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Abstract 

Since antimicrobial resistance (AMR) has been one of the major public health burdens over the last 

decade, it is of great importance to appropriately monitor and analyse AMR data. Isolate-based data 
within the EU have been routinely collected since 2010 and reported to EFSA on a yearly basis. AMR 

data are collected for several bacterial species, tested for susceptibility against different antimicrobials 
and minimum inhibitory concentration (MIC) is reported. For analysis purposes, a dichotomised 

version of the MIC values based on the epidemiological cut-off is used to represent different 

resistance patterns. This report describes various methods to analyse multi-drug resistance data, 
including the identification of structure to construct groups of isolates with similar resistance patterns 

or with similar MIC values. Multivariate classification trees and hierarchical cluster analysis after 
application of principal components and multiple correspondence analyses are applied aiming at group 

discovering. Latent class analysis is presented as an alternative model-based approach. The 

generalised estimating equations method is presented handling univariate and multivariate binary 
outcomes. Bayesian network analysis provides the user with a graphical representation of the 

underlying associations in the data to identify new co-resistance patterns. Models that deal with 
spatial distribution of resistant isolates, in combination with their evolution over time, are constructed 

for univariate and bivariate outcomes. Finally, pattern and source attributions tools are presented, 

providing, in addition to exploratory analyses, a logistic model to assess variables influencing certain 
resistance patterns. Source attribution is used to attribute resistance cases in humans to resistance 

observed in animal, human food consumption patterns and antimicrobial usage data. For illustration 
purposes, these methods are applied to a subset of the AMR data using an application developed with 

the R package “shiny”.  
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1. Introduction  

 Background and Terms of Reference as provided by the requestor 1.1.

In accordance with Decision 2013/652/EC, harmonisation of monitoring of antimicrobial resistance 

(AMR) in animals and food reporting will be further enhanced in the EU and reporting of AMR data at 
isolate level by MSs to EFSA will become mandatory from calendar year 2015 and onwards (2014 

data and onwards). Based on AMR isolate-based data reported on a voluntary basis, the 2012 EU 

Summary Report on AMR summarises important information on multi-drug resistance (MDR) and 
already includes ‘summary indicators’ of MDR and the breakdown of the multi-/co-resistance patterns 

recorded. The isolate-based dataset allows the following to be reported: source of the sample (animal 
species, animal populations or food categories), the date of sampling, the country of origin, the 

bacterial species and subtype of the isolate tested and the susceptibility test results to a harmonised 

set of antimicrobial substances. 

MDR is considered to be a major public health issue. It is important that EFSA can provide an 

evidence-based evaluation of the role of food production in the emergence and spread of multiple 
drug resistant micro-organisms. Further analytical and methodological preparatory work should be 

performed on the available 2010-2014 isolate-based data in order to have a more in-depth analysis of 
MDR, notably to investigate associations between resistance traits and to carry out tracing analyses 

of the geographical and temporal diffusion of MDR. This report aims at providing suitable analysis 

methods to address these questions and to identify areas for improvement in monitoring systems.  

In order to develop appropriate statistical methodology to analyse the phenomenon of antimicrobial 
resistance, several primary and secondary objectives were addressed. Initially, focus was at 

investigating possible relationships between MDR patterns. More specifically, the aim was to identify 
possible groups or clusters while considering that specific combinations of resistance to antimicrobials 

may co-evolve plus additional resistance traits may be gained or lost. In addition, attention was also 
paid to the investigation of the spatial distribution of individual MDR patterns and groups of MDR 

patterns. Next to the spatial distribution, a time component was introduced as well into the models to 

identify possible evolutions over time. Finally, since antimicrobial resistance is not solely found in 
animals, the use of source attribution models, which aim at relating resistance in humans to 

resistance in distinct food sources was explored as well. 

The statistical techniques introduced and discussed in this report are all applied to a specific subset of 

the data. For every method presented, a user-friendly application was developed to allow the later 

analysis of other subsets of interest and to aid in the analysis of future datasets. This application was 
created with the “shiny” R package. An accompanying tutorial was prepared as well, which should 

guide the user in performing the analyses appropriately. 
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 Additional information 1.2.

R and SAS were used as statistical software packages: 

 R is a free software environment for statistical computing and graphics. It compiles and runs 

on a wide variety of UNIX platforms, Windows and MacOS. More information and download 

available at http://www.r-project.org. 

 SAS (Statistical Analysis System) is a software suite developed by SAS Institute for advanced 

analytics, business intelligence, data management, and predictive analytics. More information 

and trial version download available at http://www.sas.com. 

Since some of the analysis techniques could not be performed with SAS, focus was on creating a 

user-friendly interface with the “Shiny” R package. To guide the user in obtaining the results 

presented in this report, a tutorial was created, accompanying this report.  
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2. Data and Methodologies  

 Data 2.1.

Data on antimicrobial resistance were collected yearly from 31 European Union (EU) Member States 

(MS) for the period 2010-2014. The available dataset was composed of isolate-based information on 
different bacteria subtypes tested for susceptibility against a common set of antimicrobials 

(depending on the bacteria of interest). Basic interest was in the outcomes from dilution experiments, 

from which the minimum inhibitory concentration (MIC) values were collected. Based on the 
Epidemiological cut-off (ECOFF) values, the MIC values were converted to a binary indicator of 

resistance (equal to 1 in case MIC>ECOFF). For illustration purposes, focus was on the analysis of 
these binary values, for one specific combination of bacteria and sample origin, namely indicator E. 
coli isolates collected from broilers. The table below gives an overview of the data at hand. The 

enhanced monitoring of AMR in bacteria from food and food-producing animals set out in the 
Commission Implementing Decision 2013/652/EU was successfully implemented in reporting MSs and 

non-MSs in 2014. Before, reporting in this format was not mandatory, explaining the lower numbers 
for the period 2010-2013. 

Table 1:  Overview of the number of isolates (E. coli) collected from broilers in different MS 
between 2010-2014 

 Year  

Country 2010 2011 2012 2013 2014 Total 

Austria 171 173 130 146 174 794 

Belgium 0 410 0 232 145 787 

Bulgaria 0 0 0 0 85 85 

Croatia 0 0 0 0 169 169 

Cyprus 0 0 0 0 52 52 

Czech Republic 0 0 0 0 195 195 

Denmark 0 131 115 125 191 562 

Estonia 0 0 0 0 68 68 

Finland 0 0 0 0 175 175 

France 0 0 0 193 217 410 

Germany 200 246 0 434 401 1281 

Greece 0 0 0 0 167 167 

Hungary 0 0 103 152 165 420 

Ireland 0 0 0 0 160 160 

Italy 0 0 0 0 403 403 

Latvia 0 0 0 0 99 99 

Lithuania 0 0 0 0 51 51 

Malta 0 0 0 0 32 32 

Netherlands 0 0 0 0 377 377 

Norway 0 0 0 0 202 202 

Poland 0 0 0 0 175 175 

Portugal 0 0 0 0 190 190 

Romania 0 0 0 0 844 844 

Slovakia 0 0 0 0 70 70 

Slovenia 0 0 0 0 77 77 

Spain 0 101 0 170 145 416 

Sweden 0 0 17 0 197 214 

Switzerland 183 176 246 236 195 1036 

United Kingdom 0 0 0 0 159 159 

Total 554 1237 611 1688 5580 9670 

 

 

In order to illustrate how classification trees could be of used, a dataset composed of 35509 isolates 

in total of which 17590 E. coli isolates and 17919 Salmonella isolates was used. These isolates were 
sampled in 18 Member States from 3 animal types (domestic fowl Gallus gallus, cattle, pigs) and 3 

types of meat (meat from cattle, meat from pigs and meat from broilers).  
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 Methodologies 2.2.

Seven procedures, including multivariate classification trees, clustering methods (based on principal 
components and multiple correspondence analyses), generalised estimating equations, latent class 

analysis, spatio-temporal analysis and source attribution models have been applied to the AMR data. 
The notation used in this report is described below.  

2.2.1. General Notation 

The Response (MIC value and binary indicator) 

For a particular combination of bacteria (sub)type (e.g. E. coli) and sample type (e.g. broilers), 

denote 

   (         )  

the MIC values of p antimicrobials, for isolate        , where   is the number of isolates for that 

particular combination, i.e. the sample size. The MIC distribution of     for a particular antimicrobial   

can be considered as a mixture of the wild-type left component and the right resistant component, 

the latter component being typically another mixture distribution. The term wild-type refers to 
isolates that do not have acquired or mutational resistance mechanisms, while isolates that do have 

these mechanisms are referred to as resistant. Next to the marginal MIC distribution for one single 

antimicrobial, one can consider the joint distribution of all antimicrobials involved, or any particular 
subset of interest. 

Using appropriate (harmonised) ECOFFs (epidemiological cut-off values), the MIC values are 
converted into resistance indicators 

   (         )  

where for        ,  

     (      )  

 

With indicator  (    )    and  (     )   , and    the ECOFF used to dichotomise the MIC 

distribution of the  -th antimicrobial. Further denote 

     (     )  

the probability for isolate   to be microbiologically resistant, i.e. to have reduced susceptibility to 

antimicrobial  . The probability for a particular multi-resistance pattern can be denoted as follows, for 

full resistance, 

  (   )   (             )  

and full susceptibility 

  (   )   (             )  

The general joint probability of interest is 

  (   
     

 )   (       
           

 )  

for all   combinations of values    
  {   }      

  {   }. 
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The Covariates (explanatory variables) 

The outcomes of interest (the responses), being the MIC values or the dichotomised resistance 

indicators, can be studied on their own, but also related to q covariates (one or more) 

    (            ), 

including the animal population, the production stage and type, the sampling strategy, the country, 
etc. Two special “covariates” of interest are the sampling day/month/year (time) and area of 

sampling (spatial location), as they allow studying the temporal evolution/trends and the spatial 
relationships. 

The main objective is to examine in which way covariates change the distribution of    or   .  So, 

focusing on the binary outcomes, how do the joint probabilities   (   
     

 ) change if particular 

covariate values are considered. The effect of a covariate on the distribution of the multivariate 
outcomes    or    can be studied essentially in two ways: (i) by splitting up the isolates according to 

the values (categories) of that covariate; (ii) by including the covariate into the statistical model, as a 

fixed or a random effect. Including the covariate in a model with a saturated fixed effect is essentially 
splitting up the sample, but option (ii) allows to simplify the model structure and to identify the 

simplest model that describes the relationships best (using goodness of fit criteria such as Akaike’s 

information criterion, AIC). The effect of more covariates can be studied in the same way, but this 
might become cumbersome, as too few observations might be available for particular covariate 

combinations (sparseness).  

2.2.2. Classification Trees 

Univariate classification trees form a nonparametric, data-driven alternative to the classical logistic 

regression models (binary as well as multicategory models).  Tree-based methods partition the 
covariate space into subspaces that are homogeneous in the response, in the current case being the 

resistance status as determined by the resistance indicators. This recursive-partitioning algorithm on 
which the partition is based, is fully data driven, making the method conceptually simple, yet 

powerful. It has its merits especially in high-dimensional cases (many covariates of mixed nature). 
The final constructed tree can be presented in a graphical way, which lends itself for easy 

interpretation. The estimated tree can be considered as a fit on its own or it can be used to guide a 

parametric modelling exercise.  For further information on classification trees, see Hastie et al. 
(2009). 

