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Abstract.

Let g be a finite dimensional Lie algebra over an algebraically closed field k of char-

acteristic zero. We provide necessary and also some sufficient conditions in order

for its Poisson center and semi-center to be polynomial algebras over k.

This occurs for instance if g is quadratic of index 2 with [g, g] 6= g and also if g is

nilpotent of index at most 2. The converse holds for filiform Lie algebras of type

Ln, Qn, Rn and Wn.

We show how Dixmier’s fourth problem for an algebraic Lie algebra g can be re-

duced to that of its canonical truncation gΛ. Moreover, Dixmier’s statement holds

for all Lie algebras of dimension at most eight. The nonsolvable, indecomposable

ones among them possess a polynomial Poisson center and semi-center.

1. Introduction
Let g be a Lie algebra over an algebraically closed field k of characteristic zero,

with basis x1, . . . , xn. Let U(g) be its enveloping algebra with center Z(U(g)) and

semi-center Sz(U(g)), i.e. the subalgebra of U(g) generated by the semi-invariants

of U(g). Denote by D(g) the quotient division ring of U(g) with center Z(D(g)). In

this paper we address the following problems:

1) When are Z(U(g)) and Sz(U(g)) polynomial algebras over k ?

2) Is Z(D(g)) always rational over k ? (Dixmier’s fourth problem [D6, p.354]).

In order to simplify things we consider the symmetric algebra S(g) which we identify

with the polynomial algebra k[x1, . . . , xn].
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We equip S(g) with its natural Poisson structure. Its Poisson center Y (g) coin-

cides with the algebra S(g)g of invariants. By a celebrated result of Michel Duflo

[Du1, Du2, Du3] there exists an algebra isomorphism between Z(U(g)) and Y (g).

Rentschler and Vergne [RV] later extended this to an algebra isomorphism between

Sz(U(g)) and the semi-center Sz(S(g)), which is usually denoted by Sy(g). Further-

more, Z(D(g)) is isomorphic with R(g)g, the subfield of invariants of R(g), where

R(g) is the quotient field of S(g). Therefore it suffices to deal with both problems

in S(g) and R(g), where things are easier and where it is possible to use MAPLE

for the less trivial calculations. Our first objective is to collect necessary (see 3.1)

and sufficient (see 3.2) conditions in order to have polynomiality.

The index i(g) of g (see 2.1) will play a major role. However, an alternative index

j(g) (see 2.2) will perform better in the nonalgebraic case. For instance we have the

following.

Theorem 1.

j(g) = trdegkR(g)g = trdegkZ(D(g)) ≤ i(g)

Moreover, equality occurs if g is ad-algebraic or if g has no proper semi-invariants

in S(g).

For brevity we will call g coregular if Y (g) is a polynomial algebra over k.

Definition 17. Let pg ∈ S(g) be the fundamental semi-invariant of g (see 2.6).

We say that g satisfies the Joseph-Shafrir conditions, JS for short, if g is unimodu-

lar for which pg is an invariant and trdegkY (g) = i(g). (For example JS is satisfied

if g has no proper semi-invariants (Remark 2)).

The following criterion for coregularity will be employed quite often.

Corollary 19. (Short version)

Let g be a Lie algebra satisfying JS with center Z(g). If g is coregular then

3i(g) + 2 deg pg ≤ dim g+ 2 dim Z(g)

This inequality imposes a strong upperbound on i(g). Therefore coregularity be-

comes a rare phenomenon for nonabelian Lie algebras having a large index. This is

especially true if i(g) = dim g−2 as it is in the following result (see also Proposition

40 and Corollary 41).
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Theorem 20. Let g be unimodular, having an abelian ideal h of codimension

one. Then the following are equivalent:

(1) g is coregular and trdegkY (g) = i(g)

(2) g is coregular and ad-algebraic

(3) dim[g, g] ≤ 2

The conditions in the above results cannot be weakened as shown by the examples

24-26.

As an application of this theorem we consider the nilradical N of the parabolic

subalgebra P of type (1, 1, n− 2) inside sl(n) and show that

N is not coregular ⇔ n ≥ 5

(see Proposition 28). This extends an example by A. Hersant [J2, 8.5].

At the end of section 3 we consider a Lie algebra g for which Y (g) is saturated

with quotient field R(g)g. Then there exist irreducible, proper semi-invariants

v1, . . . , vt ∈ S(g) such that Sy(g) = Y (g)[v1, . . . , vt] is a polynomial ring over Y (g).

In particular, if Y (g) is polynomial over k, then so is Sy(g) (Theorem 36).

The above conditions are satisfied if j(g) = dimZ(g) because then Y (g) = S(Z(g))

and R(g)g = R(Z(g)). Hence both Y (g) and Sy(g) are polynomial over k, while

R(g)g is rational over k. Moreover, v1, . . . , vt are then precisely the irreducible factors

of a special semi-invariant p′g ∈ S(g), which takes over the role of the fundamental

semi-invariant pg (Theorem 37). This is illustrated in Example 39 and applied to

some Lie algebras such as L8,25 (see Example 58) of section 5.

In section 4 we study the coregularity for Lie algebras of index at most two. The

following is one of the main results:

Theorem 45. Any nilpotent Lie algebra with index at most two is coregular.

Its proof is constructive and we can give a useful characterization of the gener-

ator(s) of Y (g). (see the claim within the proof). This is used in the following

application to the major types of filiform Lie algebras:
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Theorem 51.

(1) If g is of type Qn or Wn then g is coregular since i(g) ≤ 2.

(2) If g is of type Ln or Rn then

g is coregular ⇔ i(g) ≤ 2

Theorem 45 cannot be extended to the solvable case as there exists a solvable Lie

algebra of index two which is not coregular (Example 23.).

Theorem 52. Let g be a quadratic Lie algebra. Then g is coregular if one of

the following conditions is satisfied:

(i) [g, g] 6= g and i(g) = 2

(ii) g is nilpotent and i(g) = 3

In section 5 we verify, case by case, that any nonsolvable, indecomposable Lie alge-

bra of dimension at most eight satisfies the two problems we raised in the beginning

(Theorem 53).

However, in dimension nine, we exhibit a counterexample (Example 59).

Section 6 is devoted to Dixmier’s fourth problem.

We list some important classes where this question is known to have a positive an-

swer and we prove that it is also the case for all Lie algebras of dimension at most

8 (Proposition 63). The following is the main result of this section:

Theorem 66. Let g be an algebraic Lie algebra for which the field Z(D(gΛ))

is freely generated by semi-invariants u1, . . . , us of U(g). Then Z(D(g)) is rational

over k.

As an application we obtain a result by Panyushev [Pa1], namely Z(D(g)) is ra-

tional over k if g is any biparabolic subalgebra of a simple Lie algebra of type A or

C (Corollary 67).
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Some of the results of [AOV2] are used in section 5. Therefore we briefly dis-

cuss the well known Gelfand-Kirillov conjecture. This is a much stronger statement

than Dixmier’s fourth problem (see also Example 60 and Proposition 62). In the

Appendix we correct the proof of an example from [GK] showing the existence of

nonalgebraic Lie algebras satisfying the Gelfand-Kirillov conjecture (Example 71).

2. Preliminaries
2.1 i(g), the index of g

Let k be an algebraically closed field of characteristic zero and let g be a Lie algebra

over k with basis x1, . . . , xn. For each ξ ∈ g∗ we consider its stabilizer

g(ξ) = {x ∈ g | ξ([x, y]) = 0 for all y ∈ g}

The minimal value of dim g(ξ) is called the index of g and is denoted by i(g) [D6,

1.11.6; TY, 19.7.3]. Put c(g) = (dim g+ i(g))/2. This integer will play an important

role throughout this paper. An element ξ ∈ g∗ is called regular if dim g(ξ) = i(g).

The set g∗reg of all regular elements of g∗ is an open dense subset of g∗.

We put g∗sing = g∗\g∗reg. Clearly, codim g∗sing ≥ 1. Following [JS] we call g singular if

equality holds and nonsingular otherwise. For instance, any semi-simple Lie algebra

g is nonsingular since codim g∗sing = 3. We recall from [D6, 1.14.13] that

i(g) = dim g− rankR(g)([xi, xj])

In particular, dim g− i(g) is an even number.

2.2 j(g), the alternative index of g

Let H be the algebraic hull of ad g in Der g ([C, p.173; TY, 24.5.4]), i.e. the smallest

algebraic Lie subalgebra H of Der g containing ad g. Let ξ ∈ g∗ and put

g[ξ] = {x ∈ g | ξ(Ex)) = 0 for all E ∈ H}

This is an ideal of g(ξ) which contains the center Z(g) of g. Clearly, g[ξ] = g(ξ) if

g is ad-algebraic (i.e. ad g = H). Let E1, . . . , Em be a basis of H . Then it is easily

seen that

dim g[ξ] = dim g− rank(ξ(Eixj))

We denote by j(g) the minimal value of dim g[ξ], ξ ∈ g∗. Then

j(g) = dim g− rankR(g)(Eixj)
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Clearly, dimZ(g) ≤ j(g) ≤ i(g) and j(g) = i(g) if g is ad-algebraic. For the first

part of the following we refer to [O1, O2; RV, p.401].

Theorem 1.

j(g) = trdegkR(g)g = trdegkZ(D(g)) ≤ i(g)

Moreover, equality occurs if one of the following conditions is satisfied:

(1) g is ad-algebraic

(2) g has no proper semi-invariants in S(g) (or equivalently in U(g)) [OV, Propo-

sition 4.1].

2.3 Commutative polarizations of g

Suppose g admits a commutative Lie subalgebra h such that dim h = c(g), i.e. h is

a commutative polarization (notation: CP) with respect to any ξ ∈ g∗reg [D6, 1.12].

These CP’s occur frequently in the nilpotent case [O7, O8]. If in addition h is an

ideal of g then we call h a CP-ideal (notation: CPI). If a solvable Lie algebra g

admits a CP then it also admits a CPI [EO, Theorem 4.1].

2.4 The Poisson algebra S(g) and its center

The symmetric algebra S(g), which we identify with k[x1, . . . , xn], has a natural

Poisson algebra structure, the Poisson bracket of f, g ∈ S(g) given by:

{f, g} =

n
∑

i=1

n
∑

j=1

[xi, xj ]
∂f

∂xi

∂g

∂xj

In particular, S(g), {, } is a Lie algebra for which g is a Lie subalgebra since for any

two elements x, y ∈ g we have that {x, y} = [x, y]. Also, for all f, g, h ∈ S(g):

{f, gh} = {f, g}h+ g{f, h} (∗)

It now easily follows that the center of S(g), {, } is equal to

{f ∈ S(g) | {x, f} = 0 ∀x ∈ g}

and since {x, f} = ad x(f) this clearly coincides with Y (g) = S(g)g, the subalgebra

of invariant polynomials of S(g).

The Poisson bracket has a unique extension to the quotient field R(g) of S(g) such

that (∗) holds in R(g). It follows that R(g), {, } is a Lie algebra with center R(g)g,
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the subfield of rational invariants of R(g). R(g) is called the rational Poisson algebra

[V, p. 311].

Let A be a Poisson commutative subalgebra of S(g) (i.e. {f, g} = 0 for all f, g ∈ A).

Then it is well-known that trdegk(A) ≤ c(g). A is called complete if equality holds

and strongly complete if it is also a maximal Poisson commutative subalgebra. Ac-

cording to Sadetov there always exists a complete Poisson commutative subalgebra

of S(g) [Sa]. For example, suppose g admits a commutative polarization (CP) h.

Then S(h) is a polynomial, strongly complete subalgebra of S(g) and its quotient

field R(h) is a maximal Poisson commutative subfield of R(g) [O4, Theorem 14].

2.5 The semi-center Sy(g) of S(g)

Let λ ∈ g∗. We denote by S(g)λ the set of all f ∈ S(g) such that ad x(f) = λ(x)f

for all x ∈ g. Any element f ∈ S(g)λ is said to be a semi-invariant w.r.t. the weight

λ. We call f a proper semi-invariant if λ 6= 0. Clearly, S(g)λS(g)µ ⊂ S(g)λ+µ for all

λ, µ ∈ g∗. Let f, g ∈ S(g). If fg is a nonzero semi-invariant of S(g), then so are f

and g.

The sum of all S(g)λ, λ ∈ g∗, is direct and it is a nontrivial factorial subalgebra

Sy(g) of S(g) [D3, Mo, LO]. Moreover, it is Poisson commutative [OV, p. 308].

Any nonzero semi-invariant can be written uniquely as a product of irreducible semi-

invariants.

Suppose h ∈ R(g), h 6= 0. Then h ∈ R(g)g if and only if h can be written as a

quotient of two semi-invariants of the same weight.

Remark 2. Assume that g has no proper semi-invariants (as it is if the radical

of g is nilpotent). Then R(g)g is the quotient field of S(g)g = Y (g). In particular,

trdegkY (g) = trdegkR(g)g = i(g)

by Theorem 1. Also, g is unimodular (i.e. tr(ad x) = 0 for all x ∈ g) by [DDV,

Thm. 1.11] and its proof.

The weights of the semi-invariants of S(g) form an additive semi-group Λ(g), which

is not necessarily finitely generated [DDV, p. 322]. However, the subgroup ΛR(g) of

g∗ generated by Λ(g) is a finitely generated free abelian group [NO, Theorem 1.3],

[FJ2, p. 1519].

Next, we denote by gΛ the intersection of kerλ, λ ∈ Λ(g). gΛ is a characteristic ideal
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of g which contains [g, g]. It is called the canonical truncation of g.

Lemma 3. Let u ∈ S(g) be a nonzero semi-invariant with weight λ ∈ Λ(g). Denote

by C(u) (resp. CR(u)) the centralizer of u in S(g) (resp. R(g)). Then we have

C(u) = S(kerλ) and CR(u) = R(kerλ)

Proof. We may assume that λ 6= 0. Choose a basis x1, x2, . . . , xn of g such that

x2, . . . , xn is a basis of kerλ and such that λ(x1) = 1. Since u ∈ S(g)λ we have

{f, u} = dλ(f)u for all f ∈ S(g) [OV, p.308]. Then the first equality follows from

f ∈ C(u) ⇔ dλ(f) = 0 ⇔
∂f

∂x1

= 0 ⇔ f ∈ k[x2, . . . , xn] = S(kerλ)

Next, we take a nonzero h ∈ CR(u). We may write h = f/g for some nonzero,

relatively prime f, g ∈ S(g). From hg = f we deduce h{g, u} = {f, u} since

{h, u} = 0. Hence,

hdλ(g)u = dλ(f)u

Simplification gives

dλ(g)f = dλ(f)g

Now suppose dλ(f) 6= 0. Then f , being coprime with g, divides dλ(f), contradicting

the fact that deg dλ(f) < deg f .

