SP model and not by the MILP

formulation. Because of the stochastic character of the ILS, twenty independent runs

are performed on each instance. Opt. gap Zavg(%) presents the optimality gap of the

average objective value out of twenty runs. Opt. gap Zbest(%) presents the optimality

gap of the best solution out of twenty runs. Both gaps are reported in Tables 5.1, 5.2,

5.3 and 5.4. In Section 5.3.1.1 the computations times of the models are discussed

while in Section 5.3.1.2 the objective value of the ILS is compared to the optimal

value.
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5.3.1.1 Computation times

For the networks of 10 customers, the computation times of the MILP model with

axle weight constraints are presented for the case in which the constraints concerning

the axle weight limits (equations (3.30) to (3.34)) are defined as lazy constraints as

well as for the case in which these constraints are defined as regular constraints. Lazy

constraints are initially not part of the active model. The model is solved without

the lazy constraints and each solution is checked to see if any of the constraints in the

lazy pool is violated. If a lazy constraint is violated, this constraint is added to the

active model. On average, the computation time reduces with 45% when axle weight

constraints are defined as lazy constraints. For that reason also the instances with 15

and 20 customers are solved with the MILP including lazy constraints.

Tables 5.1, 5.2 and 5.3 show average computation times for the SP model of 0.5

seconds, 2 seconds and 57 seconds for the instances of size 10, 15 and 20 respectively

for the model with axle weight constraints. The computation time increases as the

number of customers in the network increases. An explanation for the speed of the SP

formulation may be that the number of feasible routes is limited because of the vehicle

capacity of 22 pallets. The demand of the customers in the instances in problem classes

1 and 3 lies between 4 and 7 pallets which implies that a single vehicle can not visit

more than five customers. The number of pallets per customer in the instances in

problem classes 2 and 4 lies between 1 and 15. In instances in which several customers

have a small number of pallets, the number of customers in a route may be larger

than 5, which leads to a higher number of possible routes. For instances in which

the majority of the customers have a large number of pallets, the number of possible

routes will decrease. This explains the large variation in computation time for the

instances of size 20 in problem classes 2 and 4 for the SP model. The computation

times are higher in the model with axle weight constraints than in the model without

axle weight constraints although the number of feasible routes is smaller. The reason

for this is that the generation of the routes takes longer in the model with axle weight

constraints because of the axle weight feasibility check.

The computation time for the MILP formulation for the CVRP with axle weight

constraints (with lazy pool constraints) is on average 13 seconds, 1,918 seconds and

5,586 seconds for the instances of size 10, 15 and 20 respectively. Note that the MILP

does not find an optimal solution for all instances within 30 hours of computation time.

For the model with axle weight constraints (with lazy pool constraints) a solution is

found in all instances with 10 customers, in 31 out of 32 instances with 15 customers

and in 27 out of 32 instances with 20 customers. For the CVRP without axle weight
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constraints a solution is found for all instances.

Note that although a different version of CPLEX is used for the SP and the MILP

as indicated in the test setting, it is clear that the SP model is much faster than

the MILP model. Because the SP outperforms the MILP in terms of computational

efficiency, the instances of size 50 are only solved by the SP and not by the MILP.

For the instances of size 50, the SP formulation obtains an optimal solution for 27

out of 32 instances. The results for these instances are reported in Table 5.4. For

the remaining 5 instances of size 50, no optimal solution was found within 30 hours

of computation time. These instances are therefore not included in Table 5.4. The

computation time for the generation of the routes as well to solve the SP problem

for the instances with 50 customers for the CVRP without axle weight constrains

is on average 2.1 hours. For the model with axle weight constraints, the average

computation time for the instances of size 50 is 4.2 hours.

The computation time of the ILS for the CVRP without axle weight constraints is

on average 0.8 seconds, 2 seconds, 5 seconds and 107 seconds for the instances of size

10, 15, 20 and 50. For the CVRP with axle weight constraints the computations times

are on average 0.6 seconds, 2 seconds, 3 seconds and 84 seconds for the instances of

size 10, 15, 20 and 50. Note that for small-size instances of 10 to 20 customers, the

difference with the computation times of the SP is on average very small, while for

the instances of size 50, the ILS is clearly much faster than the SP formulation.

5.3.1.2 Objective value

A summary of the comparison between the objective value obtained by the ILS and

the optimal solution for each problem size is presented in Table 5.5 for the CVRP

without axle weight constraints and in Table 5.6 for the CVRP with axle weight

constraints. In the second column of both tables, the number of instances for which

the optimal solution is known is reported. In the third and fourth column, the average

optimality gap of the best solution out of twenty runs (Opt. gap Zbest(%)) and the

number of instances in which the best solution of the ILS does not equal the optimal

solution (Zbest ̸= Z*) is reported. In the last columns, the average optimality gap

of the average solution quality out of twenty runs (Opt. gap Zavg(%)) is reported

as well as the number of instances in which the average solution of the ILS does not

equal the optimum solution (Zavg ̸= Z*).

For the CVRP without axle weight constraints, the ILS is able to find the optimum

solution in each run for 92 out of 96 instances for the instances of size 10, 15 and 20.

For the remaining 4 instances, the optimum solution is found in at least one run of
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the ILS. For the instances of size 50, the ILS finds the optimum solution in at least

one run for 24 out of 27 instances. For the remaining 3 instances, the optimality gaps

are very small. The average optimality gap of the best solution found by the ILS for

the instances of size 50 is 0.04 %. The average optimality gap of all runs is 0.28 %.

For the CVRP with axle weight constraints, the ILS finds the optimal solutions in

the majority of the instances. In case the optimal solution is not found, the optimality

gap is very small. For the instances with networks of 10, 15 and 20 customers, the

average optimality gaps are respectively 0.34 %, 0.35 % and 0.18 %. In 66 out of

96 instances, the optimal solution is found in all runs of the ILS. For 92 instances,

the optimal solution is found in at least a single run. For 19 out of 27 instances of

size 50 the optimal solution is found in at least a single run of the ILS. The average

optimality gap for all runs for the instances of size 50 is 0.84 %, while the average

optimality gap of the best run is only 0.08 %. The results show that the ILS is able

to find good quality solutions for both problem types (CVRP with and without axle

weight constraints).

5.3.2 Effect of axle weight constraints

In this section, the effect of the integration of axle weight constraints in a CVRP

is analyzed by comparing the results of the ILS for the CVRP with and without

axle weight constraints. Tables 5.7, 5.8 and 5.9 provide the results of the ILS on

the instances with networks of realistic sizes with 50, 75 and 100 customers. For

both problem types (CVRP with and without axle weight constraints), the average

CPU time (t (s)), the average objective value (Zavg) and the best objective value

(Zbest) out of 20 runs is reported. For the problem without axle weight constraints,

the number of axle weight violations (# V ) and maximum violation (Max V ) are

also shown. The number of violations represents the number of arcs traveled by a

vehicle in which the coupling is overloaded. The total number of arcs traveled with

a loaded vehicle is equal to the number of customers in the network. The maximum

violation is expressed as a percentage of the weight capacity of the coupling (11.6 t).

In all instances, the largest violation that occurs is a violation of the weight limit on

the coupling (and thus on the axles of the tractor). Violations of the weight limit

on the axles of the semi-trailer occur less frequently and are in all instances smaller

than the violations on the axles of the tractor. This may be explained by the higher

weight capacity of the axles of the semi-trailer (21 t) compared to the weight capacity

of the coupling (11.6 t). For the problem with axle weight constraints, the increase

in average objective value compared to the average objective value in the problem
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Table 5.1: Comparison MILP, SP and ILS on networks of 10 customers

Instance Model without axle weight constraints Model with axle weight constraints

MILP

t(s)

SP

t(s)

ILS

t(s)

Opt. gap

Zavg(%)

Opt. gap

Zbest(%)

MILP

t(s)

MILP

tlazy(s)

SP

t(s)

ILS

t(s)

Opt. gap

Zavg(%)

Opt. gap

Zbest(%)

Problem class 1

1 1 0.5 1.0 0.00 0.00 203 115 0.5 1.0 0.88 0.00

2 1 0.5 1.0 0.00 0.00 2 2 0.5 0.5 0.00 0.00

3 5 0.5 1.0 0.00 0.00 6 10 0.5 0.5 1.77 1.77

4 2 0.5 1.0 0.00 0.00 79 58 0.5 0.5 0.00 0.00

5 3 0.5 1.0 0.00 0.00 5 2 0.5 0.5 0.00 0.00

6 3 0.5 1.0 0.00 0.00 29 7 0.5 0.5 0.00 0.00

7 2 0.5 1.0 0.00 0.00 6 4 0.5 0.5 0.00 0.00

8 1 0.5 0.5 0.00 0.00 7 2 0.5 0.5 0.68 0.00

Problem class 2

1 6 0.5 1.0 0.00 0.00 63 25 0.5 0.5 4.97 0.00

2 1 0.5 0.5 0.00 0.00 24 10 0.5 0.5 0.00 0.00

3 4 0.5 1.0 0.00 0.00 15 9 0.5 0.5 2.46 0.00

4 2 0.5 0.5 0.00 0.00 5 4 0.5 0.5 0.00 0.00

5 35 0.5 1.0 0.00 0.00 31 19 1 0.5 0.19 0.00

6 1 0.5 0.5 0.00 0.00 9 5 0.5 0.5 0.00 0.00

7 1 0.5 0.5 0.00 0.00 21 2 0.5 0.5 0.00 0.00

8 0.5 0.5 1.0 0.00 0.00 2 2 0.5 0.5 0.00 0.00

Problem class 3

1 1 0.5 1.0 0.00 0.00 0.5 0.5 0.5 0.5 0.00 0.00

2 4 0.5 0.5 0.00 0.00 12 8 0.5 0.5 0.00 0.00

3 3 0.5 0.5 0.00 0.00 4 2 0.5 0.5 0.00 0.00

4 2 0.5 1.0 0.00 0.00 11 4 0.5 1.0 0.00 0.00

5 0.5 0.5 1.0 0.00 0.00 4 2 0.5 1.0 0.00 0.00

6 2 0.5 1.0 0.00 0.00 4 2 0.5 0.5 0.00 0.00

7 2 0.5 1.0 0.00 0.00 5 2 0.5 1.0 0.00 0.00

8 2 0.5 1.0 0.00 0.00 6 2 0.5 1.0 0.00 0.00

Problem class 4

1 2 0.5 0.5 0.00 0.00 2 1 0.5 0.5 0.00 0.00

2 2 0.5 0.5 0.00 0.00 24 6 0.5 0.5 0.00 0.00

3 0.5 0.5 1.0 0.00 0.00 1 0.5 0.5 0.5 0.00 0.00

4 0.5 0.5 0.5 0.00 0.00 1 1 0.5 0.5 0.00 0.00

5 6 0.5 0.5 0.00 0.00 7 6 0.5 0.5 0.00 0.00

6 2 0.5 1.0 0.00 0.00 24 19 1 0.5 0.00 0.00

7 0.5 0.5 0.5 0.00 0.00 2 1 0.5 0.5 0.00 0.00

8 1 0.5 0.5 0.00 0.00 2 1 0.5 0.5 0.00 0.00

Average 3 0.5 0.8 0.00 0.00 19 10 0.5 0.6 0.34 0.06

tlazy = computation time when axle weight limits are defined as lazy constraints
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Table 5.2: Comparison MILP, SP and ILS on networks of 15 customers

Instance Model without axle weight constraints Model with axle weight constraints

MILP

t(s)

SP

t(s)

ILS

t(s)

Opt. gap

Zavg(%)

Opt. gap

Zbest(%)

MILP

t(s)

SP

t(s)

ILS

t(s)

Opt. gap

Zavg(%)

Opt. gap

Zbest(%)

Problem class 1

1 24 0.5 3 0.00 0.00 2 2 0.60 0.00

2 4 0.5 2 0.00 0.00 20066 1 1 0.00 0.00

3 102 0.5 2 0.32 0.00 391 0.5 1 0.64 0.00

4 79 0.5 3 0.00 0.00 1017 1 2 0.00 0.00

5 15 0.5 2 1.59 0.00 78 1 2 1.54 0.00

6 45 0.5 2 0.00 0.00 3846 0.5 1 0.29 0.00

7 117 0.5 2 0.00 0.00 1400 0.5 2 0.00 0.00

8 10 0.5 2 0.00 0.00 650 2 1 0.00 0.00

Problem class 2

1 8 1 2 0.00 0.00 187 4 1 3.85 0.00

2 28 0.5 2 0.00 0.00 31 0.5 1 0.00 0.00

3 79 0.5 2 0.00 0.00 539 2 1 1.88 0.00

4 13 0.5 2 0.00 0.00 23 1 1 0.00 0.00

5 12 0.5 2 0.00 0.00 45 0.5 1 0.40 0.40

6 76 9 3 0.00 0.00 16418 29 2 0.15 0.00

7 1568 0.5 2 0.00 0.00 1326 1 2 0.00 0.00

8 64 0.5 2 0.00 0.00 157 1 1 0.15 0.00

Problem class 3

1 227 0.5 3 0.00 0.00 590 1 2 0.36 0.00

2 67 0.5 2 0.00 0.00 257 1 2 0.00 0.00

3 24 0.5 2 0.00 0.00 215 2 2 0.00 0.00

4 12 0.5 2 0.00 0.00 19 2 2 0.00 0.00

5 16 0.5 2 0.00 0.00 42 1 1 0.35 0.00

6 72 0.5 3 0.00 0.00 173 1 2 0.00 0.00

7 47 0.5 1 0.00 0.00 57 1 2 0.00 0.00

8 32 0.5 2 0.00 0.00 309 1 2 0.00 0.00

Problem class 4

1 5 0.5 1 0.00 0.00 0.5 2 0.43 0.00

2 54 0.5 2 0.00 0.00 102 1 2 0.00 0.00

3 45 0.5 2 0.00 0.00 68 1 2 0.00 0.00

4 44 0.5 2 0.00 0.00 19 0.5 1 0.00 0.00

5 37 0.5 2 0.15 0.00 45 0.5 2 0.46 0.00

6 26 0.5 2 0.00 0.00 19 2 2 0.13 0.00

7 167 0.5 2 0.00 0.00 107 1 2 0.00 0.00

8 31 0.5 2 0.00 0.00 65 0.5 1 0.00 0.00

Average 99 0.8 2 0.06 0.00 1,609 2 2 0.35 0.01



106 Chapter 5

Table 5.3: Results of the CVRP with sequence-based pallet loading with

and without axle weight constraints on instances with 20 customers

Instance Model without axle weight constraints Model with axle weight constraints

MILP

t(s)

SP

t(s)

ILS

t(s)

Opt. gap

Zavg(%)

Opt. gap

Zbest(%)

MILP

t(s)

SP

t(s)

ILS

t(s)

Opt. gap

Zavg(%)

Opt. gap

Zbest(%)

