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Preface

It is undeniable the impact of Artificial Intelligence (AI) in our modern, highly tech-

nological society. In practice, AI is not about conscious, omnipotent or even reasoning

machines, but about computational models that produce near-optimal solutions for

very complex problems. Computer vision, natural language processing, anomaly de-

tection, autonomous systems, digital image analysis, affective computing and other

fields have made immense advances in the past few years.

Pattern classification is perhaps the most popular field within AI as a result of its

link with real-world problems. In short, it may be defined as the process of identifying

the right category (among those in a predefined set) to which an observation belongs.

The ease with which we recognize our black cat from hundreds similar to it, read

handwritten characters or decide whether a banana is ripe only by its smell belies the

astoundingly complex processes that underlie these scenarios. That is why researchers

have developed a wide range of classification algorithms called classifiers with the goal

of facing these situations with the best possible accuracy.

Regrettably, most accurate classification models do not provide any mechanism to

explain how they arrived at each conclusion and behave like black-boxes. This means

that their reasoning mechanism is not transparent, therefore negatively affecting their

practical usability in scenarios where understanding the decision process is required.

As an example, in the context of Decision Support Systems, the experts are assisted

by a computer program that should elucidate its reasoning mechanism; otherwise the

experts have to trust on results that they cannot understand.

The purpose of this thesis is to develop a transparent classifier as an alternative to

black-box models. This suggests that our algorithm should be capable of computing

high-quality prediction rates when compared to traditional classifiers, and providing

an introspection mechanism into its decision process.

1



2 Preface

In order to accomplish our research goal, this thesis introduces the notion of rough

cognitive mapping in the context of pattern classification. The proposed methodology

comprises three well-defined steps that are materialized through the Rough Cognitive

Networks. In the first step, we discover information granules on the available informa-

tion using the Rough Set Theory. This mathematical theory computes three disjoint

regions for each decision class with a precise meaning for the classification problem.

In the second step, we build a Fuzzy Cognitive Map where input neurons represent

the previously discovered granules, while output ones denote the decision classes to

be considered. The last step focuses on performing the neural reasoning process using

intelligible inclusion equations and causal relations.

Moreover, we introduce two extensions to deal with the parametric requirement of

building information granules in presence of numerical variables: the Rough Cognitive

Ensembles and the Fuzzy-Rough Cognitive Networks. The first model uses an ensemble

of Rough Cognitive Networks, each performing at a different granularity degree. The

latter replaces the crisp information granules with fuzzy ones, thus providing further

flexibility. While both models perform similarly in terms of prediction rates, the latter

is preferred since it is simpler and more transparent. The numerical simulations using

a wide variety of synthetic datasets have shown that our model performs comparably

with regards to most successful classification algorithms.

The main advantage of our classifiers (referred to as Rough Cognitive Networks in

general) relies on their transparency as they allow understanding the decision process

at a granular level while yielding high prediction rates. Therefore, this methodology

becomes an alternative to the limitation on the expression and architecture of Fuzzy

Cognitive Maps to handle pattern classification tasks, even when the problem domain

cannot be interpreted. Likewise, the notion of rough cognitive mapping opens new

research avenues toward solving more complex classification problems in which each

observation may be associated with multiple decisions.



Chapter 1

Introduction

Pattern classification (Duda et al., 2012) is one of the most ubiquitous real-world

problems and certainly one at which humans really excel. It consists of identifying the

right decision class (among those in a predefined set) to which an observation belongs.

These objects are described by a set of predictive attributes Ψ = {ψ1, ψ2, . . . , ψM} of

numerical and/or nominal nature. More formally, the pattern classification problem

(Duda et al., 2012) is about building a mapping f : U → D that assigns to each

object of the universe of discourse U a decision class Dk from the K possible ones in

D = {D1, D2, . . . , DK}. The mapping is frequently learned in a supervised fashion,

that is, by relying on an existing set of previously labeled examples, which is used to

train a classification model. More complex classification problems include learning in

presence of class imbalance (Sun et al., 2009) (López et al., 2013), class noise (Frénay

and Verleysen, 2014), semi-supervised scenarios (Chapelle et al., 2010) (Cohen et al.,

2004) or multiple decision classes per object (Tsoumakas and Katakis, 2007) (Cheng

et al., 2010) (Nápoles et al., 2016a), among other scenarios.

The literature on classification models (henceforth simply called “classifiers”) is

vast and offers a myriad of techniques that approach the classification problem from

multiple angles. Decision trees (Quinlan, 1986), rule-based models (Ishibuchi et al.,

1999), k-nearest neighbors learners (Cover and Hart, 1967), neural networks (Zhang,

2000), ensemble models (Dietterich, 2000), Bayesian networks (Friedman et al., 1997)

or support vector machines (Hearst et al., 1998) stand among the most popular clas-

sifiers, each having its own advantages and limitations. This motivates the scientific

community to put forth new (or modified) algorithms to cover a wide spectrum of

classification tasks coming from real-world problems.