Therefore dλ(f) = 0 and thus f ∈ S(kerλ). Similarly, g ∈ S(kerλ) and so h = f/g ∈

R(kerλ). Consequently, CR(u) ⊂ R(kerλ). The other inclusion is obvious. �

Using this lemma one can now apply the same approach as in [DNO, pp. 331-

334] and [MO, pp. 213-214] in order to obtain the following. In fact (1), (2), (3) do

not require for k to be algebraically closed. See also [BGR, F, FJ2, RV].

Theorem 4.

1. C(Sy(g)) = S(gΛ) and CR(Sy(g)) = R(gΛ)

2. gΛ has no proper semi-invariants and so R(gΛ)
gΛ is the quotient field of Y (gΛ).

Also trdegkY (gΛ) = i(gΛ)

3. S(g)gΛ = Y (gΛ) and R(g)gΛ = R(gΛ)
gΛ

4. c(gΛ) = c(g) (use [OV, Lemma 3.7] and [O7, Proposition 3.2])
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5. Sy(g) ⊂ Y (gΛ) = Sy(gΛ) and equality occurs if g is almost algebraic or if g is

Frobenius (i.e. i(g) = 0)

6. Suppose h is a CP-ideal of g. Then h ⊂ gΛ [EO, p. 141] and Y (gΛ) ⊂ S(h)

2.6 The fundamental semi-invariant pg

Definition 5. Put t = dim g − i(g), which is the rank of the structure matrix

B = ([xi, xj ]) ∈ Mn(R(g)), where x1, . . . , xn is an arbitrary basis of g. Assume first

that g is nonabelian. Then the greatest common divisor qg of the t × t minors in

B is a nonzero semi-invariant of S(g) [DNO, pp. 336-337]. If g is abelian we put

qg = 1. Next, let pg be the greatest common divisor of the Pfaffians of the principal

t × t minors in B. In particular, deg pg ≤ (dim g − i(g))/2. By [OV, Lemma 2.1]

p2g = qg up to a nonzero scalar multiplier. We call pg the fundamental semi-invariant

of S(g) (instead of qg as we did in [OV, p. 309]).

Remark 6. [OV, p. 307]

g is singular if and only if pg /∈ k

Example 7. Let g be a nonabelian Lie algebra with center Z(g). g is called square

integrable (SQ.I.) if i(g) = dimZ(g). For instance any Heisenberg Lie algebra is

square integrable.

Choose a basis x1, . . . , xt, xt+1, . . . , xn such that xt+1, . . . , xn is a basis of Z(g).

Then, t = dim g − dimZ(g) = dim g − i(g), which is the rank of the matrix

([xi, xj])1≤i,j≤t. By the above, its Pfaffian coincides with pg (up to a nonzero scalar).

Hence, deg pg = (dim g− i(g))/2 ≥ 1 and so g is singular. In particular, any Frobe-

nius Lie algebra g is singular.

Lemma 8. [J5, Lemma 2.3] Let g be an algebraic Lie algebra. Then pgΛ divides pg.

2.7 Frobenius Lie algebras

A Lie algebra g is called Frobenius if there is a linear functional ξ ∈ g∗ such that

the alternating bilinear Bξ(x, y) = ξ([x, y]), x, y ∈ g, is nondegenerate, i.e. i(g) = 0.

The name was suggested to us by George Seligman because of its obvious resem-

blance with the notion of an associative Frobenius algebra. They came about in

connection with Jacobson’s problem on the characterization of Lie algebras having

a primitive universal enveloping algebra. It turns out that:

U(g) is primitive if and only if Z(D(g)) = k, i.e. j(g) = 0 [O1, O2].
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In particular, U(g) is primitive if g is Frobenius and the converse holds if g is ad-

algebraic by Theorem 1.

Frobenius Lie algebras form a large class and they appear naturally in different

areas. For example many parabolic and biparabolic (seaweed) subalgebras of semi-

simple Lie algebras are Frobenius [CGM, CMW, DY, E1, E2, E3, CV, JS, PY2, O3],

including most Borel subalgebras of simple Lie algebras [EO, p. 146]. A Frobenius

biparabolic Lie algebra g satisfies interesting properties. For instance gΛ = [g, g] [J5,

Proposition 7.6], which is not true for all Frobenius Lie algebras as the following

demonstrates (this answers a question by Joseph [J5, Remark 7.6].

Example 9. Let L be the Lie algebra over k with basis x1, x2, x3, x4 and non-

vanishing brackets [x1, x3] = x3, [x1, x4] = x4, [x2, x3] = x4.

Consider its structure matrix B = ([xi, xj ]). Clearly detB = x4
4 6= 0. Hence i(L) = 0

by 2.1 and pL = x2
4.

x4 is the only irreducible semi-invariant of S(L) (see below). Its weight λ ∈ L∗ is

determined by λ(x1) = 1, λ(x2) = λ(x3) = λ(x4) = 0.

Consequently, LΛ = kerλ = 〈x2, x3, x4〉, while [L, L] = 〈x3, x4〉 (which happens to

be a CPI of L). Moreover Sy(L) = k[x4] = Y (LΛ).

We now collect some useful facts on semi-invariants from [O3, DNO]. Let g be

a Frobenius Lie algebra with basis x1, . . . , xn. Then n is even and g has a triv-

ial center. The Pfaffian Pf([xi, xj ]) ∈ S(g) is homogeneous of degree
1

2
dim g

and (Pf([xi, xj]))
2 = det([xi, xj ]) 6= 0 by 2.1. Hence pg = Pf([xi, xj ]). We put

∆(g) = det([xi, xj]) (which is well determined up to nonzero scalar multipliers).

pg is a semi-invariant with weight τ , where τ(x) = tr(ad x), x ∈ g.

Moreover, any semi-invariant of S(g) is homogeneous. It is also a semi-invariant

under the action of Der g.

Theorem 10. Let g be Frobenius. Decompose pg into a product of irreducible

factors:

pg = vm1

1 . . . , vmr

r , mi ≥ 1

Then:

(1) v1, . . . , vn are the only (up to nonzero scalars) irreducible semi-invariants of

S(g), say with weights λ1, . . . , λr ∈ Λ(g).

(2) Sy(g) = k[v1, . . . , vr] = Y (gΛ), a polynomial algebra over k.
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(3) r = dim g− dim gΛ = i(gΛ)

(4) λ1, . . . , λr are linearly independent over k. They generate the semi-group Λ(g)

and gΛ = ∩ kerλi, i = 1, . . . , r

(5) hi = kerλi is an ideal of g of index one and Y (hi) = k[vi] and R(hi)
hi = k(vi)

(6) m1λ1+. . .+mrλr = τ(∗) andm1 deg v1+. . .+mr deg vr = deg pg =
1

2
dim g(∗∗)

(7) (Joseph [J5, 2.2]) Suppose in addition that g is algebraic.

Then pgΛ = vm1−1
1 . . . vmr−1

r . In particular,

gΛ is nonsingular ⇔ mi = 1 for all i = 1, . . . , r.

Remark 11. Each semi-invariant vi is determined by its weight λi (up to a

nonzero scalar multiplier) [Indeed, suppose that also v ∈ S(g)λi
, v 6= 0. Then

vv−1
i ∈ R(g)g = k, i.e. v = avi for some nonzero a ∈ k]. Therefore λi will provide

information on vi. For example its multiplicity mi (by (∗) since λ1, . . . , λr are lin-

early independent over k), deg vi and (∗∗) can be obtained directly from (∗). To

demonstrate this we take ξ ∈ g∗reg, i.e. ξ(pg) 6= 0 (we extend ξ to an algebra endo-

morphism of S(g)) and hence also ξ(vi) 6= 0. By [O3, p. 21] there exists a unique

element xξ ∈ g such that ξ ◦ ad xξ = ξ (Nowadays xξ is called a principal element

of g). From ad xξ(vi) = λi(xξ)vi we get ξ(ad xξ(vi)) = λi(xξ)ξ(vi), which we can

rewrite as (deg vi)ξ(vi) = λi(xξ)ξ(vi) since vi is homogeneous. Simplification yields

deg vi = λi(xξ). On the other hand, τ(xξ) = tr(ad xξ) =
1

2
dim g [O3, Theorem 3.3].

Substitution in (∗) gives us (∗∗). �

2.8 The Frobenius semi-radical F (g)

Put F (g) =
∑

ξ∈g∗reg

g(ξ). This is a characteristic ideal of g containing Z(g) and for

which F (F (g)) = F (g). It can also be characterized as follows: R(g)g ⊂ R(F (g))

and if g is algebraic then F (g) is the smallest Lie subalgebra of g with this property.

Similar results hold in D(g) [O5 Proposition 2.4, Theorem 2.5] Also, F (g) ⊂ gΛ.

As a special case we have the following:

Remark 12. Y (g) ⊂ S(F (g)) (respectively Z(U(g)) ⊂ U(F (g))) and F (g) is the

smallest Lie subalgebra of g with this property in case g is an algebraic Lie algebra

without proper semi-invariants.

In case g is square integrable we notice that F (g) = Z(g) (since g(ξ) = Z(g) for all

11



regular ξ ∈ g∗) which forces R(g)g = R(Z(g)). See also Remark 38. In particular,

Y (g) = S(Z(g)), which is a polynomial algebra.

If g admits a CP h then F (g) is commutative (since F (g) ⊂ h). Clearly,

F (g) = 0 if and only if g is Frobenius

For this reason F (g) is called the Frobenius semi-radical of g. At the other end of the

spectrum we have the Lie algebras for which F (g) = g, which we call quasi-quadratic.

These are unimodular and they do not possess any proper semi-invariants. They

form a large class, which include all quadratic Lie algebras (and hence all abelian

and semi-simple Lie algebras) [O5].

3. General results

3.1 Necessary conditions for polynomiality

Theorem 13. [OV, Theorem 1.1] Let g be a Lie algebra for which the semi-center

Sy(g) is freely generated by homogeneous elements f1, . . . , fr.

Then
r
∑

i=1

deg fi ≤ c(g)

Definition 14. A Lie algebra g is called coregular if Y (g) is a polynomial algebra

over k.

Proposition 15. [OV, Proposition 1.6]. Assume that g is nonabelian, without

proper semi-invariants. If g is coregular then codim g∗sing ≤ 3.

Theorem 16. [O8, Theorem 26]. Let g be a nonabelian, algebraic, unimodular

Lie algebra such that trdegkY (g) = i(g). Suppose that g admits a CP. If g is coreg-

ular then codim g∗sing ≤ 2.

Definition 17. We say that g satisfies the Joseph-Shafrir conditions, JS for short,

if g is unimodular for which pg is an invariant and trdegkY (g) = i(g).

Note that JS is satisfied if g has no proper semi-invariants by Remark 2.

The following sum rule is an extension of [OV, Proposition 1.4].
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Theorem 18. [JS, Theorem 2.2]

Assume that g satisfies JS and that Y (g) is freely generated by homogeneous ele-

ments f1, . . . , fr. Then
r
∑

i=1

deg fi = c(g)− deg pg

Corollary 19. Assume that g satisfies JS and that Y (g) is freely generated by

homogeneous elements f1, . . . , fr. Then 3i(g) + 2 deg pg ≤ dim g + 2dimZ(g)

Moreover, equality occurs if and only if deg fi ≤ 2, i : 1, . . . , r.

Proof. Clearly r = trdegkY (g) = i(g). We apply a similar argument as in [OV,

Corollary 1.3]. The observation that deg fi ≥ 2 unless fi ∈ Z(g) combined with the

preceding theorem yields:

dimZ(g) + 2(i(g)− dimZ(g)) ≤

r
∑

i=1

deg fi =
1

2
(dim g + i(g))− deg pg

(and here equality occurs precisely when deg fi ≤ 2 for all i = 1, . . . , r)

⇔ −2 dimZ(g) + 4i(g) ≤ dim g + i(g)− 2 deg pg

⇔ 3i(g) + 2 deg pg ≤ dim g + 2dimZ(g) �

Theorem 20. Let g be unimodular, having an abelian ideal h of codimension

one. Then the following are equivalent:

(1) g is coregular and trdegkY (g) = i(g)

(2) g is coregular and ad-algebraic

(3) dim[g, g] ≤ 2

Proof. Clearly g is solvable and we may assume that g is not abelian. Then the

center Z(g) is contained in h (otherwise g = h + Z(g) which is abelian). Choose

x0 ∈ g\h and let x1, . . . , xm, xm+1, . . . , xn be a basis of h such that xm+1, . . . , xn is

a basis of Z(g). Then with respect to the basis x0, x1, . . . , xm, . . . , xn of g we have

that rank([xi, xj ]) = 2. Therefore, i(g) = dim g− 2 and c(g) = dim g− 1. So h is a

CPI of g.

We may assume that m ≥ 2 (otherwise the result is trivial). Put U = 〈x1, . . . , xm〉.

Then

g = kx0 ⊕ h = kx0 ⊕ U ⊕ Z(g)
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Because h is abelian we see that

[g, g] = [x0, h] = [x0, U ] and C(x0) = kx0 ⊕ Z(g)

where C(x0) is the centralizer of x0 in g.

So g = U ⊕ C(x0). Therefore dimC(x0) = dim g− dimU . Next, we observe that

ad x0 |U : U → [g, g], x 7→ [x0, x]

is a linear bijection. This implies that dimU = dim[g, g] and also that [x0, x1], . . . , [x0, xm]

are linearly independent and a fortiori relatively prime. Since they are the Pfaffians

of the principal 2 × 2 minors of ([xi, xj ]), their greatest common divisor is pg = 1.

We now proceed as follows:

(1) ⇒ (3):

As the JS-conditions are satisfied, we may apply the preceding corollary:

3i(g) + 2 deg pg ≤ dim g+ 2dimZ(g) < dim g + 2dimC(x0)

Hence, 3(dim g− 2) < dim g+ 2(dim g− dim[g, g])

Consequently, dim[g, g] < 3.

(3) ⇒ (2):

So, suppose dim[g, g] ≤ 2. Clearly we may assume that g is indecomposable. This

implies that Z(g) ⊂ [g, g] (otherwise there is a z ∈ Z(g) such that z /∈ [g, g].