When studying MDR, interest goes more to multivariate classification trees, i.e. trees that take into 
account the outcome related to multiple antimicrobials simultaneously. As such, the multivariate 

classification trees form a similar alternative to the multivariate extensions of logistic regression such 

as generalised estimating equations (introduced in Section 2.2.4). They explain the variation of a 
multivariate categorical outcome using covariates that may be numeric and/or categorical. They do 

this by growing a tree structure that splits the dataset using covariates into non-overlapping clusters, 
each of which has similar values of the multivariate outcome.  

In this report, a class of trees known as conditional inference trees (Hothorn et al., 2006) is 
implemented. The method grows a tree by recursively applying a two-step algorithm. Starting with all 

data, represented by a single node at the top of the tree, the global null hypothesis of association 

between the multivariate outcome and any of the q covariates is tested. In case this hypothesis 
cannot be rejected, the algorithm stops; otherwise, the covariate with the strongest association with 

the multivariate outcome is selected. Once a covariate has been selected, a cut-point is chosen from 
all its values such that the resulting daughter nodes are as homogeneous as possible in terms of the 

multivariate outcome. These two steps are re-applied to each of the resulting daughter nodes until 
the global hypothesis cannot be rejected at a pre-specified nominal significance level  . 
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Benefits and disadvantages 

Tree models are very appealing as they are largely data-driven and allow synthetic graphical 

presentations. It is however known that the resulting trees can be quite variable (from sample to 

sample from the same population) and are typically not the best predictive models. As for any other 
approach, sparseness (missing data) and separation issues (Ensoy et. al., 2015) in the data will 

hamper the performance of tree models. 

Software 

Analysis in R:  ctree(.) function from partykit package  

Analysis in SAS:  /  

2.2.3. Clustering 

Kaufman and Rousseeuw (1990) define cluster analysis as the classification of similar objects into 
groups, where the number of groups, as well as their forms is unknown. The “form of a group” refers 

to the parameters of a cluster; that is, to its cluster-specific means, variances, and covariances that 

also have a geometrical interpretation. Cluster analysis is also called data segmentation. In 
addition to the grouping or segmenting into subsets or clusters, the goal can be to arrange the 

clusters into a natural hierarchy, which involves successively grouping the clusters themselves such 
that at each level of the hierarchy, clusters within the same group are more similar to each other 

than those in different groups. For more details, see Hastie et al. (2009) and Johnson and Wichern 

(2002). 

In this report, the aim is at detecting clusters after reducing the dimensionality of the data structure 

and hierarchical clustering will be used to construct clusters, as introduced in Section 2.2.3.3. The 
pre-processing of data-reduction depends on the nature of the employed data. For the continuous 
outcomes   , the data reduction is performed by a principal components analysis, while multiple 

correspondence analysis is the data reduction tool for the categorical (including binary) values   . 

2.2.3.1 Principal Components Analysis 

Principal component analysis (PCA) is a mathematical procedure that transforms a number of 
(possibly) correlated variables into a (smaller) number of uncorrelated variables called principal 

components. The transformation is defined in such a way that the first principal component has the 
largest possible variance (that is, accounts for as much of the variability in the data as possible), and 

each succeeding component in turn has the highest variance possible, under the constraint that it is 
orthogonal to (i.e. uncorrelated with) the preceding components. More specifically, PCA seeks a linear 

combination of variables such that the maximum variance is extracted from the variables. It then 

removes this variance and seeks a second linear combination, which explains the maximum 
proportion of the remaining variance, and so on. This is called the principal axis method and results 

in orthogonal (uncorrelated) factors. The resulting principal components are orthogonal because they 
are the eigenvectors of the covariance matrix, which is symmetric. Covariates    can be included as 

so-called supplementary variables.  

Benefits and disadvantages 

Ideally, one can limit oneself to two or at most three components, but depending on the data at 

hand, it might be necessary to incorporate more, and consequently data reduction might be rather 

limited.  

Furthermore, the “Lowest (limit)” and “Highest (limit)” can vary across isolates (being for instance lab 
dependent). This affects the range of possible values of    , especially the smallest and largest value. 

Moreover all MIC values need to be considered as rounded, interval-censored data; the smallest 
being left-censored and the largest being right-censored. The application of PCA on the values of    
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might be hampered by these very characteristics of the data provided by the ‘dilution method’ 
(experimental issues). 

What the impact is of the rounding in combination with varying ranges of categorisations (as in our 

setting of MIC values) on principal component and cluster analysis has not been studied yet, to our 
knowledge.   This does not apply to the binary values and the multiple correspondence analysis 

(introduced in the next section), but, on the other hand, available information about the MIC 
distribution is dramatically reduced by this dichotomised approach.  Therefore, it is recommended to 

use both scales (ordinal multi-category and binary) and to compare both analyses for similarities and 

differences.  A rigorous in-depth investigation of these issues would be a very interesting and 
relevant research project, but is beyond the scope of this report. 

Software 

Analysis in R:  PCA(.) function from FactoMineR package  

Analysis in SAS: proc princomp 

2.2.3.2 Multiple Correspondence Analysis 

Multiple correspondence analysis (MCA) is an extension of simple correspondence analysis, which 

allows one to analyse the pattern of relationships of several nominal categorical dependent variables. 
It can be considered as a generalisation of principal component analysis to categorical variables. It is 
also used to detect underlying structures by a representation in a low-dimensional Euclidean space. 
Similar to PCA, covariates    can be included as so-called supplementary variables. 

Benefits and disadvantages 

Being dichotomised, the binary values    do not suffer from the same complications as the values of 

   in their application of PCA. Binary values contain less information and revealing underlying 

structures by lower dimensional representations makes MCA to be disadvantageous as compared to 
PCA. Instead of dichotomisation, more complex categorisation into a higher number of categories is 

also possible and MCA could benefit from such practice, but lack of harmonisation when using the 
dilution method might hamper the analysis.  

Software 

Analysis in R:  MCA(.) function from FactoMineR package  
Analysis in SAS: proc corresp 

2.2.3.3 Hierarchical Clustering 

Once the dimensions of the data have been reduced, the construction of the clusters can be initiated. 

The hierarchical trees considered in this report use Ward’s method. This criterion is based on the 

Huygens theorem, which allows decomposing the total inertia (total variance) in between and within-
group inertia (variance). The within-group inertia characterises how homogeneous a cluster is. The 

total inertia can be decomposed as follows:  

∑∑∑(       ̅̅ ̅)
 

  

   

 

 

   

 

   

 ∑∑  

 

   

 

   

(   ̅̅ ̅̅    ̅̅ ̅)
 
 ∑∑∑(        ̅̅ ̅̅ )

 

  

   

 

   

 

   

 

(                                                         ) 

with      the value of the variable   for the individual   of the cluster  ,    ̅̅ ̅̅  the mean of the variable 

  for cluster  ,   ̅̅ ̅ the overall mean of variable   and    the number of individuals in cluster  . Ward’s 

method consists in aggregating two clusters such that the growth of within-inertia is minimum, or, 

equivalently, minimising the reduction of the between-inertia, at each step of the algorithm. The 
hierarchical tree is represented by a dendrogram, which is indexed by the gain of within-inertia.  
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Choosing the number of clusters is a core issue and several approaches have been proposed 
throughout literature. Some of them rely on the hierarchical tree. Most frequently, one suggests a 
division into   clusters when the increase of between-inertia between     and   clusters is much 

greater than the one between   and     clusters. An empirical criterion can formalise this idea. 

With  ( ) the between-inertia increase when moving from      to   clusters, the proposed 

criterion is:  

 ( )

 (   )
  

The minimum of which identifies the optimal  . More information is provided in Husson et al. (2010). 

Benefits and disadvantages 

Hierarchical clustering provides an elegant way to detect subgroups in the data and to visualise them. 

Nevertheless, the technique is descriptive in nature and does not provide any inferential tools 
(confidence intervals or hypothesis tests). Not being model-based it also has its limitations to 

examine the effect of covariates. Moreover, using the results of PCA and MCA, hierarchical clustering 
shares the same risks and issues. 

Software 

Analysis in R:  HCPC (.) function from FactoMineR package  

Analysis in SAS: proc cluster 

2.2.4. Generalised Estimating Equations 

In a multivariate analysis, the resistance patterns    are modelled simultaneously. A generalized 
linear model consists of the following components: 

 The linear component is defined exactly as it is for the traditional linear models, i.e. 

         

 A monotonic differentiable link function  ( ), that describes how the expected value of    , 

denoted by    , is related to the linear predictor,          : 

 (   )        

 The response variables     are independent for         and have a probability distribution 

from an exponential family.   

Since interest is in binary data, the Bernoulli distribution is used, for which the mean is linked to the 

linear component using a logit link: 

     (   )     (
   

     
)       , 

which is the well-known logistic regression model. 

Of course, it has to be taken into account that observations from the same isolate are not 
independent. Rather, there could be a correlation between multiple antimicrobials (multi-drug 

resistance phenomenon). A generalised estimating equations (GEE) approach to estimate the 

parameters of the generalized linear model with a possible unknown correlation between outcomes 
can be employed. Through the specification of one of a variety of possible working correlation matrix 

structures to account for the within-subject correlations, the GEE method estimates model 
parameters by iteratively solving a system of equations based on quasi-likelihood distributional 

assumptions. GEE is not a likelihood based model, but a moment method, i.e. only the first and 

second moment are defined, which correspond to the mean and variance structure only. Therefore, 
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the method only requires the specification of the marginal probabilities      (     ) and a 

working assumption on the pairwise correlation of outcomes         of the same isolate  , being 

     (           )    (     ) (     ). 

As there is no reason to assume any homogeneity or simplifying structure in these correlations, the 

focus in this report is on the unstructured working correlation matrix, which means that the 
correlations between any two responses are unknown and need to be estimated: 

[
 
 
 
 
       
       
       

    
    
    

   
         

  
  ]

 
 
 
 

 

Population based estimates for the effects of covariates are obtained as well, together with the 

adjusted standard errors.  

Benefits and disadvantages 

GEE is a semi-parametric method, requiring only the specification of the marginal probabilities and 

working assumptions for the intra-isolate correlation, and not requiring the full specification of the 

joint probabilities   (   
     

 )   (       
           

 )  This is known as its robustness property. 

This is though at the cost of efficiency (power, accuracy) as compared to fully parametric models. 

This loss is expected to be rather limited in our setting, because of the moderate correlations and 
cluster sizes. Hence, the use of full likelihood models would be unnecessarily complicated. 