3



4 Chapter 1

1.1 Motivation and challenges

Due to the inherent complexity of real-world classification problems, researchers in

Statistics and Machine Learning have developed a wide range of models (hereinafter

referred to as classifiers) with the goal of achieving the best possible accuracy. Some

classifiers like Artificial Neural Networks, Support Vector Machines, Ensemble Tech-

niques or Random Forests are well-known to be the most likely successful algorithms

for addressing a real-world problem in terms of prediction rates (Witten and Frank,

2005). Regrettably, most accurate algorithms do not provide any mechanism to ex-

plain how they arrived at a particular conclusion and behave like “black-boxes”. This

means that their reasoning mechanism is not transparent. The research community

has then resorted to Granular Computing (Pedrycz, 2001) (Bargiela and Pedrycz,

2012) in order to develop classifiers that acquire, process and interpret the problem

data at the level of (more symbolic) information granules.

Granular classifiers and, more generally, granular systems (Al-Hmouz et al., 2014)

(Balamash et al., 2015) encompass those complex, intelligent methods that lean on

information granularity at their core in order to deal with general, regularly vague and

imprecise specifications (Szczuka et al., 2015). Such methods are good representatives

of Computational Intelligence techniques given their adherence to the Computational

Intelligence underpinnings, i.e., the exploitation of tolerance, imprecision and partial

truth in order to achieve tractability, robustness and resemblance with human-centric

decision making (Kacprzyk and Pedrycz, 2015). Such features provide a strong frame-

work to design classification models able to deal with highly inconsistent scenarios

where similar observations could lead to quite different outcomes.

On the other hand, in recent years, Fuzzy Cognitive Maps (FCMs) have become a

suitable knowledge-based methodology for modeling and simulating complex systems

(Kosko, 1986). FCM-based systems can be understood as interpretable recurrent

neural networks (Tsadiras, 2008) (Kreinovich and Stylios, 2015) (Nápoles et al., 2016),

comprising a collection of processing entities called concepts or simply neurons, which

are connected by signed and weighted arrows. Concepts denote variables, objects,

entities or states describing the system under investigation, whereas the edges denote

causal relations between these neural processing entities.

Despite the advantages of using FCMs for modeling dynamic systems, their appli-

cation in solving pattern classification tasks has been less studied. This is motivated

by their poor prediction rates when compared to other classifiers in more generic sce-

narios (Papakostas and Koulouriotis, 2010). However, sometimes, FCM-based models

perform well in specific domains, even using very simple architectures. Kreinovich
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and Stylios (Kreinovich and Stylios, 2015) conjectured about the empirical success

of FCMs by considering that human’s subjective opinions follow Miller’s seven plus

minus two law (Miller, 1956). Another likely explanation for this interesting behavior

is that the performance of FCM-based classifiers is subject to their ability to represent

and generalize the domain knowledge reflected in the historical data. But, could this

issue be effectively faced using Granular Computing models?

1.2 Granular cognitive mapping

Within the Granular Computing, the information granulation concerns the processing

of complex information entities called granules, which arise in the process of data ab-

straction and derivation of knowledge from information. Thus, an information granule

can be defined as a collection of objects sharing a specific property. Several methods

have been augmented with different types of information granules in order to enhance

their performance. FCMs are one of the more recent models that have benefited from

the interplay with Granular Computing. The ensuing models are captured under the

term Granular Cognitive Maps (GCMs) and provide several advantages including the

high-level interpretability of the physical system under analysis.

Pedrycz and Homenda (Pedrycz and Homenda, 2014) evoke the allocation of infor-

mation granularity as a pivotal driving force behind the development of these types

of granular structures and describe five concise protocols as its realization mecha-

nisms. Pedrycz (Pedrycz, 2010) and his collaborators (Pedrycz et al., 2016) put forth

a granular representation of time series in which FCM concepts (i.e., neurons) denote

cluster prototypes induced by the well-known fuzzy c-means algorithm over the space

of amplitude and change of amplitude of the signal.

Homenda et al. (Homenda et al., 2014) adopted numeric intervals as the granu-

lation vehicle for their GCM weight matrix. More precisely, each causal weight is no

longer a number but an interval. The authors elaborate on three methodologies for

building a GCM from scratch by maintaining an adequate balance between specificity

and generality in the design of the interval-based FCM weights and the ensuing map

operations. The numerical simulations showed that the resulting granular model had

a good degree of coverage without a loss in precision.

Inspired on the approaches discussed in (Pedrycz, 2010) and (Pedrycz et al., 2016),

we proposed a partitive GCM model to solve graded multi-label classification prob-

lems (Nápoles et al., 2016a) instead of time series prediction. Three different FCM

topologies were studied and several convergence features were included into the learn-
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ing scheme driven by Particle Swarm Optimization. Numerical experiments confirmed

the capability of these GCMs to accurately estimate the degree of association between

an object and each decision class using synthetic datasets.

The above granular models certainly illustrate the advantages of using Granular

Computing and cognitive mapping to deal with different problems, which range from

time series forecasting to graded multi-label classification scenarios. However, their

application in solving standard pattern classification problems has been less investi-

gated. On the other hand, these approaches fail in producing truly causal high-level

models. This is a result of using stochastic search methods to determine the sign and

intensity of causal relations defining the semantics between the discovered information

granules. Determining these weights in a comprehensive, accurate and theoretically

sound way remains an open problem (Felix et al., 2017).