But then we could split off the abelian Lie algebra kz). Hence, dimZ(g) ≤ 2 and

dimU = dim[g, g] ≤ 2. Thus dim g ≤ 5. We now distinguish two cases

(i) ad x0 is not nilpotent

Decompose h into the generalized weight spaces w.r.t. ad x0:

h = ho ⊕ hλ1 ⊕ . . .⊕ hλq , λi ∈ k\{0}

Hence, hλ1 ⊕ . . .⊕ hλq ⊂ [x0, h] = [g, g]. Put mi = dim hλi.

Then m1+ . . .+mq ≤ dim[g, g] ≤ 2. On the other hand, since g is unimodular,

m1λ1 + . . .+mqλq = tr(ad xo) = 0

This forces q = 2, m1 = m2 = 1 and λ2 = −λ1.

So, hλ1
⊕ h−λ1

= hλ1 ⊕ h−λ1 = [g, g]. In particular, Z(g) = 0

and [g, g] = U = h. Choose nonzero y1 ∈ hλ1
, y2 ∈ h−λ1

and put y0 = (1/λ1)x0.

Then, y0, y1, y2 is a basis for g with nonzero brackets: [y0, y1] = y1, [y0, y2] =

−y2. Clearly g is algebraic and also coregular since Y (g) = k[y1y2].
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(ii) ad x0 is nilpotent.

In this case g is nilpotent and thus algebraic. Consulting [D2, O7], the

following are the only indecomposable nilpotent Lie algebras of dimension

at most 5 having a commutative ideal of codimension one and such that

dim[g, g] ≤ 2 : g3, g4, g5,2, which are all coregular.

(2) ⇒ (1): Denote by Q(Y (g)) the quotient field of Y (g).

It suffices to show that Q(Y (g)) = R(g)g(•), because then we obtain at once that

trdegkY (g) = trdegkR(g)g = i(g)

by Theorem 1 since g is ad-algebraic.

Let ad xo = S + N be the Jordan decomposition of ad x0, with S and N its semi-

simple and nilpotent components. As g is ad-algebraic we can find s, y ∈ g such

that S = ad s and N = ad y.

We distinguish 2 cases:

a) ad s(h) 6= 0, i.e. s /∈ h. Then we replace x0 by a suitable nonzero scalar

multiple of s, which is diagonalizable with integer eigenvalues having zero

sum. By the same argument as in the proof of [O8, Example 28] we obtain

(•).

b) ad s(h) = 0. Then ad y(h) 6= 0 (since ad x0(h) 6= 0), i.e. y /∈ h. Then we

replace x0 by y. It follows that g is nilpotent for which (•) is well known (since

g has no proper semi-invariants). �

Remark 21. A more direct approach for the implication (2) ⇒ (3) goes as follows.

By assumption g is nonabelian, unimodular, coregular and ad-algebraic. As above

it then also satisfies trdegkY (g) = i(g). Moreover h is a CP of g. Next, we observe

that

g∗sing = {ξ ∈ g∗ | ξ([x0, xi]) = 0, i = 1, . . . , m}

Then, dim[g, g] = m = codim g∗sing ≤ 2 by Theorem 16. �

Remark 22. In the list of all indecomposable nilpotent Lie algebras of dimen-

sion at most seven [O7,O8] there are only 6 Lie algebras with an abelian ideal of

codimension one and with dim[g, g] > 2, namely 8, 25, 156, 157, 158, 159. None of

these is coregular as predicted by Theorem 20.

Examples 24-26 show that none of the conditions such as unimodular, algebraic and
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trdegkY (g) = i(g) can be removed from Theorem 18 and Corollary 19. In all, except

for Example 26, h = 〈x2, x3, x4〉 is an abelian ideal of codimension one.

Example 23. Let g be the solvable Lie algebra with basis x1, x2, x3, x4 and

with nonzero brackets

[x1, x2] = x2, [x1, x3] = x3, [x1, x4] = −2x4

Clearly, g is unimodular, algebraic and dim[g, g] = 3 > 2. Hence g is not coregular

by Theorem 20 (see also [JS, 8.4] and [O8, Example 28]). This can also be seen

directly.

Indeed, Y (g) = k[f1, f2, f3] where f1 = x2
2x4, f2 = x2

3x4, f3 = x2x3x4 with f1f2 = f 2
3 .

In particular, Y (g) is not factorial. Note that Sy(g) = k[x2, x3, x4], which is poly-

nomial, and R(g)g = k(f1, f3). So trdegk(Y (g) = 2 = i(g) while pg = 1. Thus JS is

satisfied. Finally, codim g∗sing = 3.

Example 24.

Let g be the Lie algebra with basis x1, x2, x3, x4 and nonzero brackets

[x1, x2] = x2, [x1, x3] = x3, [x1, x4] = −x4

Clearly, g is algebraic, but not unimodular. Also, pg = 1 and Z(g) = 0. Put

f1 = x2x4 and f2 = x3x4. Then Y (g) = k[f1, f2], so g is coregular and trdegkY (g) =

2 = i(g). Moreover,

Sy(g) = k[x2, x3, x4] and R(g)g = k(f1, f2)

However,

deg f1 + deg f2 = 4 > 3 = c(g)− deg pg

3i(g) + 2 deg pg = 6 > 4 = dim g+ 2dimZ(g)

and dim[g, g] = 3 > 2.

Example 25.

Let g be the Lie algebra with basis x1, x2, x3, x4 and nonzero brackets

[x1, x2] = x2 + x3, [x1, x3] = x3, [x1, x4] = −2x4

g is unimodular, but not algebraic (not even almost algebraic).

Again, pg = 1 and Z(g) = 0. g is coregular since Y (g) = k[x2
3x4].
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However, trdegkY (g) = 1 < 2 = i(g). Clearly,

Sy(g) = k[x3, x4] and R(g)g = k(x2
3x4)

In particular, j(g) = 1 < i(g). Also,

3i(g) + 2 deg pg = 6 > 4 = dim g+ 2dimZ(g)

and dim[g, g] = 3 > 2. Finally, we notice that gΛ = 〈x2, x3, x4〉 = F (g) and

Sy(g) 6= k[x2, x3, x4] = Y (gΛ).

Example 26.

Consider the 9-dimensional solvable Lie algebra g with basis x0, x1, . . . , x8 and

nonzero brackets

[x0, x1] = 5x1, [x0, x2] = 10x2, [x0, x3] = −13x3, [x0, x4] = −8x4,

[x0, x5] = −3x5, [x0, x6] = 2x6, [x0, x7] = 7x7, [x1, x3] = x4,

[x1, x4] = x5, [x1, x5] = x6, [x1, x6] = x7, [x2, x3] = x5, [x2, x4] = x6, [x2, x5] = x7.

Then, g is algebraic and unimodular with codim g∗sing = 3. In particular, pg = 1.

g is coregular since Y (g) = k[x8], but trdegkY (g) = 1 < 3 = i(g).

Note that c(g) = 6 and deg x8 = 1 < 6 = c(g)− deg pg.

So the sum rule fails in these circumstances. Furthermore, gΛ = 〈x1, . . . , x8〉. By

(5) of Theorem 4 and [DDV, p.323]

Sy(g) = Y (gΛ) = k[x7, x8, f, g, h]

where

f = 3x4x
2
7 − 3x5x6x7 + x3

6

g = 4x3x
2
7 − 2x2

5x
2
7 − 4x4x6x

2
7 + 4x5x

2
6x7 − x4

6

h = (f 4 + g3)/x3
7

Hence Sy(g) is not polynomial. Note that gΛ is isomorphic to a central exten-

sion of the nilpotent Lie algebra with number 152 of [O8, p.109]. Finally, R(g)g =

k(x8, f
4g−3, fgx−2

7 ) and F (g) = 〈x3, x4, x5, x6, x7, x8〉 which is a CPI of g.

Remark 27. The preceding example is a central extension of example (58) of

[DDV, p.322], which turned out to be a counterexample to Bolsinov’s completeness

criterion for Mishchenko-Fomenko subalgebras [O8, Counterexample 20]. Inspired
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by this, Bolsinov obtained an interesting and useful adaptation of his original crite-

rion by considering an alternative definition for Mishchenko-Fomenko subalgebras

[Bo]. See also [JS, Theorem 7.2].

Let g be a semi-simple Lie algebra, B a Borel subalgebra of g. Then it is well

known that the nilradical of B is coregular [J2, 4.7], see also Corollary 32. An

example by A. Hersant shows that a similar result does not hold in general if we

replace B by an arbitrary parabolic subalgebra of g [J2, 8.5].

We will now give a short proof of an extension of this example.

Proposition 28.

Let N be the nilradical of the parabolic subalgebra P of type (1, 1, n − 2) inside

sl(n), with n ≥ 3. Then

N is coregular ⇔ n ≤ 4 ⇔ i(N) ≤ 3

Proof.

Let (Eij), i, j = 1, . . . , n, be the standard basis for gl(n). Then

{E12, E13, . . . , E1n;E23, . . . , E2n}

is a basis for N (so dimN = 2n− 3), with nonzero brackets

[E12, E23] = E13, [E12, E24] = E14, . . . , [E12, E2n] = E1n

Clearly, [N,N ] = 〈E13, E14, . . . , E1n〉 and dim[N,N ] = n− 2.

N admits an abelian ideal of codimension one, namelyH = 〈E13, . . . , E1n;E23, . . . , E2n〉.

N , being nilpotent, is ad-algebraic and i(N) = 2n− 5.

By Theorem 20:

N is coregular ⇔ dim[N,N ] ≤ 2 ⇔ n ≤ 4 ⇔ i(N) ≤ 3

�

3.2 Sufficient conditions for polynomiality

We exhibit some methods which will be used in sections 4 and 5. The first one is

very efficient for proving coregularity, provided one has candidates for the generat-

ing invariants. It is an extension of [PPY, Theorem 1.2]. See also [Pa2, Theorem 1.2].
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Theorem 29. [JS, 5.7], [Sh]

Assume that f1, . . . , fr ∈ Y (g), r = i(g), are algebraically independent homogeneous

invariants such that
r
∑

i=1

deg fi ≤ c(g))− deg pg

Then, equality holds and Y (g) = k[f1, . . . , fr]. In particular, trdegkY (g) = i(g).

Theorem 30. [O7, Theorem 3.5] (The Frobenius method).

Let g be a finite dimensional Lie algebra over k. Assume that there exists a torus

T ⊂ Derg (i.e. an abelian subalgebra consisting of semi-simple derivations of g)

such that the semi-direct product L = T ⊕ g is Frobenius. Let f1, . . . , fr be the

irreducible factors of pL (equivalently of ∆(L)). Then the following hold:

(1) Sy(g) = Sy(L) = Y (LΛ) = k[f1, . . . , fr], a polynomial algebra.

(2) dimT = i(g) and r = i(LΛ) = dimL− dimLΛ.

(3) Λ(g) = {λ |g| λ ∈ Λ(L)} and gΛ = g ∩ LΛ

(4) If g has no proper semi-invariants (i.e. g = gΛ) then g = LΛ and

Y (g) = k[f1, . . . , fr]

Remark 31. Although this method does not always work, it has some significant

advantages. First of all it is relatively simple: it comes down to showing that the

determinant ∆(L) of the structure matrix of L is not zero. In addition, there is no

need to have prior knowledge of candidates for the generating (semi-) invariants. In

fact, we get them as a bonus since they are precisely the irreducible factors of the

determinant above (or equivalently of pL). This method works rather well if g is

nilpotent. It will also be useful in sections 4 and 5. In [O7,O8] the Poisson center

has been determined explicitly for the 159 cases of the indecomposable nilpotent Lie

algebras of dimension at most seven (here a family is counted as one Lie algebra).

It turns out that 132 of them are coregular. Among the latter, 67 Lie algebras were

treated successfully with this method [O7, 5].

Corollary 32. See also [J2, 4.7]. Let g be a simple Lie algebra with triangular

decomposition g = N− ⊕ H ⊕ N . Then the nilradical N of the Borel subalgebra

B = H ⊕N is coregular.
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Proof. There exists a torus T ⊂ adNH ⊂ DerN such that the semi-direct product

L = T ⊕N is Frobenius. Hence Y (N) is polynomial by (4) of Theorem 30. Indeed,

in case g is not of type An, n ≥ 2; D2t+1, t ≥ 2; or E6 then it suffices to take

T = adNH because then T ⊕N = B, which is Frobenius (for more details see [O7,

Corollary 3.6]). The existence of T if g is of type An is easy to verify. The remaining

cases were done by Rupert Yu (unpublished). �

Question 33. (Rupert Yu)

Suppose g is a Lie algebra for which there exists a derivation d ∈ Derg such that the

semidirect product L = kd⊕ g is Frobenius. Does this imply that Sy(g) = Sy(L) ?

We know this is true if d is diagonalizable by Theorem 30. However the follow-

ing is a counterexample for the general case.

Example 34. Let g be the 5-dimensional Lie algebra with basis x1, . . . , x5 and

nonzero brackets: [x1, x3] = x3 − x4, [x1, x4] = x4, [x1, x5] = x5, [x2, x3] = x5.

g is solvable of index one, but it is not almost algebraic. One verifies that

Y (g) = k, Sy(g) = k[x4, x5] and R(g)g = k(x4/x5)

Note that trdegkY (g) = 0 < 1 = i(g). Also, j(g) = i(g).

Next we take the derivation d ∈ Der g given by

d(x1) = −x2, d(x2) = 0, d(x3) = x4, d(x4) = x5, d(x5) = 0

Clearly d is nilpotent. Consider L = kd⊕ g. Then, ∆(L) = x6
5 6= 0.

Hence L is Frobenius and Sy(L) = k[x5] (by Theorem 30), which does not coincide

with Sy(g).

Definition 35. Y (g) is said to be saturated if for some nonzero u, v ∈ S(g),

uv ∈ Y (g) implies that so are u and v. In particular, Y (g) is factorial. Note that

the condition u, v ∈ S(g) may be replaced by u, v ∈ Sy(g) because uv ∈ Y (g) im-

plies that u and v are semi-invariants and thus belong to Sy(g).

We now recall when Sy(g) is a polynomial ring over Y (g). Clearly, in order for this

to happen Y (g) must be saturated.

Theorem 36. [DNOW, Theorem 6]

Assume that
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(i) R(g)g = Q(Y (g)), the quotient field of Y (g).

(ii) Y (g) is saturated.

Then the following hold:

(1) S(g) has at most a finite number of irreducible proper semi-invariants v1, . . . , vt.

Let λ1, . . . , λt ∈ Λ(g) be their weights.

(2) S(g)λi
= Y (g)vi, i = 1, . . . , t.

(3) Each vi is a semi-invariant for all derivations d ∈ Der g.