Problem class 1

1 24 1 4 0.00 0.00 280 3 3 0.00 0.00

2 670 5 5 0.00 0.00 654 12 4 0.00 0.00

3 594 3 6 0.00 0.00 8 5 0.00 0.00

4 253 3 5 0.00 0.00 1338 7 4 0.00 0.00

5 4806 1 5 0.00 0.00 3 4 0.56 0.00

6 17 2 4 0.00 0.00 17621 5 2 0.00 0.00

7 20 2 5 0.00 0.00 45 3 3 0.00 0.00

8 1759 3 7 0.00 0.00 5 4 2.15 1.34

Problem class 2

1 591 0.5 3 0.00 0.00 13317 2 3 0.10 0.00

2 608 0.5 4 0.00 0.00 1310 2 3 0.00 0.00

3 75 0.5 3 0.00 0.00 27433 2 2 0.32 0.00

4 250 0.5 4 0.00 0.00 907 1 2 0.00 0.00

5 228 0.5 4 0.00 0.00 1 2 0.19 0.00

6 1153 0.5 3 0.00 0.00 3591 1 1 0.27 0.27

7 52 0.5 4 0.00 0.00 1060 2 3 0.00 0.00

8 507 196 6 0.00 0.00 3308 338 3 1.31 0.00

Problem class 3

1 173 2 5 0.00 0.00 729 5 4 0.00 0.00

2 543 4 5 0.00 0.00 1262 8 3 0.00 0.00

3 925 1 5 0.00 0.00 3536 2 3 0.00 0.00

4 4434 1 6 0.00 0.00 1917 3 4 0.00 0.00

5 812 4 7 0.00 0.00 5634 9 5 0.00 0.00

6 841 1 4 0.00 0.00 1178 3 3 0.00 0.00

7 166 4 7 0.00 0.00 3307 12 5 0.00 0.00

8 2075 2 9 0.00 0.00 16662 6 5 0.00 0.00

Problem class 4

1 2490 229 6 0.00 0.00 12813 635 5 0.00 0.00

2 283 237 6 0.00 0.00 723 5 0.16 0.00

3 802 2 5 0.45 0.00 1150 6 4 0.56 0.00

4 73 0.5 4 0.00 0.00 296 2 2 0.00 0.00

5 175 0.5 5 0.00 0.00 1074 0.5 3 0.00 0.00

6 105 0.5 4 0.00 0.00 536 2 4 0.08 0.00

7 121 1 4 0.00 0.00 1493 2 3 0.00 0.00

8 30 1 4 0.00 0.00 67 6 4 0.00 0.00

Average 802 22 5 0.01 0.00 4,538 57 3 0.18 0.05



Computational experiments 107

Table 5.4: Comparison SP and ILS on networks of 50 customers

Instance Model without axle weight constraints Model with axle weight constraints

SP

t(s)

ILS

t(s)

Opt. gap

Zavg(%)

Opt. gap

Zbest(%)

SP

t(s)

ILS

t(s)

Opt. gap

Zavg(%)

Opt. gap

Zbest(%)

Problem class 1

1 3088 114 0.15 0.00 3863 91 0.38 0.00

2 22439 161 0.15 0.00 8423 88 2.21 0.66

3 5714 135 0.29 0.00 4728 93 0.32 0.00

4 20498 120 0.07 0.00 11375 60 1.78 0.00

5 2503 76 0.00 0.00 1879 72 0.76 0.00

6 3425 103 0.03 0.00 4137 58 0.39 0.00

7 15997 139 1.32 0.72 10763 74 1.42 0.00

8 3115 148 1.87 0.00 1170 106 0.60 0.00

Problem class 2

2 12103 98 0.15 0.00 36853 66 0.98 0.00

4 8506 110 0.19 0.00 39903 72 1.04 0.11

5 629 85 0.10 0.00 1352 60 1.05 0.00

8 16384 71 0.07 0.00 65521 56 1.47 0.26

Problem class 3

1 2742 146 0.19 0.00 2686 99 0.46 0.17

2 3478 127 0.09 0.00 3457 108 0.71 0.00

3 6895 107 0.07 0.00 10217 144 1.30 0.00

4 19602 131 0.12 0.08 13930 137 0.71 0.25

5 2056 118 0.03 0.00 2935 121 0.50 0.00

6 6096 120 0.29 0.00 6284 111 0.89 0.00

7 5364 145 0.54 0.17 7770 103 1.09 0.18

8 5234 88 0.11 0.00 3685 107 0.81 0.00

Problem class 4

2 6545 93 0.24 0.00 23907 48 0.05 0.00

3 5085 84 0.75 0.00 12944 59 0.65 0.00

4 17803 86 0.00 0.00 93099 76 0.49 0.00

5 756 81 0.56 0.00 1267 84 0.74 0.00

6 9168 81 0.14 0.00 39379 75 0.46 0.16

7 360 71 0.10 0.00 547 66 0.24 0.00

8 138 47 0.00 0.00 415 46 1.09 0.35

Average 7619 107 0.28 0.04 15277 84 0.84 0.08
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Table 5.5: Validation ILS on CVRP without axle weight constraints

# instances
Opt. gap

Zbest(%)
Zbest ̸= Z*

Opt. gap

Zavg(%)
Zavg ̸= Z*

10 customers 32 0.00 0 0.00 0

15 customers 32 0.00 0 0.06 3

20 customers 32 0.00 0 0.01 1

50 customers 27 0.04 3 0.28 24

Table 5.6: Validation ILS on CVRP with axle weight constraints

# instances
Opt. gap

Zbest(%)
Zbest ̸= Z*

Opt. gap

Zavg(%)
Zavg ̸= Z*

10 customers 32 0.06 1 0.34 6

15 customers 32 0.01 1 0.35 14

20 customers 32 0.05 2 0.18 10

50 customers 27 0.08 8 0.84 27

without axle weight constraints (Zavg incr (%)) is reported, as well as the increase

in best objective value compared to the best objective value in the problem without

axle weight constraints (Zbest incr (%)).

For all instances with 50 to 100 customers, the solution of the ILS for the CVRP

without axle weight constraints generates axle weight violations. The number of arcs

in which there is an axle weight violation for networks of 50, 75 and 100 customers is

equal to 14, 19 and 27, on average, respectively. This means that in more than 25 % of

the arcs traveled with a loaded vehicle, there is an axle weight violation. The extent

of the violations is also considerable, with, on average, a maximum violation of 13 %,

which would lead to a high fine in practice. Results show that these violations may be

avoided with a relatively small increase in objective value. On average the increase

in average objective value in the model with axle weight constraints compared to

the average objective value in the model without axle weight constraints is 2.50 %,

2.49 % and 3.35 % for the networks of respectively 50, 75 and 100 customers. The

average increase in best objective value compared to the best objective value in the

model without axle weight constraints is 1.84 %, 1.58 %, 2.29 % for the networks with

respectively 50, 75 and 100 customers. The CPU time for the instances of size 50, 75

and 100 is on average respectively 83, 260 and 333 seconds for the model with axle
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Table 5.7: Results of the CVRP with sequence based pallet loading

with and without axle weight constraints on networks of 50 customers

Instance Model without axle weight Model with axle weight

Zavg Zbest t (s) # V
Max V

(%)
Zavg Zavg

incr (%)
Zbest Zbest

incr (%)
t (s)

Problem class 1

1 152.5 152.2 114 9 12 154.7 1.44 154.1 1.25 91

2 134.1 133.8 161 22 16 144.4 7.68 142.2 6.28 88

3 145.7 145.3 135 13 17 148.2 1.72 147.7 1.65 93

4 151.0 150.8 120 15 13 154.8 2.52 152.1 0.86 60

5 166.1 166.1 76 15 17 169.4 1.99 168.2 1.26 72

6 153.2 153.2 103 12 16 156.8 2.35 156.2 1.96 58

7 143.1 142.3 139 16 12 148.3 3.63 146.3 2.81 74

8 144.9 142.3 148 22 16 148.4 2.42 147.5 3.65 106

Problem class 2

1 170.3 170.3 88 19 16 178.8 4.99 177.5 4.23 79

2 200.7 200.5 98 24 18 205.8 2.54 203.8 1.65 66

3 189.2 188.4 84 14 12 196.9 4.07 192.8 2.34 77

4 183.4 183.0 110 12 18 189.0 3.05 187.2 2.30 72

5 191.0 190.9 85 18 15 196.5 2.88 194.5 1.89 60

6 168.4 168.4 74 11 14 169.6 0.71 168.4 0.00 53

7 184.2 184.2 74 26 17 195.5 6.13 190.1 3.20 63

8 192.7 192.5 71 14 16 202.4 5.03 200.0 3.90 56

Problem class 3

1 144.1 143.9 146 8 3 144.9 0.56 144.5 0.42 99

2 157.2 156.9 127 6 5 158.4 0.76 157.3 0.25 108

3 143.8 143.8 107 8 5 146.1 1.60 144.3 0.35 144

4 149.2 149.0 131 9 6 150.2 0.67 149.5 0.34 137

5 158.4 158.3 118 10 7 160.6 1.39 159.8 0.95 121

6 143.7 143.3 120 6 4 145.5 1.25 144.3 0.70 111

7 147.3 146.5 145 9 6 148.2 0.61 146.8 0.20 103

8 130.1 130.0 88 9 14 131.2 0.85 130.1 0.08 107

Problem class 4

1 182.1 181.4 105 19 19 185.4 1.81 184.6 1.76 95

2 210.0 210.0 93 11 10 210.8 0.38 210.7 0.33 48

3 198.7 197.9 84 13 8 200.3 0.81 199.0 0.56 59

4 193.7 193.7 86 16 10 200.5 3.51 199.5 2.99 76

5 199.4 199.3 81 19 17 207.0 3.81 205.5 3.11 84

6 212.8 212.5 81 8 5 213.4 0.28 212.8 0.14 75

7 199.5 199.4 71 15 8 203.4 1.95 202.9 1.76 66

8 222.0 222.0 47 22 17 236.5 6.53 234.8 5.77 46

Average 103 14 2.50 1.84 83

# V = number of violations

Max V = maximum violation
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Table 5.8: Results of the CVRP with sequence based pallet loading

with and without axle weight constraints on networks of 75 customers

Instance Model without axle weight Model with axle weight

Zavg Zbest t (s) # V
Max V

(%)
Zavg Zavg

incr (%)
Zbest Zbest

incr (%)
t (s)

Problem class 1

1 201.8 201.1 551 20 14 205.9 2.03 203.8 1.34 208

2 208.0 206.7 679 24 16 216.0 3.85 214.0 3.53 214

3 208.1 207.8 340 24 18 216.5 4.04 214.2 3.08 215

4 212.7 211.5 450 17 15 219.2 3.06 216.2 2.22 221

5 200.1 199.9 484 17 15 205.0 2.45 202.2 1.15 206

6 199.9 199.1 418 22 14 207.2 3.65 204.7 2.81 209

7 213.8 213.2 458 24 18 224.4 4.96 220.9 3.61 222

8 207.3 206.4 629 23 16 214.4 3.42 211.6 2.52 215

Problem class 2

1 273.8 273.8 226 30 18 286.9 4.78 283.8 3.65 287

2 261.0 260.8 344 21 17 265.7 1.80 262.7 0.73 266

3 299.6 298.9 315 32 18 309.9 3.44 304.7 1.94 311

4 276.0 275.1 364 25 16 285.8 3.55 282.5 2.69 288

5 323.9 323.7 437 27 15 331.8 2.44 329.9 1.92 330

6 263.2 262.5 506 22 18 266.0 1.06 262.8 0.11 267

7 315.3 314.8 393 27 20 327.3 3.81 322.7 2.51 327

8 326.1 325.8 447 34 18 335.1 2.76 333.1 2.24 336

Problem class 3

1 221.2 220.6 616 14 13 225.9 2.12 221.9 0.59 227

2 195.3 194.5 366 11 6 197.7 1.23 195.2 0.36 197

3 201.5 201.4 444 13 4 206.6 2.53 202.9 0.74 204

4 204.6 203.7 527 10 5 211.2 3.23 206.2 1.23 216

5 204.9 204.3 409 13 9 207.4 1.22 205.6 0.64 210

6 229.7 229.4 349 12 9 231.8 0.91 230.1 0.31 233

7 202.8 202.0 330 11 10 204.4 0.79 202.0 0.00 204

8 211.0 209.4 668 12 9 215.2 1.99 212.4 1.43 215

Problem class 4

1 337.7 337.3 433 20 14 342.3 1.36 340.1 0.83 343

2 326.9 326.7 333 23 12 335.2 2.54 331.7 1.53 333

3 328.1 327.0 369 13 9 333.7 1.71 331.3 1.31 335

4 324.4 322.1 425 16 14 331.0 2.03 326.9 1.49 329

5 271.5 270.5 317 15 11 274.0 0.92 271.8 0.48 275

6 287.0 286.4 351 16 8 290.2 1.11 288.3 0.66 290

7 288.0 287.8 342 24 15 297.6 3.33 295.0 2.50 299

8 269.0 268.6 326 9 9 272.8 1.41 269.7 0.41 270

Average 426 19 2.49 1.58 260

# V = number of violations

Max V = maximum violation
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Table 5.9: Results of the CVRP with sequence based pallet loading

with and without axle weight constraints on networks of 100 cus-

tomers

Instance Model without axle weight Model with axle weight

Zavg Zbest t (s) # V
Max V

(%)
Zavg Zavg

incr (%)
Zbest Zbest

incr (%)
t (s)

Problem class 1

1 272.4 271.1 1172 29 16 281.3 3.27 278.4 2.69 282

2 281.4 277.9 1349 33 16 292.6 3.98 289.8 4.28 290

3 256.5 253.7 1290 32 18 268.8 4.80 264.7 4.34 268

4 274.9 273.4 1560 31 14 291.6 6.07 283.9 3.84 293

5 260.6 260.0 1215 31 16 270.1 3.65 266.2 2.38 268

6 275.3 274.4 1343 36 17 289.6 5.19 282.2 2.84 287

7 275.2 274.2 1344 32 15 290.6 5.60 287.3 4.78 292

8 271.9 271.2 1277 25 16 283.8 4.38 277.5 2.32 284

Problem class 2

1 388.3 387.6 1326 42 21 400.9 3.24 396.5 2.30 400

2 362.4 360.7 1230 27 16 368.7 1.74 364.3 1.00 370

3 355.9 354.8 1219 41 19 368.6 3.57 364.3 2.68 366

4 383.3 382.3 1448 41 20 396.4 3.42 389.2 1.80 399

5 364.8 364.0 1373 40 17 375.5 2.93 372.1 2.23 375

6 332.6 331.6 1377 37 19 344.0 3.43 337.8 1.87 344

7 382.2 381.5 1284 27 19 395.2 3.40 389.9 2.20 397

8 383.6 383.0 1424 24 16 393.1 2.48 387.6 1.20 391

Problem class 3

1 249.8 248.6 1375 14 11 256.1 2.52 253.0 1.77 255

2 266.8 265.0 1260 13 7 274.9 3.04 269.2 1.58 274

3 272.9 270.8 1185 13 8 279.2 2.31 274.5 1.37 280

4 253.5 252.5 1467 17 6 262.3 3.47 259.0 2.57 259

5 266.3 265.6 1096 12 11 271.3 1.88 267.8 0.83 272

6 277.4 275.6 1449 12 7 285.3 2.85 280.4 1.74 284

7 260.6 259.1 1493 18 12 266.5 2.26 264.0 1.89 267

8 266.0 265.4 1033 15 7 269.9 1.47 266.3 0.34 272

Problem class 4

1 392.9 392.0 1403 29 17 400.5 1.93 397.1 1.30 400

2 411.7 410.5 816 21 11 422.5 2.62 418.3 1.90 424

3 431.0 430.0 1030 31 12 443.2 2.83 437.8 1.81 441

4 356.3 355.5 1300 25 7 367.9 3.26 361.8 1.77 368

5 354.2 353.3 990 29 13 367.1 3.64 361.1 2.21 372

6 364.2 362.5 1207 25 15 378.3 3.87 373.3 2.98 381

7 392.3 390.4 1261 29 16 407.1 3.77 403.1 3.25 407

8 375.1 374.7 985 31 16 391.2 4.29 386.4 3.12 389

Average 1268 27 3.35 2.29 333

# V = number of violations

Max V = maximum violation
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weight constraints. For the model without axle weight constraints, the CPU time

for the instances of size 50, 75 and 100 is on average respectively 103, 426 and 1268

seconds.

Table 5.10 presents a comparison of the results per problem class and number

of customers in the network. In this table, the small-size instances with 10 to 20

customers are also considered. Detailed results of the ILS on the small-size networks

of 10, 15 and 20 customers are available in Appendix B. The increase in average and

best costs in problem classes 1 and 2 are for the small-size instances on average higher

than for the instances of size 50 to 100. For problem classes 3 and 4, there is not

much difference in average and best increase in objective value between the small-size

and large-size instances.