Software 

Analysis in R:  gee (.) function from gee package  
Analysis in SAS: proc genmod 

2.2.5. Latent Class Analysis 

Latent class analysis is a statistical technique for the analysis of multivariate categorical data. When 

observed data take the form of a series of categorical responses, it is often of interest to investigate 

sources of confounding between the observed variables, identify and characterise clusters of similar 
cases, and approximate the distribution of observations across the many variables of interest. Latent 

class models are a useful tool for accomplishing these goals. 

The latent class model seeks to stratify the cross-classification table of observed, or manifest 

variables by an unobserved, or latent, unordered categorical variable that eliminates all confounding 
between the manifest variables. Conditional upon values of this latent variable, responses to all of the 

manifest variables are assumed to be statistically independent. This assumption is typically referred 

to as conditional or local independence. 

The model probabilistically groups each observation into a latent class, which in turn produces 

expectations about how that observation will respond on each manifest variable. Although the model 
does not automatically determine the number of latent classes in a given data set, it does offer a 

variety of parsimony and goodness of fit statistics that the researcher may use in order to make a 

theoretically and empirically sound assessment. For example, the user can fit the model while 
assuming several values for the number of latent classes and select the most optimal one based on 

the AIC criterion.  

Because the unobserved latent variable is nominal (membership of a class), the latent class model is 

actually a type of finite mixture model. The parameters estimated by the latent class model are the 

proportion of observations in each latent class, and the probabilities of observing each response to 
each manifest variable, conditional on the latent class 
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Benefits and disadvantages 

The latent class analysis allows for the detection of underlying latent structures in the data, while 

accounting for specific covariates. It provides a nice visual representation of these classes, which 

makes it easy to interpret for the user. A challenge with this approach is that it requires an 
appropriate model specification. Although rather exceptional, computational problems might occur 

when a large number of latent classes are assumed.  

Software 

Analysis in R:  lca (.) function from poLCA package  

Analysis in SAS:  /  
 

2.2.6. Bayesian Network Analysis 

Bayesian network (BN) analysis is a form of graphical modelling in which the user attempts to find 

structure in the dataset by separating out indirect effects from direct associations. The basic objective 

is to perform a model search on the data to identify an optimal model. 

An additive BN model for categorical data can be constructed by considering each individual variable 

as a logistic regression of the other variables in the data and hence the network model is composed 
of many combinations of local logistic regressions. In these models, the log marginal likelihood, or 

network score, is estimated using Laplace approximations at each node. 

The key objective of the “abn” R package is to enable estimation of statistical dependencies in the 

data, which comprises multiple variables. In other words, the goal is to identify a Directed Acyclic 

Graph (DAG) which is robust and representative of the dependency structure of the stochastic system 
that generated the observed data. This search is performed in two big steps: 

 In a first step, the aim is to identify the most probable DAG based on the observed data. In 

this respect, a large number of heuristic searches are run, for which different graphs are 
constructed and ranked according to their network scores. The term heuristic refers to a 

technique in which a, possibly approximate, solution is found in a reasonable time frame. As 

such, the solution might not be exactly optimal, but still valuable since finding it does not 
require a prohibitively long time. 

 In order to avoid overfitting the data, the DAG found in step 1 is pruned. This trimming is 

performed using a parametric bootstrap analysis. Bootstrap datasets are generated, i.e. 
independent realisations from the model which can be used to generate a dataset of the 

same size of the observed dataset. Given this bootstrap data, the BN model search is 
repeated, treating the bootstrap datasets as the observed data. By generating many 

bootstrap datasets and conducting searches on each of them, this allows estimating the 

percentage support for each arc in the DAG of the highest scoring model. Arcs that are only 
present in less than half of the constructed DAGS (i.e. level of support <50%) are removed 

from the final DAG. 

Benefits and disadvantages 

The Bayesian network analysis can detect structures and patterns in complicated data settings. In the 

AMR situation, it can be very convenient to detect specific co-resistance patterns among the 
antimicrobials of interest. A disadvantage of the approach is the limited amount of inference that is 

possible. Nevertheless, simple association measures are computed to enable ease interpretation for 
the user. 

Software 
Analysis in R: “abn” package  

Analysis in SAS:  /  
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2.2.7. Spatio-Temporal Models 

When data is collected across space (i.e. different countries) and possibly over time (i.e. different 

years), analysis should take into account the spatial and/or temporal dependence of the 

observations. The linear component of the spatio-temporal model for the binary data for a specific 
antimicrobial (isolate  , time  , location  ) can be written as: 

     (    )     (
    

      
)               , 

 

where    is the temporal effect,    is the location/spatial effect and     is the spatio-temporal 

interaction term.  

For the temporal effect, different choices can be made, depending on the data. Here, the following 

options are investigated: no time effect, a saturated time effect (time is treated as a factor), a linear 
time effect, a first-order random walk (RW1), a first-order autoregressive (AR1), and a second-order 

random walk (RW2). RW1, AR1 and RW2 are flexible smooth functions of time which assumes that 

the present observation is a function of the immediate past. Specifically, 

 RW1:           ,  

 AR1:              

 RW2:                 ,  

where   is a correlation parameter and     (    
 ). RW1 assumes that the current observation is 

equal to the immediate past observation whereas AR1 assumes that it is correlated to the immediate 

past. RW2, on the other hand, assumes a linear trend and penalizes for deviation from linearity. 

The Besag, York and Mollie's (BYM) model was fitted to the spatial effect (  ). The BYM model takes 

into account not only the spatial auto-correlation present in the data (structured spatial effect ( )) 

but also assumes that the estimates obtained between areas are independent of each other (IID or 
unstructured effect ( )). The spatial effect of the BYM model is an intrinsic Gaussian Markov random 

field (GMRF) model, also referred to as Besag model, which assumes that the expected value of each 

area depends on the values of the neighbouring areas (in this case, areas sharing boundaries). Thus, 

areas close together are more similar than areas that are far apart. In this application, it was 
assumed that the structured and unstructured effects are not independent of each other (Riebler et 

al, 2016). Thus, instead of the usual      , here   
 

√  
(√     √  ). The model reduces to 

pure oversdispersion (unstructured) for     and to the ICAR/Besag model when    . The 

marginal variance is   
    

  , while   is the proportion of the marginal variance explained by the 

spatial effect  . 

The spatio-temporal interaction     models the relationship between the temporal and spatial trend. 

In the univariate model, different types of interaction were investigated: unstructured (type I), 

structured over time but unstructured over space (type II), and structured over time and space (type 

IV). While in the bivariate analysis, only the unstructured space-time interaction was used which was 
further assumed to be correlated between the two antimicrobials. 

Weighting and incorporation of inter-country trade information in the model was also investigated at 
country-level. In this application, the weight was defined as the proportion of planned versus actual 

sample. For the inter-country trade information, this covariate is entered into the model as: 

     (    )       ∑(          )

 

   

           

where   refers to the destination country (trade destination or the importing country),         

refers to the source country (trade origin),      is the trade quantity (in tons) from country   to 
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country   and        is the proportion of resistant isolate in the source country at the previous time 

point. For this application, incorporation of trade information is only at the country- and year-level 

and here, the total trade times resistance (∑ (          )
 
   ) information was log-transformed. Trade 

data can be downloaded from the Eurostat database website 
(http://ec.europa.eu/eurostat/data/database) under the international trade, EU trade since 1999 by 

HS2,4,6 and CN8 (DS-575274). 

Since this is a Bayesian model, priors for the different hyperparameters had to be specified. For the 
precision of the flexible temporal effects (    

 ), spatial effect (    
 ), and spatio-temporal interaction 

(    
 ) different priors were used. Specifically, a gamma(1,0.01) was used for RW1, 

gamma(0.1,0.001) was used for AR1, gamma(1,0.001) was used for the IID precision parameter, 

and penalised complexity (PC) prior (Simpson et al., 2015) were used for both the RW2 and spatial 
effect precision. In all random effects (temporal, spatial and spatio-temporal), a sum-to-zero 

constraint was specified in order to avoid unidentifiability issues, especially with the intercept. Fitting 
of this model was done using the integrated nested laplace approximation by Rue et al. (2009). 

Comparison of the different spatio-temporal models is done mainly using the deviance information 

criteria (DIC). DIC is a measure used to compare the fit of different Bayesian models. The model with 
smaller DIC is generally preferred. The mean deviance and effective number of parameters, which 

are also reported, is used to compute DIC. Other model-fit statistics are also reported here: 
logarithmic score and McFadden’s R-squared. Logarithmic score is a proper scoring rule used to 

compare predictions. Models with high logarithmic score are generally preferred. McFadden’s pseudo 
R-squared is the ratio of the deviance of the model being evaluated and the deviance of the null 

model. It is also used to compare model-fit. However, this should not be confused with the R-

squared from linear regression as this is just a pseudo-R-squared and does not have the inherent 
interpretation of the linear regression R-squared. 

Benefits and disadvantages 

In order for the spatio-temporal model to be useful, a good temporal and spatial resolution is 

needed. A good spatial and temporal resolution would depend on the objective/question being asked. 

For instance, a country-level spatial resolution is not useful if the interest is on the spatial pattern of 
AMR in 3 countries, data at NUTS-2 level is more informative. Also, for studying the temporal trend, 

more flexible models can be investigated (and more insight can be gleamed) with monthly data as 
compared to yearly data. In the case where there is sparse data (no data in some areas), the method 

can suffer greatly. Furthermore, although the much faster integrated nested laplace approximation 

(INLA) is used instead of the MCMC estimation using WinBUGS or BRugs, computation can still take 
long, especially when many areas are involved in the analysis. 

Software 
Analysis in R:  inla(.) function from INLA package (www.r-inla.org). 

Analysis in SAS:  /  
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2.2.8. Pattern Attribution Models 

Pattern attribution models are constructed to investigate certain resistance patterns    into more 

detail. More specifically, interest is in how certain covariates influence the probability to observe a 

specific resistance pattern. A resistance pattern is defined as an array with length equal to the 

number of antimicrobials under investigation. In case an isolate shows resistance for an antimicrobial, 
the corresponding value in the array equals 1 (or R). Otherwise, when the isolate shows susceptibility 

against the antimicrobial, the corresponding entry is a 0 (or a blank). Next, after the user has 
specified a specific pattern of interest, an indicator variable is created which has the value 1 when 

the isolate shows the entire pattern, and a 0 otherwise. Firth-logistic regression is applied to 
investigate the effect of certain variables. More specifically, Firth (1993) suggested a correction to the 

standard logistic regression approach to render more appropriate standard errors in case of 

separation issues in the data. 

Benefits and disadvantages 

The exploratory graphs that are constructed provide a fast and nice overview of the probability to 
observe the selected resistance pattern. A more formal analysis is provided using the Firth model. 

The analysis is however descriptive in nature, and cannot be used for predicting evolutions in the 

future. 

 

Software 
Analysis in R:  logistf(.) function from logistf package  

Analysis in SAS:  /  
 

2.2.9. Source Attribution Models 

In the source attribution section, interest is on understanding the contribution of different food-types 
to antimicrobial resistance in humans. It is assumed that antimicrobial resistance in humans depends 

on antimicrobial resistance in different food-types which they consume. The principle is to compare, 
at the country level, the proportion of human isolates resistant to a given antimicrobial with the 

proportion of food-type isolates resistant to that given antimicrobial as well as consumption of those 

food-types.  