1.3 Scope and research goals

The goal of this research is to put forth a transparent GCM-based classifier capable of

elucidating its reasoning mechanism, as an alternative to black-boxes. This suggests

that our algorithm should be capable of computing high-quality prediction rates when

compared to traditional classifiers, and providing an introspection mechanism into its

decision process. In this thesis, the term transparency refers to the classifier’s ability

to explain its reasoning mechanism, whereas interpretability refers to the classifier’s

ability to explain the problem domain at the attribute level.

This general objective can be divided into several research goals, each comprising

interesting challenges that range from the theoretical contributions to the exhaustive

empirical evaluation. Such goals can be formalized as follows:

1. To develop a transparent GCM-based classifier without requiring the interven-

tion of experts to define the network topology.

2. To overcome the parametric requirement related to the information granulation

stage through further modifications to the proposed classifier.

3. To evaluate the prediction capability of the GCM-based classifiers using different

configurations, operators and distance functions.

4. To compare the prediction capability of the GCM-based classifiers against state-

of-the-art methods across benchmark problems.
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1.4 Technical roadmap

In order to address the above research goals, we introduce the notion of rough cognitive

mapping in the pattern classification context. The proposed granular methodology

comprises three steps, namely 1) the information granulation, 2) the network design,

and 3) the network exploitation for unlabeled objects.

In this research, we employ Rough Set Theory (Pawlak, 1982) to discover the

information constructs that will be used to build the granular classifier. Using rough

sets as a vehicle to granulate the input space allows making decisions using both the

certain and the hesitant information. More explicitly, we use extended rough sets to

replace the equivalence classes with similarity ones, thus equipping the model with the

capability of dealing with mixed-attributes objects. On the other hand, determining

a suitable heterogeneous distance function to measure dissimilarity between objects

is a pivotal issue to achieve good prediction rates.

The second step is concerned with building the network topology by using the

Three-way Decision Rules (Yao, 2009). In the proposed scheme, information granules

are denoted as input neurons in the GCM-based network, while output neurons rep-

resent decision classes. The well-defined semantics of rough granules seems suitable

to define the causal relations characterizing the network topology, without requiring

neither the expert intervention nor a further learning stage.

In the third step, we provide an inference model to exploit the granular classifier

for unlabeled (new) objects. In principle, this is achieved by quantifying the inclusion

degree of a similarity class into each information granule.

Determining the granularity degree leading to high prediction rates is a fascinating

challenge that may be addressed in different ways. An intuitive solution for this

issue is to estimate the value of this parameter using a search method; however, this

strategy may become non-practical for large datasets since it requires rebuilding the

information granules. In order to overcome the parametric requirement the proposed

classifier in a more elegant way, this thesis presents two additional models: the Rough

Cognitive Ensembles and the Fuzzy-Rough Cognitive Networks.

The reader can observe that the Fuzzy Cognitive Maps, the Extended Rough Sets

and the Three-way Decision Rules are the building blocks supporting the proposed

granular classifier. These theoretical resources will be opportunely revised in subse-

quent chapters to ensure a coherent readability. Likewise, the parametric requirement,

the effect of using different distance functions and the comparison against state-of-

the-art classifiers are issues to be discussed in this thesis. Finally, we characterize the

problems on which our algorithm stands as the best choice.
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1.5 Main contributions

The Rough Cognitive Networks comprise four contributions, namely: 1) the automatic

construction of high-level cognitive networks from historical data, therefore freeing up

the classifier from the subjectivity of human intervention, 2) the exploitation of nega-

tive, positive and hesitant information during the reasoning stage, 3) the transparency

on the inference process, and 4) the model refinement by suppressing the parametric

requirement in the information granulation stage, leading to a free-parameter classi-

fier. Such theoretical contributions are detailed as follows:

1. Rough cognitive mapping becomes a suitable alternative to deal with the limita-

tion on expression and architecture of cognitive mapping. Being more explicit,

it is well-known that FCM-based models are problem-dependent since domain

experts must define the network topology (i.e., concepts and causal relations).

However, the granular approach proposed in this research allows automatically

constructing the network structure from historical data, thus suppressing the

need for human intervention in the construction phase.

2. Most traditional classifiers derive their decision models based on the available

positive information, without taking into account the negative or hesitant knowl-

edge. Nevertheless, using rough sets to granulate the information space allows

exploiting the positive, negative and hesitant information in order to improve

the prediction rates. This seems convenient to solve classification problems on

which “quite similar” situations lead to different outcomes.

3. Unlike black-box classifiers, the proposed granular classifiers allow explaining

their decision process at a high-level using inclusion degree equations and causal

relations. In point of fact, the lack of transparency is the key drawback of most

successful black-boxes (e.g., Random Forests, Multilayer Perceptron, Support

Vector Machines). The model transparency however does not necessarily ensure

that we can interpret the semantics behind the physical system under analysis.

Even so, the transparency (often called interpretability at the model level) is a

necessary condition to build truly interpretable classifiers.