For all instance sizes, the number of violations and the increase in objective value

are larger in problem classes 1 and 2 (where only heavy pallets are considered) than

in problem classes 3 and 4 (where a fifty-fifty percent mix of heavy and light pallets

are considered). For the instances with a mix between light and heavy pallets, an

increase in number of violations may be detected when we move from a low variation

(problem class 3) to a high variation in number of pallets (problem class 4). Likewise,

for the instances with only heavy pallets, the number of violations increases when

the variation in number of pallets increases. The highest number of violations may

therefore be found in problem class 2, while the instances in problem class 3 have on

average the lowest number of violations.

The positive effect of mixing light pallets with heavy pallets on the increase in

objective value can be explained by the fact that this allows for more flexibility in

the packing process. If lighter pallets are packed first in the truck, the weight of

the heavy pallets will mostly be carried by the axles of the semi-trailer, which have

a higher weight capacity. Heavy pallets are therefore better transported together

with light pallets even though the total weight capacity of the vehicle is sufficient to

transport only heavy pallets. A possible explanation for the negative effect on increase

in objective value and number of violations of a higher variation in number of pallets

per customer may be that a variation between 1 and 15 pallets per order leads to on

average half of the orders which have more than 8 pallets which is much less flexible

than orders between 4 and 7 pallets per customer. An order of 15 pallets with a pallet

weight of 1.4 tonnes, leads to a total weight of the order of 21 tonnes, which is less

flexible to position on a truck than several smaller orders with a high pallet weight.

The probability of an axle weight violation and the extent of this violation is much

larger when a high variation of number of pallets is considered.

Figures 5.2 and 5.3 present for each problem class an overview of the variation
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Table 5.10: Summary of the

increase in objective value

and number of violations for

each problem class

n # V
Zavg

incr (%)

Zbest

incr (%)

Problem class 1

10 3 4.16 3.95

15 5 6.48 6.33

20 4 1.99 1.81

50 15 2.97 2.47

75 21 3.43 2.53

100 21 4.62 3.43

Problem class 2

10 4 6.63 5.63

15 6 6.75 5.95

20 8 4.94 4.69

50 17 3.68 2.44

75 27 2.96 1.97

100 35 3.03 1.91

Problem class 3

10 1 0.95 0.95

15 2 0.85 0.76

20 2 0.00 0.00

50 8 0.96 0.41

75 12 1.75 0.66

100 14 2.47 1.51

Problem class 4

10 2 1.62 1.62

15 4 2.56 2.44

20 5 2.02 1.98

50 15 2.39 2.05

75 17 1.80 1.15

100 28 3.28 2.29

Average 12 3.01 2.46

n = network size

# V = number of violations
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Figure 5.2: Boxplot of the increase in objective value after the integration of axle

weight constraints per problem class of small-size instances with 10, 15 and 20 cus-

tomers

of the average increase in objective value of the model with axle weight constraints

compared to the model without axle weight constraints for respectively small-size (10

to 20 customers) and large-size (50 to 100 customers) instances. Note that a different

scale is used on the vertical axis of both graphs because the variation of the increase in

objective value is much larger for the small-size instances than for large-size instances.

In particular this holds true for the first two problem classes.

For the small-size instances, the 25th, 50th and 75th percentiles of the increase

in objective value in problem class 2 are considerably higher than the corresponding

percentiles in the first problem class. This is not the case for the large-size instances.

The 25th and 50th percentiles of the increase in objective value of the large-size in-

stances in problem class 1 and problem class 2 are similar. In problem class 1, 50 %

of the large-size instances have an increase in objective value lower than 3.7 % while

in problem class 2 the median is situated at 3.3 %. The 75th percentile of the average

increase in objective value of the large-size instances in problem classes 1 and 2 is

situated at 4.5 % and 3.7 % respectively.

For both instance sets, problem class 3 has on average the lowest increase in

objective value. For the small-size instances, 75 % of the instances of this problem

class have an increase lower than 0.1 %. For the large-size instances, the increase in
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Figure 5.3: Boxplot of the increase in objective value after the integration of axle

weight constraints per problem class of large-size instances with 50, 75 and 100 cus-

tomers

objective value in problem class 3 is for 75 % of the instances lower than 2.5 %. The

75th percentile of the instances of problem class 4 are for both instance sets higher with

on average 3.9 % for the small-size instances and 3.5 % for the large-size instances.

Furthermore, the variation in increase in objective value between the instances is for

both instance sets larger in problem class 4 compared to problem class 3.

Based on the foregoing analysis, following conclusions may be composed with re-

gards to the impact of the weight of the demand and the variation in number of pallets

on the integration of axle weight constraints in the route scheduling. Mixing heavy

and light pallets leads to fewer violations in the model without axle weight constraints

and a smaller increase in objective value for all instance sizes. Furthermore, a large

variation in number of pallets (1 to 15 pallets per customer) leads to a larger increase

in objective value than a small variation in number of pallets (4 to 7 pallets) for

the instances with a mix between light and heavy pallets (problem classes 3 and 4)

for both small-size and large-size instances. In small-size instances with only heavy

pallets (problem classes 1 and 2), the variation in number of pallets has a similar

influence on the increase in objective value. In large-size instances with only heavy

pallets (problem classes 1 and 2), the variation in number of pallets does not appear

to have an influence on the increase in objective value.
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Figure 5.4: Increase in vehicles used per problem class of large-size instances with 50,

75 and 100 customers

Figure 5.4 presents the increase in number of vehicles in the model with axle

weight constraints compared to the model without axle weight constraints for the

large-size instances. Note that the minimization of the number of vehicles in the

solution is not included in the objective function. For problem classes 1, 3 and 4

the number of vehicles increases with on average 2.3 %, 1.5 % and 1.7 % respectively,

while in problem class 2, the number of vehicles decreases with on average 1.7 %. The

reason for this may be that this problem class contains the most difficult loads, since

only heavy pallets are considered and customer demands may contain a large number

of pallets. These difficult loads need to be combined with lighter loads to obtain a

feasible packing plan. Therefore it is more likely that in a solution with axle weight

constraints, customers are combined in a single route even when they are situated

far from each other and therefore are served separately in the solution without axle

weight constraints.

5.4 Conclusions and future research

This chapter presents computational experiments of the capacitated vehicle routing

problem with sequence-based pallet loading and axle weight constraints. The perfor-

mance of the MILP model and the set partitioning (SP) formulation for the CVRP
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with sequence-based pallet loading and axle weight constraints presented in Chapter

3 is illustrated on instances of 10 to 50 customers. Within 30 hours of computation

time, the MILP model is able to produce optimal solutions for most instances up to 20

customers. The SP model solves all instances up to 20 customers and is considerably

faster than the MILP model. The majority of the instances with 50 customers are

also solved by the SP model. The Iterated Local Search (ILS) algorithm, developed in

Chapter 4, has proven to produce high-quality solutions, with very small optimality

gaps on instances with up to 50 customers. Furthermore, the ILS is used to analyze

the effect of introducing axle weight constraints in a CVRP on the objective value in

instances with networks consisting of 10 to 100 customers. Results show that inte-

grating axle weight constraints does not lead to a large increase in objective value,

while not including axle weight constraints may induce major axle weight violations.

In several instances axle weight violations can even be avoided without an increase in

objective value. The effect of including axle weight constraints on the objective value

depends on the number of pallets per customer and the weight of the pallets. When

only light pallets are packed, axle weight limits do not play a role in the packing pro-

cess. The effect of integrating axle weight limits on the objective value is higher when

only heavy (1000 - 1500 kg) pallets are considered compared to a fifty-fifty percent

mix of heavy and light pallets.

Since research on vehicle routing problems with axle weight constraints is very

scarce, many research opportunities still exist with regards to solution methods and

problem extensions. The exact methods based on the MILP and the SP formula-

tions that have been developed are only able to solve small-size instances within a

reasonable time limit. Future research could therefore focus on the development of

more efficient exact methods. Since the SP model appears to outperform the MILP

model in terms of computational efficiency, it may be useful to develop a new ex-

act method based on the SP formulation. In the SP model, each feasible route is

represented by a variable. Although the number of feasible routes is smaller in the

CVRP with sequence-based pallet loading than in most other VRP models, it still

causes the number of variables to become very large when the number of customers

in the network is larger than 50. Column generation therefore presents an interesting

research opportunity to solve the SP model. This method has proven to work well

on linear models with many variables. With regards to the MILP formulation, a

branch-and-cut method could be used to improve the efficiency of the model. In the

literature concerning the VRP, good results have already been obtained with branch-

and-cut algorithms (e.g. Iori et al., 2007; Tricoire et al., 2011; Cordeau et al., 2010b;

Alba et al., 2013; Côté et al., 2012a). Furthermore, the development of matheuris-
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tics presents a promising research direction. A matheuristic combines mathematical

programming with a heuristic solution method. In most matheuristics in the field of

VRPs with loading constraints, the loading constraints are handled as a subproblem

of the routing model (e.g. Doerner et al., 2007; Tricoire et al., 2011; Fuellerer et al.,

2009). The packing subproblem is solved through mathematical programming models

to optimality, while the routing model is solved heuristically.

Although the ILS metaheuristic combined with record-to-record travel provides

good results for the CVRP with sequence-based pallet loading and axle weight con-

straints, it may be interesting to compare its performance to a simplified heuristic

method consisting of less local search operators while maintaining or even increasing

the efficiency of the solution method.

Future research could furthermore integrate other realistic features in the current

problem such as time windows, time-dependent travel times, legal driving hours and

the use of a heterogeneous vehicle fleet. Additionally, other loading constraints may be

added to the current model. Another line of future research could be to integrate axle

weight constraints in other types of VRPs such as three-dimensional loading VRP,

multi-compartment VRP and pickup and delivery problems. In the next chapter, the

effect of axle weight constraints in a CVRP with a heterogeneous fleet is analyzed.
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CVRP with sequence-based

pallet loading and axle weight

constraints: Fleet size and

mix

6.1 Introduction

In Chapters 3, 4 and 5, the CVRP with sequence-based pallet loading and axle weight

constraints is introduced and analyzed. As in most of the VRP literature, a homoge-

neous fleet of vehicles is assumed. This assumption is however not realistic in many

real-life applications (Hoff et al., 2010). Most transportation companies dispose of a

heterogeneous vehicle fleet to meet customer demands. Furthermore, the objective

that is used in the previous chapters is the minimization of total distance traveled.

Although this objective is traditionally used in VRP literature, it does not corre-

spond to the objective faced by companies. In reality, companies aim to minimize

total transport cost when scheduling their routes.

In order to examine the impact of axle weight constraints for a realistic vehicle fleet,

this chapter introduces a heterogeneous vehicle fleet for the CVRP with sequence-

based pallet loading and axle weight constraints (Figure 6.1). The vehicles in the fleet

may have different capacities as well as costs. The goal of this chapter is fourfold. The

first is to introduce the Fleet Size and Mix CVRP with sequence-based pallet loading

119
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and axle weight constraints. The second goal is to show that the ILS metaheuristic,

developed in Chapter 4, may be used to tackle this problem. The third goal is to

evaluate the impact of the vehicle fleet on the integration of axle weight constraints

in a VRP. To this end, three heavy-duty vehicle fleet compositions are compared:

a homogeneous fleet of 30-foot trucks, a homogeneous fleet of 45-foot trucks and a

heterogeneous fleet with 30-foot and 45-foot trucks. We expect that the impact of

integrating axle weight constraints is larger when a fleet of 45-foot trucks is considered

because more pallets may be placed inside a 45-foot truck, while the weight capacity

of the axles does not increase. Therefore, the probability of an axle weight violation

in 45-foot trucks is larger than in 30-foot trucks. The fourth goal is to analyze the

impact of a more realistic objective function which takes into account total transport

costs on the effect of axle weight constraints in a VRP.

This chapter is organized as follows. Section 6.2 provides a problem description.

In Section 6.3, related literature is discussed. In Section 6.4, the test setting is pre-

sented. Section 6.5 discusses experimental results. Section 6.6 presents conclusions

and opportunities for further research.

6.2 Problem description

This chapter integrates a heterogeneous vehicle fleet in the CVRP with sequence-

based pallet loading and axle weight constraints. Since a vehicle fleet is usually

heterogeneous in real-life, the extension of the VRP to heterogeneous vehicles is highly

relevant (Bräysy et al., 2009). Besides a heterogeneous vehicle fleet instead of a

homogeneous fleet, the problem characteristics of the VRP presented in Chapter 3

remain unchanged. The demand of the customers consists of europallets (80x120 cm)

and is delivered from a depot to customer locations. Pallets are packed dense in

a truck in two horizontal rows. It is assumed that all pallets of a single customer

have the same weight and that the weight is uniformly distributed inside each pallet,

i.e., the center of gravity of a pallet lies in its geometric midpoint. The container

can only be unloaded at the rear side. To avoid moving pallets of other customers

when arriving at a customer, sequence-based loading is imposed. Vertical stacking is

not allowed. The vehicle types in the fleet are different in terms of tare weight and

measurements. Consequently, the capacity in terms of number of pallets and payload

is different as well as the weight capacity of the axles.

Two scenarios with a different objective function are considered. In the first

scenario, the objective is the minimization of total distance traveled, which was also
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Figure 6.1: Outline of the thesis
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the objective of the original problem described in Chapter 3. In the second scenario,

the objective function minimizes total transport costs. A distinction is made between

hour costs and kilometer costs based on Blauwens et al. (2012). The first objective

is traditionally used in the VRP literature, while the second objective corresponds

more to the objective of transportation companies in real-life. Both objectives are

considered to examine whether the objective function influences the results of the

analysis.

We expect that the impact of the integration of axle weight constraints in the

scheduling of routes will be smaller in the second scenario. In the second objective

function, fuel costs are taken into account which depend on the gross weight of the

vehicle. Routes visiting customers with the heaviest pallets first on the route will

therefore be favored over routes in which these customers are visited last in order to

minimize fuel costs. Since sequence-based loading is assumed, this implies that heavy

pallets will be placed more towards the rear of the vehicle, carried by the axles of

the trailer. Since the axles of the trailer have a larger weight capacity, this leads to a

smaller probability of an axle weight violation.

To formulate the objective function of the second scenario, the following notation

is used:

V = {0, 1, ..., n+ 1} set of vertices with customers (node 1, . . . , n) and

depot (node 0, n+ 1 ) (indices i, j)

E = set of edges (i, j) where i, j ∈ V and i ̸= j

cij = distance between nodes i and j (km)

v = average speed (km/h)

f = fuel price (e/l)

kc = kilometer cost coefficient (excluding fuel costs) (e/km)

hc = hour cost coefficient (e/h)

Variables xij and feij are defined as follows:
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xij =

 1 if a vehicle travels from i to j with (i, j) ∈ E

0 otherwise

feij = fuel efficiency on edge (i, j) considering the gross weight of the truck on (i, j) (km/l)

The objective function may be formulated as follows:

min
∑

(i,j)∈E

(kc+
hc

v
+

1

feij
· f) · cijxij (6.1)

The objective function 6.1 aims to minimize total transport costs. The calculation

of the transport costs is based on Blauwens et al. (2012). The cost components of

the hour coefficient (hc) and kilometer coefficient (kc) are presented in Table 6.1 and

Table 6.2, respectively. These figures are based on data sampled from professional

hauliers in Europe in 2004 (Blauwens et al., 2012). Note that the assumption is

made that these cost figures are equal for the different vehicle types. Contacts with a

logistics service provider confirm that purchasing costs as well as maintenance costs

are comparable for heavy-duty vehicles with the same axle configuration (tractor and

semi-trailer with tridem axles). The hour coefficient is equal to e 24.18 and consists of

fixed costs that are charged per hour. The hour coefficient is divided by the average

speed of a truck to calculate the cost per kilometer. The kilometer coefficient in

Blauwens et al. (2012) is equal to e 0.08.

