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Summary: Frailty models have a prominent place in survival analysis to model univariate and multivariate time-

to-event data, often complicated by the presence of different types of censoring. In recent years, frailty modelling

gained popularity in infectious disease epidemiology to quantify unobserved heterogeneity using Type I interval-

censored serological data or current status data. In a multivariate setting, frailty models prove useful to assess the

association between infection times related to multiple distinct infections acquired by the same individual. In addition

to dependence among individual infection times, overdispersion can arise when the observed variability in the data

exceeds the one implied by the model. In this paper, we discuss parametric overdispersed frailty models for time-to-

event data under Type I interval-censoring, building upon the work by Molenberghs et al. (2010) and Hens et al.

(2009). The proposed methodology is illustrated using bivariate serological data on hepatitis A and B from Belgium

anno 1993–1994. Furthermore, the relationship between individual heterogeneity and overdispersion at a stratum-

specific level is studied through simulations. Although it is important to account for overdispersion, one should be

cautious when modelling both individual heterogeneity and overdispersion based on current status data as model

selection is hampered by the loss of information due to censoring.
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1. Introduction

Frailty models are very popular in survival analysis due to their convenient way of modelling

unobserved heterogeneity. In its simplest form, a frailty is a latent random proportionality

factor modifying the individual’s hazard function, or the one of related individuals. Al-

though the term ‘frailty’ was introduced by Vaupel et al. (1979) in a univariate setting, the

concept goes back to the early work of Greenwood and Yule (1920) on “accident prone-

ness.” Due to the seminal work by Clayton (1978), frailty models were highly promoted

by their applicability to model multivariate survival data. In general, frailty models extend

the well-known Cox proportional hazards model (Cox, 1972) by including random frailty

terms allowing for a heterogeneous study population. All sampled individuals differ in their

propensity to experience the event under consideration, and consequently have different

event hazards. In many cases, unobserved heterogeneity arises from the inability to measure

all relevant covariate information for which the event hazard needs to be adjusted. Under

the proportional hazards assumption, the frailty acts multiplicatively on a baseline hazard

function, defining a random-effects model for time-to-event data. In a multivariate context,

the joint frailty distribution imposes a correlation structure among event- and individual-

specific frailties, and consequently implies a dependence between event times. To that end,

shared and correlated frailty models have been proposed (see, e.g., Wienke, 2010).

In many contemporary statistical analyses, the outcome of interest is the time to a specific

event such as death, occurrence of disease, or discharge from hospital. Such time-to-event data

are prominent in survival data, both in univariate as well as multivariate settings in which

hierarchical structures are often present. In addition to accounting for data hierarchies, there

exists a need to account for overdispersion in many data applications (Hinde and Demétrio,

1998a; Molenberghs et al., 2010). Overdispersion arises when the observed variability in the

data exceeds the variation predicted by the model. In such situation, the proposed model
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and its prescribed mean-variance link are too restrictive to describe the data adequately. In

practice, many different causes for overdispersion exist such as cluster sampling, correlation

among individual responses, and unobserved covariate information. In general, there exist two

groups of models to account for overdispersion: (1) moment-based approaches relying on more

flexible forms for the mean-variance relationship, and (2) two-stage models for the response

entailing a distribution for one or more parameters of the response model. The latter method

leads to compound probability distributions for the response variable enabling, at least in

theory, full likelihood estimation of the model parameters. Broad overviews of moment-based

and full-distribution approaches for dealing with overdispersion are provided by Hinde and

Demétrio (1998a,b) in the context of generalized linear models (Nelder and Wedderburn,

1972; McCullagh and Nelder, 1989). These authors mainly focus on random-effects based

solutions to the problem of overdispersion including the beta-binomial model for binomial

data relying on beta-distributed random effects, and the negative-binomial model for Poisson

counts with the natural parameter following a gamma distribution.

In the last two decades, cross-sectional serological studies, providing insight into popu-

lation immunity and individual-level past infection experience, have become quintessential

to inform infectious disease models. Serological data consists of infection-specific antibody

titre concentrations based on which individuals are typically classified as seropositive or -

negative, entailing so-called current status data. Individual immunological statuses regarding

multiple infections aggregated by age at cross-sectional sampling time constitute multinomial

response values. As individuals differ in social contact behaviour, susceptibility to infection

and infectiousness upon infection, frailty models are of importance to quantify unobserved

variability in the time to the acquisition of infections. Furthermore, the use of bivariate

frailty models in infectious disease epidemiology was popularized by the seminal work of

Farrington et al. (2001) and the work by Hens et al. (2009) on shared and correlated frailty
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models, respectively, applied to serological data on immunizing infections. Recently, several

extensions have been proposed focusing on, but not limited to, recurrent infection processes

(Abrams and Hens, 2015) and time-varying individual heterogeneity (Farrington et al., 2012;

Unkel et al., 2014). In addition, the issue of extra-multinomial variation in immunological

response data, due to reasons different from individual variability in event hazards, is ad-

dressed by applying Dirichlet-multinomial models (Farrington et al., 2013), extending the

well-known beta-binomial model for overdispersed binomial data. The approach undertaken

in this paper differs from the aforementioned one in the sense that random effects are

introduced at the level of the baseline hazard rather than assuming randomness directly at

the probability scale (i.e., by means of the Dirichlet distribution). In essence, our approach

extends the work by Molenberghs et al. (2010) to the case of current status data. These

authors introduced a general and flexible framework of generalized linear models accounting

for both overdispersion and clustering in case of repeated measurements through the use of

two separate sets of random effects, and with particular attention given to binary, count and

time-to-event data. Particular emphasis is placed on so-called conjugate random effects at

the level of the mean for overdispersion, and normal random effects embedded in the linear

predictor for clustering (Molenberghs et al., 2007, 2014). We focus on parametric frailty

models, implying the specification of a parametric shape for the baseline hazards.

The paper is organized as follows. In Section 2, a motivating example is presented. The

methodology is introduced in Section 3, and maximum likelihood estimation is discussed in

Section 4. The proposed frailty models are fitted to hepatitis A and B serology for which

results are shown in Section 5. Results of an additional data application are briefly discussed

therein as well. In Section 6, a simulation study is performed to assess model performance

and effects of estimating both individual heterogeneity and overdispersion. The manuscript
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ends with a discussion on the implications of modelling multivariate current status data

using overdispersed frailty models highlighting avenues for further research.