4. As a last contribution, we propose two approaches to overcome the parametric

requirement during the information granulation step. Therefore, we obtain two

parameterless granular classifiers that allow solving mixed-attribute classifica-

tion problems while preserving the prediction rates.
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1.6 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 is devoted to the first building

block of rough cognitive algorithms: the Rough Set Theory. It describes the rough

set models based on both equivalence and similarity relations, the role of the distance

function and the derivation of rough classification rules. Chapter 3 presents the Fuzzy

Cognitive Mapping as the second building block of the proposed classification models.

This chapter goes over the foundations of such structures, their reasoning process and

behavior, the transfer functions, among other aspects.

Chapter 4 introduces the notion of rough cognitive mapping in the context of pat-

tern recognition, which refers to the automatic construction of FCM-based classifiers

from rough information granules. More explicitly, this chapter describes the stages

related to the information granulation, the automatic construction of the underlying

FCM topology from rough constructs and the classifier exploitation. The convergence

properties of the inferred causal network is also discussed.

Chapters 5 and 6 propose two approaches to deal with the parametric require-

ment coming from the information granulation stage. The first model, called Rough

Cognitive Ensembles, uses a bootstrap aggregation scheme in an attempt to suppress

the dependence of user-specified parameters. The second model, called Fuzzy-Rough

Cognitive Networks, is more refined since it replaces the crisp granules with fuzzy

ones, thus hyperparameter learning is no longer required.

Chapters 7 introduces the statistical analysis and its ensuing discussion. As a first

simulation, we illustrate how the proposed classifier works once the network has been

activated. Moreover, we study the role of the distance function and fuzzy operators

over the prediction rates. To conclude, we carry out an extensive comparative study

against state-of-the-art classifiers across benchmark datasets.

Chapters 8 outlines the concluding remarks and future research directions to be

accomplished as a future work. Furthermore, Appendix A illustrates how the proposed

classifier operates by using the Iris datatset as an example, Appendix B outlines the

properties of benchmark problems used in our experiments, while Appendix C, D and

E provide the full results achieved during simulations.
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Chapter 2

Rough Set Theory

This chapter is devoted to the theoretical foundations of rough sets and the derived

rough classification rules (e.g., three-way decisions). These notions comprise the core

of the granular cognitive classifiers introduced in this research.

2.1 Rough sets based on equivalence relations

The Rough Set Theory (Pawlak, 1982) is a methodology proposed in the early 1980’s

for handling uncertainty that is manifested in the form of inconsistent data (Bello

et al., 2008). Let DS = (U ,Ψ∪{d}) denote a decision system where U is a non-empty

finite set of objects called the universe, Ψ is a non-empty finite set of attributes

describing any object in U and d /∈ Ψ represents the decision attribute. Any subset

X ⊆ U can be approximated by two crisp sets, which are referred to as its lower and

upper approximations and denoted by ΦX = {x ∈ U | [x]Φ ⊆ X} and ΦX = {x ∈
U | [x]Φ ∩X 6= ∅}, respectively. In this classic formulation, the equivalence class [x]Φ

comprises the set of objects in U that are deemed inseparable from x according to the

information contained in the attribute subset Φ ⊆ Ψ.

The lower and upper approximations are the basis for computing the positive, neg-

ative and boundary regions of any set X. The positive region POS(X) = ΦX includes

those objects that are certainly related to X; the negative region NEG(X) = U −ΦX

denotes those objects that are certainly not related to X, while the boundary region

BND(X) = ΦX \ΦX captures the objects whose membership to the set X is uncer-

tain, but they might be members of X. These three regions are information granules

that will be used to design our granular classifiers.

11
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Figure 2.1 portrays how to compute the lower and upper approximations for an

arbitrary set X, which regularly is comprised of those objects belonging to a particular

decision class. In this example, each rectangle represents an equivalence class, thus

generating a partition of the universe of discourse.

Figure 2.1: Approximation space using equivalence relations.

In most RST problems, ΦX ⊆ ΦX but if ΦX = ΦX then the boundary region

will be empty, which means that the set is crisp. Of course, whether ΦX = ΦX will

strongly depend on the subset of attributes Φ used to compare the objects comprised

into the universe of discourse. This set often denotes a reduct that may be determined

either by experts or using an attribute selection method.

2.2 Rough sets based on similarity relations

In the classical RST formalism, two objects are deemed indiscernible if they have

identical values for the selected attributes. This definition works well with nominal

attributes but is not suitable for numerical ones, as negligible differences between two

numerical ones could cause two nearly identical objects to lie in two distinct insepa-

rability classes. To relax this stringent assumption, the equivalence requirement on

the inseparability relation is replaced with a similarity relation.
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Equation (2.1) shows an indiscernibility relation, where 0 ≤ ϕ(x, y) ≤ 1 is a

similarity function. This weaker binary relation claims that two objects x and y are

inseparable as long as their similarity degree ϕ(x, y) goes above a similarity threshold

0 ≤ ξ ≤ 1. This user-specified parameter establishes the degree of granularity in the

granular space. Determining the precise granularity degree becomes a central issue

when designing high-performing rough classifiers.