Table 6.1: Hour costs of a tractor and semi-trailer (in e) (Blauwens et al., 2012)

Interest and depreciation (fixed rate) 3.34

Insurance 1.79

Road tax, Euro-vignette, contributions, dues 0.67

Driver’s wages (inc. all charges and premiums) 16.37

Others (buildings, management, administration) 2.01

Hour coefficient (hc) 24.18

Fuel consumption depends on the gross weight of the truck. The objective func-

tions is therefore not linear. This cost component is calculated separately and is not

included in the kilometer coefficient. The effect of weight on the fuel efficiency of
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Table 6.2: Kilometer costs of a tractor and semi-trailer without fuel costs (in e)

(Blauwens et al., 2012)

Interest and depreciation (variable) 0.04

Tires 0.01

Maintenance, repairs, fines 0.03

Kilometer coefficient (kc) 0.08

heavy-duty vehicles can be characterized by a linear function fe = π + τ · L (Kopfer

et al., 2014; Xiao et al., 2012). This formula presents the fuel efficiency in function of

the weight of the payload L. For the values of π and τ , a study on the fuel efficiency

of heavy-duty vehicles of the UK department of Transport (2007) is consulted. In

this study, the fuel efficiency of several vehicle types is tested including a truck con-

sisting of a tractor with two axles and semi-trailer with tridem axles. The tests were

performed on a typical distribution route combining motorways, dual-carriageways

as well as single-carriageways. During the first trip, the truck is empty. To measure

the effect of increasing payload, in total seven trips are performed, each time with

an increment in payload. Based on a regression analysis with a very high regression

fit (R2 = 0.99), following values are determined: π = 4.5915, τ = −0.0591. Note

that the fuel efficiency in this study is expressed in miles per gallon and that this has

been recalculated to kilometers per liter in this chapter. The weight of the payload

is expressed in tonnes. The tare weight of the truck is 15.6 tonnes. Based on this

study, the following formula is constructed for the calculation of the fuel efficiency in

our problem setting expressed in kilometers per liter:

Fuel efficiency = 4.5915− 0.0591 · (payload + tare weight truck - 15.6) (6.2)

Note that only weight is included in the calculation of the fuel efficiency, while

other factors such as road gradient, speed and acceleration are not considered. It

is assumed that these factors are constant for the different vehicle types since the

vehicles in the heterogeneous fleet are assumed to be heavy-duty vehicles. In case

a mix between low-duty, medium-duty and heavy-duty vehicles with different values

for average speed and acceleration are considered in the vehicle fleet, fuel efficiency

models that include these factors may be used. For an overview of fuel consumption

models in literature, the reader is referred to Kopfer et al. (2014) and Demir et al.

(2011).
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6.3 Related literature

The literature concerning heterogeneous vehicle fleet routing is divided into two major

problem classes (Koç et al., 2014). The first class is the Fleet Size and Mix Vehicle

Routing Problem (FSM) and considers an unlimited vehicle fleet. The problem is

introduced by Golden et al. (1984). The objective is to minimize total distribution

cost and determine the optimal fleet size and mix. The second problem class is the

Heterogeneous Vehicle Routing problem (HVRP) and considers a limited vehicle fleet.

The goal of the HVRP is to minimize total distribution costs, given an available fleet.

This problem is introduced by Taillard (1999).

Based on the type of costs that are taken into account (vehicle dependent variable

costs and/or fixed costs), following five problem variants have been proposed (Baldacci

et al., 2008; Koç et al., 2014): 1) the Heterogeneous VRP with Vehicle Dependent

Routing Costs, denoted by HVRPD; 2) the Heterogeneous VRP with Fixed Costs

and Vehicle Dependent Routing Costs, denoted by HVRPFD; 3) the Fleet Size and

Mix VRP with Fixed Costs, denoted by FSMF; 4) the Fleet Size and Mix VRP with

Vehicle Dependent Routing Costs, denoted by FSMD; 5) the Fleet Size and Mix VRP

with Fixed Costs and Vehicle Dependent Routing Costs, denoted by FSMFD.

Golden et al. (1984) introduce the FSM with fixed costs (FSMF). They develop

several heuristics including a savings based heuristic as well as techniques to generate

a lower bound. Twenty test problems are created containing 12 to 75 nodes with

different combinations of capacity and fixed costs for the vehicle types considered in

the fleet. The FSM with fixed costs and vehicle dependent routing cost (FSMFD)

is introduced by Ferland and Michelon (1988). They propose three heuristic algo-

rithms and two branch-and-bound procedures. Taillard (1999) introduces the FSM

and HVRP with vehicle dependent routing costs (FSMD, HVRPD). The problems are

tackled with a heuristic column generation method. A vehicle dependent routing cost

component is added to eight instances of Golden et al. (1984) of size 50 and larger.

The HVRP with vehicle dependent routing costs and fixed costs (HVRPFD) is intro-

duced by Li et al. (2007). The authors propose a record-to-record travel algorithm

which is tested on the instances of Golden et al. (1984) with the vehicle dependent

routing costs components from Taillard (1999). Furthermore, they generate a new set

of five large-scale vehicle routing problems with 200 to 360 customers.

A common extension of the FSM and the HVRP is the addition of time windows.

Liu and Shen (1999) consider the FSMF with time windows. They develop several

heuristic solution techniques to tackle the problem. The heuristics are tested on the

data sets for VRPTW of Solomon (1987) to which costs for the different types of
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vehicles are added. For each original Solomon instance, three different sets of vehicle

costs (large, medium, small) are considered. In total, 168 problem instances are

created. Dullaert et al. (2002) develop three insertion-based heuristics for the same

problem, which significantly outperform the heuristics proposed by Liu and Shen

(1999). For some instances, solution improvements of more than 50% are attained.

Paraskevopoulos et al. (2008) consider the HVRPFD with time windows. The authors

propose a two-phase multi-start metaheuristic based on Tabu Search. The instances

of Liu and Shen (1999) for the FSM with time windows are used, with the obtained

best fleet size and mix by Liu and Shen (1999) to be the given fixed fleet.

Recently, Pasha et al. (2016) introduced the Multi-Period FSMFD. In this variant

of the FSM, customer demands may vary over a set of periods. The objective is

to find the best fleet composition to fulfill the customer demands and to find the

best routing plan with that fleet for each of the different periods in the scheduling

horizon. The authors develop a tabu search method to solve the problem. Other

extensions of the FSM and HVRP include the integration of multiple depots (e.g.

Salhi and Sari, 1997; Bettinelli et al., 2011), pollution-routing (e.g. Kwon et al., 2013;

Koç et al., 2014), backhauls (e.g. Tütüncü, 2010; Salhi et al., 2013), split deliveries

(e.g. Tavakkoli-Moghaddam et al., 2007; Belfiore and Yoshizaki, 2013) and container

loading (Leung et al., 2013). Since the introduction of the FSM and HVRP many

solution techniques, mainly heuristics, have been developed. For an overview of the

literature, the reader is referred to Koç et al. (2016), Soonpracha et al. (2014) and

Baldacci et al. (2008).

Based on the literature review, the problem that is studied in this chapter is the

Fleet Size and Mix VRP. Since the tare weight depends on the vehicle type, the fuel

costs will be (partially) vehicle dependent. The problem may therefore be classified

as a Fleet Size and Mix VRP with Vehicle Dependent Routing Costs (FSMD).

6.4 Test Setting

For the computational tests of the FSM with sequence-based pallet loading and axle

weight constraints, two different types of vehicles are considered. The first is a 30-

foot truck, which is also used in the experiments in Chapter 5. For more information

regarding the vehicle characteristics of the 30-foot truck, the reader is referred to

Section 5.2. The second vehicle type is a 45-foot truck. As for the 30-foot truck,

the characteristics of the 45-foot truck (measurements, capacity, mass, axle weight

limits) are based on information from a Belgian logistics service provider. The 45-
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foot truck consist of a tractor with two axles, a semi-trailer with tridem axles and

a container. The length, width and height of the inside dimensions of the container

are respectively 13.49 meters, 2.44 meters and 2.44 meters. The tare weight of the

container and the semi-trailer is respectively 4.3 tonnes and 3.55 tonnes. The 45-foot

truck has a similar axle configuration as the 30-foot truck. The tractor that is used in

the 45-foot truck is the same as for the 30-foot truck. Furthermore, the semi-trailer

also has tridem axles, but the distance between the axles is different. In the 45-foot

truck, the distance from the front of the container to the coupling (parameter c in

equations (3.6) and (3.7)) is 1.96 meters. The distance between the coupling and the

central axle of the semi-trailer (parameter d in equations (3.6) and (3.7)) is 7.6 meters.

In total, 32 pallets may be placed inside the 45-foot truck in two horizontal rows. The

total weight capacity of the truck consists of 29.35 tonnes. No more than 10.75 tonnes

may be placed on the coupling, while no more than 18.84 tonnes may be placed on

the tridem axles of the semi-trailer. Note that the total weight capacity as well as

the weight capacity of the axles is smaller for the 45-foot truck than for the 30-foot

truck. The reason for this is that the tare weight of a 45-foot truck (14.65 tonnes) is

higher than the tare weight of a 30-foot truck (11.8 tonnes), while the limits on the

gross weight (44 tonnes) and on the axles of the loaded truck remain unchanged. In

Table 6.3, the main characteristics of the 30-foot and 45-foot truck are summarized.

An unlimited number of both 30-foot and 45-foot vehicles is considered. The price of

fuel (f in equation 6.1) is fixed to e 0.70 per liter. For the average speed of a truck

(v in equation 6.1) a value of 50 km/h is adopted (Van den Driest et al., 2011).

Table 6.3: Comparison of the characteristics of the 30-foot truck and 45-foot truck

30-foot 45-foot

Tare weight 11.8 t 14.65 t

Capacity in terms of pallets 22 32

Weight capacity 32.2 t 29.35 t

Max weight coupling 11.6 t 10.75 t

Max weight axles trailer 21 t 18.84 t

The Iterated Local Search metaheuristic developed in Chapter 4 is used to solve

the FSM with sequence-based pallet loading and axle weight constraints. The changes

on the ILS algorithm to tackle this problem are limited. For the first scenario the

objective remains the minimization of total distance traveled. The only changes

to the algorithm are situated in the loading feasibility check because the different



128 Chapter 6

types of vehicles do not have the same characteristics in terms of capacity. In case

a given route does not lead to a feasible packing plan for the first vehicle type, the

feasibility is checked for the other vehicle type. Since an unlimited number of vehicles

is considered and the objective value does not depend on the vehicle type, it does

not matter which vehicle is used when both vehicle types are feasible. For the second

scenario, the objective is the minimization of total transport costs. For this scenario,

vehicle dependent routing costs are considered since the tare weight of the truck is

included in the calculation of the fuel consumption. In case both vehicle types lead

to a feasible packing plan for a given route, the lightest vehicle is chosen since this

leads to the lowest transport costs.

The computational tests are performed on a new instance set consisting of 48

instances with networks of 50, 75 and 100 customers. The instances are generated in

a similar way as the instances in Chapter 5. The main difference lies in the generation

of the coordinates. Where the coordinates for the instance sets used in Chapter 5 were

randomly drawn in a 10 x 10 coordinate matrix, the coordinates for the instances of

the current set are randomly drawn in a 250 x 250 matrix. The reason for the increase

in size of the coordinate matrix is that in this analysis, the distance units represent

kilometers and a 10 x 10 matrix would not lead to realistic route lengths. The position

of the depot is fixed to (125, 125). Distances are computed by taking the Euclidean

distance between the coordinates of each node pair. The problem classes that are

defined in Chapter 5 for the generation of the number of pallets and the weight of

the pallets are presented in Table 6.4. Preliminary analysis points out that when

only heavy pallets (1000 - 1500 kg) are considered, a feasible loading plan can not be

achieved in a 45-foot truck. When more than 11 pallets of 1000 kg are packed dense

in the truck, the weight on the coupling exceeds the limit of 10.75 tonnes. For this

reason, problem classes 1 and 2 in which only heavy pallets are considered, are not

included in this instance set. Problem classes 3 and 4 in which a fifty-fifty percent mix

between customer demands with light pallets (100 - 500 kg) and customer demands

with heavy pallets are considered, are included in the analysis. The number of pallets

has a low variation (between 4 and 7 pallets per customer) in problem class 3 and

a high variation (between 1 and 15 pallets per customer) in problem class 4. The

number of pallets and total weight for each customer are generated randomly in the

above mentioned intervals, depending on the problem class. For each network size,

eight instances are created in each problem class, leading to in total 48 test instances.

The experiments are run on a Xeon E5-2680v3 CPU at 2.5 GHz with 64 GB of

RAM. The parameters of the ILS algorithm are set to their tuned values, as described

in Section 4.4. The value of α, the number of consecutive non-improving iterations
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Table 6.4: Problem classes based on variation in number of pallets and pallet weight

Heavy pallets
Mix between light

and heavy pallets

Low variation Problem class 1 Problem class 3

High variation Problem class 2 Problem class 4

of the ILS is set to 300 as a result of the sensitivity analysis described in Section

4.5. Because of the stochastic character of the ILS algorithm, ten independent runs

of the algorithm are performed. The average results for each instance are reported in

Section 6.5.

6.5 Experimental results

In this section, the effect of a heterogeneous vehicle fleet on the integration of axle

weight constraints in a CVRP is analyzed. The Fleet Size and Mix CVRP with

sequence-based pallet loading and axle weight constraints with a 30-foot and a 45-

foot truck is compared to a homogeneous vehicle fleet CVRP with 30-foot trucks and

a homogeneous fleet CVRP with 45-foot trucks. Section 6.5.1 describes results for

the three fleet compositions with the objective to minimize total distance (scenario

1). The computation times of the ILS may be found in Appendix C. In Section 6.5.2

results with the objective to minimize total transport costs are described (scenario

2). The computation times of the ILS for this scenario are presented in Appendix D.

6.5.1 Results for distance minimization

In this section, the results of the first scenario are discussed. Table 6.5 gives an

overview of the percentage of routes in the final solutions of the FSM with and without

axle weight constraints under the first scenario that may be performed by 30-foot

trucks, 45-foot trucks and by both trucks. Detailed results of the number of vehicles

of each vehicle type in the final solutions for each instance may be found in Appendix

C. The majority of the routes can only be performed by 45-foot trucks, although

there is a difference between the FSM with and without axle weight constraints. In

the model without axle weight constraints 93.43 % of the routes in the final solution

can only be performed by 45-foot trucks and only 0.34 % can only be performed

by 30-foot trucks. The remaining 6.23 % may be performed by both trucks. This

indicates that in the largest part of the routes more than 22 pallets (the capacity
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Table 6.5: Routes performed by 30-foot trucks and 45-foot trucks in the

final solutions of the FSM in percentage - Scenario 1

30 ft truck 45 ft truck 30 ft or 45 ft truck

FSM without axle weight constraints 0.34 % 93.43 % 6.23 %

FSM with axle weight constraints 14.44 % 85.10 % 0.46 %

of a 30-foot truck) are transported. The small percentage of routes that can only

be performed by 30-foot trucks indicates that the total weight of the load that is

transported on the routes is rarely higher than 29.35 tonnes (the weight capacity of a

45-foot truck). In the model with axle weight constraints the percentage of routes that

can only be performed by 45-foot trucks is 85.10 %, which is lower than in the model

without axle weight constraints. The number of routes that can only be performed

by 30-foot trucks is 14.44 %, which is in turn considerably higher than in the model

without axle weight constraints. The number of routes that may be performed by

both trucks is reduced to 0.46 %. The explanation for the shift of 45-foot trucks to

30-foot trucks in the model with axle weight constraints is twofold. First, because the

tare weight of a 45-foot truck is higher than the tare weight of a 30-foot truck, the

maximum weight of the load that may be applied on the axles of a 45-foot truck is

lower. Second, because the distance between the front of the truck and the coupling

(parameter c in equations (3.6) and (3.7)) and between the coupling and the central

axle of the semi-trailer (parameter d in equations (3.6) and (3.7)) is larger in 45-foot

trucks, more weight will be placed on the coupling. While for 30-foot trucks already

most violations occur on the coupling in the model without axle weight constraints,

the possibility of a violation on the coupling will be even larger for 45-foot trucks.