Firth-logistic regression is applied to model the probability (π) to be resistant to an antimicrobial as 

follows,  

 

     (  )     ∑       ∑       ∑         

 

where     denotes proportion of the kth food-type isolates, in country c which are resistant,     
denotes consumption quantity of the kth  food-type, in country c and     denotes covariate(s) on 

antimicrobial usage in humans. Missing values for    ,      and     can be imputed using multiple 

imputation methods, but in order to perform such analysis, a dataset as complete as possible is 

strongly recommended. In the case of usage of imputation methods, analysis results should be 
interpreted with caution. 
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Benefits and disadvantages 

The analysis offers a simple and quick way to understand, on average, which factors contribute to 

antimicrobial resistance in humans across all member states. However, the results must not be over 

interpreted since they are not country specific; the overall picture across all member states by no 
means reflects the situation within individual member states. In order to make valid inferences out of 

this analysis, data inputs should be as complete as possible. 

Software 

Analysis in R:  logistf(.) function from logistf package. Multiple imputation packages: mice(.) from 

mice package, amelia(.) from amelia package, aregImpute(.) from Hmisc and rfImpute(.) from 
randomForest package. 

Analysis in SAS:  /  
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 Overview and Summary of Statistical Methods 2.3.
Table 2:  Characteristics of statistical methods and models 

 Method Objective Data-Driven Benefits and Disadvantages 

 Name Type Primary Secondary Level Use Strength Weakness 

2.2.2 Classification Trees Descriptive  Effect of covariate(s)   
Detection of clusters, 
structures and patterns 

Largely 
No explicit 
model 
specification 

Can handle complex and 
high-dimensional data 

Variable, instable, no inference 

2.2.3.1 
Principal Component 
Analysis 

Descriptive Data reduction 
Use in other methods 
and models 

Largely 
No explicit 
model 
specification 

Reduction of dimension as 
preparatory step 

No inference 

2.2.3.2 
Multiple 
Correspondence 
Analysis 

Descriptive Data reduction 
Use in other methods 
and models 

Largely 
No explicit 
model 
specification 

Reduction of dimension as 
preparatory step 

No inference 

2.2.3.3 
Hierarchical 
Clustering 

Descriptive Detection of clusters Effect of Covariates Largely 
No explicit 
model 
specification 

Can detect clusters in 
complex data structures 

No inference 

2.2.4 
Generalized 
Estimating Equations 

Inferential 
Effect of covariates 
Time trend 

Detection of clusters Partly 
Needs model 
specification 

Can model multivariate 
binary indicators as function 
of covariates 

Needs model specification, 
computational problems 

2.2.5 Latent Class Analysis Inferential 
Detection of Clusters 
Time trend 

Effect of other covariates Partly 
Needs model 
specification 

Can detect underlying latent 
structures while accounting 
for covariates 

Needs model specification, 
computational problems 

2.2.6 
Bayesian Network 
Analysis 

Descriptive 
Detection of structures 
and patterns 

Time trend Largely 
No explicit 
model 
specification 

Can detect structures and 
patterns in complicated 
settings 

No inference 

2.2.7 
Spatio-Temporal 
Models 

Inferential 
Effect of time and 
space  

Effect of other covariates Partly 
Needs model 
specification 

Can detect spatio-temporal 
patterns and trends and 
accommodate additional 
covariates. 

Needs model specification, 
computational problems 

2.2.8 
Pattern Attribution 
Models 

Descriptive 
Effect of covariates on 
specific patterns 

- Partly 
User selects 
pattern of 
interest 

Can detect which patterns 
are mainly associated with 
certain values of covariates 

- 

2.2.9 
Source Attribution 
Models 

Descriptive 
Contribution of food 
types to  human AMR 

- Partly 
Needs model 
specification 

Can attribute human 
antimicrobial resistance to 
food types they consume 

Requires different data 
sources such as human 
resistance, consumption, etc. 
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3. Illustrative applications of the methods 

In this section, the most important output of the discussed methods is presented, such that users can 

understand the use of each method for AMR analysis. All methods except classification trees are 
applied to the E. coli dataset obtained from broilers. The accompanying tutorial can guide the user to 

obtain these results using the shiny application (for more information, see appendix A).  

3.1.1. Classification Trees 

Figure 1 shows a tree structure obtained when Salmonella and E. coli data were collapsed over all 

reporting years (2010 - 2014), all reporting countries as well as the following sample types: cattle 
(bovine animals), Gallus gallus (fowl), and pigs, as well as meat from bovine animals, meat from 

broilers (Gallus gallus), meat from pig; the multivariate outcome was composed of binary outcomes 

for resistance to six antimicrobials namely, AMP, CHL, CIP, GEN, STR and TET. A graphical 
presentation of the tree is shown on Figure 2. 

 

Figure 1:  Classification tree summary 

The classification tree includes eight terminal nodes (clusters) with splits based on the bacterial type 

(zoonosis_L1), the food type (matrix_L1), the reporting country (repCountry) as well as the reporting 
year (repYear). At each stage of splitting, association between each covariate and the six 

antimicrobials jointly is tested, one covariate at a time. 

The bacterial type determines the first split meaning that, for the root node (original data), it has the 
strongest association (smallest p-value) with resistance to the six antimicrobials jointly, compared to 

the other covariates.  

Similarly, at the second generation split, 

i. for Salmonella, reporting country has the strongest association. At the third 

generation split, both country nodes are further split based on food type meaning 
that it has the strongest association in either nodes;  

ii. for E. Coli , food type has the strongest association. At the third generation split, one 
food-type node is further split based on reporting country meaning that, for that 
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node it has the strongest association; the other food-type node is further split based 
on reporting year meaning that it has the strongest association. 

 

Inspection of the bar plots at each node in Figure 2 shows resistance, expressed as proportions (0 to 
1), of that cluster to the six antimicrobials jointly; the codes ‘0’ and ‘1’ on each bar stand for ‘non-

resistant’ and ‘resistant’, respectively. As an example, consider node 15, from isolates observed in 
Hungary, Malta and Romania. It is found that Salmonella from broilers of domestic fowl (Gallus 

gallus) and meat from broilers has high resistance to CIP, STR and TET, jointly. Other clusters can be 

interpreted in a similar way. 

 

 

 

Figure 2:  Graphical presentation of the classification tree 

3.1.2. Clustering 

Principal Components Analysis 

The main goal of this PCA analysis is to reduce the number of variables of interest (data reduction). 

Indeed, 7 antimicrobials of interest are considered. Simply speaking, PCA considers combinations of 
these AMs, which can be subsequently used in additional analyses like the hierarchical clustering that 

will be discussed below. In this respect, one of the most important outputs from the PCA is presented 
on Figure 3. More specifically, the correlation circles show the influence that each of the original 
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variables has on the constructed principal components (PC). The first dimension (principal 
component), explaining around 37% of the original variability, receives positive contributions from all 

original variables. This means that a higher MIC value for a certain antimicrobial results into a higher 

value for the first PC. Similarly, it can be observed that the second dimension (PC), explaining 14% of 
the total variability in the data, is mainly characterised by GEN and in a lesser extent, exhibits a 

contrast between CIP and CHL vs. TET, AMP and TMP.  

 
Figure 3:  Variables factor map (correlations circle) in the first four dimensions 

A more quantitative description of the associations is provided in Table 3. It is observed that all 

antimicrobials are significantly and positively correlated to the first dimension. Dimension 2 is also 

significantly correlated with all antimicrobials, but it is a contrast between two groups of 
antimicrobials. Finally, dimension three, explaining nearly 14% of variability, is significantly correlated 

with all AMs, except for CHL. This third dimension is a contrast between AMP and CTX on the one 
hand versus CIP, GEN, TET and TMP on the other. The correlation with the first group of 

antimicrobials is positive, meaning that a higher value for the third dimension corresponds to higher 
MIC values for that specific group, given that the MIC in the other group remains unchanged. None 

of the antimicrobials were significantly correlated with the fourth dimension. Next to the table, the 

corresponding output from the Shiny application is shown for the first dimension. 

  

 

 

Table 3:  Description of the first 3 dimensions/components of PCA: correlations between variables 

and dimensions/components 

 Dimensions 

Antimicrobial Dim1 Dim2 Dim3 

AMP 0.75 (<0.0001) -0.30 (<0.0001) 0.10 (<0.0001) 

TET 0.69 (<0.0001) -0.27 (<0.0001) -0.11 (<0.0001) 

TMP 0.68 (<0.0001) -0.39 (<0.0001) -0.21 (<0.0001) 

CHL 0.64 (<0.0001) 0.26 (<0.0001)  

CIP 0.64 (<0.0001) 0.28 (<0.0001) -0.11 (<0.0001) 

GEN 0.43 (<0.0001) 0.71 (<0.0001) -0.21 (<0.0001) 

CTX 0.33 (<0.0001) 0.09 (<0.0001) 0.92 (<0.0001) 
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As mentioned in Section 2.2.3.1, the PCA can be extended with supplementary variables to check the 
influence of these variables on the MIC values of the isolates under investigation. Figure 4 shows the 

resulting factor map when including the year of monitoring (time). Due to the fact that reporting was 

only mandatory from 2014 onwards, not all countries provided data in all years. Therefore, this 
analysis is exemplary and should not be over interpreted. 

 

Figure 4:  Individuals factor map (dimensions 1 and 2) with time as supplementary variable 

Interpretation of Figure 4 above should be done with great care. The plot is mainly descriptive and 
one should not rush into statistical conclusions. It is seen that isolates from the year 2014 have a 

higher value for the first dimension. This means that isolates obtained in this year probably have 

higher MIC values compared to the other years. The lowest MIC values are probably located in 2010 
and 2012, since the isolates from these years are located near the lower values of PC1. While the 

squares on the plot provide an idea of the mean value on both PC1 and PC2 for an isolate in the 
respective year, the ellipsoids give an indication of the associated variability around that mean. In 

case they do not overlap for two given years, this means that there is a significant difference 
between those years (considering the first two dimensions jointly).     

Figure 5 shows the results of PCA with country as the supplementary variable. Notice, in particular, 

the location of the isolates from Bulgaria and Romania, who have the highest values for both 
dimension 1 and 2. These isolates were only sampled in the year 2014, so the effects of country and 

year might be blurred by each other in this case. It is very likely that these cases are very influential 
to the plot in Figure 4 as well. This is again an indication that one should be careful when 

interpreting these individuals’ factor maps. Ideally, data for all countries over all years should be 

available. A goal that will be achieved as data collection in the current format is mandatory since the 
2014 data. 
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Figure 5:  Individuals factor map (dimensions 1 and 2) with country as supplementary variable 

Hierarchical clustering after PCA 

Using the obtained principal components in the hierarchical clustering analysis, three relatively well 

separated clusters are obtained, containing respectively 4912, 4019 and 739 isolates. The resulting 

clusters are presented in Figure 6, where they are plotted on dimension 1 vs. dimension 2 and 
dimension 1 vs. dimension 3.  