(4) Sy(g) = Y (g)[v1, . . . , vt], a polynomial ring over Y (g). In particular, if Y (g)

is polynomial over k, then the same holds for Sy(g). [We don’t know if the

converse holds. It is a special case of the Zariski cancellation problem. For the

general question Susumu Oda claims to have a proof [Oda], but some experts

are skeptical]

We now look at a special case of Theorem 36.

Theorem 37. [DNOW, Proposition 16 and Theorem 18] Let x1, . . . , xs, xs+1, . . . , xn

be a basis such that x1, . . . , xs is a basis of Z(g). Let E1, . . . , Em be a basis of the

algebraic hull H of ad g. Then the following conditions are equivalent:

(1) j(g) = dimZ(g) (i.e. g[ξ] = Z(g)) for some ξ ∈ g∗)

(2) R(g)g = R(Z(g))

(3) Z(D(g)) = D(Z(g)) = k(x1, . . . , xs), a rational extension of k.

(4) The localization U(g)S , where S = U(Z(g))\{0}, is primitive.

Moreover, these conditions imply that:

(a) Y (g) = S(Z(g)) = k[x1, . . . , xs], which is saturated.

(b) S(g) admits at most a finite number of irreducible, proper semi-invariants

v1, . . . , vt.

(c) Sy(g) = Y (g)[v1, . . . , vt] = k[x1, . . . , xs, v1, . . . , vt], a polynomial algebra over

k.
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(d) v1, . . . , vt are precisely the irreducible factors, not in Y (g), of p′g ∈ S(g), the

latter being the greatest common divisor of the r × r minors of the m × n

matrix (Eixj), where

r = rank(Eixj) = dim g− dimZ(g)

Remark 38. Suppose g is square integrable, i.e. i(g) = dimZ(g) which forces

j(g) = dimZ(g). So, the above conditions are satisfied and we may replace the

matrix (Eixj) by the structure matrix ([xi, xj ]) of g. Consequently vi, . . . , vt are

then precisely the irreducible factors, not in Y (g), of pg.

Example 39. Let g be the 4-dimensional Lie algebra with basis x1, x2, x3, x4

and nonzero brackets [x1, x2] = x2 + x3, [x1, x3] = x4.

Clearly, i(g) = 2, Z(g) = 〈x4〉 and pg = 1.

dimZ(g) = 1 < i(g), so g is not square integrable. Obviously, in this situation pg

is useless in order to compute the remaining semi-invariants. Next, we introduce

E1, E2 ∈ Der g as follows:

E1(x1) = 0, E1(x2) = x2 + x2 + x4, E1(x3) = E1(x4) = 0

E2(x1) = 0, E2(x2) = −x4, E2(x3) = x4, E2(x4) = 0.

In fact, E1 and E2 are the semi-simple and nilpotent components of ad x1.

Hence they belong to the algebraic hull H of ad g. One verifies that

E1, E2, E3 = ad x2, E4 = ad x3

form a basis of H . We now observe the matrix (Eixj):

x1 x2 x3 x4

E1 0 x2 + x3 + x4 0 0

E2 0 −x4 x4 0

E3 −x2 − x3 0 0 0

E4 −x4 0 0 0

which is of rank 3. By Theorem 1

trdegkR(g)g = j(g) = dim g− rank (Eixj) = 1.

Since j(g) = 1 = dimZ(g) we can apply Theorem 37. Hence,

Y (g) = k[x4] and R(g)g = k(x4)
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Furthermore, the matrix (Eixj) has only 2 nonzero 3× 3 minors, namely

−x4(x2 + x3)(x2 + x3 + x4) and − x2
4(x2 + x3 + x4)

Their greatest common divisor is p′g = x4(x2 + x3 + x4). By (c) of Theorem 37 we

may conclude that

Sy(g) = Y (g)[x2 + x3 + x4] = k[x4, x2 + x3 + x4]

4. Coregularity for Lie algebras with index at most two

Motivation: Due to Corollary 19 there are not many nonabelian, coregular Lie

algebras with a large index. This is especially true if the index is maximal (Propo-

sition 40 and Corollary 41). On the other hand, we will encounter quite a few Lie

algebras for which the coregularity implies that their index is at most two (Propo-

sition 42, Proposition 50, Theorem 51, subsection 5.1).

Proposition 40

Assume that g is an indecomposable Lie algebra which satisfies JS and for which

i(g) = dim g − 2. If g is coregular then either g = sl(2, k) or g is solvable with

dim g ≤ 6.

Proof. First we notice that Z(g) ⊂ [g, g] as g is indecomposable. Next we claim

that dimZ(g) ≤
1

2
dim g.

Indeed, take ξ ∈ g∗reg. Then the stabilizer g(ξ) is abelian [D6, 1.11.7] of dimension

i(g) = dim g− 2 and Z(g) ⊂ g(ξ). There exists a basis

x1, x2, x3, . . . , xp, xp+1, . . . , xn of g such that x3, . . . , xn is a basis of g(ξ) and xp+1, . . . , xn

is a basis of Z(g). It suffices to show that dim[g, g] ≤ p, because then

2 dimZ(g) ≤ dim[g, g] + dimZ(g) ≤ p+ dimZ(g) = dim g

Clearly, [x1, x2] 6= 0 and the structure matrix M = ([xi, xj])1≤i,j≤n of g has rank

r = n− i(g) = 2.

We may assume that [x1, x3] 6= 0 and that p > 3 (if p = 3 then dim[g, g] =

dim〈[x1, x2], [x1, x3], [x2, x3]〉 ≤ 3 = p). This implies that the following submatrix A

of M has rank one (otherwise rank M = 4)

A =





[x1, x3] . . . [x1, xp]

[x2, x3] . . . [x2, xp]
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Using the fact that its nonzero entries have degree one, it is not difficult to see that

we have to consider the following two cases:

(1) Each column of A is a scalar multiple of the first one. Then,

dim[g, g] = dim〈[x1, x2], [x1, x3], [x2, x3]〉 ≤ 3 < p

(2) The second row of A is a scalar multiple of the first one. Then,

dim[g, g] = dim〈[x1, x2], [x1, x3], . . . , [x1, xp]〉 ≤ p

This establishes the claim.

Application of Corollary 19 gives us:

3(dim g− 2) = 3i(g) ≤ dim g + 2dimZ(g) ≤ 2 dim g

Consequently, dim g ≤ 6. Hence g is solvable or g = sl(2, k) (otherwise i(g) <

dim g− 2 by [AOV2, pp. 554-559] or by subsection 5.1). �

Corollary 41. Suppose g is an indecomposable nilpotent Lie algebra with i(g) =

dim g− 2. If g is coregular then by the above and [O7, 5] g is isomorphic to one of

the following:

g3, g4, g5,2, g5,4, g6,3

Proposition 42. Assume that g satisfies JS with dimZ(g) ≤ 1. If g is coregular

then i(g) is 1 or 2 in each of the following cases:

(1) 7 6= dim g ≤ 8

(2) dim g = 7 and g is singular

(3) dim g = 9 or 10 and deg pg ≥ 2

Proof. Again the main tool will be Corollary 19. Being unimodular, g is not

Frobenius [O3, Theorem 3.3]. Hence, i(g) ≥ 1.

(1) First we suppose dim g (and hence also i(g)) is even. Then

3i(g) ≤ 3i(g) + 2 deg pg ≤ dim g+ 2dimZ(g) ≤ 10

implies that i(g) = 2.

On the other hand, if dim g (and hence also i(g)) is odd, then

3i(g) ≤ 3i(g) + 2 deg pg ≤ dim g + 2dimZ(g) ≤ 7

forces i(g) = 1.
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(2) By assumption dim g = 7 and deg pg ≥ 1 since g is singular. Hence,

3i(g) < 3i(g) + 2 deg pg ≤ dim g + 2dimZ(g) ≤ 9

and thus i(g) = 1.

(3) follows at once from deg pg ≥ 2 and

3i(g) + 2 deg pg ≤ dim g + 2dimZ(g) ≤ 12

�

Proposition 43. Let g be a Lie algebra with j(g) ≤ 1 (as it is when i(g) ≤ 1).

(a) If j(g) = 0 then Z(g) = 0. By Theorem 37

Y (g) = k, R(g)g = k and Sy(g) is polynomial.

(b) Let j(g) = 1 (in particular trdegkR(g)g = 1) and suppose Y (g) 6= k. Choose

a homogeneous element v ∈ Y (g)\k of smallest degree. Then by [O3, Lemma

3.8], Y (g) = k[v] and R(g)g = k(v). Now, assume in addition that Y (g)

is saturated. Then v is irreducible and by Theorem 36 there are irreducible

semi-invariants v1, . . . , vt in S(g) such that

Sy(g) = Y (g)[v1, . . . , vt] = k[v, v1, . . . , vt]

which is a polynomial algebra. �

Now we need to recall a special case of a result by Dixmier [D1, p. 333]:

Theorem 44. Let g be a nilpotent Lie algebra and let

0 = g0 ⊂ g1 . . . ⊂ gn = g

be a sequence of ideals of g such that for each j : 1, . . . , n, dim gj = j and [g, gj ] ⊂

gj−1. Choose xj ∈ gj\gj−1. Suppose j1 < j2 < . . . < jr are the indices j ≥ 1 such

that

S(gj−1) ∩ Y (g)
⊂

6= S(gj) ∩ Y (g)

(1) Then for each such j there is a nonzero element bj ∈ S(gj−1) ∩ Y (g) and

cj ∈ S(gj−1) such that aj = bjxj + cj ∈ S(gj) ∩ Y (g).
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In (2), (3), (4) aj, bj , cj are chosen to satisfy (1).

(2) Y (g) ⊂ k[aj1 , . . . , ajr , b
−1
j1
, . . . , b−1

jr
]

(3) R(g)g is the quotient field of Y (g). It is the field generated by aj1, . . . , ajr ,

which are algebraically independent over k. In particular, r = i(g).

(4) Y (g) ⊂ k[aj1 , . . . , ajr , a
−1] for some nonzero a ∈ k[aj1 , . . . , ajr ]

Theorem 45.

Any nilpotent Lie algebra g with i(g) ≤ 2 is coregular.

Proof. We observe that

1 ≤ dimZ(g) ≤ i(g) ≤ 2

If dimZ(g) = i(g) then g is square integrable and therefore Y (g) = S(Z(g)) which

is polynomial by Remark 38 (or section 2.8). So it suffices to deal with the case

where dimZ(g) = 1 and i(g) = 2. (hence dim g is even)

Choose a sequence of ideals

0 = g0 ⊂ g1 ⊂ . . . ⊂ gn = g

with the same properties as in Theorem 44. In particular, x1, . . . , xn is a basis of g

with xi ∈ gi\gi−1, i = 1, . . . , n. Note that g1 = 〈x1〉 = Z(g). So,

x1 ∈ S(g1) ∩ Y (g) = k[x1], but x1 /∈ S(g0) ∩ Y (g) = k

Since i(g) = 2 there is only one more j > 1 such that

S(gj−1) ∩ Y (g)⊂
6=
S(gj) ∩ Y (g)

and there is a nonzero.

b ∈ S(gj−1) ∩ Y (g) = S(g1) ∩ Y (g) = k[x1] and c ∈ S(gj−1)

such that

a = bxj + c ∈ S(gj) ∩ Y (g)

by Theorem 44. We may assume that a is of smallest degree with these properties.

Clearly the homogeneous components of a also belong to S(gj)∩ Y (g). Among them

we let f be a homogeneous component not contained in S(gj−1) ∩ Y (g) = k[x1].

Note that deg f = deg a. Then up to a nonzero scalar multiplier:
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f = xm
1 xj + u for some m and homogeneous u ∈ S(gj−1) of degree m+ 1.

Clearly u 6= 0 (otherwise xm
1 xj ∈ Y (g) and hence xj ∈ Z(g) = g1, contradiction)

Also, m ≥ 1 (if m = 0 then u ∈ gj−1 and f = xj + u ∈ Z(g) = g1 = 〈x1〉, contradic-

tion).

Moreover, u is not divisible by x1 (otherwise f/x1, which belongs to S(gj) ∩ Y (g)

but not to S(gj−1) ∩ Y (g) = k[x1], would be of a smaller degree than f , contradic-

tion).

Claim. Suppose we have an element f = xm
1 xj + u ∈ Y (g) with m ≥ 1, j > 1

and nonzero homogeneous u ∈ S(gj−1) of degree m + 1 and not divisible by x1.

Then Y (g) = k[x1, f ], which is polynomial.

First we see that f ∈ S(gj) ∩ Y (g), xm
1 ∈ S(gj−1) ∩ Y (g) = k[x1] and u ∈ S(gj−1).

By Theorem 44, x1 and f are algebraically independent over k and

Y (g) ⊂ k[x1, f, x
−m
1 ] ⊂ k[x1, f, x

−1
1 ]

So, it suffices to show that Y (g) = k[x1, f ] (∗). For this we need the following lem-

mas:

Lemma A: Let P ∈ k[X ] be a polynomial. If x1 divides P (f) then P = 0 and so

P (f) = 0.

Proof. Let I be the ideal of S(L) generated by x1. We identify the quotient

algebra by k[x2, . . . , xn]. Denote by f1 and u1 the canonical images of f and u. By

assumption we obtain P (u1) = P (f1) = 0.

But u1 ∈ k[x2, . . . , xn] is nonzero (as x1 does not divide u) of degree m+ 1. Conse-

quently, P = 0 and P (f) = 0. �

Lemma B. Let q ∈ S(g) be such that x1q ∈ k[x1, f ]. Then also q ∈ k[x1, f ].

Proof. By assumption there are hi ∈ k[f ] such that, for some r

x1q = xr
1hr + . . .+ x2

1h2 + x1h1 + h0

Clearly, x1 divides h0, which implies that h0 = 0 by Lemma A. Consequently,

q = xr−1
1 hr + . . .+ x1h2 + h1 ∈ k[x1, f ]
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We can now show (∗) as follows:

Take q ∈ Y (g) ⊂ k[x1, f, x
−1
1 ], i.e. xt

1q ∈ k[x1, f ] for some t.

By applying Lemma B t times we may conclude that q ∈ k[x1, f ]. Therefore

Y (g) ⊂ k[x1, f ]. The other inclusion is obvious.

Finally, we provide a formula for deg f . First, c(g) =
1

2
(dim g+ i(g)) =

n

2
+1. Then,

by Theorem 18:

deg x1 + deg f = c(g)− deg pg =
n

2
+ 1− deg pg

Consequently, deg f =
n

2
− deg pg (in particular, deg f =

n

2
if g is nonsingular) �

Remark 46. Yakimova has informed us that Theorem 45 can also be derived

from a result of Michel Brion on linear actions of unipotent groups [Br].