Table 6.6 presents the relative decrease in total distance traveled in the solution

of the CVRP with sequence-based pallet loading and axle weight constraints with

a homogeneous vehicle fleet consisting of 45-foot trucks and with a heterogeneous

vehicle fleet with 30-foot and 45-foot trucks compared to the distance traveled in

the solution of the CVRP with a homogeneous fleet with 30-foot trucks. For each

instance size (50, 75 and 100 customers), the decrease in total distance with respect

to a 30-foot fleet is provided. For all instances, there is a decrease in distance when

considering a 45-foot fleet instead of a 30-foot fleet. The average decrease is 19.15

%, 20.80 % and 21.14 % for the instances of size 50, 75 and 100, respectively. An

explanation for the decrease is that the capacity of a 45-foot truck in terms of number

of pallets is almost 50 % higher than the capacity of a 30-foot truck. As expected,
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Table 6.6: Decrease of the total distance traveled in

percentage with respect to the homogeneous fleet

CVRP with 30-foot trucks - Scenario 1

50 customers 75 customers 100 customers

Instance 45-foot FSM 45-foot FSM 45-foot FSM

Problem class 3

1 18.84 20.05 18.75 19.79 21.07 20.02

2 19.23 20.40 20.28 20.59 22.30 23.41

3 18.17 18.85 19.59 19.64 21.59 21.21

4 19.81 19.47 19.20 19.49 22.62 22.19

5 18.91 20.05 21.75 20.26 22.33 21.19

6 17.10 18.54 20.80 21.26 20.42 21.29

7 17.96 18.19 19.97 20.62 22.05 21.93

8 20.23 20.66 19.87 20.88 21.04 20.28

Problem class 4

1 20.53 20.73 19.46 20.58 18.24 20.33

2 17.92 18.34 18.46 22.26 21.88 22.58

3 21.28 21.79 21.49 22.22 20.52 20.31

4 18.84 19.31 20.42 22.75 19.99 19.99

5 21.33 21.40 22.13 23.52 21.62 22.93

6 18.28 19.73 26.60 26.93 21.98 22.93

7 21.24 21.65 23.00 24.13 20.13 21.51

8 16.81 19.29 21.02 21.82 20.48 22.09

Average 19.15 19.90 20.80 21.67 21.14 21.51

the distance is lowest for the FSM although the difference with a homogeneous fleet

of 45-foot trucks is quite small. This may be explained by the fact that on average

85.56 % of the routes in the solution of the FSM may be performed by 45-foot trucks.

Table 6.7 presents the number of routes in the solution from the CVRP with

sequence-based pallet loading and axle weight constraints for a vehicle fleet consisting

of 30-foot trucks, a fleet consisting of 45-foot trucks and a heterogeneous vehicle

fleet with 30-foot and 45-foot trucks. For all instance sizes, the number of routes is

lowest when only 45-foot trucks are considered. This implies that although the weight

capacity of a 45-foot truck is smaller than the weight capacity of a 30-foot truck, in

the given instances more customers may be visited with a 45-foot truck because of its
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Table 6.7: Number of routes in the solution - Scenario 1

50 customers 75 customers 100 customers

Instance 30-foot 45-foot mixed 30-foot 45-foot mixed 30-foot 45-foot mixed

Problem class 3

1 13.0 9.0 9.5 20.0 14.1 14.5 27.6 19.3 19.8

2 13.0 9.3 9.3 19.0 13.5 13.9 26.9 19.4 19.4

3 13.0 9.0 9.6 20.1 14.3 14.4 27.3 19.3 19.9

4 14.0 9.8 9.8 19.9 14.0 14.0 28.0 19.3 20.1

5 14.0 9.2 10.0 20.1 14.4 14.9 26.7 18.9 19.4

6 14.0 10.0 10.6 20.1 14.7 14.9 26.6 18.9 19.1

7 13.9 10.0 10.0 20.0 14.2 14.4 26.9 18.8 18.9

8 13.4 9.1 10.0 19.8 14.0 14.1 27.2 19.2 20.2

Problem class 4

1 21.0 14.5 15.0 27.8 20.1 20.9 39.4 28.6 29.3

2 19.9 13.7 14.1 30.1 20.2 21.0 37.4 26.5 27.8

3 21.0 14.2 15.2 31.8 22.2 22.6 40.1 28.6 29.2

4 17.0 12.0 12.1 32.0 22.3 22.8 37.0 26.3 26.7

5 17.6 12.0 13.0 34.2 24.2 25.2 40.8 29.6 30.1

6 21.0 15.0 16.0 30.8 22.0 23.1 46.3 32.3 33.7

7 20.6 14.0 14.4 29.7 20.4 21.2 41.3 29.6 31.1

8 21.0 15.0 16.4 30.9 22.0 22.4 40.7 29.0 29.6

Average 16.7 11.6 12.2 25.4 17.9 18.4 33.8 24.0 24.6

larger capacity in terms of number of pallets. Because mostly 45-foot trucks are used

in the FSM solutions, there is only a small difference in number of routes between the

fleet with 45-foot trucks and the heterogeneous fleet consisting of 45-foot trucks and

30-foot trucks.

Table 6.8 presents the increase in distance traveled of the CVRP with axle weight

constraints and sequence-based pallet loading compared to the equivalent CVRP with-

out axle weight constraints. For each instance size (50, 75 and 100 customers), the

increase in distance is provided for the model with a homogeneous fleet with 30-foot

trucks, a homogeneous fleet with 45-foot trucks and a heterogeneous fleet with 30-

foot and 45-foot trucks. Results show that the effect of axle weight constraints on

total distance traveled is highest when a homogeneous vehicle fleet of 45-foot trucks

is considered with an average increase in distance of 6.72 %. The increase for a homo-
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Table 6.8: Increase in total distance in percentage due to the integration

of axle weight constraints - Scenario 1

50 customers 75 customers 100 customers

Instance 30-foot 45-foot FSM 30-foot 45-foot FSM 30-foot 45-foot FSM

Problem class 3

1 1.06 3.34 1.61 1.12 6.08 4.39 2.34 6.32 7.44

2 0.23 5.38 3.86 2.83 5.46 4.79 3.07 6.10 4.10

3 0.37 4.80 3.86 1.79 5.09 4.45 2.13 5.74 5.71

4 1.67 3.55 4.08 2.18 4.82 4.32 2.84 6.26 6.34

5 0.66 4.63 3.18 1.53 3.82 5.45 2.69 6.03 7.08

6 1.63 5.09 3.17 3.02 6.95 5.91 2.27 7.74 6.07

7 0.46 3.21 2.88 2.18 3.94 2.92 2.72 6.39 5.63

8 0.31 2.73 1.95 2.36 4.67 3.28 3.66 5.63 6.13

Problem class 4

1 1.76 3.20 2.76 2.69 7.24 5.66 2.21 9.88 6.73

2 4.93 7.12 7.41 3.46 9.22 3.76 1.93 8.84 7.24

3 1.99 6.31 5.63 2.38 8.79 7.79 4.35 8.19 8.21

4 1.43 4.70 4.14 2.78 10.64 7.23 4.15 9.69 8.76

5 2.85 8.22 8.13 2.10 9.64 7.47 5.54 8.89 6.41

6 1.37 9.12 7.37 2.73 6.91 6.14 3.80 9.75 7.72

7 1.95 6.56 5.33 3.04 7.16 5.26 2.25 9.74 7.41

8 0.92 11.65 8.18 2.94 6.72 5.27 2.94 10.63 8.08

Average 1.48 5.60 4.60 2.45 6.70 5.26 3.06 7.86 6.82

geneous fleet of 30-foot trucks is considerably lower with an average of 2.33 %. The

larger effect on 45-foot trucks is due to the fact that axle weight violations are more

likely to occur on 45-foot trucks due to a higher tare weight and because more weight

is applied on the coupling, as discussed above. As may be expected, the increase in

distance due to the integration of axle weight constraints in the FSM is lower than

when only 45-foot trucks are considered, but considerably higher than when only 30-

foot trucks are included with an average of 5.56 %. It may therefore be concluded

that the vehicle fleet strongly influences the impact of the integration of axle weight

constraints on the objective value when the objective is to minimize total distance.

When the fleet consists of 45-foot trucks, it is more important to consider axle weight

constraints during route scheduling, than when only 30-foot trucks are considered.
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Table 6.9: Routes performed by 30-foot trucks and 45-

foot trucks in the final solutions of the FSM in percent-

age - Scenario 2

30 ft truck 45 ft truck

FSM without axle weight constraints 16.13 % 83.87 %

FSM with axle weight constraints 16.69 % 83.31 %

6.5.2 Results for total transport cost minimization

In this section, the results of the second scenario are discussed. The objective function

is the minimization of total transport costs, as presented in equation 6.1. Table 6.9

presents the percentage of routes in the final solutions of the FSM that are performed

by 30-foot trucks and by 45-foot trucks with and without axle weight constraints.

Detailed results of the number of vehicles of each vehicle type in the final solutions

for each instance may be found in Appendix D. For the model without axle weight

constraints on average 83.87 % of the routes in the final solutions are performed by

45-foot trucks, while the remaining 16.13 % are performed by 30-foot trucks. If a

route leads to a feasible packing plan for both truck types, the route is assigned to a

30-foot truck because the tare weight of a 30-foot truck is lower than the tare weight

of a 30-foot truck and weight is a determining factor of fuel costs. For this reason,

the percentage of 45-foot trucks in the problem without axle weight constraints is

lower than in the first scenario in which fuel costs are not considered. The average

fleet composition of the problem with axle weight constraints is almost identical to

the fleet composition of the problem without axle weight constraints with on average

83.31 % of the routes that are performed by 45-foot trucks and 16.69 % of the routes

that are performed by 30-foot trucks. This indicates that for the given instance set,

axle weight constraints may be integrated without an impact on the ideal composition

of the vehicle fleet in the second scenario.

Table 6.10 presents the decrease in solution cost in percentage from the CVRP

with sequence-based pallet loading and axle weight constraints with a homogeneous

vehicle fleet consisting of 45-foot trucks and with a heterogeneous vehicle fleet with

30-foot and 45-foot trucks compared to the CVRP with a homogeneous fleet with 30-

foot trucks. For each instance size (50, 75 and 100 customers), the cost decrease with

respect to a 30-foot fleet is shown. For all instances, there is a cost decrease when

considering a 45-foot fleet compared to a 30-foot fleet with an average decrease of 17.76
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%, 20.07 % and 20.42 % for the instances of size 50, 75 and 100 respectively. Note that

the decreases in objective function value are smaller than in the first scenario. The

reason for this may be that in the current scenario, weight is a determining factor of

fuel consumption and therefore has an impact on solution cost. Since the tare weight

of a 30-foot truck is smaller than the tare weight of a 45-foot truck and the payload of

45-foot trucks is on average larger, the cost advantage of 45-foot trucks in comparison

to 30-foot trucks is smaller in this scenario. As in the first scenario, the objective

value is lowest for the FSM with 30-foot and 45-foot trucks although the difference

with a homogeneous fleet of 45-foot trucks is still quite small. The average decrease

in cost of the FSM compared to the CVRP with 30-foot trucks is 18.83 %, 20.75 %

and 20.68 % for the instances of size 50, 75 and 100 respectively. These are smaller

than the decrease in objective value in the first scenario, which may be explained by

the fact that the majority of the trucks in the FSM solutions are 45-foot trucks which

have on average a higher fuel consumption than 30-foot trucks.

The number of routes in the solution of the CVRP with sequence-based pallet

loading and axle weight constraints for a vehicle fleet consisting of 30-foot trucks, a

fleet consisting of 45-foot trucks and a heterogeneous vehicle fleet with 30-foot and

45-foot trucks are presented in Table 6.11. The results strongly resemble the results in

Table 6.7 which indicates that the number of routes in the solutions are not affected

by the different objective function. This is also reflected in the fleet composition since

the percentage of 45-foot and 30-foot trucks in both scenarios are very similar for the

problem with axle weight constraints.

Table 6.12 presents the cost increase of the CVRP with axle weight constraints and

sequence-based pallet loading compared to the equivalent CVRP without axle weight

constraints. For each instance size (50, 75 and 100 customers), the cost increase is

provided for the model with a homogeneous fleet with 30-foot trucks, a homogeneous

fleet with 45-foot trucks and a heterogeneous fleet with 30-foot and 45-foot trucks. As

in the first scenario, the increase in objective value of the integration of axle weight

constraints is highest when a homogeneous vehicle fleet of 45-foot trucks is considered

with an average cost increase of 2.99 %. The cost increase of the integration of axle

weight constraints is on average 2.28 % for the FSM and 0.54 % when a homogeneous

fleet of 30-foot trucks is considered. Note that for all fleet compositions the increase

in objective value is much lower than in the first scenario. An explanation for this

is that because fuel consumption is considered in the objective function, there will

be a tendency to visit customers with heavy pallets early on the route. Therefore

heavy pallets are placed towards the rear of the vehicle. Since the weight capacity

of the axles of the semi-trailer is larger than the weight capacity of the axles of the
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Table 6.10: Decrease in solution cost in percentage

with respect to the homogeneous fleet CVRP with

30-foot trucks - Scenario 2

50 customers 75 customers 100 customers

Instance 45-foot FSM 45-foot FSM 45-foot FSM

Problem class 3

1 18.68 17.87 18.69 18.91 20.79 20.23

2 18.84 19.55 17.39 17.55 20.56 20.10

3 16.05 17.58 18.92 19.20 20.41 20.11

4 18.31 18.45 17.50 18.29 21.59 21.33

5 17.68 18.43 20.37 19.79 20.65 20.20

6 16.07 17.64 19.33 19.53 19.38 18.18

7 15.98 17.00 19.60 19.65 21.00 20.01

8 19.19 19.43 19.03 19.05 19.26 19.31

Problem class 4

1 18.55 19.53 20.43 19.87 17.97 19.19

2 15.52 17.21 17.97 21.40 22.07 22.12

3 19.45 20.91 20.97 21.55 20.23 20.80

4 16.96 18.01 20.20 22.01 18.62 19.72

5 20.53 21.82 21.03 22.54 21.49 22.33

6 18.22 19.29 27.06 27.27 20.78 23.79

7 19.02 19.91 22.25 23.83 20.55 21.47

8 15.15 18.66 20.31 21.55 21.34 21.97

Average 17.76 18.83 20.07 20.75 20.42 20.68
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Table 6.11: Number of routes in the solution - Scenario 2

50 customers 75 customers 100 customers

Instance 30-foot 45-foot mixed 30-foot 45-foot mixed 30-foot 45-foot mixed

Problem class 3

1 13.0 9.1 9.7 19.9 14.2 14.5 27.9 19.5 20.2

2 13.1 9.1 9.6 19.0 13.7 14.0 26.8 19.8 19.6

3 13.1 9.8 9.6 20.1 14.3 14.7 27.7 19.2 20.4

4 14.0 9.7 10.0 19.9 14.0 14.0 28.2 19.5 20.0

5 14.2 9.9 10.0 20.2 14.4 14.9 26.8 18.9 19.3

6 14.1 10.2 10.5 20.1 14.7 14.9 26.4 19.1 19.1

7 13.9 10.0 10.0 20.0 14.1 14.3 26.4 19.0 18.8

8 14.0 10.0 10.0 19.9 14.1 14.3 27.0 19.5 20.3

Problem class 4

1 21.0 15.1 15.0 28.0 20.3 21.3 39.2 29.0 29.7

2 20.0 14.0 14.4 30.0 20.3 21.0 37.2 26.6 28.1

3 21.0 14.8 15.6 32.3 22.6 23.0 39.9 28.6 29.0

4 17.0 12.0 12.3 32.0 22.0 23.5 37.0 26.4 26.8

5 17.9 12.6 13.0 34.7 23.9 25.0 41.2 29.5 30.2

6 21.8 15.9 16.0 31.1 22.0 23.2 46.2 32.5 34.1

7 20.5 14.5 14.8 29.9 20.4 21.2 41.5 29.4 31.3

8 21.2 15.8 16.5 31.0 22.1 22.5 40.7 28.9 29.8

Average 16.9 12.0 12.3 25.5 17.9 18.5 33.8 24.1 24.8
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Table 6.12: Cost increase in percentage of the integration of axle weight

constraints - Scenario 2

50 customers 75 customers 100 customers

Instance 30-foot 45-foot FSM 30-foot 45-foot FSM 30-foot 45-foot FSM

Problem class 3

1 -0.17 -0.63 0.69 0.42 2.44 2.49 0.12 1.68 1.52

2 -0.04 3.39 2.06 -0.31 1.77 1.93 -0.27 2.85 3.51

3 -0.57 3.33 1.58 0.07 2.05 1.85 -1.84 1.78 2.09

4 0.39 2.17 2.60 0.53 2.04 0.88 -0.93 0.49 1.75

5 -0.26 2.06 1.81 -1.35 -0.60 -0.12 -0.17 1.46 2.08

6 0.02 3.03 1.32 -0.07 2.05 1.22 -1.14 2.28 4.07

7 0.11 2.86 1.99 1.28 0.97 0.97 -0.61 1.25 3.56

8 -0.18 0.39 0.54 0.25 1.49 0.59 0.46 1.34 1.70

Problem class 4

1 1.33 2.43 1.52 0.40 1.88 1.99 -0.29 3.69 2.21

2 4.44 6.79 5.67 0.99 4.56 -0.04 0.25 2.50 2.68

3 1.06 6.63 4.39 1.76 5.38 4.84 1.01 2.18 1.47

4 0.49 4.30 3.39 1.19 6.06 3.59 -0.11 3.49 1.77

5 1.04 5.20 3.02 1.65 6.08 3.99 3.35 2.52 1.87

6 0.98 6.18 4.83 3.33 2.75 3.46 1.85 4.49 1.17

7 -0.06 3.19 2.64 1.13 2.18 1.09 0.31 3.09 2.56

8 0.54 9.54 5.43 2.62 4.12 1.90 0.80 2.01 1.11

Average 0.57 3.81 2.72 0.87 2.83 1.91 0.17 2.32 2.20

tractor, the number of violations and the extent of the violation is therefore smaller.