 

Figure 6:  Hierarchical clustering analysis after PCA (top: dim1 vs. dim2; bottom: dim1 vs. dim3 ) 



 Analysis of multi-drug resistance in the EU 

 

 
www.efsa.europa.eu/publications 24 EFSA Supporting publication 2016:EN-1084 

The present document has been produced and adopted by the bodies identified above as author. This task has been carried out exclusively by the author in 
the context of a contract between the European Food Safety Authority and the author, awarded following a tender procedure. The present document is 
published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The 
European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, 
without prejudice to the rights of the author. 

 

In addition, Table 4 shows the mean MIC structure of the resulting clusters. The first cluster is 
located near the lowest values of the first principal component. As a result, the isolates located in this 

first cluster have the lowest (or close to the lowest) mean MIC values, thereby suggesting that only a 

small proportion of isolates in this cluster show resistance. Indeed, this can be observed from Table 
5, which summarises the cluster-specific proportions of resistance. Cluster 2 has higher values for 

PC1 compared to cluster 1. This is reflected in the increased mean MIC values for all antimicrobials 
but GEN. Cluster three has high values for both PC1 and PC2. It therefore has the highest mean MIC 

values for GEN, CHL and CIP (note the positive correlation with these AMs and PC 2 in Table 3).  

Table 4:  Mean MIC values (on the log-scale) for each of the clusters 

Cluster N GEN CHL CTX CIP AMP TET TMP 

1 4912 -0.27 -0.43 -0.28 -0.45 -0.71 -0.641 -0.63 

2 4019 -0.23 0.36 0.30 0.38 0.76 0.67 0.67 

3 739 3.07 0.91 0.18 0.92 0.61 0.64 0.56 

Table 5:  Cluster-specific proportions of resistance 

Cluster N GEN CHL CTX CIP AMP TET TMP 

1 4912 0.28 0.25 0.06 0.50 0.38 0.31 0.31 

2 4019 0.12 0.45 0.33 0.55 0.73 0.55 0.57 

3 739 1.00 0.45 0.28 0.57 0.65 0.55 0.50 

Multiple Correspondence Analysis 

While PCA focused on the continuous MIC values, MCA uses the binary patterns instead. Resistance 
to CIP and NAL was addressed simultaneously through a newly constructed indicator, CIPNAL, which 

takes the value 1 in case the isolate shows resistance to either CIP or NAL (or both). In Figure 7, the 
factor maps are shown for the first 4 dimensions.  

 

Figure 7:  Factor map resulting from MCA 

From the factor map, it is observed that higher values for the first dimension are related to resistance 

against CHL, CTX, GEN, AMP and TMP. Similarly, the highest contribution to dimension 2 is made by 
isolates resistant to CTX in contrast to GEN.  A more quantitative description of the composition of 

the dimensions is provided in Table 6. The first dimension is composed of positive contributions of 
the isolates that show resistance against all antimicrobials. Hence, the higher the value of the first 
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component, the more resistance the isolates exhibit. For the second dimension, resistance to the AMs 
CTX, AMP, TMP and TET contribute in a positive way, whereas susceptibility to the remaining AMs 

also contributes positively.  For the third dimension, it is seen that resistance to CTX, GEN, CHL and 

CIPNAL (combination of ciprofloxacine and nalidixic acid) contributes positively to this third dimension 
as is the case for susceptibility against TMP, AMP and TET. Negative contributions are delivered with 

an equal quantity by the opposite of the variables mentioned here. E.g. the first dimension receives a 
negative contribution of 0.45 by susceptibility to TMP.      

Table 6:  Description of dimensions of MCA 
Dimension 1 Dimension 2 Dimension 3 

Variable Estimate (p-value) Variable Estimate (p-value) Variable Estimate (p-value) 

CIPNAL.res_1 0.33 (<0.0001) GEN.res_0 0.43 (<0.0001) TMP.res_0 0.14 (<0.0001) 

TMP.res_1 0.45 (<0.0001) CTX.res_1 0.57 (<0.0001) GEN.res_1 0.28 (<0.0001) 

TET.res_1 0.43 (<0.0001) CIPNAL.res_0 0.11 (<0.0001) CTX.res_1 0.42 (<0.0001) 

GEN.res_1 0.44 (<0.0001) AMP.res_1 0.10 (<0.0001) TET.res_0 0.10 (<0.0001) 

CHL.res_1 0.50 (<0.0001) CHL.res_0 0.09 (<0.0001) CHL.res_1 0.12 (<0.0001) 

AMP.res_1 0.46 (<0.0001) TMP.res_1 0.03 (<0.0001) CIPNAL.res_1 0.06 (<0.0001) 

CTX.res_1 0.34 (<0.0001) TET.res_1 0.02 (<0.0001) AMP.res_0 0.06 (<0.0001) 

 

Again here, the analysis can be extended with supplementary variables. The resulting graph for 

supplementary variable time is shown in Figure 8. The results obtained from this MCA closely 
resemble the conclusions from the PCA. 

  

 
Figure 8:  Factor map resulting from MCA, with time as supplementary variable 

Also when including the covariate country, very similar results compared to the PCA are obtained, 

with Bulgaria located near high values for the first dimension (see Figure 9). The two plots on the top 

reflect the locations of the countries on dimensions 1-2 and 3-4, respectively. In addition, confidence 
ellipses are included in the bottom plot. Interpretations of these ellipses correspond with results 

shown from PCA. More specifically, in case the ellipses of two distinct countries do not overlap, those 
countries can be considered to differ significantly. 
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Figure 9:  Factor map resulting from MCA, with country as supplementary variable 

Hierarchical clustering after MCA 

Applying the hierarchical clustering algorithm to the constructed dimensions, 6 clusters are identified, 

containing 2682, 2048, 2491, 642, 1076 and 731 isolates, respectively. They are represented in the 

factor map in Figure 10. 
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Figure 10:  Factor map resulting from hierarchical clustering after MCA 

Clusters 6 and 4 have similar values for the first dimension, but differ greatly in their value for 

dimension 2. The higher values for the first dimension indicate higher proportions of resistant isolates 

in these clusters. It is seen that cluster 6 has negative values for dimension two, which indicates that 
the isolates in this cluster have lower resistance against CTX and AMP compared to the isolates in 

cluster 4. Moreover, all isolates that are resistant to CTX are located in cluster 4. This can be seen in 
Table 7, which shows the cluster-specific proportions of resistance. Cluster 1 has the smallest value 

for the first dimension and therefore corresponds to isolates which show very little resistance against 

all of the AMs. Cluster 2 is closely related to the first cluster, but has slightly higher values for the 
first PC. This is reflected in the proportion of isolates resistant to CIPNAL, which equals 1 in cluster 2 

and 0 in cluster 1. Note that Table 6 showed that CIPNAL is most significantly related to the first 
dimension. Isolates in clusters 3 and 5 show slightly elevated levels of resistance.   

Table 7:  Cluster-specific proportions of resistance 

Cluster N GEN CHL CTX AMP TET TMP CIPNAL 

1 2682  0.00 0.20 0 0.20 0.20 0.20 0.00 

2 2048  0.00 0.20 0 0.20 0.20 0.20 1.00 

3 2491  0.00 0.00 0 0.75 0.75 0.75 0.50 

4 642  0.41 0.48 1 1.00 0.56 0.48 0.56 

5 1076  0.00 1.00 0 0.57 0.57 0.57 0.50 

6 731 1.00 0.47 0 0.50 0.50 0.53 0.53 

 

3.1.3. Generalised Estimating Equations 

In this particular data example, a generalised linear model relating the binary outcomes to time was 

fitted. Table 8 summarises the parameter estimates, with the robust standard errors and p-values for 
the slope parameters. It is observed that the slope for CTX is significantly negative, meaning that the 

odds of being resistant to CTX decrease over time. All remaining slopes, are significantly positive, 

meaning that the odds of being resistant to any of the other antimicrobials increases over time. For 
example, for AMP, the odds of being resistant in 2011 is exp(0.06) = 1.06 times the odds of being 

resistant in 2010.  
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Table 8:  Parameter estimates from GEE 

 Intercept Slope 

Variable Estimate S.e.(a) Estimate S.e.(a)  p-value 

AMP -0.05 0.07 0.06 0.02 0.0001 

CHL -2.34 0.11 0.19 0.02 <0.0001 

CIPNAL -0.10 0.07 0.10 0.02 <0.0001 

CTX -1.88 0.11 -0.19 0.03 <0.0001 

GEN -3.79 0.18 0.32 0.04 <0.0001 

TET -0.59 0.07 0.09 0.02 <0.0001 

TMP -0.70 0,07 0.05 0.02 0.0036 

(a): Robust standard errors 

 
 

Finally, a heat-map representation of the estimated working correlation matrix is presented in Figure 

11. The plot was constructed in such a way that the two AMs with the highest estimated correlation 

among them are located in the top-right. There seems to be an elevated correlation between AMP, 
TET and TMP, while the remaining correlations are more moderate. CTX does not seem to be 

correlated to GEN and only very marginal with the other AMs. 

 

Figure 11:  Estimated working correlation 

 

3.1.4. Latent Class Analysis 

A latent class analysis was performed using three latent classes (i.e.  number of clusters found when 

performing hierarchical clustering after PCA). From the plot in Figure 12, the population shares of the 
constructed classes can be observed. A large class, containing 46% of the population, shows only 

minor resistance. The isolates contained in this latent class show practically no resistance to CHL, 
CTX, GEN and TMP. The probability to be resistant against AMP and TET is also very low, while 

resistance to CIPNAL is slightly elevated. On the other hand, the class on the right of Figure 12 (23% 

population share) contains isolates that have a higher probability to show resistance against all AMs 
of interest, except for CTX. Note that the probability to show resistance against CTX is low in all 

classes. The class on the left can be termed intermediate, with higher probability to be resistant 
against AMP, TET, TMP and CIPNAL and lower probabilities for the remaining AMs. 
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Figure 12:  The three latent classes underlying the structure of the dataset under investigation 

The covariate time was included as well to see how the odds to be within a specific latent class 

changes over the years. These results are presented in Table 9 below. Classes are numbered from 
left to right in Figure 12 above (class 1 is located on the left, followed by classes 2  and 3). It is seen 

that the odds of being in class 2 compared to class 1 is slightly increasing over time, while the odds 
of being in class 3 compared to class 1 is slightly decreasing.  