Remark 47. Theorem 45 fails if

(1) the condition on i(g) is replaced by i(g) = 3.

Indeed, the standard filiform Lie algebra g5,5 has index 3, but is not coregular

[O7, p. 1304]. This was already known by Dixmier [D2, Proposition 2].

(2) nilpotent is replaced by solvable.

Indeed, Example 23 is solvable of index 2, but it is not coregular.

Question 48. Let g be nilpotent with i(g) ≤ dimZ(g) + 1. Does this imply that g

is coregular ?

This is true for all indecomposable nilpotent Lie algebras of dimension at most seven

[O7, O8].

We will now examine the coregularity of the major types of filiform Lie algebras,

presented in [GK1, p.41].

Definition 49.

Consider the descending central series of g

C ′(g) = g, C2(g) = [g, g], . . . , C i(g) = [g, C i−1(g)], . . .
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An n-dimensional Lie algebra g is called filiform if dimC i(g) = n− i, i = 2, . . . , n.

In particular, Cn(g) = 0 (and thus g is nilpotent) and Z(g) = Cn−1(g) is 1-

dimensional.

Combining Proposition 42 with Theorem 45 yields:

Proposition 50. Let g be an 8-dimensional filiform Lie algebra. Then

g is coregular ⇔ i(g) = 2

Theorem 51. Let g be an n-dimensional filiform Lie algebra. Then

(1) If g is of type Qn or Wn then i(g) ≤ 2, so g is coregular.

(2) If g is of type Ln or Rn then

g is coregular ⇔ i(g) ≤ 2

Proof.

(1) a) Suppose g is of type Qn.

Basis of g : x1, . . . , xn, n = 2q.

Nonzero brackets: [x1, xi] = xi+1, i = 2, . . . , n−2 and [xj , xn−j+1] = (−1)j+1xn,

j = 2, . . . , q.

We observe that

i(g) = 2, Z(g) = 〈xn〉, pg = xq−2
n

So, g is coregular by Theorem 45. Next put

f = 2x1xn + (−1)q+1x2
q+1 + 2

q
∑

i=3

(−1)ixixn−i+2 ∈ Y (g)

which satisfies the conditions of the claim in the proof of Theorem 45. There-

fore Y (g) = k[xn, f ].

As an alternative solution we can use the Frobenius method:

Consider the torus T = 〈t1, t2〉 ⊂ Der g, where

t1 = diag(0, 1, 1, . . . , 1, 2), t2 = diag(1, 1, 2, 3, . . . , n− 2, n− 1)
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see [R, p.4]. Then the semi-direct product L = T ⊕ g is Frobenius. Indeed,

∆(L) = xn−2
n f 2 6= 0. Hence pL = xq−1

n f

By (4) of Theorem 30:

Y (g) = Sy(L) = k[xn, f ]

since g is nilpotent (and hence has no proper semi-invariants) and so g = LΛ.

b) Suppose g is of type Wn

Basis: x1, . . . , xn

Nonzero brackets: [xi, xj ] = (j − i)xi+j , i < j and i+ j ≤ n

b1) n = 2q + 1. Then Z(g) = 〈xn〉 and dimZ(g) = 1 = i(g), i.e. g is square

integrable. Consequently, Y (g) = k[xn] by Remark 38.

b2) n = 2q. Then i(g) = 2 and thus g is coregular by Theorem 45.

For example, if n = 8 then Y (g) = k[x8, f ] where

f = 64x4x
3
8 − 16x2

6x
2
8 − 32x5x7x

2
8 + 24x6x

2
7x8 − 5x4

7

(2) i) Suppose g is of type Ln, the standard filiform Lie algebra,

Basis : x1, . . . , xn, n ≥ 3

Nonzero brackets: [x1, xi] = xi+1, i = 2, . . . , n− 1.

Clearly, i(g) = n − 2 and h = 〈x2, . . . , xn〉 is an abelian ideal of codimension

one of g. Also, [g, g] = 〈x3, . . . , xn〉 and dim[g, g] = n− 2.

By Theorem 20:

g is coregular ⇔ dim[g, g] ≤ 2 ⇔ n ≤ 4 ⇔ i(g) ≤ 2

See also [OV, Example 1.7] and [O8, Example 27].

[The Lie algebras 1,2,8,25,159 of [O7, O8] are of this type].

ii) Suppose g is of type Rn.

Basis: x1, . . . , xn, n ≥ 5.

Nonzero brackets: [x1, xi] = xi+1, i = 2, . . . , n − 1; [x2, xj ] = xj+2, j =

3, . . . , n− 2.

Since i(g) = n− 4, it suffices to show that

g is coregular ⇔ n ≤ 6
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First suppose g is coregular. Note that c(g) =
1

2
(n + n − 4) = n − 2. Then

h = 〈x3, x4, . . . , xn〉 is an (n− 2)-dimensional abelian ideal of g and so is a CP

of g. Next, it is not difficult to see that

g∗sing = {f ∈ g∗ | f(x5) = . . . = f(xn) = 0}

Hence, codim g∗sing = n− 4. By Theorem 16 codim g∗sing ≤ 2, i.e. n ≤ 6.

Conversely, if n ≤ 6 then i(g) ≤ 2 and so g is coregular by Theorem 45. [The

Lie algebras 6,27,151 of [O7, O8] are of this type] �

Remark. There are coregular filiform Lie algebras of index larger than 2. For

instance the Lie algebra 106 of [O8, p.104].

Theorem 52. Let g be a quadratic Lie algebra. Then g is coregular if one of

the following conditions is satisfied:

(i) [g, g] 6= g and i(g) = 2

(ii) g is nilpotent and i(g) = 3

Proof.

(i) Since i(g) = 2 we have that n = dim g is even and c(g) =
n + 2

2
=

n

2
+ 1.

We may assume that n ≥ 4. g being quadratic, admits a nondegenerate,

symmetric, invariant bilinear form b (such a Lie algebra is sometimes called

regular quadratic) [FS]. It is easy to verify that w.r.t. b we obtain that

Z(g) = [g, g]⊥ 6= 0 since [g, g] 6= g

g is a fortiori quasi quadratic (2.8), i.e.

g = F (g) =
∑

ξ∈g∗reg

g(ξ)

In particular, g(ξ) 6= g(η) for some ξ, η ∈ g∗reg, which we extend to algebra

endomorphisms of S(g). Both g(ξ) and g(η) contain Z(g) and are of dimen-

sion i(g) = 2. It follows that dimZ(g) = 1. Hence, we can find a basis

x1, x2, . . . , xn−1, xn of g such that

g(ξ) = 〈xn−1, xn〉, g(η) = 〈x1, xn〉 and Z(g) = 〈xn〉
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By 2.1 the rank r of the structure matrix M = ([xi, xj ]) is given by

r = dim g− i(g) = n− 2

Clearly, 〈x1, . . . , xn−2〉 ⊕ g(ξ) = g.

Next, we consider the r × r submatrix A = ([xi, xj ])1≤i,j≤n−2 with Pfaffian

p ∈ S(g). Then ξ(p) 6= 0, indeed

ξ(p)2 = ξ(p2) = ξ(detA) = det(ξ([xi, xj ]) 6= 0

since ξ is regular. Similarly, we observe that

〈x2, . . . , xn−1〉 ⊕ g(η) = g

We put B = ([xi, xj])2≤i,j≤n−1 with Pfaffian q ∈ S(g). As before we get

η(q) 6= 0. On the other hand, η(p) = 0 because

η(p)2 = η(p2) = η(detA) = det(η([xi, xj ])1≤i,j≤n−2) = 0

since the first row of the matrix is

(η([x1, x1]), η([x1, x2]), . . . , η([x1, xn−2]))

which is zero because x1 ∈ g(η).

Consequently, p and q are principal r × r Pfaffians of the structure matrix

M of g of the same degree, namely
n− 2

2
=

n

2
− 1. By the above p is not a

scalar multiple of q. The fundamental semi-invariant pg, being the GCD of all

principal r × r Pfaffians (Definition 5), divides both p and q. Therefore,

deg pg ≤ (
n

2
− 1)− 1 =

n

2
− 2

Next, let y1, . . . , yn be the dual basis of x1, . . . , xn w.r.t. b, i.e. b(xi, yj) = δij

for all i, j : 1, . . . , n. Then,

f = x1y1 + . . .+ xnyn ∈ Y (g)

is the well known Casimir element of S(g). Finally, xn and f are algebraically

independent, homogeneous elements of Y (g) such that

deg xn + deg f = 3 = (
n

2
+ 1)− (

n

2
− 2) ≤ c(g)− deg pg

By Theorem 29 equality holds (in particular deg pg =
n

2
− 2) and

Y (g) = k[xn, f ].
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(ii) Since i(g) = 3 we have that n = dim g is odd and c(g) =
1

2
(n + 3). We

may assume that n ≥ 5 (otherwise g is abelian). g being quadratic, admits a

nondegenerate, symmetric, invariant bilinear form b.

g is a fortiori quasi quadratic, i.e.

g = F (g) =
∑

ξ∈g∗reg

g(ξ)

In particular, g(ξ) 6= g(η) for some ξ, η ∈ g∗reg which we extend to algebra en-

domorphisms of S(g). Both g(ξ) and g(η) contain Z(g) and are of dimension

i(g) = 3.

On the other hand, dimZ(g) ≥ 2 because g is nilpotent and quasi quadratic

[O5, Corollary 3.6]. Therefore dimZ(g) = 2. Hence there exists a ba-

sis x1, x2, . . . , xn−2, xn−1, xn of g such that g(ξ) = 〈xn−2, xn−1, xn〉, g(η) =

〈x1, xn−1, xn〉 and Z(g) = 〈xn−1, xn〉. The rank r of the structure matrix

M = ([xi, xj]) is given by

r = dim g− i(g) = n− 3

Similar to the proof of (i) we can find principal r×r Pfaffians p and q of degree
1

2
(n− 3) such that one is not a scalar multiple of the other.

Since the fundamental semi-invariant pg divides both p and q, we get

deg pg ≤
1

2
(n− 3)− 1 =

1

2
(n− 5)

Next, let f ∈ S(g) be the Casimir element w.r.t. b. Then xn−1, xn, f are

algebraically independent, homogeneous elements of Y (g) such that

deg xn−1 + deg xn + deg f = 4 =
1

2
(n + 3)−

1

2
(n− 5) ≤ c(g)− deg pg

By Theorem 29 equality holds (in particular deg pg =
1

2
(n − 5)) and Y (g) =

k[xn−1, xn, f ]. �

5. Polynomiality for nonsolvable Lie algebras of dimension at most eight

Because of Example 23 we now restrict ourselves to the nonsolvable case.

Theorem 53. Let L be a nonsolvable, indecomposable Lie algebra with dimL ≤ 8.

Then
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1) Y (L) and Sy(L) are polynomial algebras over k (and hence so are Z(U(L))

and Sz(U(L)))

2) R(L)L (and hence also Z(D(L))) is rational over k.

Proof. This will proceed case by case using the classification provided to us by B.

Komrakov. See also [Tu]. In [AOV2] the algebraic ones among them were shown to

satisfy the following well known

Gelfand-Kirillov conjecture [GK]. Let L be an algebraic Lie algebra over k.

Then D(L) is isomorphic to a Weyl skew field Dn(F ) over a rational extension F of

k. In particular, Z(D(L)), which is isomorphic to F , is also rational over k.

Over the years positive, but also some negative, answers have been obtained [BGR,

J1, Mc, N, AOV1, AOV2, O6, Pr]. See also Appendix.

As we will use some results of [AOV2], we will employ the same notation.

Before we list in 5.1 for each case the results of the verification of the theorem, we

would like to present in detail some typical examples in order to exhibit the various

procedures used in the proof.

Example 54. Let L be the semi-direct product L6,3 = sl(2, k) ⊕ H of sl(2, k)

with the 3-dimensional Heisenberg Lie algebra H with basis h, x, y, e0, e1, e2 and

nonzero brackets:

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1, [x, e1] = e0,

[y, e0] = e1, [e0, e1] = e2

Clearly, i(L) = 2 and c(L) =
1

2
(6+2) = 4. One verifies that pL = 1 and also that L

is quasi quadratic (i.e. F (L) = L), so there are no CP’s. Next, Y (L) contains the

following homogeneous, algebraically independent elements:

e2 and f = e2(h
2 + 4xy) + 2(e0e1h+ e21x− e20y)

Because deg e2 + deg f = 4 = c(L) − deg pL we may conclude that Y (L) = k[e2, f ]

by Theorem 29. Since [L, L] = L, L is algebraic, without proper semi-invariants.

Therefore

Sy(L) = Y (L) and R(L)L = k(e2, f)

Finally, M = k[e1, e2, e
2
0 − 2e2x, f ] is a polynomial, complete, Poisson commutative

subalgebra of S(L).
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Example 55. Let L be the 7-dimensional algebraic Lie algebra L7,9 with basis

h, x, y, e0, e1, e2, e3 and with nonzero brackets:

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1, [x, e1] = e0,

[y, e0] = e1, [e0, e1] = e2, [e3, e0] = e0, [e3, e1] = e1, [e3, e2] = 2e2.

Note that L is the semi-direct product of L6,3 with ad e3, which is semi-simple. One

verifies that i(L) = 1, c(L) = 4 and pL = 1. Also

F (L) = 〈h, x, y, e0, e1, e2〉 = [L, L] = L6,3

Since this is not commutative there are no CP’s. The above implies that LΛ = [L, L].

By (5) of Theorem 4 we observe that

Sy(L) = Y (LΛ) = Y (L6,3) = k[e2, f ]

where f = e2(h
2 + 4xy) + 2(e0e1h+ e21x− e20y).

Furthermore, e2 and f are irreducible semi-invariants with the same weight λ ∈ L∗

for which λ(e3) = 2 and λ([L, L]) = 0.

Consequently, Y (L) = k and R(L)L = k(e−1
2 f).

Finally, we know from the previous example that M = k[e1, e2, e
2
0−2e2x, f ] is a poly-

nomial, complete, Poisson commutative subalgebra of S(L6,3). Hence trdegkM =

c(L6,3) = c(LΛ) = c(L), the latter by (4) of Theorem 4. Therefore, M is also com-

plete in S(L).