2. Case studies

Bivariate cross-sectional serology consists of blood serum samples tested for the presence of

infection-specific IgG antibodies, reflecting former infection experience. Blood samples are

tested using an enzyme-linked immunosorbent assay test, classifying samples (and equiva-

lently individuals) as either being seropositive or -negative based on a pre-specified cut-off

value. Hence, the individual’s serological status is a direct measure of his/her immunity

against the disease, at least if complete serological protection is agreed upon. Since the true

infection (event) times are unobserved, and infection takes place either between birth and the

observation time for seropositives or thereafter for seronegatives, one is faced with current

status data. Hepatitis A and B serological survey data, obtained from a sero-epidemiological

study conducted in 1993–1994 in Flanders, Belgium, is used to illustrate the methodology.

Hepatitis A is a viral infection of the liver for which symptoms are diarrhoea, nausea, fever,

abdominal pain and a yellow skin, and is mainly transmitted via contaminated food or water.

Hepatitis B causes liver inflammation, jaundice and in rare cases death, and transmission

is mainly driven by sexual and blood contact. In total, 4026 blood samples were drawn

from a representative study population, and tested for the presence of hepatitis A and B

antibodies. Complete immunological information on hepatitis A and B antibody prevalence

was obtained for 3787 subjects, and age at the time of data collection was registered for

each of these study subjects. For more details, the reader is referred to Beutels et al. (1997).

Furthermore, mumps and rubella serological survey data, obtained from a large survey of

prevalence of infection-specific antibodies conducted between November 1986 and December

1987 in the UK, are considered as a second data application (Morgan-Capner et al., 1988).
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3. Materials and methods

3.1 Terminology

Time-to-event data represent the times to a specific event such as death, failure or infection.

The analysis of such data is often hampered by the occurrence of censoring, implying that

response values are only partially known. Right-censored observations occur when true event

times exceed the follow-up period of individuals, for example, as a result of subjects dropping

out before the end of the study or the study ending prior to the occurrence of the event. In

order to exemplify right censoring in a bivariate setting with clustering, let T ∗

ijk represent

the true event time, Cijk the censoring time and ∆ijk = 1T ∗

ijk
6Cijk

the censoring indicator

for event i = 1, 2 and individual j = 1, . . . , Nk in stratum k = 1, . . . , K. In case of right-

censoring, the observation times Tijk are equal to the true event times T ∗

ijk only when events

occur prior to censoring, i.e., T ∗

ijk 6 Cijk, and Tijk equals Cijk otherwise. In general, right-

censoring can be considered as a special case of interval-censoring, for which T ∗

ijk is known

to take place in some time window, with time intervals [Cijk,∞). Finally, in case of current

status data, the true event times are unknown, hence Tijk = Cijk, for all sampled individuals

and both events. The censoring indicator ∆ijk represents event experienced before Tijk, or

event status, hence the name current status data. Throughout the paper, all derivations are

made under the general assumption of clustering into strata, i.e., each subject is classified

into one of the K strata, and the problem of overdispersion is discussed at the subject- as

well as stratum-level. Note that we adopt the term ‘stratum’ throughout this paper, inspired

by our data application (i.e., age cohorts), although ‘cluster’ can be used instead in case of

hierarchical data.

3.2 Generalized linear models

Let T ∗

ijk represent the time to event i for individual j in stratum k, ignoring censoring for

the time being. The random variable T ∗

ijk follows an exponential family distribution, i.e., a
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member of the class of distribution functions used in a generalized linear model (McCullagh

and Nelder, 1989), if the probability density function can be written as

fi(t
∗

ijk|ηi, φi) = exp
[

φ−1
i

{

t∗ijkηi − ψi(ηi)
}

+ ci(t
∗

ijk, φi)
]

, (1)

where ηi and φi represent a specific set of unknown parameters, and ψi(·) and ci(·, ·) are

known functions. The parameter ηi is termed natural or canonical parameter whereas φi

denotes the dispersion parameter. The mean µi and variance σ2
i of the random variable T ∗

ijk

follow from the function ψi(·) through E(T ∗

ijk) = µi = ψ′

i(ηi) and Var(T ∗

ijk) = σ2
i = φiψ

′′

i (ηi)

(Molenberghs and Verbeke, 2005). In general, the mean and variance are related through

σ2
i = φiψ

′′

i {ψ
′−1
i (µi)} = φivi(µi), with vi(·) the so-called variance function corresponding to

event i. The variance function describes the mean-variance relationship.

For time-to-event data, the exponential and Weibull distributions are often considered in

literature for non-negative response variables (see, e.g., Wienke, 2010; Molenberghs et al.,

2010). A flexible alternative to these distributions is the Gompertz distribution encompassing

both monotonic increasing and decreasing hazards. The Gompertz distribution has been used

by Hens et al. (2009) to analyse the serological data introduced in Section 2. The Gompertz

model T ∗

ijk ∼ G (ξi, νi) can be formulated as follows:

fi(t
∗

ijk) = ξi exp
(

νit
∗

ijk

)

exp

[

−
ξi
νi

{

exp
(

νit
∗

ijk

)

− 1
}

]

, (2)

where ξi > 0 and −∞ < νi <∞ are unknown model parameters. Although the Weibull and

Gompertz distributions are not part of the exponential family in the conventional fashion,

they do belong to the family in a contrived way by considering transformations of the

variable T ∗

ijk. In case of the Gompertz model, one can easily show that the random variable

ν−1
i {exp(νiT

∗

ijk)−1} follows an exponential distribution with parameter ξi. Although we focus

in the main text on the Gompertz model, expressions corresponding to the exponential and

Weibull models can be found in Web Appendix A. Covariate information xijk for individual

j in stratum k can be accounted for by means of the proportional hazards assumption (Cox,
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1972): T ∗

ijk|xijk ∼ G (ξiκijk, νi), where κijk = exp(x′

ijkζi), xijk is a p-dimensional vector of

known covariate values, and ζi is a p-dimensional vector of unknown fixed effects parameters.

3.3 Overdispersion models

One elegant route to accommodate overdispersion is by means of a two-stage approach

specifying a latent distribution for one of the model parameters. In general, this approach

consists of choosing a conditional distribution for the outcome T ∗

ijk, given an event-specific

random effect θijk for subject j in stratum k and covariate information xijk, denoted by

fi(t
∗

ijk|θijk,xijk), and combined with a distributional model for the random effect, i.e., fi(θijk).