Table 9:  Parameter estimates from GEE 

Classes Parameter Estimate (se) p-value 

2/1 Intercept 0.00 (1e-5) 0.99 

 year 0.00018 (1e-5) <0.0001 

3/1 Intercept 0.00 (1e-5) 0.99 

 year -0.00015 (1e-5) <0.0001 

 

A model with six latent classes (i.e.  number of clusters found when performing hierarchical 
clustering after MCA) was also fitted. The resulting classes are shown in Figure 13. The class on the 

left, containing 35% of the population is the class with the least resistance. Classes three, four and 
five could be seen as having isolates that show intermediate resistance, while classes two and six 

show relatively high resistance. There were some model fitting issues (inherent to the underlying 

latent allocations) when trying to include the time component with the six latent classes. These 
results could therefore not be presented. On the other hand, when 5 latent classes were selected, 

the model converged without any problems. A possible explanation is that 6 latent classes, in 
combination with a time component introduce classes that are sparse, resulting into errors in the 

model fitting process. In case such errors appear, the number of assumed latent classes should be 

decreased.   
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Figure 13:  The six latent classes underlying the structure of the dataset under investigation 

3.1.5. Bayesian Network Analysis 

A DAG including the 7 antimicrobials of interest, together with the variable year was constructed. 
After creating an initial graph, a bootstrap procedure was performed for trimming of edges that were 

in the initial DAG due to chance. 50 new datasets were sampled based on the initially constructed 

DAG and an edge was retained in case it was present in more than 50% of the created bootstraps 
DAGs. In general, the more bootstrap datasets are considered, the more stable the final results are 

to be expected. The choice of the amount of bootstrap samples is mainly a consideration of time. In 
most cases, 50 new datasets should be a sufficient lower limit.  The final result is shown in Figure 14. 

On the edges, the odds ratios comparing the two variables the respective edge connects are shown.  

 

Figure 14:  Final DAG relating the underlying relations amongst antimicrobials and between 

antimicrobials and the time component.  
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On the right, the averaged bootstrap odds ratios are included as labels, while on the left, the odds 
ratios resulting from the original data is shown. When interpreting, focus should be on the right plot. 

For example, it is seen that there is an edge between TET and CIPNAL. The corresponding odds ratio 

is 2.74. This mean that the odds of observing resistance to CIPNAL when an isolate shows resistance 
to TET is 2.74 times the odds of observing resistance to CIPNAL when an isolate shows susceptibility 

to TET. Similar interpretations follow for the other edges. In order to see whether these ORs are 
significant, Figure 15, obtained from the Shiny application, can be regarded. 

 

Figure 15:  Averaged bootstrap ORs for the final DAG.  

 

The bootstrap averaged lower and upper limits of the confidence interval for the odds ratio are 
shown. In case 1 is not contained within the interval, the OR is significant. For TET and CIPNAL, this 

is the case (CI = [2.53-2.96]).   

Finally, while the covariate year was included directly into the DAG above, another approach can be 

followed as well. Indeed, when interest is solely in identifying structure between the antimicrobials, it 

is possible to account for possible covariates (time, country, animal species,…) beforehand. More 
specifically, one can build a logistic regression model, where the response is taken to be resistance to 
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a certain AM and the covariates are (functions of) the variables of interest. Consecutively, one can 
use the residuals from these logistic regression models as input values for the Bayesian network 

(instead of working with the raw binary data). In case of the E. coli example considered above, 

logistic regression models with a linear effect of time were fitted and the resulting residuals were 
used as input to the Bayesian networks analysis. As a result, the following DAG was found. 

  

Figure 16:  DAG based on the Pearson residuals from the logistic regression models  

It can be observed that the DAG is consistent with the one obtained using the raw binary data, 

except that the variable year is no longer connected to any AM. Nevertheless, this latter option 

should be considered with caution at this point. Indeed, one of the underlying assumptions is that 
the residuals that are substituted into the model should be Gaussian. This is often not the case with 

logistic regression models, as it is shown in Figure 17 below.  

Moreover, additional research in this direction is required. Indeed, it should be investigated whether 

the DAG build with the raw binary data is always consistent with the DAG build using the residuals 
and, which residuals should be preferred (at this point, Pearson residuals were employed). For these 

reasons, the option of accounting for covariates beforehand was not yet included in the application. 
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Figure 17:  Histograms of the Pearson residuals from the logistic regression models  
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3.1.6. Spatio-Temporal Models 

3.1.6.1 Univariate Analysis – Country-level 

A univariate spatio-temporal model was fitted to the E.coli data for broilers at the country, NUTS-1, 

NUTS-2 and NUTS-3 level. The Nomenclature of Units for Territorial Statistics (NUTS) 3 level refers to 
the city or municipality per country. It was observed that in the country level, data was not available 

for all countries, while in the NUTS-1 to NUTS-3 level, data were available for only specific areas (see 
Figure 18). Although countries/areas without information were included, it was treated as ‘NA’ in the 

analysis, hence gives no contribution to the likelihood. 

 

A. EU Country-level 

 

 

B. Austria NUTS-3 level 

 

 

Figure 18:  Observed proportion of isolates with AMP resistance at A) country-level and B) Austria 

NUTS-3 level. The maps show the spatial pattern of resistance over the years while the 
dot plots show the over-all yearly proportion of resistance. 

  

Table 10:  Best temporal trend (time = year) for Ampicillin, based on the DIC criterion.  
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Space-time Interaction 

Best temporal trend 

Country-level 
Austria 

NUTS1 NUTS2 NUTS3 

None RW1 AR1 AR1 RW2 

Unstructured (I) RW2 AR1 None RW2 

Structured Time- 
Unstructured Space (II) 

RW1 AR1 AR1 AR1 

Structured Space-Time (IV) Linear AR1 AR1 AR1 

 

The best model (in terms of the time trend) for Ampicillin, using different space-time interaction, is 

given in Table 10. Note that in order for one to decide which space-time interaction to use, one 
needs to take note and compare the DIC between the respective best models for the different 

interaction terms. 

 

The possibility of doing a weighted analysis and/or incorporating trade information as covariate was 

also investigated. For this application, the weights were calculated based on the 2014 EFSA report 
“Technical specifications on randomised sampling for harmonised monitoring of antimicrobial 

resistance in zoonotic and commensal bacteria” (EFSA, 2014). An input file (CountryProd.csv) is 
needed indicating whether each EU country has less than 100 000 tons of poultry or pig meat 

production or less than 50 000 tons of bovine meat production (coded as 1 in the input file, 0 

otherwise, see Appendix B on how the file should look like). The production information used in this 
report was obtained from the Eurostat database (Eurostat, 2016a). For the trade information, 3 files 

(within one zipped file) are needed: Country_abbrev.csv, period.csv, and TradeData.csv. The first 
two files contain the corresponding country names/abbreviation and the period/time information. The 

TradeData file contains the import data of a declarant country (the country which imports or the 
destination country) from the partner country (the source country). This information can be 

downloaded from the Eurostat database (Eurostat, 2016b). Two ways of incorporating this (inter-

country) trade information is possible in this application: a yearly trade information, or an average 
(fixed over the years) trade information. The latter is quite sensible in the case where there is little 

trade information (large number of missing data) in some years. See Appendix B for a screenshot on 
how each file should look like. 

Results shown below (Table 11) are the estimates from the weighted and unweighted model (with 

poultry trade information, RW1 time component and unstructured spatio-temporal interaction) for 
resistance in AMP in all EU countries. Table 11: shows the parameter estimates while Figures 19-21 

shows the plots of the estimated odds of AMP resistance for each country. Difference between the 
estimates from the unweighted and weighted model can be observed. In the unweighted analysis, 

poultry trade information has no significant effect on the AMP resistance, while in the weighted 
analysis, a significant effect was observed. A small estimate of the time variance parameter indicates 

a rather smooth temporal effect. With respect to the spatial component, an increase/decrease in 

odds can be observed in countries where information was available. The marginal spatial variance is 
estimated around 1.4/1.5 with only a small proportion (0.06) of this variance explained by the 

(structured) spatial variation. Thus, the spatial effect is mostly dominated by the overdispersion or 
the unstructured effect. Figures 20 and 21 shows the estimated probability of AMP resistance, 

including a prediction for 2015. Italy, Bulgaria and Estonia showed higher odds of AMP resistance, 

while the Nordic countries: Norway, Sweden, Finland and Denmark showed lower odds of AMP 
resistance. Looking back however to Figure 18, it is obvious that the observed spatial pattern is 

determined by the 2014 data since it is this year that information for most of the countries is 
available. Furthermore, a high or low spatial risk is predicted depending on the observed data in a 

particular area and also of the neighbouring areas. So, an area with high proportion of positives can 
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have low predicted spatial risk if the neighbouring areas have low proportion of positives, and vice 
versa. 

  

Table 11:  Parameter estimates from the (unweighted and weighted) RW1 with unstructured space-
time interaction model for AMP resistance in EU countries. Yearly poultry trade 

information between the EU countries is included as fixed effect. Est refers to the 
estimate, s.e. refers to the standard error, while C.I. refers to the credible interval. 

 Unweighted Weighted 

Parameter Est s.e. 95% C.I. Est s.e. 95% C.I. 

Intercept  0.297 0.240 -0.1760, 0.7710 0.267 0.239 -0.2010, 0.7350 

Trade Information 0.005 0.016 -0.0270, 0.0370 0.032 0.014 0.0040, 0.0600 

Variance for t.ID (time – 
RW1 varaince) 

0.034 0.042 0.0004, 0.1410 0.075 0.081 0.0060, 0.2810 

Variance for s.ID (Marginal 
Variance)  

1.439 0.366 0.8720, 2.2840 1.543 0.372 0.9540, 2.3890 

Phi for s.ID (space - 
proportion of the spatial 
marginal variance that can 
be attributed to the 
structured spatial effect) 

0.059 0.059 0.0030, 0.2220 0.062 0.061 0.0040, 0.2270 

Variance for st.ID.t 
(Spatio-temporal 
interaction variance) 

0.098 0.050 0.0350, 0.2220 0.014 0.025 0.0001, 0.0380 

 

Unweighted 

 

Weighted 

 

Figure 19:  Estimated risk of AMP resistance (    (  )) based on the RW1+unstructured model at 

country-level. 
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Unweighted 
 

 

Weighted 

 

 

Figure 20:  Estimated (overall) probability of AMP resistance for all spatial units, based on the 
RW1+unstructured model at country-level.  
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Unweighted 

 

Weighted 

 

Figure 21:  Estimated (overall) probability of AMP resistance for 2013-2014 and prediction for 2015, 
based on the RW1+unstructured model at country-level. 

 

In general, interpretation of parameter estimates and some statistics from the model-fit is fairly 

straightforward. The output gives the fixed parameters, random parameters and some model-fit 
statistics. In Table 11 for instance, under the fixed parameters: 

 An intercept estimate (  ̂) is given. This gives the log-odds at baseline. 

 An estimate of the effect of the previous-year trade information is given. This effect reflects 

not only the contribution of previous-year trading but also trading between countries with 

AMP resistance at the previous year. Hence, a (significant) positive effect means that an 
increase of trading (import) or proportion of AMP resistance of the source countries at the 

previous year would lead to an increase in AMP resistance of a particular country at the 

current year. 

 Since a flexible temporal effect is assumed, there is no estimate for it under the fixed 

parameters. However, if a linear or saturated time effect is chosen,  

o for the linear time effect (t.ID), an estimate for the linear trend will be given. This 
will reflect the increase or decrease of the log-odds of AMP resistance every year (or 

month or week). 

o For the saturated time effect (ctime), estimates corresponding to each time point will 
be given (the first time point is taken as the reference time). In the case of the 

yearly AMP resistance, a yearly estimate is given, where the first year (2010 in this 
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case) is taken as the reference year. So, ctime2 refers to the 2011 estimate and 
ctime6 refers to the 2015 estimate, all in reference to 2010.  