Consequently, the difference in solution cost between the models with and without

axle weight constraints is also smaller. Note that for some instances an average

cost decrease is reported. This indicates that for these instances, the solution of the

heuristic solution method for the problem without axle weight constraints deviates

from the optimal solution. Since the ILS has proven to be an effective solution method

for the CVRP with sequence-based pallet loading and axle weight constraints with

small optimality gaps in Chapter 5, it does not affect the conclusions of this research.
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6.6 Conclusions and future research

In real-life applications, the vehicle fleet of a transportation company is generally not

homogeneous but consists of several types of vehicles. Vehicles in the fleet may differ in

terms of capacity, costs and other factors such as speed and acceleration. This chapter

considers the integration of a heterogeneous fleet in the CVRP with sequence-based

pallet loading and axle weight constraints. Since an unlimited number of vehicles in

the heterogeneous fleet is considered, the resulting problem is defined as the Fleet

Size and Mix CVRP with sequence-based pallet loading and axle weight constraints.

From a scientific point of view, it is the first time that axle weight constraints are

considered in the Fleet Size and Mix CVRP. Furthermore, it is the first time that the

effect of axle weight constraints for different fleet compositions is compared. A slightly

modified version of the ILS, developed in Chapter 4 for the CVRP with sequence-based

pallet loading and axle weight constraints, is used to solve the problem. To measure

the impact of the vehicle fleet on the integration of axle weight constraints in a VRP,

a heterogeneous fleet with 30-foot and 45-foot trucks is compared to a homogeneous

fleet with 30-foot trucks and a homogeneous fleet with 45-foot trucks. Furthermore,

two scenarios are analyzed for which the objective function differs: in the first scenario

the objective is to minimize total distance while in the second scenario the objective

is the minimization of total transport costs. Instances with only heavy pallets (1000

- 1500 kg) can not be feasibly solved when a homogeneous fleet of 45-foot trucks is

considered. Therefore, only instances with a fifty-fifty percent mix between heavy and

light pallets (100 - 500 kg) are used for the analysis this chapter. The experimental

results indicate that the effect of axle weight constraints on the objective value is

highest when a homogeneous fleet of 45-foot trucks is considered. The reason for

this is that axle weight violations are more likely to occur in 45-foot trucks since

the capacity in terms of number of pallets is higher while the maximum weight of

the load on the axles is lower. Furthermore, the results indicate that although the

ideal composition of the fleet in the FSM mainly consists of 45-foot trucks in our

test instances, the effect of the integration of axle weight constraints on the objective

value is smaller than when a homogeneous fleet of 45-foot trucks is considered. As

expected, the overall objective value is lowest for the FSM with 30-foot and 45-foot

trucks. Based on these results, it may be concluded that the type of vehicle as well

as the combination of vehicle types in the fleet is of importance when calculating

the impact of axle weight constraints on the objective function value. Besides, it

may be interesting to look at total transport costs instead of only distance in the

objective function since the impact of the integration of axle weight constraints on
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the objective value is different for both objective functions. When total transport

costs are considered, the increase in objective value due to the integration of axle

weight constraints is considerably smaller than when the objective is to minimize

distance traveled in our test instances.

From a managerial point of view, it may be useful to consider axle weight con-

straints in long-term planning decisions concerning the acquisition of new vehicles.

This may lead to a more diverse vehicle fleet with, for instance, vehicles with a smaller

capacity in terms of number of pallets and a similar capacity in terms of total weight

(e.g. 30-foot trucks instead of 45-foot trucks). Furthermore, the results indicate that

when the vehicle fleet of a company consists of 45-foot trucks, it is even more impor-

tant to consider axle weight constraints during route scheduling then when smaller

vehicles are considered because the impact of axle weight constraints on the route

scheduling is larger.

Future research could introduce the Heterogeneous VRP with sequence-based pal-

let loading and axle weight constraints in which a limited vehicle fleet is assumed.

Another line of future research would be to analyze the impact of axle weight con-

straints when other vehicle types are considered such as medium-duty trucks with

different axle configurations. Furthermore, the effect of axle weight constraints on

the FSM with sequence-based pallet loading and axle weight constraints with a fleet

consisting of medium-duty and heavy-duty trucks may be analyzed. For this problem,

fuel consumption models that do not only consider weight but also vehicle specific

parameters such as average speed and acceleration may be used.
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Conclusions and further

research

This thesis has studied the integration of loading constraints in vehicle routing mod-

els. Special attention was paid to the consideration of axle weight limits in route

scheduling. Chapter 2 discusses the state-of-the-art of vehicle routing problems with

loading constraints and identifies research gaps. In Chapters 3 to 6, the Capacitated

Vehicle Routing Problem (CVRP) with sequence-based pallet loading and axle weight

constraints is analyzed. Chapter 3 presents the calculation of the axle weights and

two problem formulations. In Chapter 4, an Iterated Local Search (ILS) method is

developed to solve the problem heuristically. Computational experiments of the prob-

lem formulations and the ILS are presented in Chapter 5. Chapter 6 considers the

integration of a heterogeneous vehicle fleet in the CVRP with sequence-based pallet

loading and axle weight constraints. Finally, in this chapter, general conclusions are

formulated and further research opportunities are discussed (Figure 7.1).

7.1 Final conclusions

Since its introduction almost 60 years ago, the vehicle routing problem is a well-studied

research topic in the Operational Research community. Most studies however do not

reflect the real problems faced by transportation companies. The classic capacitated

vehicle routing problem consists of the delivery of items from a depot to a set of

geographically scattered customers with a homogeneous vehicle fleet while minimizing

total distance traveled. It does not consider several real-life characteristics of route

141
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Figure 7.1: Outline of the thesis

scheduling such as loading constraints, a heterogeneous vehicle fleet, legal driving

hours and time-dependent travel times. Therefore, in recent years, there is a scientific

shift towards rich vehicle routing problems which incorporate some of these real-life

constraints. In this thesis, the integration of axle weight limits and a heterogeneous

vehicle fleet in vehicle routing problems is studied.

Recently, a number of papers have addressed the integration of loading constraints

in vehicle routing problems. In the first part of the thesis, the existing literature is

reviewed. Based on the type of routing problem and loading characteristics, the exist-

ing literature is divided in the following categories: Two-Dimensional Loading CVRP,

Three-Dimensional Loading CVRP, multi-pile VRP, multi-compartments VRP, Pallet

Packing VRP, Minimum Multiple Trip VRP with incompatible commodities, Trav-

eling Salesman Problem with Pickups and Deliveries with LIFO/FIFO constraints,
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Double TSP with Pickups and Deliveries with Multiple Stacks and Vehicle Routing

Problem with Pickups and Deliveries with additional loading constraints. The lat-

ter three categories consider pickup and delivery problems in which items may be

picked up and delivered at customer places. From the literature review it is observed

that only few problem formulations are developed for VRPs with loading constraints,

which may be explained by the fact that the integration of loading constraints in a

routing problem greatly increases the complexity of the formulation. Consequently,

mainly heuristic methods are developed to tackle these problems. It is also observed

that the complexity of the problem is influenced by the combination of routing and

loading constraints. When sequence-based loading is added to a three-dimensional

loading problem, the problem becomes more complex than when it is considered in

a one-dimensional loading problem. In addition, the type of transportation request

(pickup and delivery of items, or only a single type of request) influences the com-

plexity of the loading constraints. Furthermore, the review points out that in most

models, loading constraints are handled as a subproblem of the routing model. First,

solutions of the routing problem are computed, and afterwards, a loading feasibility

check is performed for the best solutions.

The second part of the thesis focuses on the integration of axle weight constraints

in a VRP. Axle weight limits impose a real challenge for transportation companies

because they are faced with high fines in the event of non-compliance. Furthermore,

violations are a threat to traffic safety and may cause serious damage to the road sur-

face. Current commercial route scheduling programs do not incorporate these limits

which leads to violations or last-minute changes. Despite of the practical relevance of

axle weight constraints, this has not yet been studied in combination with VRP. In

this thesis, the CVRP with sequence-based pallet loading and axle weight constraints

is introduced. The distribution of pallets and sequence-based loading is considered,

which is a problem setting often encountered in real-life problems. Sequence-based

loading ensures that when arriving at a customer, no pallets of customers to be served

later on the route block the removal of the pallets of the current customer. Further-

more, pallets are packed dense inside the truck. This means that the pallets of the

last customer are placed at the deepest portion of the loading area and that there

is no gap between two consecutive pallets inside the truck. This pallet configuration

increases the stability of the load and is therefore often used in practice.

Two problem formulations for the CVRP with sequence-based pallet loading and

axle weight constraints are tested on small-size instance sets. Additionally, an Iter-

ated Local Search (ILS) algorithm is developed to solve the problem heuristically for

realistic-size instances with networks consisting of up to 100 customers.
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The analysis shows that the integration of axle weight constraints does not lead

to a large increase in distance traveled, while not including axle weight constraints

may induce major axle weight violations. In several instances, axle weight violations

can even be avoided without a cost increase. Furthermore, the results indicate that

the effect of including axle weight constraints may depend on demand characteristics.

When only light pallets (100 - 500 kg) are packed, axle weight limits do not play a

role in the loading process. The effect of integrating axle weight limits on routing

costs is higher when only heavy pallets (1000 - 1500 kg) are considered compared

to a fifty-fifty percent mix of heavy and light pallets. This may be explained by

the fact that the number of violations and the magnitude of the violation when axle

weight constraints are not included in the route scheduling are larger when only

heavy pallets are considered. Heavy pallets are therefore better transported together

with light pallets even though the total weight capacity of the vehicle is sufficient to

transport only heavy pallets. Furthermore, the number of violations and the extent of

the violations are larger when a high variation (between 1 and 15 pallets) in number

of pallets per customer is considered compared to a small variation (between 4 and 7

pallets). The reason for this may be that a high variation in number of pallets leads

to on average half of the orders consisting of more than 8 pallets, which is less flexible

than orders between 4 and 7 pallets.

The vehicle fleet of transportation companies generally consists of different types

of vehicles. Therefore, in the final part of the thesis, the Fleet Size and Mix CVRP

with sequence-based pallet loading and axle weight constraints is introduced. Two

types of heavy-duty vehicles are considered: a 30-foot truck and a 45-foot truck. The

trucks differ in tare weight and measurements. The capacity in terms of number of

pallets and total weight is therefore different as well as the maximum axle loads. Two

scenarios are defined for which the objective function differs. In the first scenario

the objective is to minimize total distance. In the second scenario, the objective

is the minimization of total transport costs. Total transport costs include interest

and depreciation costs, taxes, insurance, driver wage, maintenance and fuel costs.

Fuel consumption depends on the gross weight of the truck. Since the tare weight

of the vehicles in the fleet are different, fuel costs are (partially) vehicle dependent.

The analysis points out that the impact of axle weight constraints on the objective

value in our test instances is smaller when the objective is to minimize total transport

costs compared to the minimization of total distance traveled, which is the traditional

objective in the VRP literature.

The impact of the vehicle fleet on the integration of axle weight constraints in a

VRP is analyzed by comparing three heavy-duty vehicle fleet compositions: a homo-
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geneous fleet of 30-foot trucks, a homogeneous fleet of 45-foot trucks and a hetero-

geneous fleet with 30-foot and 45-foot trucks. The cost increase for integrating axle

weight constraints is considerably higher when a homogeneous fleet of 45-foot trucks

is considered compared to a homogeneous fleet of 30-foot trucks. This may be ex-

plained by the fact that the capacity in terms of number of pallets is higher for 45-foot

trucks while the maximum weight of the load on the axles is lower which increases

the probability of an axle weight violation. It may be concluded that the vehicle fleet

strongly influences the impact of the integration of axle weight constraints on the

solution costs.

7.2 Managerial implications

When axle weight constraints are ignored during the planning process, transporters

face high fines due to axle weight violations or costs due to last minute changes

in planning. The findings of this thesis may encourage transportation companies to

consider axle weight constraints during their route scheduling. The analysis points out

that ignoring axle weight constraints during route scheduling may lead to considerable

axle weight violations, while including axle weight constraints does not lead to a large

cost increase in our test instances.

Furthermore, since the ideal composition of the vehicle fleet may change when axle

weight constraints are integrated in route scheduling, it may be useful for transporta-

tion companies to consider axle weight constraints already when taking purchasing

decisions. In the FSM, an unlimited vehicle fleet is considered for all vehicle types

which may be helpful to determine the optimal fleet size and mix and may therefore

support long-term planning decisions of transportation companies with regards to the

acquisition of new vehicles. This may enable them to analyze the impact of an invest-

ment in trucks with varying capacities and tare weight on solution cost. For instance,

it may be used to assess the benefits of an investment in a truck that is specifically

designed to have a low weight in order to maximize the net weight capacity.

Finally, transportation companies may be encouraged to consider all relevant costs

and not only total distance traveled if they want to evaluate the impact of the integra-

tion of axle weight constraints in their own route scheduling. The analysis points out

that the impact of axle weight constraints is larger when the objective is to minimize

total distance traveled, which is the traditional objective in the VRP literature, com-

pared to the more realistic objective of the minimization of total transport costs. The

reason for this is that because total transport cost includes fuel consumption there
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will be a tendency to visit customers with heavy pallets early on the route. Therefore

heavy pallets are placed towards the rear of the vehicle. Since the weight capacity

of the axles of the semi-trailer is larger than the weight capacity of the axles of the

tractor, the number of violations and the extent of the violation is therefore already

smaller in the model without axle weight constraints.

7.3 Further research

The combination of vehicle routing problems with loading constraints is a fairly recent

domain of research. Therefore a number of opportunities for future research may be

identified. An interesting future research direction would be to focus on the pickup

and delivery problem with multiple vehicles and multiple dimensions since currently

little research has been done on this topic. Future research may also consider con-

tamination issues in the multi-compartments VRP by focussing on scheduling over

multiple periods or over multiple trips in a single tour. Finally, the literature review

shows that current VRP models with loading constraints rarely incorporate other

rich constraints. The inclusion of rich characteristics such as the use of a hetero-

geneous fleet, time-dependent routing or drivers’ regulations in current VRP models

with loading constraints would go some considerable way towards making these more

realistic.