Doing so, the marginal model of the outcome T ∗

ijk|xijk, assuming independence of the random

effects θijk and xijk and suppressing dependence on model parameters, becomes:

fi(t
∗

ijk|xijk) =
∫

R

fi(t
∗

ijk|θijk,xijk)fi(θijk)dθijk, (3)

where R represents the range of the overdispersion random variable θijk. For the Gompertz

setting described previously, the random effect θijk can be introduced as T ∗

ijk|θijk,xijk ∼

G (ξiθijkκijk, νi), for θijk a non-negative random variable:

fi(t
∗

ijk|θijk,xijk) = ξiθijkκijk exp
(

νit
∗

ijk

)

exp

[

−
ξiθijkκijk

νi

{

exp
(

νit
∗

ijk

)

− 1
}

]

. (4)

More specifically, the model formulation implies a proportional hazards assumption (see,

e.g., Cox, 1972):

λi(t
∗

ijk|θijk,xijk) =
fi(t

∗

ijk|θijk,xijk)

Si(t∗ijk|θijk,xijk)
= ξiθijkκijk exp

(

νit
∗

ijk

)

, (5)

where θijk and κijk act multiplicatively on the baseline hazard function λi0(t
∗

ijk) = ξi exp(νit
∗

ijk),

and Si(t
∗

ijk|θijk,xijk) = 1−Fi(t
∗

ijk|θijk,xijk) is the conditional event-specific survival function.

The derivation of the conditional survival function is presented in Web Appendix A.

Various random effects distributions with density fi(θijk) can be considered. The gamma

distribution is a popular choice in survival analysis since it is in line with the data range,

giving rise to a Gompertz-gamma model. Furthermore, gamma random effects can be mo-



8 Biometrics, XXXXXXX XXXX

tivated by the concept of conjugacy (Cox and Hinkley, 1974; Lee et al., 2006) exploited in

Molenberghs et al. (2010) in the context of repeated measurements. However, this approach

is not limited to the use of gamma random effects and other non-negative distributions such

as the inverse Gaussian distribution produce tractable expressions for the marginal densities

fi(t
∗

ijk|xijk) and marginal survival functions Si(t
∗

ijk|xijk). In Table 1, the model components

for the Gompertz-gamma and Gompertz-inverse Gaussian models are summarized in terms

of the Gompertz hazard λi0(t
∗

ijk) and integrated or cumulative Gompertz hazard Λi0(t
∗

ijk) =

(ξi/νi){exp(νit
∗

ijk)− 1}.

[Table 1 about here.]

Note that the expressions for the unconditional survival functions coincide with the evalua-

tion of the Laplace transform of θijk in κijkΛi0(t
∗

ijk), i.e., Si(t
∗

ijk|xijk) = Lθijk{κijkΛi0(t
∗

ijk)}.

The Gompertz-gamma and Gompertz-inverse Gaussian models presented in Table 1 define

gamma and inverse Gaussian frailty models, respectively, with Gompertz baseline hazard

functions (Wienke, 2010). The event-specific random effects θijk, i = 1, 2, are termed

individual frailties and can be assumed (1) independent (univariate frailty model); (2) equal

θ1jk = θ2jk = θjk (shared frailty model); or (3) correlated (correlated frailty model), requiring

the specification of a bivariate frailty distribution for θjk = (θ1jk, θ2jk)
′. One way to define

a correlation structure among frailties θ1jk and θ2jk is by means of the ‘variable-in-common’

method; θijk = σ2
θi
(W0jk +Wijk), where the components Wcjk are independent random

variables with mean and variance ωc, c = 0, 1, 2. In survival analysis, it is customary to set

the mean of the frailties θijk equal to one for reasons of identifiability. Therefore, αiβi = 1 or

βi = 1 for gamma or inverse Gaussian random effects, respectively, leading to frailty variances

Var (θijk) = σ2
θi
= α−1

i . In the correlated frailty setting (3) with additive decomposition, this

identifiability constraint implies frailty variances Var(θijk) = σ2
θi

= 1/ (ω0 + ωi), and non-

negative correlation ρθ = ω0/
√

(ω0 + ω1) (ω0 + ω2). The correlation is bounded above by
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the minimum of the ratios of the frailty standard deviations, i.e., 0 6 ρθ 6 min
(

σθ1

σθ2

,
σθ2

σθ1

)

.

As the event-specific random effects describe both the between-subject variability as well

as the association between event-specific event times, ρθ and the random-effects variances

are dependent. In the remainder of this paper, the variance-covariance matrix associated

with the random vector θjk is denoted by Σθ. Although dependence between event times

within the same individual is imposed by means of the specified covariance structure, the

model formulation in (5) implies independence among event times of different individuals,

irrespective of the stratum to which they belong. Therefore, overdispersion at the stratum-

level is not yet accounted for. Hereunder, two different methods are considered to do so.

3.3.1 Dirichlet-multinomial model. First of all, we consider the Dirichlet-multinomial

(DM) model to accommodate for extra-multinomial variability at the stratum level. This

model has been considered before by Farrington et al. (2013) for the analysis of bivariate

serological data. In order to introduce this marginal model, we consider bivariate current

status data (δ1jk, δ2jk, t1jk, t2jk), where δijk and tijk are the observed status and observation

times regarding event i = 1, 2 for subject j = 1, . . . , Nk in stratum k = 1, . . . , K, respectively.

Let nlmk denote the number of subjects in stratum k having status l and m (l, m = 0, 1) for

event 1 and 2, respectively. Therefore, the data comprise 4-tuples nk = (n00k, n10k, n01k, n11k)

with expected proportions pk = (p00k, p10k, p01k, p11k) in the four cells. The DM model can

be used to account for overdispersion at the stratum-level, thereby hypothesizing a mixture

distribution directly on the probability scale:

nk|πk ∼ Multinomial (Nk,πk)

πk ∼ Dirichlet (ϕpk) ,

resulting in a compound distribution with Dirichlet parameters ϕpk = (ϕplmk)l,m > 0, and

the marginal density function for nk given by:
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f(nk|pk, ϕ) = CNk
nlmk

Γ (ϕ)

Γ (Nk + ϕ)

∏1
l,m=0 Γ (nlmk + ϕplmk)
∏1

l,m=0 Γ (ϕplmk)
, (6)

where Nk =
∑1

l,m=0 nlmk and CNk
nlmk

= Nk!/
∏1

l,m=0 nlmk! the normalizing constant. When

individual contributions to nlmk are independent, the DM model reduces to a multinomial

one for the response vector nk. However, extra-multinomial variation is introduced using

the overdispersion parameter ϕ > 0 implying correlation ρ =
√

1/ (1 + ϕ) among individual

multinomial responses within the same stratum (0 < ρ < 1).