Example 56. Let g be the 8-dimensional algebraic Lie algebra L8,17 with basis

h, x, y, e0, e1, e2, e3, e4 and nonzero brackets:

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1, [h, e2] = e2,

[h, e3] = −e3, [x, e1] = e0, [x, e3] = e2, [y, e0] = e1, [y, e2] = e3, [e2, e4] = e0,

[e3, e4] = e1.

One verifies that i(g) = 2, c(g) = 5, pg = 1. Also g is quasi-quadratic (i.e. F (g) = g)

and so it has no proper semi-invariants (2.8). Moreover, there are no CP’s as F (g)

is not commutative (2.8).

Next, consider the semi-direct product L = T ⊕ g, where T = 〈t1, t2〉 ⊂ Der g with

t1 = diag(0, 0, 0, 1, 1, 0, 0, 1), t2 = diag(0, 0, 0, 1, 1, 1, 1, 0)

Then

∆(L) = 4(e1e2 − e0e3)
2(e0e1h + e21x− e20y + e1e2e4 − e0e3e4)

2 6= 0
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Hence, L is a 10-dimensional Frobenius Lie algebra. By (4) of Theorem 30 we may

conclude that

Y (g) = k[f1, f2] = Sy(g) and R(g)g = k(f1, f2)

where f1 = e1e2 − e0e3 and f2 = e0e1h + e21x− e20y + (e1e2 − e0e3)e4.

Finally, M = k[e0, e1, e2, e3, f2] is a polynomial, complete Poisson commutative sub-

algebra of S(g).

Remark 57. The same Frobenius method can be used to show the theorem for

L8,2 [O7, p.1302]. The theorem also holds for L6,4, L8,19, L8,20(α 6= −1), L8,28 (since

they are Frobenius) as well as for their canonical truncations L5, L7,1, L7,2 (apply

Theorem 10).

Example 58. Let L be the 8-dimensional non algebraic Lie algebra L8,25 with

basis h, x, y, e0, e1, e2, e3, e4 and nonzero brackets:

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1, [x, e1] = e0,

[y, e0] = e1, [e4, e0] = e0, [e4, e1] = e1, [e4, e2] = −e3.

One verifies that i(L) = 2, c(L) = 5, pL = 1, Z(L) = 〈e3〉 and

F (L) = 〈h, x, y, e0, e1, e2, e3〉 = LΛ

Next, we put E1 = ad h, E2 = ad x, E3 = ad y, E4 = ad e0, E5 = ad e1, E6 = ad e2,

E7(e0) = e0, E7(e1) = e1 and zero on others, E8(e2) = −e3 and zero on others. Then

ad e4 = E7 + E8

is the decomposition of ad e4 into its semi-simple and nilpotent components. It

follows that E1, E2, . . . , E8 is a basis for the algebraic hull H of ad L.

Next, we rename the basis

h, x, y, e0, e1, e2, e3, e4 by x1, x2, x3, . . . , x8

Then we see that rank(Eixj) = 7 and so

j(L) = dimL− rank(Eixj) = 1 = dimZ(L)

So, we can apply Theorem 37. First one verifies that p′L = e3(e0e1h+ e21x− e20y).

Hence, f = e0e1h + e21x − e20y is the only proper irreducible semi-invariant and we

may conclude that

Y (L) = k[e3], R(L)L = k(e3), Sy(L) = Y (L)[f ] = k[e3, f ]
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Finally, M = k[e0, e1, e2, e3, f ] is a polynomial, complete, Poisson commutative sub-

algebra of S(L).

The result on Sy(L) can also be seen as follows. Clearly, L = LΛ ⊕ ke4 while

LΛ = L5 × 〈e2, e3〉 (direct product).

Now Y (L5) = k[f ] [O7, p.1301].

By (5) of Theorem 4:

Sy(L) ⊂ Y (LΛ) = k[e2, e3, f ]

On the other hand, e3 is an invariant and f is a semi-invariant for L, indeed

{x, f} = λ(x)f for all x ∈ L

where λ ∈ L∗, λ(e4) = 2 and zero on others. Consequently,

k[e3, f ] ⊂ Sy(L) ⊂ k[e2, e2, f ]

Now take any semi-invariant g ∈ Sy(L). Then already g ∈ k[e2, e3, f ]. As g is a

semi-invariant for ad L it is also one under the action of H [C, p.208]. In particular,

E8(g) = ag for a suitable a ∈ k

But E8 is nilpotent and so a = 0.

Next, we consider

−e3
∂g

∂e2
= −x7

∂g

∂x6

=
8
∑

j=1

E8(xj)
∂g

∂xj

= E8(g) = 0

which implies that
∂g

∂e2
= 0 and so g ∈ k[e3, f ]. Therefore Sy(L) = k[e3, f ].

5.1. List of indecomposable nonsolvable Lie algebras of dimension ≤ 8

The main purpose is to show that for each member L of the list Y (L), Sy(L) and

R(L)L satisfy the requirements of Theorem 53 by giving their explicit description. In

particular, L is coregular. It will turn out that i(L) ≤ 2, which is hardly surprising

in view of Proposition 42. In addition we will provide the Frobenius semi-radical

F = F (L) and if it exists a CP-ideal (CPI).

M will be a polynomial, complete, Poisson commutative subalgebra of S(L). Other

abbreviations are: i = i(L), c = c(L), p = pL, Y = Y (L), Sy = Sy(L), RI = R(L)L.
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Furthermore, h, x, y will be the standard basis of sl(2, k). Wn will be its (n + 1)-

dimensional irreducible module with standard basis e0, e1, . . . , en. In particular,

h · ei = (n− 2i)ei, x · ei = (n− i+ 1)ei−1, y · ei = (i+ 1)ei+1

for all i and e−1 = en+1 = 0.

I. L is algebraic

For this the possible parameters need to be rational numbers, but we will briefly

indicate what happens if they are not.

I.0. dimL = 3

0. sl(2, k) (simple and hence quadratic)

Basis: h, x, y

[h, x] = 2x, [h, y] = −2y, [x, y] = h.

i = 1, c = 2, p = 1, F = sl(2, k), no CP’s,

Y = k[f ] = Sy, where f = h2 + 4xy

RI = k(f), M = k[h, f ].

I.1. dimL = 5

1. L5 = sl(2, k)⊕W1 (quasi quadratic)

Basis: h, x, y, , e0, e1

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1, [x, e1] = e0,

[y, e0] = e1.

i = 1, c = 3, p = 1, F = L5, no CP’s,

Y = k[f ] = Sy, where f = e0e1h + e21x− e20y

RI = k(f), M = k[e0, e1, f ].

I.2. dimL = 6, with basis h, x, y, e0, e1, e2

2. L6,1 = sl(2, k)⊕W2 (quadratic)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = 2e0, [h, e2] = −2e2,

[x, e1] = 2e0, [x, e2] = e1, [y, e0] = e1, [y, e1] = 2e2

i = 2, c = 4, p = 1 F = L6,1, no CP’s

Y = k[f1, f2] = Sy, f1 = e21 − 4e0e2, f2 = e1h + 2e2x− 2e0y

RI = k(f1, f2), M = k[e0, e1, e2, f2].
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3. L6,3 = sl(2, k)⊕H (quasi quadratic) (see Example 54)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1, [x, e1] = e0,

[y, e0] = e1, [e0, e1] = e2

i = 2, c = 4, p = 1 F = L6,3, no CP’s

Y = k[e2, f ] = Sy, f = e2(h
2 + 4xy) + 2(e0e1h + e21x− e20y), R

I = k(e2, f),

M = k[e1, e2, e
2
0 − 2e2x, f ].

4. L6,4 = L5 ⊕ ke2 (Frobenius)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[x, e1] = e0, [y, e0] = e1, [e2, e0] = e0, [e2, e1] = e1.

i = 0, c = 3, p = e0e1h+ e21x− e20y, F = 0, no CP’s,

Y = k, Sy = k[p], RI = k, M = k[e0, e1, p].

I.3. dimL = 7, with basis h, x, y, e0, e1, e2, e3

5. L7,1 = sl(2, k)⊕W3

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = 3e0,

[h, e1] = e1, [h, e2] = −e2, [h, e3] = −3e3, [x, e1] = 3e0

[x, e2] = 2e1, [x, e3] = e2, [y, e0] = e1, [y, e1] = 2e2,

[y, e2] = 3e3.

i = 1, c = 4, p = 1, F = W3 = CPI

Y = k[f ] = k[W3]
SL(2) = Sy, RI = k(f),

f = 4e0e
3
2 − e21e

2
2 − 18e0e1e2e3 + 27e20e

2
3 + 4e31e3

M = k[e0, e1, e2, e3]

6. L7,2 = sl(2, k)⊕W1 ⊕W1

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0,

[h, e1] = −e1, [h, e2] = e2, [h, e3] = −e3, [x, e1] = e0

[x, e3] = e2, [y, e0] = e1, [y, e2] = e3.

i = 1, c = 4, p = e0e3 − e1e2, F = W1 ⊕W1 = CPI,

Y = k[p] = Sy, RI = k(p), M = k[e0, e1, e2, e3].

7. L7,7 = L6,1 ⊕ ke3

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = 2e0,

[h, e2] = −2e2, [x, e1] = 2e0, [x, e2] = e1, [y, e0] = e1,

[y, e1] = 2e2, [e3, e0] = e0, [e3, e1] = e1, [e3, e2] = e2.

i = 1, c = 4, p = 1, F = L6,1 = (L7,7)Λ, no CP’s.

Y = k, Sy = k[f1, f2], f1 = e21 − 4e0e2, f2 = e1h+ 2e2x− 2e0y,

RI = k(f 2
2 /f1), M = k[e0, e1, e2, f2].
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8. L7,8(α 6= 0) = (L5 × ke2)⊕ ke3

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0,

[h, e1] = −e1, [x, e1] = e0, [y, e0] = e1, [e3, e0] = e0

[e3, e1] = e1, [e3, e2] = αe2

i = 1, c = 4, p = 1, F = L5 × ke2 = (L7,8)Λ, no CP’s

Y = k, Sy = k[e2, f ], f = e0e1h+ e21x− e20y,

RI = k(er2f
s), r, s ∈ Z coprime such that rα + 2s = 0,

M = k[e0, e1, e2, f ].

[If α /∈ Q, then RI = k]

9. L7,9 = L6,3 ⊕ ke3 (see Example 55)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[x, e1] = e0, [y, e0] = e1, [e0, e1] = e2, [e3, e0] = e0,

[e3, e1] = e1, [e3, e2] = 2e2.

i = 1, c = 4, p = 1, F = L6,3 = (L7,9)Λ, no CP’s

Y = k, Sy = k[e2, f ], f = e2(h
2 + 4xy) + 2(e0e1h+ e21x− e20y)

RI = k(f/e2), M = k[e1, e2, e
2
0 − 2e2x, f ]

I.4. dimL = 8, with basis h, x, y, e0, e1, e2, e3, e4

10. L8,1 = sl(2, k)⊕W4

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = 4e0, [h, e1] = 2e1,

[h, e3] = −2e3, [h, e4] = −4e4, [x, e1] = 4e0, [x, e2] = 3e1,

[x, e3] = 2e2, [x, e4] = e3, [y, e0] = e1, [y, e1] = 2e2, [y, e2] = 3e3, [y, e3] = 4e4.

i = 2, c = 5, p = 1, F = W4 = CPI,

Y = k[f1, f2] = Sy, f1 = e22 − 3e1e3 + 12e0e4,

f2 = 2e32 − 9e1e2e3 + 27e0e
2
3 + 27e21e4 − 72e0e2e4

RI = k(f1, f2), M = k[e0, e1, e2, e3, e4]

11. L8,2 = sl(2, k)⊕W2 ⊕W1

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = 2e0, [h, e2] = −2e2,

[h, e3] = e3, [h, e4] = −e4, [x, e1] = 2e0, [x, e2] = e1,

[x, e4] = e3, [y, e0] = e1, [y, e1] = 2e2, [y, e3] = e4

i = 2, c = 5, p = 1, F = W2 ⊕W1 = CPI,

Y = k[f1, f2] = Sy, f1 = e21 − 4e0e2, f2 = e0e
2
4 − e1e3e4 + e2e

2
3

RI = k(f1, f2), M = k[e0, e1, e2, e3, e4]

12. L8,13 (quasi quadratic)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,
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[h, e3] = e3, [h, e4] = −e4, [x, e1] = e0, [x, e4] = e3,

[y, e0] = e1, [y, e3] = e4, [e0, e1] = e2. i = 2, c = 5, p = 1, F = L8,13, no CP’s

Y = k[e2, f ] = Sy, f = 2e2(e3e4h+ e24x− e23y)− (e0e4 − e1e3)
2

RI = k(e2, f), M = k[e1, e2, e3, e
2
0 − 2e2x, f ]

13. L8,14 = (L6,3 × ke3)⊕ ke4

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[x, e1] = e0, [y, e0] = e1, [e0, e1] = e2, [e3, e4] = e2.

i = 2, c = 5, p = e2, F = L6,3, no CP’s

Y = k[e2, f ] = Sy, f = e2(h
2 + 4xy) + 2(e0e1h + e21x− e20y),

RI = k(e2, f), M = k[e1, e2, e3, e
2
0 − 2e2x, f ]

14. L8,15 (quasi quadratic)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[h, e3] = e3, [h, e4] = −e4, [x, e1] = e0, [x, e4] = e3,

[y, e0] = e1, [y, e3] = e4, [e0, e1] = e2, [e3, e4] = e2.

i = 2, c = 5, p = 1, F = L8,15, no CP’s

Y = k[e2, f ] = Sy, f = e22(h
2 + 4xy) + 2e2(e0e1 + e3e4)h + 2e2(e

2
1 + e24)x −

2e2(e
2
0 + e23)y − (e0e4 − e1e3)

2,

RI = k(e2, f), M = k[e1, e2, e4, e
2
0 + e23 − 2e2x, f ].

15. L8,16 (quasi quadratic)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e1] = 3e1, [h, e2] = e2,

[h, e3] = −e3, [h, e4] = −3e4, [x, e2] = 3e1, [x, e3] = 2e2,

[x, e4] = e3, [y, e1] = e2, [y, e2] = 2e3, [y, e3] = 3e4, [e1, e4] = e0, [e2, e3] = −3e0.

i = 2, c = 5, p = 1, F = L8,16, no CP’s

Y = k[e0, f ] = Sy, f = 3e20(h
2+4xy)+2e0(9e1e4− e2e3)h+4e0(3e2e4− e23)x+

4e0(e
2
2 − 3e1e3)y + 4e1e

3
3 − e22e

2
3 − 18e1e2e3e4 + 27e21e

2
4 + 4e32e4,

RI = k(e0, f), M = k[e0, e1, e2, 3e0x+ e22 − 3e1e3, f ].