A number of research opportunities exist on the development of solution methods

for vehicle routing problems with axle weight constraints. The exact methods that

are developed to solve the problem are only able to solve small-size instances within

a reasonable time limit. A promising research direction is to use column generation

to solve the Set Partitioning model. Column generation has proven to work very well

on linear models with a large number of variables and a small number of constraints,

which is the case for the SP formulation. Additionally, the MILP formulation could

be strengthened in a branch-and-cut algorithm. Furthermore, future research may

look into the development of matheuristics to solve the routing problem heuristically

and the packing subproblem exactly. Finally, it would be interesting to compare the

performance of the ILS metaheuristic to the performance a simplified heuristic with

less local search operators.

Another line of future research could focus on extending the current model. In

practice, transportation companies are often faced with time windows (hard or soft)

within which a delivery must take place. Furthermore, they need to comply to legisla-

tion concerning legal driving hours and working time of drivers. These features could
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be considered in the current model in order to make it more realistic. Following this,

the impact of axle weight constraints may be analyzed on real-life scheduling data.

Furthermore, the impact of axle weight constraints may be analyzed when the deliv-

ery of non-palletized goods is considered. In this case, depending on the possibility of

vertical stacking, a two-dimensional or three-dimensional bin packing problem needs

to be solved. Stability constraints will also be an important challenge since dense

packing will not always be possible when considering goods of different sizes. Cargo-

securing measures should therefore be considered to prevent the load from moving

inside the truck.

In this thesis, the Fleet Size and Mix CVRP with sequence-based pallet loading

and axle weight constraints is analyzed with a heterogeneous fleet consisting of heavy-

duty vehicles. Future research could analyze the impact of axle weight constraints

when other vehicle types are considered such as medium-duty trucks with different

axle configurations. Additionally, the analysis could include a fleet consisting of both

medium-duty and heavy-duty vehicles. In this case, the vehicles in the fleet will differ

in terms of average speed and acceleration, which may lead to the use of different fuel

consumption models that take into account these vehicle specific parameters. Finally,

future research could focus on the Heterogeneous VRP with sequence-based pallet

loading and axle weight constraints in which a limited vehicle fleet is assumed. This

model could analyze the effect of the integration of axle weight constraints on an

operational scheduling level for day-to-day route scheduling.
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Appendix A

Results insertion methods

This appendix shows the results of three insertion methods on instances with 10, 15,

20, 50, 75 and 100 customers. For each instance size, 32 instances are considered.

The first insertion method is a regret-2 heuristic. In the second method, the BCSP

formulated in Section 4.2.1 is solved for options consisting of a single non-difficult

node (
∑
i∈Φ

kjai = 1 ∀j ∈ Ω, a ∈ Ψj), followed by a regret-2 heuristic. The third method

solves the BCSP formulated in Section 4.2.1 with options existing of a single node

or combinations of two nodes (
∑
i∈Φ

kjai <= 2 ∀j ∈ Ω, a ∈ Ψj) followed by a regret-

2 heuristic. In case the insertion method leads to a feasible initial solution, this is

reported by a cross (x).
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Table A.1: Results of three insertion methods

on networks of 10 customers

Insertion method

Instance Regret-2 BCSP - 1 node BCSP - 2 nodes

Problem class 1

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 2

1 x x x

2 x x

3 x x x

4 x x x

5 x x

6 x x x

7 x x

8 x x x

Problem class 3

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 4

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x

8 x x

Total 27 32 32
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Table A.2: Results of three insertion methods

on networks of 15 customers

Insertion method

Instance Regret-2 BCSP - 1 node BCSP - 2 nodes

Problem class 1

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 2

1 x x

2 x x

3 x

4 x x x

5 x

6 x

7 x x x

8 x x x

Problem class 3

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 4

1 x x

2 x x

3 x x x

4 x x x

5 x x x

6 x x

7 x x x

8 x x x

Total 24 29 32
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Table A.3: Results of three insertion methods

on networks of 20 customers

Insertion method

Instance Regret-2 BCSP - 1 node BCSP - 2 nodes

Problem class 1

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 2

1 x x x

2 x x x

3 x

4 x

5 x x

6 x x

7 x x

8 x x x

Problem class 3

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 4

1 x x x

2 x x x

3 x x x

4 x x

5 x x x

6 x x

7 x x x

8 x x

Total 24 30 32
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Table A.4: Results of three insertion methods

on networks of 50 customers

Insertion method

Instance Regret-2 BCSP - 1 node BCSP - 2 nodes

Problem class 1

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 2

1 x x

2 x x

3 x x

4 x x

5 x x

6 x x

7 x x

8 x x

Problem class 3

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 4

1 x x x

2 x x x

3 x x

4 x x

5 x x

6 x x x

7 x x

8 x x

Total 19 32 32
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Table A.5: Results of three insertion methods

on networks of 75 customers

Insertion method

Instance Regret-2 BCSP - 1 node BCSP - 2 nodes

Problem class 1

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 2

1 x x

2 x x x

3 x x

4 x x x

5 x x

6 x x

7 x x

8 x x

Problem class 3

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 4

1 x x

2 x x

3 x x

4 x x

5 x x

6 x x x

7 x x

8 x x x

Total 20 32 32
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Table A.6: Results of three insertion methods

on networks of 100 customers

Insertion method

Instance Regret-2 BCSP - 1 node BCSP - 2 nodes

Problem class 1

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 2

1 x x

2 x x

3 x x

4 x x x

5 x x

6 x x

7 x x

8 x x

Problem class 3

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

6 x x x

7 x x x

8 x x x

Problem class 4

1 x x

2 x x

3 x x

4 x x x

5 x x

6 x x

7 x x

8 x x

Total 18 32 32
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Appendix B

Detailed results: ILS

algorithm on small-size

instances

This appendix shows the detailed results of the ILS algorithm on the CVRP with

sequence-based pallet loading with and without axle weight constraint on small-size

instances with 10, 15 and 20 customers. Because of the stochastic character of the

algorithm, twenty independent runs of the algorithm are performed. The average

solution cost (Zavg) and best solution cost (Zbest) for each instance are reported. For

the problem without axle weight constraints, the number of axle weight violations (#

V) and maximum violation in percentage (Max V) are also shown. For the problem

with axle weight constraints, the increase in average cost compared to the average

cost in the problem without axle weight constraints (Zavgincr(%)) is reported, as well

as the increase in best cost compared to the best cost in the problem without axle

weight constraints (Zbestincr (%)).
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Table B.1: Results of the CVRP with sequence based pallet loading

with and without axle weight constraints on networks of 10 customers

Instance Model without axle weight Model with axle weight

Zavg Zbest t (s) # V
Max V

(%)
Zavg Zavg

incr (%)
Zbest Zbest

incr (%)
t (s)

Problem class 1

1 38.4 38.4 1.0 4 11.7 45.6 18.75 45.2 17.71 1.0

2 38.5 38.5 1.0 2 4.0 38.5 0.00 38.5 0.00 0.5

3 39.3 39.3 1.0 5 5.6 40.2 2.29 40.2 2.29 0.5

4 41.9 41.9 1.0 4 11.9 45.7 9.07 45.7 9.07 0.5

5 51.7 51.7 1.0 2 9.9 51.7 0.00 51.7 0.00 0.5

6 43.4 43.4 1.0 2 4.0 44.2 1.84 44.2 1.84 0.5

7 45.2 45.2 1.0 2 2.1 45.2 0.00 45.2 0.00 0.5

8 44.0 44.0 0.5 2 11.1 44.6 1.36 44.3 0.68 0.5

Problem class 2

1 41.2 41.2 1.0 5 13.9 46.5 12.86 44.3 7.52 0.5

2 44.7 44.7 0.5 4 11.7 51.3 14.77 51.3 14.77 0.5

3 56.3 56.3 1.0 2 3.6 58.2 3.37 56.8 0.89 0.5

4 50.3 50.3 0.5 5 7.1 50.7 0.80 50.7 0.80 0.5

5 49.9 49.9 1.0 6 15.7 53.9 8.02 53.8 7.82 0.5

6 49.5 49.5 0.5 3 13.8 53.3 7.68 53.3 7.68 0.5

7 64.6 64.6 0.5 2 6.2 68.2 5.57 68.2 5.57 0.5

8 40.5 40.5 1.0 3 9.4 40.5 0.00 40.5 0.00 0.5

Problem class 3

1 37.4 37.4 1.0 0 37.4 0.00 37.4 0.00 0.5

2 37.4 37.4 0.5 3 7.0 38.3 2.41 38.3 2.41 0.5

3 41.0 41.0 0.5 0 41.0 0.00 41.0 0.00 0.5

4 43.4 43.4 1.0 0 43.4 0.00 43.4 0.00 1.0

5 38.8 38.8 1.0 2 9.5 40.8 5.15 40.8 5.15 1.0

6 41.3 41.3 1.0 1 4.4 41.3 0.00 41.3 0.00 0.5

7 44.4 44.4 1.0 2 2.1 44.4 0.00 44.4 0.00 1.0

8 46.5 46.5 1.0 0 46.5 0.00 46.5 0.00 1.0

Problem class 4

1 57.3 57.3 0.5 3 8.7 57.3 0.00 57.3 0.00 0.5

2 47.3 47.3 0.5 5 16.9 49.3 4.23 49.3 4.23 0.5

3 46.9 46.9 1.0 0 46.9 0.00 46.9 0.00 0.5

4 53.3 53.3 0.5 0 53.3 0.00 53.3 0.00 0.5

5 44.7 44.7 0.5 0 44.7 0.00 44.7 0.00 0.5

6 50.2 50.2 1.0 2 3.6 52.2 3.98 52.2 3.98 0.5

7 57.2 57.2 0.5 3 9.2 59.9 4.72 59.9 4.72 0.5

8 50.1 50.1 0.5 0 50.1 0.00 50.1 0.00 0.5

Average 0.8 2.3 3.34 3.04 1.0

# V = number of violations

Max V = maximum violation
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Table B.2: Results of the CVRP with sequence based pallet loading

with and without axle weight constraints on networks of 15 customers

Instance Model without axle weight Model with axle weight

Zavg Zbest t (s) # V
Max V

(%)
Zavg Zavg

incr (%)
Zbest Zbest

incr (%)
t (s)

Problem class 1

1 59.3 59.3 3.0 5 8.9 66.6 12.31 66.2 11.64 2.0

2 54.6 54.6 2.0 9 8.8 66.1 21.06 66.1 21.06 1.0

3 62.3 62.1 2.0 4 4.6 62.5 0.32 62.1 0.00 1.0

4 54.1 54.1 3.0 4 5.6 55.1 1.85 55.1 1.85 2.0

5 57.5 56.6 2.0 3 5.3 59.3 3.13 58.4 3.18 2.0

6 64.1 64.1 2.0 6 8.1 68.7 7.18 68.5 6.86 1.0

7 62.5 62.5 2.0 3 13.4 63.6 1.76 63.6 1.76 2.0

8 56.2 56.2 2.0 6 8.7 58.6 4.27 58.6 4.27 1.0

Problem class 2

1 56.6 56.6 2.0 5 10.3 62.0 9.54 59.7 5.48 1.0

2 87.5 87.5 2.0 2 2.3 87.5 0.00 87.5 0.00 1.0

3 60.3 60.3 2.0 8 14.5 65.2 8.13 64.0 6.14 1.0

4 58.7 58.7 2.0 3 10.4 58.7 0.00 58.7 0.00 1.0

5 62.0 62.0 2.0 10 21.3 75.7 22.10 75.7 22.10 0.5

6 59.4 59.4 3.0 8 12.6 65.6 10.44 65.5 10.27 2.0

7 68.8 68.8 2.0 5 9.8 68.8 0.00 68.8 0.00 2.0

8 65.8 65.8 2.0 7 17.6 68.3 3.80 68.2 3.65 1.0

Problem class 3

1 56.2 56.2 3.0 5 2.3 56.4 0.36 56.2 0.00 2.0

2 51.5 51.5 2.0 2 0.2 51.5 0.00 51.5 0.00 2.0

3 53.3 53.3 2.0 3 6.8 54.7 2.63 54.7 2.63 2.0

4 57.8 57.8 2.0 0 57.8 0.00 57.8 0.00 2.0

5 55.6 55.6 2.0 2 0.3 56.9 2.34 56.7 1.98 1.0

6 58.0 58.0 3.0 0 58.0 0.00 58.0 0.00 2.0

7 59.0 59.0 1.0 0 59.0 0.00 59.0 0.00 2.0

8 46.4 46.4 2.0 2 0.0 47.1 1.51 47.1 1.51 2.0

Problem class 4

1 81.7 81.7 1.0 6 10.2 93.6 14.57 93.2 14.08 2.0

2 79.7 79.7 2.0 9 15.4 83.4 4.64 83.4 4.64 2.0

3 77.9 77.9 2.0 6 3.2 78.4 0.64 78.4 0.64 2.0

4 88.0 88.0 2.0 1 0.0 88.0 0.00 88.0 0.00 1.0

5 65.5 65.4 2.0 3 0.4 65.7 0.31 65.4 0.00 2.0

6 74.7 74.7 2.0 3 5.5 74.8 0.13 74.7 0.00 2.0

7 63.9 63.9 2.0 6 1.5 64.0 0.16 64.0 0.16 2.0

8 63.3 63.3 2.0 1 63.3 0.00 63.3 0.00 1.0

Average 2.1 4 4.16 3.87 2.0

# V = number of violations

Max V = maximum violation
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Table B.3: Results of the CVRP with sequence based pallet loading

with and without axle weight constraints on networks of 20 customers

Instance Model without axle weight Model with axle weight

Zavg Zbest t (s) # V
Max V

(%)
Zavg Zavg

incr (%)
Zbest Zbest

incr (%)
t (s)

Problem class 1

1 74.0 74.0 4.0 4 20 74.2 0.27 74.2 0.27 3.0

2 73.1 73.1 5.0 0 73.1 0.00 73.1 0.00 4.0

3 72.6 72.6 6.0 5 9 73.9 1.79 73.9 1.79 5.0

4 72.0 72.0 5.0 2 0 72.0 0.00 72.0 0.00 4.0

5 70.8 70.8 5.0 4 4 72.4 2.26 72.0 1.69 4.0

6 61.7 61.7 4.0 5 10 62.1 0.65 62.1 0.65 2.0

7 69.8 69.8 5.0 3 7 69.8 0.00 69.8 0.00 3.0

8 68.5 68.5 7.0 10 13 76.0 10.95 75.4 10.07 4.0

Problem class 2

1 91.7 91.7 3.0 8 12 96.0 4.69 95.9 4.58 3.0

2 87.8 87.8 4.0 5 12 87.8 0.00 87.8 0.00 3.0

3 113.0 113.0 3.0 11 14 125.2 10.80 124.8 10.44 2.0

4 99.5 99.5 4.0 5 12 101.4 1.91 101.4 1.91 2.0

5 94.4 94.4 4.0 12 13 104.9 11.12 104.7 10.91 2.0

6 104.6 104.6 3.0 9 12 111.6 6.69 111.6 6.69 1.0

7 90.8 90.8 4.0 7 18 93.5 2.97 93.5 2.97 3.0

8 91.4 91.4 6.0 6 11 92.6 1.31 91.4 0.00 3.0

Problem class 3

1 67.3 67.3 5.0 0 0 67.3 0.00 67.3 0.00 4.0

2 68.5 68.5 5.0 1 5 68.5 0.00 68.5 0.00 3.0

3 78.7 78.7 5.0 4 6 78.7 0.00 78.7 0.00 3.0

4 63.1 63.1 6.0 2 1 63.1 0.00 63.1 0.00 4.0

5 68.3 68.3 7.0 1 0 68.3 0.00 68.3 0.00 5.0

6 78.4 78.4 4.0 3 2 78.4 0.00 78.4 0.00 3.0

7 63.6 63.6 7.0 2 2 63.6 0.00 63.6 0.00 5.0

8 67.0 67.0 9.0 3 0 67.0 0.00 67.0 0.00 5.0

Problem class 4

1 80.9 80.9 6.0 5 4 81.0 0.12 81.0 0.12 5.0

2 59.5 59.5 6.0 3 2 61.5 3.36 61.4 3.19 5.0

3 89.3 88.9 5.0 3 0 89.4 0.11 88.9 0.00 4.0

4 86.6 86.6 4.0 3 5 89.3 3.12 89.3 3.12 2.0

5 100.3 100.3 5.0 3 0 100.3 0.00 100.3 0.00 3.0

6 122.7 122.7 4.0 9 14 127.7 4.07 127.6 3.99 4.0

7 92.6 92.6 4.0 7 10 97.5 5.29 97.5 5.29 3.0

8 89.8 89.8 4.0 5 17 89.9 0.11 89.9 0.11 4.0

Average 4.9 5 2.24 2.12 3.0

# V = number of violations

Max V = maximum violation
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Detailed results:

minimization of total distance

Table C.1 shows the number of trucks of each vehicle type in the final solution of

the FSM with sequence-based pallet loading and axle weight constraints, while Table

C.2 presents the number of trucks of each vehicle type in the final solution of the

FSM without axle weight constraints for the scenario of distance minimization. For

all instances, the number of routes in the final solutions of the FSM that may be

performed by 30-foot trucks, 45-foot trucks and by both trucks are reported.