Suppose that, in an infectious disease context with K age strata, serum samples of Nk

individuals of age tk are available, for k = 1, . . . , K. Furthermore, let nlmk represent

the number of individuals of age tk with status l and m with respect to infection 1 and

2, respectively. Consequently, the expected proportions in the four cells are given by the

population survival functions derived from the overdispersed frailty model formulated in

equation (5). We will come back to this in Section 4.

3.3.2 Multiplicative overdispersed frailty models. Since individuals of the same stratum

are likely to be correlated, the model presented in (5) can be extended to incorporate

additional stratum-specific random effects υik for subjects in stratum k = 1, . . . , K and

event i = 1, 2. These random effects can be introduced at the level of the hazard, implying:

λi(t
∗

ijk|θijk, υik,xijk) = ξiθijkυikκijk exp
(

νit
∗

ijk

)

,

fi(t
∗

ijk|θijk, υik,xijk) = θijkυikκijkλi0(t
∗

ijk) exp
[

−θijkυikκijkΛi0(t
∗

ijk)
]

, (7)

again suppressing dependence on model parameters associated with the baseline hazard

function λi0(t
∗

ijk), the frailty distribution fi(θijk) and the covariate model κijk. The random

vector υk = (υ1k, υ2k)
′ has mean vector 1, to ensure identifiability, and variance-covariance
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matrix Συ:

Συ =









σ2
υ1

ρυσυ1συ2

ρυσυ1συ2 σ2
υ2









.

Outcomes for event i from subjects in the same stratum are therefore correlated through

υik while observations from different strata are assumed independent. Although it is not

strictly necessary, the two sets of random effects θjk and υk are assumed to be independent.

Distributional assumptions for θjk and υk produce a marginal model fi(t
∗

ijk|xijk). In the

next section, the methodology is cast into the maximum likelihood (ML) framework.

4. Maximum likelihood estimation

Fitting the overdispersed frailty model in equation (7) to bivariate uncensored time-to-event

data t∗jk = (t∗1jk, t
∗

2jk,xijk) proceeds by integrating over the latent random effects, or frailties,

resulting in the following likelihood contribution for stratum k:

Lk(ϑ,Σθ,Συ|t
∗

jk,xjk) =
∫

R

Nk
∏

j=1

f12(t
∗

jk|ϑ, θjk,υk,xijk)f(θjk|Σθ)f(υk|Συ)dθjkdυk,

where f12(t
∗

jk|ϑ, θjk,υk,xjk) = f1(t
∗

1jk|ϑ1, θ1jk, υ1k,x1jk)f2(t
∗

2jk|ϑ2, θ2jk, υ2k,x2jk) under the

assumption of conditional independence of the event times T ∗

1jk and T ∗

2jk given the random

frailties, and ϑi the vector of infection-specific baseline hazard parameters ξi and νi, and

regression parameters ζi. Under model (4) the likelihood contribution for stratum k simplifies

to the product of individual contributions

Ljk(ϑ,Σθ|t
∗

jk,xjk) =
∫

R

f1(t
∗

1jk|ϑ1, θ1jk,x1jk)f2(t
∗

2jk|ϑ2, θ2jk,x2jk)f(θjk|Σθ) dθjk,

which corresponds to assuming a degenerate distribution for the random vector υk at 1. In

general, the likelihood function becomes

L
(

ϑ,Σθ,Συ|t
∗

jk,xjk

)

=
K
∏

k=1

Lk(ϑ,Σθ,Συ|t
∗

jk,xjk) (8)
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Maximizing the likelihood in (8) is complicated due to the presence of K integrals. Partial

marginalization can be considered to overcome the direct maximization problem, in agree-

ment with Molenberghs et al. (2010), thereby integrating out one set of random effects.

Partial marginalization is performed by integrating the conditional density fi(t
∗

ijk|ϑi, θijk, υik,xijk)

over the frailty distribution fi(θijk), leaving the frailty term υik untouched. Integrating over

θijk yields

fi(t
∗

ijk|ϑi, υik,xijk) = −
d

dt
Si(t|ϑi, υik,xijk)

∣

∣

∣

∣

t=t∗
ijk

= −
d

dt
Lθijk [υikκijkΛi0(t)]

∣

∣

∣

∣

t=t∗
ijk

(9)

in terms of the survival function Si(·), or the Laplace transform Lθijk(·) with respect to

θijk. Closed-form expressions for the Laplace transform are available for gamma and inverse

Gaussian random variables θijk (see Section 3.3 and Web Appendix B):

Lθij(s) = (1 + βis)
−αi , Lθij(s) = exp







αi

βi



1−

√

1 +
2β2

i s

αi











,

respectively. The product of univariate density functions fi(t
∗

ijk|ϑi, υik,xijk) produces the

joint density f12(t
∗

jk|ϑ,υk,xjk) in the univariate frailty context, thereby assuming indepen-

dence between θ1jk and θ2jk. In general, deriving the joint density function, conditional

on random effects υik, involves integration over the joint density f(θjk|Σθ), and can be

expressed in terms of the joint Laplace transform. Expressions for the partially marginalized

univariate and joint density functions under different distributional assumptions for θijk are

presented in Web Appendix B. The principle of partial marginalization is useful to lower the

dimensionality of integration when integrating out random effects numerically, and applies

when strong conjugacy holds (see, e.g., Molenberghs et al., 2014).

Since we are faced with current status data, the likelihood function requires modification.

Therefore, consider bivariate cross-sectional serological data (δ1jk, δ2jk, t1jk, t2jk) with δijk and

tijk as previously defined, and univariate observation times t1jk = t2jk ≡ tjk for both events.

In our application, strata are defined based on age cohorts such that all subjects within

the same stratum are observed at the same time, i.e., t1k = . . . = tNkk ≡ tk. The random
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vector nk = (n00k, n10k, n01k, n11k), where nlmk represents the number of subjects in stratum

k with status l and m with regard to event 1 and 2, respectively, follows a multinomial

distribution, conditional on observation time Tijk = tk, with probability vector pk = p(tk) =

(plm (tk|ϑ,Σθ,Συ))l,m=0,1; plmk = plm (tk|ϑ,Σθ,Συ) = Pr (∆1jk = l,∆2jk = m | ϑ,Σθ,Συ).