R : xRy ⇐⇒ ϕ(x, y) ≥ ξ (2.1)

The similarity function could be formulated in a variety of ways. In this research,

we assume that ϕ(x, y) = 1−δ(x, y), where 0 ≤ δ(x, y) ≤ 1 is a function comprising the

distance between objects x and y. In the next section, we describe there heterogeneous

functions (Wilson and Martinez, 1997) that allow quantifying the dissimilarity degree

between objects having either numerical and/or nominal attributes.

Once we have determined the set of objects with a similarity degree greater than

the similarity threshold, we can determine the lower and upper approximations for

the kth decision class. If the object x is only related with objects belonging to the kth

decision class, then x will be included in the kth lower approximation. In contrast,

if the object x is related with objects that belong to other decision classes, then the

object will included in the kth upper approximation.

It should be mentioned that a similarity relation does not necessarily induce a

partition of U into a set of equivalence classes but rather a covering of U into multiple

similarity classes. This implies that an object could belong to several similarity classes

at the same time, thus introducing some flexibility degree. However, this also suggests

that the decision-making process is no longer straightforward.

2.3 Heterogeneous distance functions

As mentioned, the distance function plays a pivotal role when designing the similarity

relation. In this section, we outline the mathematical formulation of three extensively

used distance functions taken from (Wilson and Martinez, 1997) that allow comparing

objects comprising both numerical and nominal attributes.

Let Φ = {φ1, . . . , φM} be the attribute set, where φj can be either numerical or

nominal, and it attaches a weight 0 ≤ ωj ≤ 1 that quantifies its relevance. Assuming

that numerical attributes have been normalized, the distance between two objects x

and y can be computed using one of the following functions:
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� The Heterogeneous Euclidean-Overlap Metric (HEOM). This function

computes the normalized Euclidean distance between numerical attributes and

an overlap metric for nominal ones. Equations (2.2) and (2.3) define the HEOM

distance function, where x(j) and y(j) denote the values for the jth attribute

in the heterogeneous objects x and y, respectively.

δHEOM (x, y) =

√√√√∑M
j=1 ωjσj(x, y)∑M

j=1 ωj
(2.2)

where

σj(x, y) =


0 if φj is nominal ∧ x(j) = y(j)

1 if φj is nominal ∧ x(j) 6= y(j)

(x(j)− y(j))2 if φj is numerical

(2.3)

� The Heterogeneous Manhattan-Overlap Metric (HMOM). This variant

is similar to the HEOM function since it replaces the Euclidean distance with the

Manhattan distance when computing the dissimilarity between two numerical

values. Equations (2.4) and (2.5) display the HMOM function, whose calculation

requires less computational effort compared to HEOM’s.

δHMOM (x, y) =

∑M
j=1 ωjρj(x, y)∑M

j=1 ωj
(2.4)

where

ρj(x, y) =


0 if φj is nominal ∧ x(j) = y(j)

1 if φj is nominal ∧ x(j) 6= y(j)

|x(j)− y(j)| if φj is numerical

(2.5)

� The Heterogeneous Value Difference Metric (HVDM). This function

involves a stronger strategy for quantifying the dissimilarity between discrete

attribute values. Instead of computing the matching rate, it measures the cor-

relation between attributes and decision classes. Equations (2.6) and (2.7) show

the HVDM function variant adopted in this research.
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δHVDM (x, y) =

√√√√∑M
j=1 ωjτj(x, y)∑M

j=1 ωj
(2.6)

where

τj(x, y) =


1
K

∑K
k=1

(
βφj,x(j),k

βφj,x(j)
−

βφj,y(j),k

βφj,y(j)

)2

if φj is nominal

(x(j)− y(j))
2

if φj is numerical
(2.7)

and K is the number of decision classes, βφj ,x(j) denotes the number of objects in

the training set for which φj = x(j), whereas βφj ,x(j),k is the number of objects that

have output class k and additionally φj = x(j). The reader can observe that we could

use a matching approach in conjunction with the correlation strategy in those cases

where a nominal attribute has the same values in both objects.

In the above distance functions, estimating the relevance of each attribute may

result in improved prediction rates. To overcome this issue, we compute the gain ratio

(Quinlan, 1986) associated with the jth attribute:

G(φj , X) =
I(X)− E(φj , X)

IC(φj)
(2.8)

where

I(X) = −
K∑
k=1

|X ∩Dk|
|X|

log2
|X ∩Dk|
|X|

(2.9)

measures the randomness of the distribution of available objects in X over K decision

classes, whereas E(φj , X) is defined as follows:

E(φj , X) =

Lj∑
l=1

|Xl|
|X|

I(Xl) (2.10)

where Lj represents the number of possible values for the jth attribute and Xl denotes

the object set in X having value vl for the jth attribute. Likewise, in order to counter

this metric’s bias in favor of attributes with a larger number of values, the following

entropy-based normalization factor is introduced:

IC(φj) = −
Lj∑
l=1

|Xl|
|X|

log2
|Xl|
|X|

(2.11)
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The gain ratio associated to the jth attribute replaces the weight ωj when com-

puting the dissimilarity degree between two heterogeneous objects. Of course, we can

use more sophisticated measures as the distance between partitions, although it could

significantly increase the computational cost.