The computation times of the ILS for the CVRP with sequence-based pallet load-

ing and axle weight constraints for a vehicle fleet consisting of 30-foot trucks, a fleet

consisting of 45-foot trucks and a heterogeneous vehicle fleet with 30-foot and 45-foot

trucks are presented in Table C.3. Finally, Table C.4 presents the computation times

of the ILS for the CVRP without axle weight constraints for a vehicle fleet consisting

of 30-foot trucks, a fleet consisting of 45-foot trucks and a heterogeneous vehicle fleet

with 30-foot and 45-foot trucks.
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Table C.1: Number of trucks of each vehicle type in the final solution for

the FSM with sequence-based pallet loading and axle weight constraints

- Distance minimization

50 customers 75 customers 100 customers

Instance 30-foot 45-foot both 30-foot 45-foot both 30-foot 45-foot both

Problem class 3

1 1.0 8.5 0.0 2.7 11.8 0.0 2.5 17.3 0.0

2 0.8 8.5 0.0 2.0 11.9 0.0 2.6 16.8 0.0

3 1.9 7.7 0.0 1.0 13.0 0.4 2.8 17.1 0.0

4 1.0 8.7 0.1 1.2 12.7 0.1 2.1 18.0 0.0

5 1.6 8.4 0.0 2.1 12.6 0.2 2.1 17.2 0.1

6 2.5 8.1 0.0 3.0 11.9 0.0 2.2 16.9 0.0

7 0.5 9.0 0.5 2.0 12.4 0.0 1.1 17.7 0.1

8 0.0 9.0 1.0 0.9 13.0 0.2 3.5 16.7 0.0

Problem class 4

1 0.8 13.8 0.4 3.0 17.9 0.0 6.6 22.7 0.0

2 1.2 12.9 0.0 4.5 16.5 0.0 4.1 23.7 0.0

3 2.1 13.1 0.0 2.0 20.6 0.0 4.0 25.2 0.0

4 2.0 10.1 0.0 3.4 19.4 0.0 2.7 24.0 0.0

5 3.0 10.0 0.0 5.3 19.9 0.0 4.6 25.5 0.0

6 3.1 12.9 0.0 4.0 19.1 0.0 6.1 27.6 0.0

7 1.5 12.9 0.0 3.8 17.4 0.0 6.8 24.3 0.0

8 4.5 11.9 0.0 2.4 20.0 0.0 3.4 26.2 0.0

Average 1.7 10.3 0.1 2.7 15.6 0.1 3.6 21.1 0.0
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Table C.2: Number of trucks of each vehicle type in the final solution

for the FSM without axle weight constraints - Distance minimization

50 customers 75 customers 100 customers

Instance 30-foot 45-foot both 30-foot 45-foot both 30-foot 45-foot both

Problem class 3

1 0.0 8.9 0.1 0.0 12.9 1.0 0.0 18.6 0.5

2 0.0 9.0 0.3 0.0 13.0 0.1 0.0 17.7 0.8

3 0.0 8.8 0.3 0.0 13.1 0.9 0.0 17.8 1.3

4 0.0 9.0 0.7 0.0 13.0 0.5 0.0 17.9 1.1

5 0.0 9.0 0.2 0.0 13.2 0.8 0.0 18.0 0.1

6 0.0 9.0 1.0 0.0 13.0 1.0 0.0 17.8 0.2

7 0.0 9.0 1.0 0.0 12.5 1.5 0.0 17.7 0.4

8 0.0 9.0 0.2 0.0 13.2 0.8 0.0 18.0 1.0

Problem class 4

1 0.0 14.2 0.5 0.0 18.6 0.7 0.2 25.3 2.6

2 1.2 11.0 1.8 0.1 17.7 2.6 0.0 24.0 2.0

3 0.0 13.3 1.0 0.0 21.0 1.0 0.0 26.1 1.9

4 0.0 11.0 1.0 0.0 20.8 0.9 0.2 24.7 0.5

5 0.0 11.0 1.0 0.1 21.5 1.4 0.2 27.6 1.2

6 0.0 14.0 1.0 0.0 20.0 1.4 0.0 28.9 3.3

7 0.0 13.1 0.9 0.2 17.5 2.3 0.1 26.6 2.1

8 0.0 14.0 1.0 0.0 18.8 2.5 0.2 26.9 0.9

Average 0.1 10.8 0.8 0.0 16.2 1.2 0.1 22.1 1.2
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Table C.3: Computation times of the ILS for the CVRP with sequence-

based pallet loading and axle weight constraints for a vehicle fleet con-

sisting of 30-foot trucks, a fleet consisting of 45-foot trucks and a het-

erogeneous vehicle fleet with 30-foot and 45-foot trucks - Distance min-

imization

50 customers 75 customers 100 customers

Instance 30-foot 45-foot FSM 30-foot 45-foot FSM 30-foot 45-foot FSM

Problem class 3

1 125 224 208 276 211 499 931 585 944

2 113 130 179 218 337 654 543 746 1,969

3 108 118 183 342 309 666 372 670 904

4 135 170 151 306 401 664 505 862 829

5 90 152 186 288 456 285 648 501 1,554

6 122 200 176 283 394 429 543 489 1,887

7 96 169 156 322 278 572 499 631 956

8 114 181 132 223 259 588 408 421 976

Problem class 4

1 48 113 107 217 207 425 516 372 852

2 48 89 105 189 297 565 342 430 1,088

3 61 116 128 193 189 507 458 402 689

4 113 155 212 226 168 460 428 353 668

5 109 127 170 189 197 319 378 321 1,250

6 62 137 122 158 266 340 344 330 785

7 75 143 125 197 275 386 469 374 897

8 72 90 114 170 285 425 459 322 922

Average 93 145 153 237 283 486 490 488 1,073
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Table C.4: Computation times of the ILS for the CVRP without axle

weight constraints for a vehicle fleet consisting of 30-foot trucks, a fleet

consisting of 45-foot trucks and a heterogeneous vehicle fleet with 30-foot

and 45-foot trucks - Distance minimization

50 customers 75 customers 100 customers

Instance 30-foot 45-foot FSM 30-foot 45-foot FSM 30-foot 45-foot FSM

Problem class 3

1 148 234 557 532 444 1,713 2,348 1,534 5,796

2 103 152 284 570 609 2,797 1,850 1,427 5,216

3 122 144 259 583 365 2,441 1,951 1,413 4,725

4 236 274 462 681 510 2,068 2,393 1,435 4,492

5 150 215 421 678 599 1,952 1,825 1,116 6,026

6 168 260 414 920 619 2,324 2,018 1,167 4,590

7 140 215 530 629 447 1,554 1,948 1,137 5,055

8 139 316 453 600 531 2,037 1,820 1,093 4,325

Problem class 4

1 55 212 234 630 348 1,760 1,068 1,015 4,325

2 55 150 269 661 348 1,246 1,737 1,107 3,192

3 70 130 371 475 421 1,717 2,388 976 3,628

4 77 182 430 324 316 1,037 1,523 1,073 3,758

5 124 167 315 635 352 1,167 833 832 3,572

6 79 185 331 504 313 1,256 1,537 992 3,084

7 137 218 367 406 371 1,306 1,417 721 3,618

8 84 142 289 369 292 955 2,134 865 3,368

Average 118 200 374 575 430 1,708 1,799 1,119 4,298
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Appendix D

Detailed results:

minimization of total

transport cost

Table D.1 shows the number of trucks of each vehicle type in the final solution of the

FSM with sequence-based pallet loading and axle weight constraints, while Table D.2

presents the number of trucks of each vehicle type in the final solution of the FSM

without axle weight constraints for the scenario of total transport cost minimization.

For all instances, the number of routes in the final solutions of the FSM that are

performed by 30-foot trucks and 45-foot trucks are reported.

The computation times of the ILS for the CVRP with sequence-based pallet load-

ing and axle weight constraints for a vehicle fleet consisting of 30-foot trucks, a fleet

consisting of 45-foot trucks and a heterogeneous vehicle fleet with 30-foot and 45-foot

trucks are presented in Table D.3. Finally, Table D.4 presents the computation times

of the ILS for the CVRP without axle weight constraints for a vehicle fleet consisting

of 30-foot trucks, a fleet consisting of 45-foot trucks and a heterogeneous vehicle fleet

with 30-foot and 45-foot trucks.
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Table D.1: Number of trucks of each vehicle type in the

final solution for the FSM with sequence-based pallet

loading and axle weight constraints - Transport cost

minimization

50 customers 75 customers 100 customers

Instance 30-foot 45-foot 30-foot 45-foot 30-foot 45-foot

Problem class 3

1 1.1 8.6 2.9 11.6 3.3 16.9

2 1.2 8.4 2.2 11.8 2.7 16.9

3 1.8 7.8 2.5 12.2 3.5 16.9

4 1.9 8.1 1.1 12.9 2.3 17.7

5 1.6 8.4 2.3 12.6 2.4 16.9

6 2.3 8.2 3.0 11.9 2.1 17.0

7 1.0 9.0 1.9 12.4 0.9 17.9

8 1.0 9.0 1.4 12.9 3.6 16.7

Problem class 4

1 1.0 14.0 4.2 17.1 7.8 21.9

2 3.1 11.3 4.5 16.5 5.8 22.3

3 3.1 12.5 3.3 19.7 3.4 25.6

4 2.3 10.0 4.8 18.7 2.5 24.3

5 3.0 10.0 4.7 20.3 4.2 26.0

6 3.6 12.4 4.2 19.0 7.0 27.1

7 2.4 12.4 3.4 17.8 6.5 24.8

8 4.5 12.0 2.6 19.9 4.8 25.0

Average 2.2 10.1 3.1 15.5 3.9 20.9
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Table D.2: Number of trucks of each vehicle type in

the final solution for the FSM without axle weight con-

straints - Transport cost minimization

50 customers 75 customers 100 customers

Instance 30-foot 45-foot 30-foot 45-foot 30-foot 45-foot

Problem class 3

1 0.8 8.7 1.0 13.0 5.9 16.7

2 0.8 9.0 1.7 12.4 2.4 17.0

3 2.0 8.2 1.4 12.9 2.9 17.3

4 1.0 8.9 1.6 13.0 3.6 17.5

5 0.9 9.2 3.7 12.3 3.2 17.2

6 1.4 8.7 3.5 12.5 3.6 16.7

7 1.0 9.0 2.6 12.1 1.5 17.4

8 1.2 8.8 2.2 12.5 2.4 17.5

Problem class 4

1 1.1 13.8 2.0 18.2 7.3 23.4

2 2.9 11.6 5.0 17.3 6.2 22.2

3 1.6 13.5 2.7 20.5 7.2 23.9

4 0.9 11.1 4.5 18.7 6.1 22.5

5 1.7 10.9 4.4 20.3 7.1 25.0

6 2.0 13.8 3.4 19.5 7.6 27.3

7 2.5 12.5 4.1 17.0 6.0 25.0

8 3.2 12.3 4.3 18.6 7.1 24.5

Average 1.6 10.6 3.0 15.7 5.0 20.7
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Table D.3: Computation times of the ILS for the CVRP with sequence-

based pallet loading and axle weight constraints for a vehicle fleet con-

sisting of 30-foot trucks, a fleet consisting of 45-foot trucks and a het-

erogeneous vehicle fleet with 30-foot and 45-foot trucks - Transport cost

minimization

50 customers 75 customers 100 customers

Instance 30-foot 45-foot FSM 30-foot 45-foot FSM 30-foot 45-foot FSM

Problem class 3

1 297 499 669 410 1,562 2,760 997 3,683 6,778

2 264 291 959 588 1,207 2,802 1,144 3,622 4,433

3 333 366 1,182 316 1,277 3,154 1,129 2,834 3,497

4 253 338 810 401 1,296 3,762 1,187 4,037 6,321

5 246 233 746 468 1,578 2,534 1,137 2,277 7,447

6 284 474 693 568 2,224 2,201 1,532 3,427 4,241

7 140 331 561 445 1,458 3,008 773 3,638 3,937

8 183 321 611 415 1,353 2,658 933 2,784 4,856

Problem class 4

1 100 145 415 148 785 1,720 312 1,240 4,455

2 100 114 385 248 790 2,461 342 2,072 4,520

3 108 148 376 104 526 1,566 319 1,520 3,490

4 213 278 626 131 417 1,764 327 1,686 5,023

5 249 251 417 140 409 1,450 229 1,306 3,141

6 89 147 388 107 618 1,231 247 872 4,758

7 175 258 530 170 798 1,776 261 1,364 4,295

8 117 111 390 113 489 1,630 229 2,001 5,246

Average 197 269 610 298 1,049 2,280 694 2,398 4,777
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Table D.4: Computation times of the ILS for the CVRP without axle

weight constraints for a vehicle fleet consisting of 30-foot trucks, a fleet

consisting of 45-foot trucks and a heterogeneous vehicle fleet with 30-foot

and 45-foot trucks - Transport cost minimization

50 customers 75 customers 100 customers

Instance 30-foot 45-foot FSM 30-foot 45-foot FSM 30-foot 45-foot FSM

Problem class 3

1 1,040 1,036 1,367 4,092 5,195 6,131 9,476 6,740 12,418

2 955 1,134 1,055 3,488 3,288 4,921 11,763 9,623 11,448

3 1,023 1,015 1,352 3,710 3,755 5,994 11,068 6,409 9,944

4 909 1,041 1,205 3,845 3,856 5,941 7,816 9,397 11,330

5 789 979 1,198 3,499 2,875 4,462 7,219 7,793 8,699

6 981 1,218 1,207 2,482 2,868 5,181 11,452 8,243 11,363

7 809 968 1,330 3,463 4,399 4,758 10,452 8,263 13,281

8 937 934 1,221 3,585 3,610 4,657 8,782 7,137 9,738

Problem class 4

1 501 422 735 1,890 2,368 3,652 5,684 5,539 7,071

2 472 483 699 2,021 2,310 2,862 7,081 7,217 7,618

3 497 541 567 1,968 2,593 3,252 5,888 5,890 9,182

4 658 620 796 2,178 1,864 2,499 6,550 5,679 8,696

5 576 606 1,071 2,050 1,654 2,741 6,326 5,517 6,327

6 445 531 637 2,158 1,916 3,502 5,132 5,546 7,012

7 670 732 863 1,976 2,396 2,918 5,883 5,205 8,240

8 439 558 726 1,734 1,862 2,678 5,834 5,980 7,403

Average 731 801 1,002 2,759 2,926 4,134 7,900 6,886 9,361
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2016. The irace package Iterated racing for automatic algorithm configuration.

Operations Research Perspectives 3, 43 – 58.



Bibliography 183
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