The stratum-specific multinomial contribution of bivariate aggregated current status data

(nk, tk) to the likelihood is given by:

Lk (nk, tk) = CNk
nlmk

1
∏

l,m=0

pnlmk

lmk ,

suppressing dependence on the model parameters ϑ,Σθ andΣυ for the sake of simplicity. The

multinomial probabilities plmk can be expressed in terms of the marginal univariate and joint

survival functions as follows: p11k = 1−S1(tk)−S2(tk)+S12(tk, tk), p10k = S2(tk)−S12(tk, tk),

p01k = S1(tk)− S12(tk, tk), p00k = S12(tk, tk), where marginal survival functions are obtained

after integrating out the frailties, and derivation of the joint survival function relies on the

conditional independence assumption. The likelihood contribution for aggregated age-group

data nk in group k in the DM model equals f(nk|pk, ϕ) in equation (6). In both cases, the

likelihood functions are constructed by taking the product of contributions Lk, k = 1, . . . , K.

5. Data Applications

5.1 Hepatitis A and B, Flanders, Belgium

In this section, the methodology is illustrated on hepatitis A and B serological data from

Flanders, Belgium, anno 1993–1994 for which the baseline hazard can plausibly be assumed

to be of the Gompertz type (Web Appendix C). The event times of interest T ∗

ijk are infection

times with regard to hepatitis A (i = 1) and hepatitis B (i = 2). Univariate observation

times Tjk and censoring indicators ∆ijk refer to the age at the time of data collection and

the immunological status, respectively, for individual j = 1, . . . , Nk in age-group (stratum)

k. Age strata of length one are considered in the analyses giving rise to a total of K = 95
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strata. Stratification in age cohorts is a natural one since behavioural and/or environmental

conditions with respect to the acquisition of infections could vary across age cohorts, e.g.,

overdispersion resulting from test variability (Unkel et al., 2014). Individual covariate in-

formation is absent in our data application, thereby excluding κijk from the general model

formulations in (6) and (7). The models are fitted using the SAS procedure NLMIXED. All

SAS code is made available on the I-BioStat website (https://ibiostat.be/online-resources/).

5.1.1 Overdispersed frailty models. In Table 2, an overview of the overdispersed frailty

models (with Gompertz baseline hazards) is presented with distributional assumptions re-

garding infection- and indvidual-specific frailties θijk and stratum-specific random effects

υik. Traditional frailty models result from assuming a degenerate distribution at 1 for υk.

Alternatively, lognormal random effects υk with mean vector 1 and variance-covariance

matrix Συ are considered to accommodate extra-multinomial variability at the age-group

level. Note that the specification of lognormal random effects υik is equivalent to defining a

random vector bk ∼ N2(µb,Σb) with υik = exp(bik) and µb =
(

0.5σ2
b1
, 0.5σ2

b2

)′

ensuring that

E(υik) = 1. Furthermore, the variance-covariance matrix Σb takes the form:

Σb =









log(σ2
υ1

+ 1) log(ρυσυ1συ2 + 1)

log(ρυσυ1συ2 + 1) log(σ2
υ2 + 1)









.

Recall that the frailty variances are related to the parameters αi through σ
2
θi
= 1/αi.

[Table 2 about here.]

In Table 3, ML estimates for the model parameters in the shared and correlated Gompertz-

gamma and -inverse Gaussian frailty models are shown together with AIC- and BIC-values

(upper part). The correlated gamma frailty model outperforms all other fitted models based

on both information criteria, implying a correlation between individual infection times which

differs from unity (shared frailty model). Despite the fact that the data favours a model
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accounting for correlation among event times (ρθ 6= 0), results from univariate Gompertz-

gamma and -inverse Gaussian frailty models are provided in Web Appendix C.

[Table 3 about here.]

Models combining individual- and stratum-specific random effects are presented in the

middle part of Table 3. Gompertz-gamma-lognormal frailty models clearly perform better

than the traditional frailty models, indicating that overdispersion at the group-level ex-

ists. Again, the combined model with correlated individual-level random effects θijk, either

unrestricted or constrained with συ1 = συ2 , yields a better fit to the serological data as

compared to univariate and shared alternatives. Based on AIC- and BIC-values, the analysis

corresponding to the constrained correlated gamma-lognormal model can be viewed as

the final one. Although inverse Gaussian-lognormal models have been considered, these

models did not outperform the gamma-lognormal counterparts, and results therefrom are

therefore displayed in Web Appendix C. The model fit of the best model based on AIC-

and BIC-values is graphically depicted in Figure 1, displaying the model-based multinomial

probabilities pk = (p00k, p10k, p01k, p11k) together with the observed proportions. The added

value of this analysis compared to the previous one reported by Hens et al. (2009) is a more

reliable assessment of the amount of unobserved heterogeneity, which is quintessential for the

estimation of epidemiological parameters. Furthermore, Hens et al. (2009) did not discuss the

implications of heterogeneity on the estimation of these parameters. In Web Appendix C,

we illustrate the estimation of the (basic) reproduction number and critical vaccination

coverage, two commonly used epidemiological measures to describe a pathogens transmission

potential and the effort required to avoid outbreaks by means of vaccination, respectively, in

the presence of individual heterogeneity. Ignoring such heterogeneity leads to a substantial

underestimation of both quantities. On top of that, an appreciable difference was found
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between estimates derived from models with and without accounting for overdispersion

thereby underlining the importance of modelling overdispersion.

[Figure 1 about here.]

5.1.2 Dirichlet-multinomial models. We fit the DM Gompertz-gamma models introduced

in Section 3.3 to the hepatitis A and B serology. These models differ from the Gompertz-

gamma-lognormal models in the sense that they introduce randomness directly on the multi-

nomial probability scale. Larger values for the overdispersion parameter ρ, or equivalently

smaller values for ϕ, imply more evidence in favour of a model allowing for overdispersion

compared to the multinomial model. The correlated frailty model outperforms all other

DM models (see lower part of Table 3) and model fit is almost equivalent to the one for

the less parsimonious correlated Gompertz-gamma-lognormal model (see middle part of

Table 3). In conclusion, it seems sensible to account for overdispersion when modelling the

serology under study, albeit that equivalent overdispersed frailty models in terms of model

fit provide different heterogeneity estimates. In Section 6, a simulation approach is used to

assess performance of the described methodology in light of these findings.

5.2 Rubella and mumps, UK

In Web Appendix D, we illustrate the application of the proposed models to serological data

on mumps and rubella in the UK, anno 1986–1987 (Farrington et al., 2001). In general, the

novel overdispersed frailty models outperform the traditional shared and correlated ones. Our

results are in line with those reported by Farrington et al. (2001) in terms of the marginal

forces of infection and common transmission route for mumps and rubella. However, the

current analysis extends the aforementioned one by combining both overdispersion and the

inclusion of individual-specific frailty terms thereby capturing the dependence between the

two infections as well as accounting for individual heterogeneity. Furthermore, the novel
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models are more flexible compared to the DM shared gamma frailty model, both in terms

of the overdispersion process as well as the correlation structure for the individual-specific

frailty terms.