Under the random parameters, estimate for the variance ( ̂ 
 ) of the flexible temporal trends (RW1, 

RW2 or AR1) is given, along with the correlation parameter Rho ( ) if the AR1 effect is chosen, 

marginal variance ( ̂ 
 ) of the spatial effect, Phi ( ), which is the proportion of marginal variance 

attributed to spatial variation, and variance ( ̂ 
  or Var for  st.ID.t) for the space-time interaction if it is 

chosen.  

With respect to the model-fit statistics, the deviance information criteria (DIC), mean deviance, 

effective number of parameters, logarithmic score and McFadden’s pseudo R-squared value are 
shown in the output. A short description of these statistics is given in Section 2.2.7. Generally, 

models with smaller DIC and higher logarithmic score and McFadden’s pseudo R-squared are 
preferred. It should be noted that care should be taken in interpreting the pseudo R-squared as this 

cannot be interpreted the same way as in the normal linear regression case. 

3.1.6.2 Univariate Analysis – NUTS-3-level 

Results shown below are the estimates from the RW2 model with unstructured spatio-temporal 

interaction for resistance in AMP in Austria, at NUTS 3 level. Table 12 shows the parameter estimates 
while Figures 22-23 show the plots of the estimated risk/probability of AMP resistance per NUTS 3 

areas. Estimate for the variance of the RW2 time effect shows a small value which implies a rather 

smooth temporal trend. Figure 23 confirms this observation where it can be observed that a smooth 
curved predicted trend. For the spatial component, a small marginal variance can also be observed 

which similarly implies a smooth trend. And of this marginal variance, only around 28% of the 
variability can be explained by the structured spatial effect. The marginal variance of the spatial 

component refers to the variance of the iid + structured spatial effect. 

Figure 22 shows a spatial trend of resistance, although looking closely at the range of values, it 
seems not to be so different from each other. Figure 23 on the other hand, shows the estimated 

probability of AMP resistance for each area and time. A one-year-ahead prediction is also added.  

 

Table 12:  Parameter estimates from the RW2 + unstructured spatio-temporal interaction model for 

AMP resistance in Austria.  

Parameter Estimate s.e. 95% C.I. 

Intercept  -0.728 0.177 -1.080, -0.372 

Variance for the time (RW2 component) 0.040 0.071 0.0005, 0.209 

Marginal Variance for the Spatial 

component  
0.054 0.0630 0.002, 0.218 

Phi for the Spatial effect 0.275 0.262 0.006, 0.895 

Variance for st.ID.s 0.036 0.049 0.0001, 0.019 
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Figure 22:  Estimated spatial risk of AMP resistance (    (  )) based on the RW2 + unstructured 

spatio-temporal interaction model at NUTS3-level. 

 

A. Temporal trend 

 

B. Map 

 

Figure 23:  Estimated probability of AMP resistance (year 2010 – 2014) for all NUTS-3 municipalities 

in Austria based on the RW2 + unstructured spatio-temporal interaction model. A) 
shows the temporal trend while B) shows the map or the spatial trend over the years. 

 

3.1.6.3 Bivariate Analysis 

A bivariate spatio-temporal model was also fitted to the E.coli data for broilers at the EU country-

level. Output for the antimicrobials AMP and TET are given below. Table 13 shows the parameter 
estimates from the model where a separate intercept term is estimated for the two antimicrobials. If 

a time-effect was also added into the model, this is also estimated separately for each antimicrobial. 
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With respect to the spatial effect (s.ID), a marginal variance of 1.3 was estimated, where only around 
7% of this variation is due to the structured effect, the majority of this variation is due to the 

unstructured effect or overdispersion. This was also observed in the univariate case, for AMP. A high 

correlation between the spatial effect of the two antimicrobials can also be seen (see Figure 24), 
which is estimated to be around 0.84. This means that there is a high degree of similarity between 

the spatial pattern of AMP and TET resistance. With respect to the space-time interaction, a very low 
variance of the unstructured effect was observed. Correlation between the space-time interaction of 

the two antimicrobials, was estimated around 0 with a high estimated standard error. This almost 

zero correlation and high standard error means that the model does not support a correlated space-
time interaction between the two antimicrobials but rather, the space-time interaction between the 

two antimicrobials seems to be independent. 

Figure 24 shows the different EU countries with increased risk of antimicrobial (AMP and TET) 

resistance, based on the spatial effect. Italy and Bulgaria have remarkably higher risk compared to 
other countries. Note that these are the countries with high risk of AMP resistance in the univariate 

analysis. It is also important to note that the observed spatial trend is mostly due to the 2014 data 

(see Figure 18), where there is information for these countries (and other countries as well) but not 
in other years.  

Figures 25 and 26 give the predicted probability of antimicrobial resistance over the years and across 
different countries. A one-year-ahead prediction is also given. The figures show that certain countries 

have high predicted probabilities of AMP resistance (such as Italy, Bulgaria, Germany, Poland and 

Romania) and TET resistance (such as Italy, Bulgaria and Romania). Although a low risk based on 
the spatial effect can be observed for some of these countries, the risk is still greater than 1. 

Table 13:  Parameter estimates from the intercept-only with unstructured space-time interaction 
model for AMP and TET resistance in Europe.  

Parameter Estimate s.e. 95% C.I. 

Intercept (AMP) 0.203 0.212 -0.216, 0.620 

Intercept (TET) -0.256 0.212 -0.675, 0.162 

Marginal variance for s.ID  1.318 0.303 0.826, 1.997 

Phi for s.ID  0.074 0.065 0.006, 0.246 

GroupRho for s.ID: Correlation of the Spatio-
temporal effects of AMP and TET 

0.844 0.072 0.670, 0.946 

Variance for  st.ID.t: Space-time interaction 0.101 0.030 0.056, 0.171 

GroupRho for st.ID.t: Correlation of the space-

time interaction between AMP and TET 
-0.016 0.659 -0.976, 0.975 
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Figure 24:  Estimated risk (spatial effect) of AMP and TET resistance (    (  )) based on the no-

intercept model at country level. 

 

 

Figure 25:  Estimated overall probability (temporal trend) of observing AMP and TET resistance 
based on the no-intercept model at country level. 
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Figure 26:  Estimated overall probability (spatial trend) of observing AMP and TET resistance based 
on the no-intercept model at country level. A one-year-ahead prediction (2015) is given. 

3.1.7. Pattern Attribution Models 

Pattern attribution models are used when interest is in describing the different MDR patterns and 
how these patterns depend on certain variables of interest, including the sampling year, country, 

animal origin and zoonosis type. There are 89 different resistance patterns in the dataset under 
investigation. The pattern in which isolates show resistance against AMP, TET and TMP and 

susceptibility against GEN, CHL, CTX and CIPNAL was investigated. A total of 419 isolates, sampled in 

25 different countries, show the pattern of interest. 

For the current subset, it can be shown graphically how the probability to show this resistance 

pattern evolves over the considered time period and between the reporting countries. In case 
different animal subtypes or bacteria subtypes were selected, these could be investigated as well. In 

this regard, the following plots can be investigated.  

Figure 27 shows the evolution over time. It is observed that the overall prevalence of this pattern is 
rather low. The highest prevalence is observed in 2011, but the corresponding confidence limits 

overlap with those obtained for 2010 and 2013. There seems to be a significant drop in prevalence 
between 2011 and 2012 and the prevalence in 2014 is on the same low level compared to 2010 and 

2012. 
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Figure 27:  Observed prevalence of the selected pattern over the distinct years. 

Figure 28 shows a similar plot, but now compares the prevalence between the distinct EU member 

states. The overall prevalences are plotted, disregarding the years at this point. Higher prevalences 

are observed in the UK and Ireland, but confidence limits are rather wide. 

 

Figure 28:  Observed prevalence of the selected pattern over the distinct countries. 

In order to see how the prevalence evolves over the years, dependent on the country, both variables 

can be selected and plotted simultaneously in the Shiny application. In order to keep the plot 
readable, only two countries were selected to be shown in Figure 29. In Austria (shown in pink), the 

proportion of isolates that show the specific resistance pattern increases between 2010 and 2011. 

Next, after a small drop in 2012, it gradually increases again. The confidence limits are overlapping, 
so there is no significant increase. A similar behaviour is observed for Germany (shown in blue). 

Finally, it is seen that the probability to show the pattern is significantly higher in Germany compared 
to Austria (as the confidence intervals within the years do not overlap between Germany and 

Austria).  
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Figure 29:  Observed prevalence of the selected pattern over the distinct years, per country.  

In order to formally test whether there are differences between the levels of certain variables, Table 
14 presents the result from the Firth logistic regression. It is seen that, for the years 2010, 2011, 

2013 and 2014, the odds to observe the selected pattern in Austria is significantly lower than the 

odds in Germany. Similarly, in 2014, the odds of observing the pattern are higher in Austria as 
compared to Romania. 

Table 14:  Overview of significant differences in odds to observe the selected pattern. 

Coeficient 1 Coeficient 2 OR (lower-upper) Interpretation 

Austria-2010 Germany-2010 0.18 (0.05-0.68) 
Significant lower odds to show the selected  
pattern for Austria-2010 compared to  

Germany-2010 

Austria-2011 Germany-2011 0.22 (0.08-0.61) 

Significant lower odds to show the selected  

pattern for Austria-2011 compared to  

Germany-2011 

Austria-2013 Germany-2013 0.18 (0.05-0.67) 

Significant lower odds to show the selected  

pattern for Austria-2013 compared to  

Germany-2013 

Austria-2014 Germany-2014 0.26 (0.10-0.72) 

Significant lower odds to show the selected  

pattern for Austria-2014 compared to  
Germany-2014 

Austria-2014 Romania-2014 8.89 (1.87-42.20) 

Significant higher odds to show the selected  

pattern for Austria-2014 compared to  
Romania-2014 
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3.1.8. Source Attribution Models 

In order to be able to apply the source attribution models, data on both resistance in humans as well 

as on data in animals are required. At this point, the available information is too scarce to provide the 

reader with a meaningful output and interpretation. For this reason, results are not included in this 
report. Nevertheless, the reader is referred to the accompanying tutorial for an exemplary analysis. In 

addition, it can be seen there that additional information on consumption and antimicrobial usage can 
be included in the model as well. Further exploration of the model with future data is required in order 

to determine the performance of the developed method.  
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4. Conclusions 

This report introduces several methods for analysing multi-drug resistance data. First of all, attention 
was paid to classification trees and hierarchical clustering, which aim at identifying homogeneous 

subgroups of the data. In case of the former, a dataset was considered that contained information on 
both E. coli and Salmonella isolates, sampled from several animal or food species in different 

European member states. The final result of the analysis is a summary of subgroups which show 
similar resistance patterns. The subgroups were obtained by dividing the original dataset into 

respectively smaller groups, based on the value of certain covariates. As such, the “trees” analysis is a 

relatively straightforward method with a fairly simple interpretation of the results. Likewise, the 
hierarchical clustering (both based on the principal components as well as on the multiple 

correspondence analyses) approach provides a nice way to identify subgroups (corresponding to 
similar resistance patterns) in the data. From this analysis onwards, only E. coli isolates in broilers 

were considered. The PCA uses the original continuous MIC values as input. Three clusters in the data 

were observed, in which isolates showed similar values for both the continuous MIC values and the 
binary resistance data. It was discussed above that results from the PCA might be hampered by 

different dilution ranges across the reporting member states. For this reason, it can be recommended 
to compare the results from the clustering after PCA with those obtained after MCA. Indeed, the latter 

analysis is based on the binary profiles and does not suffer from different dilution ranges. On the 
other hand, dichotomising the continuous data could lead to the loss of valuable information since all 

isolates above the ECOFF are considered to be resistant, but no distinction is made on how large the 

actually observed MIC value is. Nevertheless, the clustering after MCA provides a nice insight into the 
underlying subgroups in the dataset. It was observed that the analysis resulted into 6 clusters, which 

show a more homogeneous resistance profile compared to the PCA analysis. Based on both cluster 
analyses, a latent class analysis was also performed, assuming respectively 3 and 6 latent classes. 