2.4 Deriving classification rules

The positive, negative and boundary regions can be effectively employed to derive

classification rules when facing decision-making problems.

For instance, in (Grzymala-Busse, 1988) the author defined two categories of rules:

certain rules from the lower approximations and possible rules from the upper approx-

imations. Nevertheless, since the lower approximation is in fact a subset of the upper

approximation, there is an overlap between these rules (Yao, 2010) leading to confus-

ing interpretations for the decision model. In (Wong and Ziarko, 1986) the authors

proposed two types of decision rules: deterministic decision rules for positive regions

and nondeterministic decision rules for boundary regions. Since the three regions are

mutually exclusive, the derived rule sets no longer have an overlap (Yao, 2010) and

consequently, a higher degree of transparency is achieved.

Likewise, one may associate probabilistic measures, such as accuracy and con-

fidence to derived rules (Tsumoto, 2002) where the accuracy and confidence of a

deterministic rule is 1, whereas for nondeterministic rules they can take values be-

tween 0 and 1. In (Pawlak, 2002) the author referred to them as certain and uncertain

decision rules, respectively. In point of fact, Pawlak focused on the positive region and

certain rules (Pawlak, 1992) since they characterize objects on which we can make

confident decisions, so they ensure highest consistency when selecting the decision.

Despite this fact, uncertain rules often comprise relevant information that could be

used in order to improve the accuracy of the decision/classification model.

As an alternative, Yao introduced the three-way decision model (Yao, 2009). Rules

constructed from rough regions are associated to different actions. A positive rule sug-

gests a decision of acceptance, a negative rule implies a decision of rejection, whereas

a boundary rule advocates for abstaining. The three-way rules play a central role in

decision-making problems in the sense that experts usually make a decision based on

available knowledge and evidence. If the evidence is insufficient, then they cannot

make a positive or negative decision, instead experts could make a non-commitment

decision (e.g., in the discussion of policies at the United Nations sessions, member

can abstain if they are not convinced about the proposal).
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2.5 Three-way decision rules

Let X ⊆ U denote the set to be approximated. The notion of three-way decision rules

(Yao, 2009) is inspired by the three disjoint regions produced by the lower and upper

approximations. Such exact sets divide the universe U into three regions, the positive

region POS(X), the boundary region BND(X), and the negative region NEG(X).

Based on these regions we can definitely affirm that any element x ∈ POS(X) belongs

to X, and that an object x ∈ NEG(X) does not belong to the X set. These principles

are the basis of the three-way decision rules:

� Des([x]Φ)→P Des(X), for [x]Φ ⊆ POS(X)

� Des([x]Φ)→B Des(X), for [x]Φ ⊆ BND(X)

� Des([x]Φ)→N Des(X), for [x]Φ ⊆ NEG(X)

In these rules, Des([x]Φ) denotes the logic formula defining the equivalence class

[x]Φ and Des(X) is the name of the concept. If [x]Φ ⊆ POS(X), we accept x to be

a member of the target concept X. If [x]Φ ⊆ NEG(X), we reject x to be a member

of X. If [x]Φ ⊆ BND(X), we neither accept nor reject x to be a member of X,

instead we make a decision of deferment, abstaining or non-commitment (Yao, 2011).

These decision rules recognize and model our inability to make a definite acceptance

or rejection decision in scenarios with weak information.

Within the classic rough set model (i.e., based on equivalence relations) the above

rules are unnecessarily restricted, but one can generalize them to revoke these limita-

tions. Hence, the Decision-theoretic Rough Set (DTRS) model (Yao and Zhou, 2016)

emerged as a general probabilistic approach that uses two states and three actions to

characterize the decision process. The states refer to the pertinence of an object to a

set, whereas the three actions are the three-way decisions.

Let Ω = X,∼ X be the set of states indicating that an object is enclosed in the

set X or not, respectively. Let Π = {πP , πN , πB} denote the set of actions, where πP ,

πN , and πB are the three decision actions, that is, deciding x ∈ POS(X), deciding

x ∈ NEG(X), and deciding x ∈ BND(X), respectively. In this approach, the prob-

abilities Pr(X|[x]Φ) and Pr(∼ X|[x]Φ) denote the probability that the equivalence

class [x]Φ belongs to the set X and the set ∼ X, respectively. Let λiP (πi|X) and

λiN (πi| ∼ X), ∀i = {P,N,B}, denote the loss for taking the action πi when the state

is X and ∼ X. Accordingly, the expected loss L(πi|[x]Φ) associated with taking each

individual action can be expressed as follows:
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� LP = L(πP |[x]Φ) = λPPPr(X|[x]Φ) + λPNPr(∼ X|[x]Φ)

� LN = L(πN |[x]Φ) = λNPPr(X|[x]Φ) + λNNPr(∼ X|[x]Φ)

� LB = L(πB |[x]Φ) = λBPPr(X|[x]Φ) + λBNPr(∼ X|[x]Φ)

Likewise, the Bayesian decision procedure (Yao and Zhou, 2016) leads to minimum-

risk decisions, that are summarizes in the following rules:

� (P1) IF LP ≤ LN AND LP ≤ LB THEN x ∈ POS(X)

� (N1) IF LN ≤ LP AND LN ≤ LB THEN x ∈ NEG(X)

� (B1) IF LB ≤ LP AND LB ≤ LN THEN x ∈ BND(X)

Since Pr(X|[x]Φ) + Pr(∼ X|[x]Φ) = 1, we can simplify the above rules based on

the probability Pr(X|[x]Φ) and the loss function. Being more explicit, let us consider

a reasonable cost function where λPP ≤ λBP < λNP and λNN ≤ λBN < λPN , then

the cost of classifying an object x belonging to X into the positive region is less than

or equal to the cost of classifying x into the boundary region, and these costs are

strictly less than the cost of classifying x into the negative region. The minimum-risk

probabilistic decision rules can be expressed as follows:

� (P2) IF Pr(X|[x]Φ) ≥ α AND Pr(X|[x]Φ) ≥ γ THEN x ∈ POS(X)

� (N2) IF Pr(X|[x]Φ) ≤ β AND Pr(X|[x]Φ) < γ THEN x ∈ NEG(X)

� (B2) IF Pr(X|[x]Φ) < α AND Pr(X|[x]Φ) > β THEN x ∈ BND(X)

where parameters α, β and γ are defined as:

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
,

β =
λBN − λNN

(λBN − λNN ) + (λNP − λBP )
,

γ =
λPN − λNN

(λPN − λNN ) + (λNP − λPP )
.
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In the DTRS model, an object in the probabilistic positive region does not surely

belong to the decision class, but it belongs with a high probability. It implies that the

acceptance and rejection decisions are made in light of certain error tolerance levels

(Yao, 2011). However, the practical usability of classical three-way decisions may be

reduced when facing scenarios with numerical attributes. More explicitly, the presence

of numerical attributes requires replacing the equivalence class with a similarity class;

thus an object could simultaneously belong to multiple decision classes. This implies

that the decision process is no longer straightforward.

2.6 Concluding note

Using rough sets as a vehicle for granulating the available information brings several

advantages towards building our granular classifier. For instance, rough information

granules have a precise meaning and allow differentiating between the positive-certain,

the negative-certain and the hesitant information. Determining the relation between

granules coming from other theories (e.g., fuzzy sets or shadowed sets) becomes less

intuitive. On the other hand, it is noticeable the potential behind the abstract seman-

tics of three-way decisions to derive sound classification rules. But could a Machine

Learning algorithm handle such rules? The next chapter introduces a kind of cognitive

neural network that seems suitable for this purpose.
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Chapter 3

Fuzzy Cognitive Maps

This chapter introduces the foundations behind Fuzzy Cognitive Maps, the second

building block attached to our granular cognitive classifier. Moreover, we revise some

predefined architectures to deal with pattern classification scenarios.

3.1 Fuzzy cognitive mapping

Fuzzy Cognitive Maps (FCMs) have increased their popularity within the scientific

community during the last years. Such networks (Kosko, 1986) have become a suitable

tool for the design of knowledge-based systems, where one of the most relevant char-

acteristics is the network interpretability. Not many computer science techniques can

claim this valuable feature. FCMs incorporated many aspects from Soft Computing

(Kecman, 2001) (Pratihar, 2015) that provide further flexibility. From the structural

perspective, an FCM can be defined as a fuzzy digraph that describes the behavior of

an intelligent system in terms of concepts (i.e., objects, states, variables or entities).

Such concepts (or simply neurons) involve a precise meaning for the problem domain

and are connected by signed and weighted causal relationships.

The sign and intensity of causal relations can involve the quantification of a fuzzy

linguistic variable which can be assigned by experts during a knowledge acquisition

phase (Kosko, 1997). These elements iteratively interact when updating the activa-

tion value of each neural processing entity, thus conferring to the network its recurrent

behavior. Consequently, an FCM-based network will produce a state vector at each

discrete-time step until a stopping criterion is satisfied.

21
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FCMs can be seen as interpretable recurrent neural networks (Nápoles et al., 2016)

that allow capturing the semantics of a physical system in terms of concepts and causal

relations. As mentioned, concepts are denoted by neural processing units that define

a set C = {C1, C2, . . . , CM} where M is the number of neurons in the causal network.

The strength of the causal relation between two neurons Ci and Cj is quantified by

a weight wij ∈ [−1, 1] and denoted via an edge from Ci to Cj . This weight is defined

by a function W : C × C → [−1, 1] : (Ci, Cj) 7→ wij . There are three possible types of

causal relationships between neural processing units that express the type of influence

from one neuron to another, which are detailed as follows:

� If wij > 0 then an increment (decrement) in the cause neuron Ci produces an

increment (decrement) of the effect neuron Cj with intensity |wij |.

� If wij < 0 then an increment (decrement) in the cause neuron Ci produces a

decrement (increment) of the effect neuron Cj with intensity |wij |.

� If wij = 0 then there is no causal relation between Ci and Cj .