6. Simulation study

In this simulation study, we aim at evaluating the performance of the Gompertz-gamma-

lognormal model in case of current status data. We mainly focus on the estimation of the

heterogeneity parameters and quantify the impact of different model assumptions thereon.

The simulation set-up was carried out under different scenarios, enabling the investigation

of the effects of censoring, implications when jointly estimating heterogeneity and overdis-

persion, and effects of sample size and parametric baseline hazards. For an overview of

the simulation steps and details concerning the general simulation protocol, we refer to

Web Appendix E. In the simulation approach presented in this paper, Gompertz baseline

hazards (λi0(t) = ξi exp(νit)) are considered. Simulation results identifying the impact of

sample size and information loss due to censoring are presented in Web Appendix E. In

addition, performance of the models in case of exponential event times, implying baseline

hazards λi0(t) = λi0, is discussed there as well.

6.1 Misspecification of overdispersion process

In this section, misspecification of the overdispersion process at the stratum-level is studied.

We relied on the correlated gamma-lognormal model to generate current status data, and

investigated the performance of the correlated gamma and Dirichlet-multinomial corre-

lated gamma frailty models. Alternatively, one can assess the performance of the correlated

gamma-lognormal model when simulating data under the DM model. The latter approach is

undertaken in Web Appendix E. Table 4 shows the true values, mean parameter estimates

(Mean), relative bias (Rel. Bias) and empirical standard error (e.s.e.) estimates, convergence
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rate (CR), and AIC- and BIC-selection percentages (AIC % and BIC %) for current status

data under the Gompertz-gamma-lognormal model (based on 500 runs). The choice of the

Gompertz parameters, heterogeneity parameters and sample size N = 3787 are inspired by

the hepatitis A and B case study, entailing multisera data which typically has a rather large

sample size. Estimates for the heterogeneity parameters are biased when ignoring the extra-

multinomial variation at the age-group level (i.e., in the correlated gamma model). Both

within- as well as between-stratum dependence among bivariate event times are estimated

using simulation-based Kendall’s τ estimates, denoted by τ̂WS and τ̂BS , respectively (see

Web Appendix E). Based on AIC- and BIC-criteria, dealing with the trade-off between fit

and parsimony of the models, the correct model is identified in 98% and 89% of the simulation

runs, respectively. Consequently, one needs to be cautious when modelling both individual

heterogeneity and unobserved age-group variability based on current status data as selecting

the incorrect model affects parameter estimates. More specifically, reliable estimates for the

heterogeneity parameters σθi are of importance to derive relevant epidemiological parameters

such as the basic reproduction number (Coutinho et al., 1999).

[Table 4 about here.]

6.2 Misspecification of individual heterogeneity

Finally, we consider misspecification of the bivariate individual frailty distribution for θjk.

To date, the popular but restrictive shared frailty model is often considered to describe

bivariate time-to-event data. Therefore, correlated gamma-lognormal current status data

is generated, and shared gamma, shared gamma-lognormal and DM shared gamma frailty

models are fitted to the simulated data (see Table 5). Although the estimates of the Gom-

pertz baseline parameters can be considered stable across the various models, the estimated

variance parameters σθi differ substantially. Clearly, the heterogeneity parameters σθi are

underestimated when incorrectly assuming shared frailties instead of correlated frailties with
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equal variances. However, this is in line with the negative correlation between ρθ and σθi which

has been shown before in the context of bivariate correlated frailty models (Wienke et al.,

2005). The shared frailty model, assuming perfect correlation and common frailty variance,

yields the lowest variance estimate compared to the models accommodating overdispersion.

In conclusion, misspecifying the individual heterogeneity process has a substantial impact on

the estimation of both the frailty variances and overdispersion parameters. The simulation-

based Kendall’s τ estimates for the shared gamma frailty model are in line with what we

expect theoretically, i.e., τ̂WS = τ̂BS ≈ σ̂2
θ1
/(σ̂2

θ1
+ 2) = 0.226 (Wienke, 2010).

[Table 5 about here.]

7. Discussion

Building upon the work by Hens et al. (2009) and Molenberghs et al. (2010), we have studied

parametric overdispersed frailty models, combining gamma or inverse Gaussian distributed

individual frailty terms with lognormally distributed stratum-specific random effects, in

the context of current status data. Although the choice of frailty distributions is merely

inspired by the concepts of partial marginalization and conjugacy through their closed-

form expressions for the Laplace transform, other frailty distributions could be considered

thereby increasing the computational burden. Indeed, this leads to intractable expressions

for the likelihood function and, in combination with lognormal random effects, prevents par-

tial marginalization. Furthermore, (correlated) individual infection-specific frailties impose

association between individual event times whereas the lognormal random effects capture

overdispersion at the stratum-level. Semi-parametric correlated frailty models in which the

hazard functions are left unspecified cannot be considered due to well-known identifiability

issues (Iachine, 2004). However, since we are interested in the estimation of the amount

of unobserved heterogeneity and the strength of the association between event times, a

parametric choice with regard to the baseline hazard function is a natural one. Particular
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attention was given to the Gompertz distribution for (bivariate) time-to-event outcomes,

albeit that the presented methodology is generally applicable for all kinds of non-negative

distributions entailing parametric hazard functions (see Web Appendices A and C).

Although attention is confined to maximum likelihood estimation including partial marginal-

ization regarding the gamma frailties, pseudo-likelihood could be considered as an alter-

native for which a large advantage in terms of computational stability has been noticed

before (Molenberghs et al., 2014). Performance of the general model combining individual

frailties and overdispersion random effects is evaluated and contrasted with the Dirichlet-

multinomial frailty model. The Dirichlet-multinomial model provides an easy way to accom-

modate overdispersion in multinomial response data. We combined frailty methodology with

the Dirichlet-multinomial distribution to analyse bivariate current status data. Although

these models are quite simple in nature, they come with the price of a reduced flexibility as

compared to the combined (e.g., gamma-lognormal) frailty models. In addition, the Dirichlet-

multinomial model has no straightforward counterpart for the analysis of uncensored (or

right-censored) time-to-event data.