This approach is a model-based alternative, in which the effect of additional covariates can be 

quantified as well. In contrast, descriptive plots for the supplementary variables were provided for the 
hierarchical clustering after PCA and MCA.  

Generalised estimating equations method was also employed to model multivariate binary data while 
accounting for an underlying correlation structure. A heat map of the underlying correlation structure 

was provided, to give the user an idea on the associations between the antimicrobials. However, these 

results should not be over-interpreted, but should trigger further in-depth analyses of specific co-
resistance patterns (e.g. using the proposed pattern attribution models).  Similarly, the Bayesian 

networks show the underlying associations between the distinct antimicrobials. A visual representation 
of the constructed Directed Acyclic Graph (DAG) is provided, which consists of nodes and edges. The 

nodes, containing the antimicrobials and possible time component, were connected, in case a 
significant association was observed. Again here, the resulting observations should be further 

investigated before jumping to conclusions. In this respect, an interactive discussion with experts in 

the field of microbiology is recommended.    

Spatio-temporal models to account for the spatial structure of the data were also fitted. Both 

weighted/unweighted univariate (with and without the inclusion of trade data) and bivariate analyses 
can be performed, where the user is guided to select the appropriate spatial and temporal structures 

through the DIC criterion. Predictions for the upcoming year were shown, which could warn the user 

for possible shifts in the future. 

Finally, the results from the pattern attribution models were discussed. Using these models, the user 

can obtain more information about the occurrence of a specific resistance pattern and how it depends 
on certain covariates like time, region and sampling source. First, descriptive plots were shown to 

provide some initial ideas on the observed proportion of the selected pattern for different values of 
certain covariates. For the pattern under consideration in this report, it was seen that higher 

proportions were observed in Germany compared to Austria. A more comprehensive result was 

provided based on Firth logistic regression. In this way, the user is informed on possible significant 
differences in observing the selected pattern between countries or over the years.  The tool developed 

also foresees the potential use of source attribution models in which human resistance can be 
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attributed to different sources, such as resistance reported in food in combination with the 
consumption patterns for each country as well as their usage within the human population.  

 

5. Recommendations  

 

The methods introduced in this report provided useful insights into the underlying structure of 
resistance in the antimicrobial population as well as into the spatio-temporal distribution of resistant 

isolates. Nevertheless, some improvements can still be made as there remains some room for further 

research. For example, the use of the Bayesian network models could be explored in more depth, 
especially the residuals method that was hinted upon at the end of Section 3.5.1. Indeed, 

incorporating time and other covariates beforehand might be a nice alternative for future analyses. In 
addition, different parametric and non-parametric functions of time could be investigated as well for 

the GEE and pattern attribution models. This can be of interest in future applications, when the 

included time span is much longer, thereby allowing for the estimation of more advanced functions 
over time.      

The application of the methods was sometimes hampered by several data flaws. Some of them were 
mentioned throughout the report, but focus is on survey and data recommendations below. 

In the light of the hierarchical clustering after PCA and MCA, it was discussed that the results of the 
PCA might be hampered by the fact that different member states employ different dilution ranges 

when determining MIC values. Hence, it might be advisable to harmonise the data collection 

routine across the member states with relation to well defined dilution ranges for reporting 
purposes. 

With regard to the spatial/spatio-temporal analysis, it was apparent in the results that more data is 
needed for a more meaningful analysis. As it stands now, there are several areas (country-level or 

NUTS-level) without information and areas with information at only one or two time points (i.e. 

years). This means that any effect (spatial or temporal) incorporated in the model is estimated from 
only a few areas or time points. This results to possible instability in the analysis and hinders 

investigation/use of a more flexible time trend or spatio-temporal trend. It is therefore important to 
obtain sufficient spatial and temporal coverage in future data collections.  

Furthermore, in order to get meaningful results, the way these these data are collected is quite 

important (sampling design). Consider for instance the NUTS-3 level. In case data is collected only at 
a particular area, it is not quite correct to model the spatial pattern of resistance at this level. In 

addition, if the analysis is to be done anyway, the obtained results need to be interpreted carefully, 
keeping in mind that the existence of areas without information or with zero resistance could be due 

to the sampling design. Hence, for the spatio-temporal analysis, collection of data needs to be 
improved. In case an analysis at a finer level, i.e. NUTS-3 level and weekly-level, is foreseen, then 

data needs to be collected at these levels. However, (complete) monthly data at NUTS-2 level is 

already seen to be quite informative and would allow the investigation of more flexible trends. It 
would also allow proper investigation of spatio-temporal risk within 1 or 2 countries as compared to 

having data only at country or NUTS-1 level or at yearly level.  

Similarly, it was discussed that results for the source attribution models were not included due to 

serious lacks in the available data. Currently, 4 imputation packages were included to impute missing 

data. Of course, in order to be able to perform appropriate analyses, efforts should be made to reduce 
this amount of missing data to a minimum in future data collection procedures. In addition, these 

models could be extended to also include information on e.g. trade patterns, contact structures and 
observed prevalence of certain bacterial zoonotic agents in different species. 
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Appendix A – Organization of software codes 

R-code 

For the R users, an interface was created in order to facilitate the analysis. This interface was 

constructed using the shiny package in R. A tutorial was prepared to guide the user how to use these 
interfaces. Below, it is briefly explained how to launch the application. For the different analyses, the 

reader is referred to the tutorial. 

The app consists of three files, i.e. script.R, ui.R and server.R, from which the user only needs to use 

the script.R file (the application will also be available under the R4EU platform 

https://efsa.openanalytics.eu/app/MDR, for which there will not be necessary to interact with R and all 
steps provided below will no longer be needed, instruction manual will be accessible from the R4EU 

platform using the About link). When the user opens this file in the R console, the following codes 
appears, with a numbering (1-3) added on the figure below for additional explanations: 

 

In part 1, the user needs to specify the location where the ui.R and the server.R files are saved. More 

specifically, in the example above, the ui.R and server.R files are stored in a folder which has location 

with path "C:/Users/lucp2490/Desktop/Fast EFSA/app files/test". This path needs to be changed into 
the location where the specific user has saved the files. Hence, the user needs to select this path and 

overwrite it with the new one by manually typing the correct new path (or simply by copy-pasting).  

Important note: the path needs to be specified using forward slashes.  

After the location has been adjusted, the user needs to select the line 

 

https://efsa.openanalytics.eu/app/MDR


 Analysis of multi-drug resistance in the EU 
 

 

 
www.efsa.europa.eu/publications 51 EFSA Supporting publication 2016:EN-1084 

The present document has been produced and adopted by the bodies identified above as author. This task has been carried out exclusively by the author in 
the context of a contract between the European Food Safety Authority and the author, awarded following a tender procedure. The present document is 
published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The 
European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, 
without prejudice to the rights of the author. 
 

 and press “F5” to run this part of the code. 

While running the app, some important R packages are used internally to provide the desired output 

of the different analyses. Therefore, it is required to make sure that these packages are installed on 

the user’s PC. This is taken care of in part 2. This part of the code can be executed by selecting all 
lines beneath the “Installation of R packages” title 

 

and pressing “F5” to run the selected lines. 

Running this part of the code will guide the user through the installation process. First, a screen will 
pop up, asking to specify the CRAN mirror. Chose option 2: 0-Cloud and press “OK”. This will install 

the required packages. It is possible that some packages were already installed before and an older 

version of the package is already available. In this case, R will pop a question “Update all/some/none? 
[a/s/n]:”. In this case, the user is advised to type “a” after the colon and press “Enter”, after which 

those already installed packages are updated to the most recent version.   

 

Finally, in part 3, the shiny R package is loaded and the app is launched. Select the corresponding 

lines  

 

and press “F5”. The app will launch in a tab of the default browser of the user’s PC.  
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Sas-code 

For the SAS users, macros were created for the generalised estimating equations and the hierarchical 

clustering after PCA. In these macro’s, the user needs to specify which antimicrobial and which 

sample type are to be selected and the according analysis will be performed. 

The user will receive a working directory containing the following items: 

Contents of the working directory are: 

 The SAS macros (GEE_heatmap.sas PCA.sas): this file should basically never be touched 

unless for editing purposes. 

 The main analysis file (Analysis_PCA_GEE.sas): contains the calls of the macro for different 

bacteria and antibiotics. This is the program you need to run 

 AnaData folder is the analysis folder containing the SAS datasets imported from CSV format 

 CSVData folder is the folder containing the would be raw CSV files exported from R at this 

point, where data manipulation was performed. 

For example, the code that needs to be run for the GEE analysis looks as follows: 

%global root; 

%let root=%qsubstr(%sysget(SAS_EXECFILEPATH), 1, 

%length(%sysget(SAS_EXECFILEPATH)) - 

(%length(%sysget(SAS_EXECFILEname)) + 1)); * capture root directory 

; 

%put NOTE: Current Working Directory is &root; 

libname anadata "&root\AnaData"; 

options minoperator mindelimiter=","; 

%inc "&root\GEE_heatmap.sas";              ***** running this and 

above lines once is sufficient ;; 

 

 

 

%GEE_heatmap(import=0,bacterium=E_coli,samptype4=broilers, 

imagefmt=tiff, lowerCorr=0); 

SAS will write the output (i.e. figures) in the same working directory where the programs are resident. 
Make sure the listing option in SAS is indicated.  

The latter can be done as follows: Tools->Options->Preferences, select tab “Results” and highlight the 
“Create Listing” tick box.  
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Appendix B – Input files 

Spatio-temporal analysis 

Below are screenshots of how the input files for the weighted analysis and analysis with trade data 

looks like: 

 

CountryProd.csv 

 

Country_abbrev.csv 

 

Period.csv 
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TradData.csv 

 

 

 

 

 

 

 

 