16. L8,17 = L7,2 ⊕ ke4 (quasi quadratic) (see Example 56)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[h, e2] = e2, [h, e3] = −e3, [x, e1] = e0, [x, e3] = e2,

[y, e0] = e1, [y, e2] = e3, [e2, e4] = e0, [e3, e4] = e1.

i = 2, c = 5, p = 1, F = L8,17, no CP’s

Y = k[f1, f2] = Sy, f1 = e1e2 − e0e3, f2 = e0e1h+ e21x− e20y + (e1e2 − e0e3)e4

RI = k(f1, f2), M = k[e0, e1, e2, e3, f2].
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17. L8,18 (quasi quadratic)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[h, e3] = e3, [h, e4] = −e4, [x, e1] = e0, [x, e4] = e3,

[y, e0] = e1, [y, e3] = e4, [e2, e3] = e0, [e2, e4] = e1, [e3, e4] = e2.

i = 2, c = 5, p = 1, F = L8,18, no CP’s

Y = k[f1, f2] = Sy, f1 = 2(e0e4 − e1e3) + e22,

f2 = e0e1h+ e21x− e20y + e2(e0e4 − e1e3) +
1

3
e32,

RI = k(f1, f2), M = k[e0, e1, e2, f1, f2].

18. L8,19 = L7,1 ⊕ ke4 (Frobenius)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = 3e0, [h, e1] = e1,

[h, e2] = −e2, [h, e3] = −3e3, [x, e1] = 3e0, [x, e2] = 2e1,

[x, e3] = e2, [y, e0] = e1, [y, e1] = 2e2, [y, e2] = 3e3, [e4, e0] = e0, [e4, e1] = e1,

[e4, e2] = e2, [e4, e3] = e3.

i = 0, c = 4, F = 0, CPI = 〈e0, e1, e2, e3〉, (L8,19)Λ = L7,1,

p = 4e0e
3
2 − e21e

2
2 − 18e0e1e2e3 + 27e20e

2
3 + 4e31e3,

Y = k, Sy = k[p], RI = k, M = k[e0, e1, e2, e3].

19. L8,20(α 6= −1) = L7,2 ⊕ ke4 (Frobenius)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[h, e2] = e2, [h, e3] = −e3, [x, e1] = e0, [x, e3] = e2,

[y, e0] = e1, [y, e2] = e3, [e4, e0] = e0, [e4, e1] = e1, [e4, e2] = αe2, [e4, e3] = αe3.

i = 0, c = 4, p = (e0e3 − e1e2)
2, F = 0, CPI = 〈e0, e1, e2, e3〉, (L8,20)Λ = L7,2

Y = k, Sy = k[e0e3 − e1e2], R
I = k, M = k[e0, e1, e2, e3].

20. L8,20(α = −1) = L7,2 ⊕ ke4 (quasi quadratic)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[h, e2] = e2, [h, e3] = −e3, [x, e1] = e0, [x, e3] = e2,

[y, e0] = e1, [y, e2] = e3, [e4, e0] = e0, [e4, e1] = e1, [e4, e2] = −e2, [e4, e3] = −e3.

i = 2, c = 5, p = 1, F = L8,20, no CP’s

Y = k[f1, f2] = Sy, f1 = e1e2 − e0e3,

f2 = (e1e2 + e0e3)h + 2e1e3x− 2e0e2y + (e1e2 − e0e3)e4

RI = k(f1, f2), M = k[e0, e1, e2, e3, f2].

21. L8,21(α 6= 0, β 6= 0) = (L5 × 〈e2, e3〉)⊕ ke4

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[x, e1] = e0, [y, e0] = e1, [e4, e0] = e0, [e4, e1] = e1,

[e4, e2] = αe2, [e4, e3] = βe3.
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i = 2, c = 5, p = 1, F = L5 × 〈e2, e3〉 = (L8,21)Λ, no CP’s

Y = k, Sy = k[e2, e3, f ], f = e0e1h+ e21x− e20y,

M = k[e0, e1, e2, e3, f ], R
I = k(er02 eso3 f t0 , er12 e

s1
3 f t1), where (r0, s0, t0), (r1, s1, t1)

is a basis of the free Z-module {(r, s, t) ∈ Z3 | αr + βs+ 2t = 0}.

[If α /∈ Q then RI = k(es3f
t) where s, t are coprime integers such that βs+2t =

0. Similarly, if β /∈ Q. If α and β /∈ Q and α/β /∈ Q then RI = k]

22. L8,22(α 6= 0) = (L6,1 × ke3)⊕ ke4

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = 2e0, [h, e2] = −2e2,

[x, e1] = 2e0, [x, e2] = e1, [y, e0] = e1, [y, e1] = 2e2,

[e4, e0] = e0, [e4, e1] = e1, [e4, e2] = e2, [e4, e3] = αe3.

i = 2, c = 5, p = 1, F = L6,1 × ke3 = (L8,22)Λ, no CP’s

Y = k, Sy = k[e3, f1, f2], f1 = e21 − 4e0e2,

f2 = e1h + 2e2x− 2e0y, M = k[e0, e1, e2, e3, f2],

RI = k(f 2
2 /f1, f

s
2/e

t
3) where s, t are coprime integers such that α =

s

t
.

[If α /∈ Q then RI = k(f 2
2 /f1)]

23. L8,23(α 6= 0) = (L6,3 × ke3)⊕ ke4

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[x, e1] = e0, [y, e0] = e1, [e0, e1] = e2, [e4, e0] = e0,

[e4, e1] = e1, [e4, e2] = 2e2, [e4, e3] = αe3.

i = 2, c = 5, p = 1, F = L6,3 × ke3 = (L8,23)Λ, no CP’s

Y = k, Sy = k[e2, e3, f ], f = e2(h
2 + 4xy) + 2(e0e1h + e21x− e20y),

M = k[e1, e2, e3, e
2
0 − 2e2x, f ],

RI = k(f/e2, e
s
2e

t
3) where s, t are coprime integers such that 2s+ αt = 0.

[If α /∈ Q then RI = k(f/e2)]

24. L8,24 = sl(3, k) (simple and hence quadratic)

Basis: (see e.g. [D4])

hα = E11 − E22, hγ = E22 − E33, xα = E12, xβ = E13, xγ = E23, x−α = E21,

x−β = E31, x−γ = E32, where the Eij are the standard 3 × 3 matrices

and α, γ, β = α + γ are the positive roots w.r.t. the Cartan subalgebra

H = 〈E11 −E22, E22 −E33〉.

[hα, xα] = 2xα, [hα, xβ] = xβ , [hα, xγ] = −xγ , [hα, x−α] = −2x−α, [hα, x−β] =

−x−β , [hα, x−γ] = x−γ , [hγ , xα] = −xα, [hγ , xβ] = xβ , [hγ, xγ ] = 2xγ , [hγ , x−α] =

x−α, [hγ , x−β] = −x−β , [hγ, x−γ ] = −2x−γ , [xα, xγ ] = xβ , [xα, x−α] = hα,

[xα, x−β] = −x−γ , [xβ , x−α] = −xγ , [xβ , x−β] = hα + hγ, [xβ, x−γ ] = xα,
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[xγ , x−β] = x−α, [xγ , x−γ] = hγ, [x−α, x−γ] = −x−β

i = 2, c = 5, p = 1, F = L8,24, no CP’s,

Y = k[f1, f2] = Sy,

f1 = h2
α + hαhγ + h2

γ + 3(xαx−α + xβx−β + xγx−γ)

f2 = (hα + 2hγ)(hα − hγ)(2hα + hγ) + 9(hα + 2hγ)xαx−α +

9(hα − hγ)xβx−β − 9(2hα + hγ)xγx−γ + 27(xαxγx−β + xβx−αx−γ)

RI = k(f1, f2), M = k[f1, f2, f3, f4, f5], f3 = xβ,

f4 = xα + xγ , f5 = (hα + 2hγ)xα − (2hα + hγ)xγ + 3xβ(x−α + x−γ).

The subalgebra M was constructed by means of the argument shift method starting

out from the generating invariants f1, f2 of Y (L8,24). By [PY1] M is a polynomial,

strongly complete Poisson commutative subalgebra of S(L8,24). See also [Ta].

II. L is not algebraic

This includes the families of part I with non rational parameters.

In the remaining cases L will be 8-dimensional with basis h, x, y, e0, e1, e2, e3, e4.

25. L8,25 = (L5 × 〈e2, e3〉)⊕ ke4 (see Example 58)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[x, e1] = e0, [y, e0] = e1, [e4, e0] = e0, [e4, e1] = e1, [e4, e2] = −e3

i = 2, c = 5, p = 1, F = L5 × 〈e2, e3〉 = (L8,25)Λ, no CP’s

Y = k[e3], Sy = k[e3, f ], f = e0e1h + e21x− e20y,

RI = k(e3), M = k[e0, e1, e2, e3, f ].

26. L8,26(α 6= 0) = (L5 × 〈e2, e3〉)⊕ ke4

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[x, e1] = e0, [y, e0] = e1, [e4, e0] = αe0, [e4, e1] = αe1, [e4, e2] = e2,

[e4, e3] = e3 − e2.

i = 2, c = 5, p = 1, F = L5 × 〈e2, e3〉 = (L8,26)Λ, no CP’s

Y = k, Sy(L) = k[e2, f ], f = e0e1h+ e21x− e20y,

M = k[e0, e1, e2, e3, f ]

(i) If α ∈ Q then RI = k(f t/es2) where s, t are coprime integers such that
s

t
= 2α.

(ii) If α /∈ Q then RI = k.

27. L8,26(α = 0) = (L5 × 〈e2, e3〉)⊕ ke4

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,
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[x, e1] = e0, [y, e0] = e1, [e4, e2] = e2, [e4, e3] = e3 − e2.

i = 2, c = 5, p = 1, F = L5 × 〈e2, e3〉 = (L8,26)Λ, no CP’s

Y = k[f ], f = e0e1h + e21x− e20y, Sy = k[e2, f ],

RI = k(f), M = k[e0, e1, e2, e3, f ].

28. L8,27 = (L6,3 × ke3)⊕ ke4

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[x, e1] = e0, [y, e0] = e1, [e0, e1] = e2, [e4, e0] = e0, [e4, e1] = e1,

[e4, e2] = 2e2, [e4, e3] = 2e3 − e2.

i = 2, c = 5, p = 1, F = L6,3 × ke3 = (L8,27)Λ, no CP’s

Y = k, Sy = k[e2, f ], f = e2(h
2 + 4xy) + 2(e0e1h+ e21x− e20y),

RI = k(f/e2), M = [e1, e2, e3, e
2
0 − 2e2x, f ].

29. L8,28 = L7,2 ⊕ ke4 (Frobenius)

[h, x] = 2x, [h, y] = −2y, [x, y] = h, [h, e0] = e0, [h, e1] = −e1,

[h, e2] = e2, [h, e3] = −e3, [x, e1] = e0, [x, e3] = e2, [y, e0] = e1, [y, e2] = e3,

[e4, e0] = e0, [e4, e1] = e1, [e4, e2] = e2 − e0, [e4, e3] = e3 − e1.

i = 0, c = 4, p = (e0e3 − e1e2)
2, F = 0, 〈e0, e1, e2, e3〉 = CPI

Y = k, Sy = k[e0e3 − e1e2], R
I = k, M = k[e0, e1, e2, e3].

5.2. Counterexample in dimension 9

Example 59. Take the semi-direct product L = sl(2, k) ⊕ W5 in which W5 is

an abelian ideal. As [L, L] = L, L is algebraic without proper semi-invariants. Since

dim sl(2, k) < dimW5 we know that the stabilizer sl(2, k)(f) = 0 for some f ∈ W ∗
5 by

[AVE]. This implies that i(L) = dimW5 − dim sl(2, k) = 3, Y (L) = S(W5)
sl(2,k) and

also thatW5 is a CPI of L by [O4, Proposition 17]. One verifies that codim L∗
sing = 4.

By Proposition 15 (or by Theorem 16) we may conclude that L is not coregular. On

the other hand, L satisfies the Gelfand-Kirillov conjecture by [O6, Proposition 4.3].

Now suppose k = C. Then W5 may be considered as the vector space of binary

forms of degree 5 with complex coefficients (the quintics) on which SL(2,C) acts.

The algebra of invariants C[W5]
SL(2,C) which is isomorphic to S(W5)

sl(2,C), has been

studied already in the 19th century by Sylvester, among others. At first 3 alge-

braically independent invariants I4, I8, I12 were found of degrees 4, 8, 12. In 1854

Hermite discovered an invariant I18 of degree 18 and he showed that

C[W5]
SL(2,C) = C[I4, I8, I12, I18]
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with the following relation:

16I218 = I4I
4
8 + 8I38I12 − 2I24I

2
8I12 − 72I4I8I

2
12 − 432I312 + I34I

2
12

In particular, C[W5]
SL(2,C) is not polynomial.

The explicit forms of I4, I8, I12, I18 were given in papers by Cayley. I18 has 848

monomials with very large coefficients ! See [D5, p.41].

Example 60.

We conclude this section by considering the semi-direct product

L = sl(2, k)⊕W2 ⊕W2 with standard basis h, x, y; e0, e1, e2; e3, e4, e5.

We know that this is a counterexample to the Gelfand-Kirillov conjecture [AOV1].

However, besides this, its behaviour is rather tame.

Indeed, [L, L] = L so L is algebraic and it has no proper semi-invariants. Also,

F (L) = W2 ⊕W2 is a CPI of L, i(L) = 3, c(L) = 6 and pL = 1.

Furthermore, L is coregular as

Y (L) = k[f1, f2, f3] = Sy(L), where f1 = e21 − 4e0e2, f2 = e24 − 4e3e5,

f3 = e1e4 − 2e2e3 − 2e0e5 by Theorem 29. Consequently, R(L)L = k(f1, f2, f3).

6. Dixmier’s fourth problem

Let L be a finite dimensional Lie algebra over an algebraically closed field k of

characteristic zero. Then we know that the field Z(D(L)) is isomorphic with R(L)L

and hence is an extension of finite type of k. [RV, p.401], [D6, 10.5.6].

In his book Enveloping Algebras Dixmier raised the following problem [D6, p.354]

and proved it for L solvable (In fact he even showed it for L completely solvable

over an arbitrary field k of characteristic zero [D6, Proposition 4.4.8]. It also holds

for solvable L over k = IR [Be]).

Problem 61.