Since reliable estimates for (individual) heterogeneity parameters are quintessential in

infectious disease epidemiology when deriving important epidemiological parameters such

as the basic reproduction number R0 (Farrington et al., 2001), the correct assessment of

both individual heterogeneity and overdispersion is crucial. Our simulation study reveals

that one needs to be cautious when modelling both individual heterogeneity and overdis-

persion, notwithstanding they are acting at different hierarchical levels and playing distinct

roles, since misspecifying one process has large consequences with regard to the estimation

of the other. Although Dirichlet-multinomial frailty models could outperform traditional

bivariate frailty models, the performance of models accommodating overdispersion by means

of introducing (log-)normal random effects at the hazard level should be investigated as well.
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Furthermore, large sample sizes are required to infer parameters in the overdispersed frailty

models due to information loss in case of current status data. Although model selection

criteria such as AIC and BIC are used to perform selection, a formal goodness-of-fit test

would be very useful to assess whether the models under investigation describe the data

adequately. The development of such a test is an interesting topic for further research.

The analyses in this paper rely on the assumption of time-invariant individual hetero-

geneity. However, extensions towards time-varying frailty models for single events have

been proposed by Farrington et al. (2012), and discussed further by Unkel et al. (2014).

Overdispersed frailty models encompassing both the concepts of time-varying individual

frailties and overdispersion random effects at the age-group level provide an avenue for further

research. Furthermore, correlated frailties are constructed by means of the ‘variable-in-

common’ method which is typically used (Wienke, 2010). Nevertheless, in general, bivariate

distributions for θjk could be imposed implying different association structures among indi-

vidual event times, albeit potentially at the cost of tractable expressions for the likelihood.

Finally, restricting the variance components in the hierarchical frailty models to be non-

negative implies a positive intraclass correlation, meaning that two members of the same

cluster are more alike than those from different groups. Although such models prohibit

negative dependence among subjects in the same cluster, their induced marginal models do

not, thereby being able to account for underdispersion (Molenberghs and Verbeke, 2005,

2011). However, underdispersion seems unrealistic for the type of data presented here, and

is therefore considered beyond the scope of this manuscript.

8. Supplementary Materials

Web Appendices A–E, referenced in Sections 3–7, are available with this paper at the

Biometrics website on Wiley Online Library.
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Figure 1. Predicted multinomial probabilities pk = (p00k, p10k, p01k, p11k) (solid lines)
corresponding to the correlated Gompertz-gamma-lognormal frailty model and observed
proportions (black circles) based on the hepatitis A and B serology with size proportional
to the number of observations in each age group.
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Table 1

Model elements for the Gompertz-gamma and Gompertz-inverse Gaussian models.

Gompertz-Gamma Gompertz-Inverse Gaussian
Element θijk ∼ Γ (αi, βi) θijk ∼ IG (αi, βi)

fi(θijk)
θ
αi−1

ijk
exp(θijk/βi)

β
αi
i

Γ(αi)

√

αi

2πθ3
ijk

exp
[

− αi

2β2
i
θijk

(θijk − βi)
2
]

fi(t
∗

ijk|xijk)
λi0(t∗ijk)κijkαiβi

[1+βiκijkΛi0(t∗ijk)]
αi+1

νiλi0(t∗ijk) exp

{

αi
βi

[

1−

√

1+2β2
i
α−1

i
κijkΛi0(t∗ijk)

]}

κijkαiβi

√

1+2β2
i
α−1

i
κijkΛi0(t∗ijk)

Si(t
∗

ijk|xijk)
1

[1+βiκijkΛi0(t∗ijk)]
αi exp

{

αi

βi

[

1−
√

1 + 2β2
i α

−1
i κijkΛi0(t∗ijk)

]}
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Table 2

Distributional assumptions with regard to θjk and υk in the overdispersed frailty models described in equation (7).

υik
θijk υk = 1 υk ∼ logN2 (1,Συ)

(1) independence

θijk ∼ Γ
(

αi, α
−1
i

)

univariate gamma
univariate

gamma-lognormal

θijk ∼ IG (αi, 1) univariate inverse Gaussian
univariate

inverse Gaussian-lognormal
(2) shared

θjk ∼ Γ (α, α−1) shared gamma
shared

gamma-lognormal

θjk ∼ IG (α, 1) shared inverse Gaussian
shared

inverse Gaussian-lognormal
(3) correlated

θjk ∼ Γ2 (1,Σθ) correlated gamma
correlated

gamma-lognormal

θjk ∼ IG2 (1,Σθ) correlated inverse Gaussian
correlated

inverse Gaussian-lognormal
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Table 3

Estimates and standard errors between brackets for shared and correlated Gompertz-gamma and Gompertz-inverse
Gaussian frailty models (upper part), univariate, shared and correlated Gompertz-gamma-lognormal frailty models
(middle part) and Dirichlet-multinomial Gompertz-gamma frailty models (lower part) applied to bivariate serology

on hepatitis A and B in Flanders, Belgium.

Gompertz frailty models
Shared Correlated

Parameter Gamma Inverse Gaussian Gamma Inverse Gaussian

ξ1 × 102 1.219 (0.103) 1.346 (0.096) 0.668 (0.115) 1.363 (0.113)
ν1 × 102 3.693 (0.461) 3.278 (0.367) 10.481 (1.686) 3.934 (0.588)
ξ2 × 102 0.172 (0.034) 0.173 (0.034) 0.178 (0.036) 0.175 (0.035)
ν2 × 102 −0.023 (0.741) −0.032 (0.745) 0.111 (0.930) 0.002 (1.241)
σθ1 0.723 (0.084) 0.800 (0.133) 1.635 (0.175) 1.108 (0.281)
σθ2 0.723 (0.084) 0.800 (0.133) 1.417 (1.167) 1.016 (2.849)
ρθ 1.000 (−) 1.000 (−) 0.557 (0.457) 0.763 (2.060)

−2 log (L) 5687.020 5690.547 5653.495 5688.325
AIC 5697.020 5700.547 5667.495 5702.325
BIC 5709.789 5713.317 5685.372 5720.202

Gompertz-gamma-lognormal frailty models
Correlated

Parameter Univariate Shared Unrestricted συ1 = συ2

ξ1 × 102 0.785 (0.137) 1.272 (0.115) 0.633 (0.147) 0.612 (0.142)
ν1 × 102 8.709 (1.819) 3.484 (0.478) 12.730 (3.298) 13.588 (2.618)
ξ2 × 102 0.165 (0.041) 0.168 (0.036) 0.163 (0.036) 0.163 (0.036)
ν2 × 102 1.464 (3.540) 0.314 (0.766) 0.600 (0.874) 0.632 (0.876)
σθ1 1.447 (0.210) 0.715 (0.087) 1.867 (0.300) 1.944 (0.226)
σθ2 2.544 (3.461) 0.715 (0.087) 1.356 (0.629) 1.431 (0.613)
ρθ 0.000 (−) 1.000 (−) 0.677 (0.297) 0.664 (0.268)
συ1 0.122 (0.197) 0.147 (0.062) 0.346 (0.223) 0.415 (0.114)
συ2 0.529 (0.427) 0.400 (0.107) 0.426 (0.123) 0.415 (0.114)
ρυ −0.590 (1.063) −0.671 (0.432) −0.626 (0.464) −0.595 (0.413)