Is Z(D(L)) rational over k ? (i.e. is it a purely transcendental extension of k ?).

To our knowledge this problem is still open. Notice that the Gelfand-Kirillov con-

jecture is a much stronger condition.

Obviously, Dixmier’s question has a positive answer if L is coregular without proper

semi-invariants, since then Z(D(L)) is precisely the quotient field of Z(U(L)), the

latter being polynomial. This is especially the case for L semi-simple and also for the

canonical truncation gΛ of a Frobenius Lie algebra g (since Z(U(gΛ)) = Sz(U(g)),
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which is polynomial [DNO]). Dixmier’s statement is also true for a Lie algebra L for

which j(L) = dimZ(L) (Theorem 37).

Proposition 62. Consider the semi-direct product L = sl(2, k)⊕Wn, where Wn is

the (n+1)-dimensional irreducible sl(2, k)-module. Then Z(D(L)) is rational over k.

On the other hand, L does not satisfy the Gelfand-Kirillov conjecture if n is even

and n ≥ 6. [O6, Proposition 4.3].

Proof. We may assume that n ≥ 5, since we verified it for n = 1, 2, 3, 4 (see

L5, L6,1, L7,1, L8,1 of 5.1). Hence, dim sl(2, k) = 3 < n + 1 = dimWn. We now

follow the same argument as in Example 59. By [AVE]

sl(2, k)(f) = 0 for some f ∈ W ∗
n

which by [O4, Proposition 17] implies that i(L) = dimWn−dim sl(2, k) = n+1−3 =

n− 2 and

Z(D(L)) = R(Wn)
sl(2,k) = R(Wn)

SL(2,k)

where the latter is rational over k [BK]. �

Next, Dixmier’s result above combined with Theorem 53 yields:

(since the rationality of R(L)L is preserved under taking direct products)

Proposition 63. Assume L is a Lie algebra over k of dimension at most 8. Then

Z(D(L)) is rational over k.

Lemma 64. Let L be an algebraic Lie algebra. Then there exists a torus T ⊂ L

such that L = LΛ ⊕ T and a basis t1, . . . , tr of T such that ad t1, . . . , ad tr have

rational eigenvalues and such that λ(ti) ∈ Q for all λ ∈ Λ(L), i = 1, . . . , r.

Proof. As L is algebraic, so is ad L. By [C, p.324] L admits the following de-

composition

L = S ⊕N ⊕ A

where S is a semi-simple Lie subalgebra of L, N is the nilradical of L and A is a

torus of L (i.e. an abelian Lie subalgebra of L such that adLA consists of semi-simple

elements). Also, [A, S] = 0, R = N ⊕ A is the (solvable) radical of L and adLA is
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algebraic. It follows that also R is algebraic [C, p.309].

By [Mc, Theorem 3.3] there is a basis a1, . . . , as of A such that adNa1, . . . , adNas

have rational eigenvalues. The same holds for adLa1, . . . , adLas since A is abelian

and [A, S] = 0. Because S = [S, S] and each x ∈ N acts locally nilpotent on U(L),

we see that S ⊕ N ⊂ LΛ. Hence, LΛ + A = L. We may assume that LΛ 6= L

(otherwise take T = 0). Let t1 be the first one among a1, . . . , as such that t1 /∈ LΛ.

Next, consider LΛ ⊕ kt1 ⊂ L and so on. After a number of steps we obtain

LΛ ⊕ 〈t1, . . . , tr〉 = L

where t1, . . . , tr are linearly independent over k and adLt1, . . . , adLtr have rational

eigenvalues. So it suffices to put T = 〈t1, . . . , tr〉. Let x1, . . . , xn be a basis of L such

that for all i = 1, . . . , r; j = 1, . . . , n : ad ti(xj) = qijxj for some qij ∈ Q. Next, let

u ∈ U(L) be a nonzero semi-invariant with weight λ, which can be written as

u =
∑

m

αmx
m1

1 . . . xmn

n for some αm ∈ k

and m = (m1, . . . , mn). Now observe that

∑

m

λ(ti)αmx
m1

1 . . . xmn

n = λ(ti)u = ad ti(u) =
∑

m

(

n
∑

j=1

mjqij

)

αmx
m1

1 . . . xmn

n

Now, select m = (m1, . . . , mn) such that αm 6= 0. Then we may conclude that

λ(ti) =
n
∑

j=1

mjqij ∈ Q, i = 1, . . . , r. �

Lemma 65.

(1) Z(D(L)) ⊂ Z(D(LΛ))

(2) Assume L is almost algebraic. Then the field Z(D(LΛ)) is generated by the

semi-invariants of U(L).

(3) If L is algebraic then

trdegkZ(D(LΛ))− trdegk(Z(D(L)) = dimL− dimLΛ

Proof. We recall that Sz(U(L)) ⊂ Z(U(LΛ)) and equality occurs if L is almost

algebraic [DNO, Theorem 1.19].
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(1) Because any nonzero z ∈ Z(D(L)) can be written as z = uv−1, where u, v

are nonzero semi-invariants of U(L) with the same weight [RV, Théorème 4.4],

[DNO, Corollary 1.10], we deduce at once that

Z(D(L)) ⊂ Q(Sz(U(L))) ⊂ Q(Z(U(LΛ))) = Z(D(LΛ))

the latter since LΛ has no proper semi-invariants by 2 of Theorem 4.

(2) By definition Sz(U(L)) is generated by the semi-invariants of U(L). Hence, the

same holds for its quotient field Q(Sz(U(L))) = Q(Z(U(LΛ))) = Z(D(LΛ)).

(3) If L is algebraic then so is LΛ [DNO, Proposition 1.14]. By 4 of Theorem 4 we

know that c(LΛ) = c(L). Therefore

dimLΛ + i(LΛ) = 2c(LΛ) = 2c(L) = dimL+ i(L)

and hence i(LΛ)− i(L) = dimL− dimLΛ.

On the other hand,

i(L) = trdegkZ(D(L)) and i(LΛ) = trdegkZ(D(LΛ))

by Theorem 1. �

The following is the main result of this section. It proved to be a useful tool in

obtaining the explicit description of R(L)L in the list of 5.1.

Theorem 66. Let L be an algebraic Lie algebra for which the field Z(D(LΛ))

is freely generated by semi-invariants u1, . . . , us of U(L). Then Z(D(L)) (and also

R(L)L) is rational over k.

Proof. By Lemma 64 there is a torus T ⊂ L such that L = LΛ ⊕ T and a ba-

sis t1, . . . , tr of T such that for all i = 1, . . . , r; j = 1, . . . , s:

ad ti(uj) = aijuj for some aij ∈ Q (∗)

We may assume that aij ∈ Z, since we can replace ti by a suitable integer multiple

of itself. Put A = (aij) ∈ Zr×s and di = ad ti. For any m = (m1, . . . , ms) ∈ Zs we

set

um = um1

1 . . . ums

s
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Clearly, for all i = 1, . . . r

di(u
m) = ad ti(u

m) =

(

s
∑

j=1

aijmj

)

um = (Am)iu
m

Next, we consider

K = {m = (m1, . . . , ms) ∈ Zs | di(u
m) = 0, i = 1, . . . , r}

= {m ∈ Zs | Am = 0}

K is a free Z-module, being a submodule of the free Z-module Zs.

Let k1, . . . , kq be a basis of K, then

z1 = uk1, . . . , zq = ukq ∈ Z(D(L))

(since they are annihilated by both ad LΛ and ad T )

Claim:

(1) z1, . . . , zq are algebraically independent over k.

(2) Z(D(L)) = k(z1, . . . , zq)

(1) By assumption u1, . . . , us are algebraically independent over k, which is equiv-

alent with the fact that

um = um1

1 . . . ums
s , m = (m1, . . . , ms) ∈ Ns (and even m ∈ Zs) are lin-

early independent over k (∗∗). Similarly, we have to show that zm1

1 . . . z
mq

q ,

m = (m1, . . . , mq) ∈ Nq are linearly independent over k. Clearly,

zm1

1 . . . zmq

q = (uk1)m1 . . . (ukq)mq = u
∑

miki

and these are indeed linearly independent over k by (∗∗), since k1, . . . , kq are

linearly independent over Z.

(2) We already know that k(z1, . . . , zq) ⊂ Z(D(L)). On the other hand, take

0 6= z ∈ Z(D(L)). Then z ∈ Z(D(LΛ)) = k(u1, . . . , us) by (1) of the previous

lemma. So, z = vw−1, where v, w are nonzero coprime elements of the polyno-

mial algebra k[u1, . . . , us] in the variables u1, . . . , us. We consider the degree

of v and w with respect to these variables. Obviously vw = wv and thus

z = vw−1 = w−1v. Because z ∈ Z(D(L)) it is annihilated by each derivation

di = ad ti, i = 1, . . . , r. Therefore,

zdi(w) = di(z)w + zdi(w) = di(zw) = di(v)
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and so vdi(w) = wdi(v). This implies that v divides di(v) as v and w are

coprime. But deg(di(v)) ≤ deg(v) (by (∗)) and thus di(v) = λiv for a suitable

λi ∈ k. It follows that di(w) = λiw. We can find nonzero am ∈ k and M ⊂ Ns

such that v =
∑

m∈M

amu
m. Similarly, w =

∑

n∈N

bnu
n. From

∑

m∈M

am(Am)iu
m =

∑

m∈M

amdi(u
m) = di(v) = λiv =

∑

m∈M

amλiu
m

we obtain (Am)i = λi, m ∈ M , i = 1, . . . , r.

Similarly, (An)i = λi, n ∈ N , i = 1, . . . , r. Hence,

(A(n−m))i = (An)i − (Am)i = 0.

Consequently, A(n−m) = 0 and thus n−m ∈ K for all n ∈ N , m ∈ M .

We can find αi ∈ Z such that n−m =
q
∑

i=1

αiki. Therefore,

un−m = u
∑

αiki = (uk1)α1 . . . (ukq)αq = zα1

1 . . . zαq

q ∈ k(z1, . . . , zq)

Finally,

z = vw−1 =

(

∑

m

amu
m

)(

∑

n

bnu
n

)−1

=
∑

m

am

(

u−m
∑

n

bnu
n

)−1

=
∑

m

am

(

∑

n

bnu
n−m

)−1

∈ k(z1, . . . , zq)

This establishes the claim, i.e. Z(D(L)) is rational over k. �

The following result by Panyushev [Pa1] can now be derived from Joseph’s work

on biparabolics.

Corollary 67. Let L be a biparabolic (seaweed) subalgebra of a simple Lie al-

gebra of type A or C. Then R(L)L (and hence also Z(D(L))) is rational over k.

Proof. L is algebraic [F, 6.4]. By [J3, J4] Y (LΛ) is freely generated by some

semi-invariants of S(L), say v1, . . . , vs. By the Duflo isomorphism the same holds

for Z(U(LΛ)) and also for its quotient field, which is Z(D(LΛ)). By Theorem 66

Z(D(L)) is rational over k.

Remark 68. Most (but not all [Y]) (bi)parabolic subalgebras of semi-simple Lie
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algebras have canonical truncations whose Poisson centers are freely generated by

semi-invariants [F, FJ, FJ2, J3, J4]. Hence, we may then draw the same conclusion

as above.

Let L be a finite dimensional algebraic Lie algebra over k and G its algebraic adjoint

group. G and L act on L∗ via the coadjoint action. We identify R(L) with the field

of rational functions on L∗.

Definition 69. (See e.g. [TY1]) An affine slice of L is an affine subspace V of

L∗ such that there exists an open subset U of V verifying the following conditions:

(1) The set G.U is dense in L∗

(2) Tf (G.f) ∩ Tf(U) = {0} for all f ∈ U

(3) G.f ∩ U = {f} for all f ∈ U

Such an affine slice exists for the coadjoint action for certain truncated [J6, J7] and

non truncated [TY1] biparabolic subalgebras of a semi-simple Lie algebra.

Theorem 70. (Tauvel, Yu [TY1, Theorem 3.3.1])

Let L be algebraic with algebraic adjoint group G. Suppose there exists an affine

slice for the coadjoint action of L. Then R(L)G is rational aver k. Hence the same

holds for Z(D(L)) (since the latter is isomorphic to R(L)G by [RV, 4.5]).

7. Appendix

Example 71. Let L be the nonalgebraic Lie algebra over C with basis x, y, z, t

and nonzero brackets.

[x, y] = y, [x, z] = αz, [y, z] = t, [x, t] = (1 + α)t

with α irrational.

This example was introduced in [GK, p.522] in order to demonstrate the existence

of nonalgebraic Lie algebras satisfying the Gelfand-Kirillov conjecture. However the

proof is incorrect, as the given Weyl generators of D(L), namely

p1 = yt−1, q1 = z, p2 = (1 + α)−1t, q2 = yzt−2xt−1
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do not satisfy the necessary requirements, for instance

[q1, q2] = −((x+ 1)t+ αyz)zt−3 6= 0. Probably a term is missing in q2.

We now present a very short proof. First we observe that L can be considered as

the semi-direct product g ⊕ W of the Lie algebra g = 〈x, y〉, [x, y] = y, with its

representation space W = 〈z, t〉. Since L is Frobenius (∆(L) = (1 + α)2t 6= 0) we

see that

i(L) = 0 = dimW − dim g

Then L satisfies the Gelfand-Kirillov conjecture by Theorem 1.1 combined with

Proposition 2.1 of [O6]. �

We conclude by producing explicitly a set of Weyl generators of D(L) as follows:

As W = 〈z, t〉 we have R(W ) = C(z, t) and R(W )g = Z(D(L)) = C. Next, we put

q1 = z, q2 = t. By the proof of [O6, Theorem 1.1] p1, p2 are the solutions of the

following system of equations:

x = [x, q1]p1 + [x, q2]p2 y = [y, q1]p1 + [y, q2]p2

which simplifies to

x = αzp1 + (1 + α)tp2 and y = tp1

Hence, p1 = t−1y and p2 = (1 + α)−1t−1(x− αzt−1y).

Then, p1, p2, q1, q2 form a set of Weyl generators over C of D(L) by the proof

of [O6, Theorem 1.1]. Hence, D(L) ∼= D2(C).
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Paris Série A 282 (1976),1269-1272.

[MO] T. Moons, A.I. Ooms, On the Jordan kernel of a universal enveloping

algebra, J. Algebra 122 (1989), 211-231.

[NO] E. Nauwelaerts, A.I. Ooms, Weights of semi-invariants of the quotient di-

vision ring of an enveloping algebra, Proc. Amer. Math. Soc. 104 (1988),

13-19.
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