−2 log (L) 5674.394 5672.675 5641.146 5641.252
AIC 5692.394 5688.675 5661.146 5659.252
BIC 5715.379 5709.106 5686.685 5682.237

Dirichlet-multinomial Gompertz-gamma frailty models
Parameter Univariate Shared Correlated

ξ1 × 102 0.766 (0.156) 1.286 (0.124) 0.655 (0.134)
ν1 × 102 9.013 (2.007) 3.282 (0.532) 10.918 (2.059)
ξ2 × 102 0.158 (0.035) 0.163 (0.036) 0.169 (0.037)
ν2 × 102 0.398 (4.077) 0.254 (0.783) 0.294 (0.908)
σθ1 1.503 (0.222) 0.678 (0.102) 1.698 (0.208)
σθ2 0.959 (12.515) 0.678 (0.102) 1.277 (1.066)
ρθ 0.000 (−) 1.000 (−) 0.611 (0.507)
ρ 0.093 (0.016) 0.092 (0.017) 0.078 (0.017)

−2 log (L) 5664.659 5672.014 5644.114
AIC 5678.659 5684.014 5660.114
BIC 5696.536 5699.337 5680.546
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Table 4

Averaged parameter estimates (Mean), relative bias (Rel. Bias) and empirical standard errors (Emp. s.e.) for the
correlated gamma, correlated Gompertz-gamma-lognormal and correlated Dirichlet-multinomial frailty model applied

to 500 simulation sets of size N = 3787 under the Gompertz-gamma-lognormal frailty model.

True Gamma- Dirichlet-
Parameter Value Gamma Lognormal Multinomial

ξ1 × 102 0.600 Mean 0.598 0.613 0.611
Rel. Bias −0.004 0.021 0.019
Emp. s.e. 0.098 0.104 0.104

ν1 × 102 2.000 Mean 1.816 2.209 1.914
Rel. Bias −0.092 0.105 −0.043
Emp. s.e. 1.675 1.685 1.859

ξ2 × 102 0.200 Mean 0.190 0.196 0.194
Rel. Bias −0.050 −0.022 −0.031
Emp. s.e. 0.040 0.036 0.038

ν2 × 102 3.000 Mean 3.494 3.444 3.431
Rel. Bias 0.165 0.148 0.144
Emp. s.e. 1.398 1.019 1.321

σθ1 1.900 Mean 1.729 1.895 1.793
Rel. Bias −0.090 −0.003 −0.057
Emp. s.e. 0.692 0.641 0.723

σθ2 1.400 Mean 1.646 1.585 1.640
Rel. Bias 0.176 0.132 0.171
Emp. s.e. 0.583 0.422 0.563

ρθ 0.700 Mean 0.697 0.709 0.697
Rel. Bias −0.004 0.013 −0.004
Emp. s.e. 0.193 0.148 0.184

συ1 0.350 Mean − 0.351 −
Rel. Bias − 0.003 −
Emp. s.e. − 0.162 −

συ2 0.450 Mean − 0.491 −
Rel. Bias − 0.091 −
Emp. s.e. − 0.161 −

ρυ −0.600 Mean − −0.630 −
Rel. Bias − 0.051 −
Emp. s.e. − 0.240 −

ρ − Mean − − 0.104
Rel. Bias − − −
Emp. s.e. − − 0.017

τWS 0.321 Mean 0.300 0.322 −
Emp. s.e. 0.054 0.047 −

τBS 0.301 Mean 0.300 0.304 −
Emp. s.e. 0.054 0.043 −

CR − 0.930 0.980 0.920
AIC % − 0.000 0.982 0.018
BIC % − 0.018 0.892 0.089
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Table 5

Averaged parameter estimates (Mean), relative bias (Rel. Bias) and empirical standard errors (Emp. s.e.) for the
shared gamma, shared gamma-lognormal and shared Dirichlet-multinomial frailty model applied to 500 simulation

sets of size N = 3787 under the correlated gamma-lognormal frailty model.

True Gamma- Dirichlet-
Parameter Value Gamma Lognormal Multinomial

ξ1 × 102 0.600 Mean 0.615 0.616 0.623
Rel. Bias 0.026 0.027 0.038
Emp. s.e. 0.069 0.069 0.069

ν1 × 102 2.000 Mean 0.854 0.980 0.845
Rel. Bias −0.573 −0.510 −0.578
Emp. s.e. 0.300 0.301 0.300

ξ2 × 102 0.200 Mean 0.219 0.215 0.223
Rel. Bias 0.094 0.074 0.117
Emp. s.e. 0.031 0.031 0.031

ν2 × 102 3.000 Mean 2.098 2.247 2.069
Rel. Bias −0.301 −0.251 -0.310
Emp. s.e. 0.330 0.333 0.326

σθ1 1.400 Mean 0.765 0.826 0.784
Rel. Bias −0.454 −0.410 −0.440
Emp. s.e. 0.060 0.059 0.059

σθ2 1.400 Mean 0.765 0.826 0.784
Rel. Bias −0.454 −0.410 −0.440
Emp. s.e. 0.060 0.059 0.059

ρθ 0.500 Mean 1.000 1.000 1.000
Rel. Bias − − −
Emp. s.e. − − −

συ1 0.350 Mean − 0.258 −
Rel. Bias − −0.262 −
Emp. s.e. − 0.057 −

συ2 0.450 Mean − 0.351 −
Rel. Bias − −0.221 −
Emp. s.e. − 0.071 −

ρυ −0.600 Mean − −0.679 −
Rel. Bias − 0.132 −
Emp. s.e. − 0.215 −

ρ − Mean − − 0.111
Rel. Bias − − −
Emp. s.e. − − 0.017

τWS 0.203 Mean 0.226 0.254 −
Emp. s.e. 0.032 0.031 −

τBS 0.183 Mean 0.226 0.225 −
Emp. s.e. 0.032 0.032 −

CR − 1.000 1.000 1.000
AIC % − 0.000 0.982 0.018
BIC % − 0.004 0.916 0.080