In these knowledge-based models, both neurons and causal relations allow elu-

cidating the semantics behind the system under analysis and performing WHAT-IF

simulations. Such simulations are based on the following rule: the stronger the activa-

tion value of a neuron, the greater its impact on the system. Clearly, weights attached

to the neurons are also relevant since they define the direction (i.e., inverse or direct)

and the intensity on which a neuron influences another. Notice that weights comprise

causal relations instead of correlation ones. It is well-known that causality does surely

imply correlation, but the opposite does not necessarily hold.

Defining authentic causal relations between neural entities is a key aspect towards

designing truly interpretable FCM-based systems. Otherwise, the model will produce

misleading results when performing WHAT-IF simulations. It should be highlighted

that we can model different levels of interpretability using the cognitive mapping prin-

ciple, which depend on the abstraction degree. Neurons denoting entities with high

abstraction level (i.e., information granules) lead to high-level interpretable networks.

If the level of abstraction is too high, then the physical system under investigation is

difficult to analyze, but the reasoning process is still transparent.

On the other hand, defining attribute-level entities allow interpreting the system

behavior at a low level. However, sometimes the domain experts are unable to define

authentic causal relations with such specificity level.
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3.2 Neural updating rules

During the neural reasoning process, an FCM exploits an activation vector by using

a rule similar to the standard McCulloch-Pitts scheme (McCulloch and Pitts, 1988).

The activation degree of each neuron is given by the value of the transformed weighted

sum that this processing unit receives from connected neurons on the causal network.

Next, we discuss three widely used activation rules.

Equation (3.1) shows the Kosko’s activation rule (Kosko, 1986), where A
(t)
i is the

activation value of the Ci neuron at the tth iteration, wji is the causal weight con-

necting the neurons Cj and Ci, A
(0) =

[
A

(0)
1 , A

(0)
2 , . . . , A

(0)
M

]
is the activation vector,

while f(.) is a monotonically non-decreasing transfer function. This updating mecha-

nism is repeated until a stopping condition is satisfied, thus producing a state vector

A(t) =
[
A

(t)
1 , A

(t)
2 , . . . , A

(t)
M

]
at each iteration. Aiming at preserving the concordance

between the problem domain and the modeled neural network, the Kosko’s rule states

that a neural entity should not be influenced by itself.

A
(t+1)
i = f

 M∑
j=1

wjiA
(t)
j

 , i 6= j (3.1)

Equation (3.1) describes a neural updating rule that has derived other (slightly

different) reasoning procedures. In (Stylios and Groumpos, 2004), the authors pro-

posed a modified inference rule (see Equation (3.2)) where neurons take into account

its own past value and the corresponding weights when performing the inference pro-

cess. This reasoning rule is preferred to update the activation value of neurons that

are not influenced by other neural entities. The reader can notice that this variant is

equivalent to suppress the i 6= j constraint in the Kosko’s rule.

A
(t+1)
i = f

 M∑
j=1

wjiA
(t)
j +A

(t)
i

 , i 6= j (3.2)

Another modified updating rule was proposed in (Papageorgiou, 2011) to avoid the

conflicts emerging in the case of non-active concepts. Being more explicit, the rescaled

inference depicted in Equation (3.3) allows dealing with the scenarios where there is

no information about an initial concept-state and helps preventing the saturation of

neural entities. Of course, we could face the aforementioned issues by using the proper

parametric settings in the f(.) transfer function.
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A
(t+1)
i = f

 M∑
j=1

wji(2A
(t)
j − 1) + (2A

(t)
i − 1)

 , i 6= j (3.3)

Selecting the proper updating rule depends on the problem domain and regularly

requires a strong understanding of the physical system under analysis. As a further

valuable remark, in (Papakostas and Koulouriotis, 2010) the authors concluded that

removing the i 6= j restriction in Equations (3.1) and (3.2) does not necessarily lead

to improved prediction rates of FCM-based classifiers.

3.3 Network dynamics

As mentioned before, FCMs are recurrent neural networks that produce a state vector

at each iteration. This procedure is repeated until either the FCM stabilizes or meets

a predefined stopping criterion (e.g., reaching a maximum number of iterations). The

former implies that a hidden pattern was discovered (Kosko, 1988) while the latter

suggests that the responses are cyclic or completely chaotic.

If the FCM is able to converge, then the cognitive model will produce the same

output towards the end, and thus the activation degree of neurons will remain without

change (or the changes are infinitesimal). On the other hand, a cyclic FCM produces

dissimilar responses with the exception of a few states that are periodically produced

along the reasoning process. The last possible scenario is related to chaotic outcomes

on which the network continues producing different outputs without any fixed pattern.

Such situations can be mathematically defined as follows:

� Fixed-point (∃tα ∈ {1, 2, . . . , (T − 1)} : A(t+1) = A(t),∀t ≥ tα): the network

produces the same state vector after the tαth iteration (Nápoles et al., 2016).

This suggests that A(tα) = A(tα+1) = A(tα+2) = · · · = A(T ).

� Limit cycle (∃tα, P ∈ {1, 2, . . . , (T −1)} : A(t+P ) = A(t),∀t ≥ tα): the network

periodically produces the same state vector after the tαth iteration (Nápoles

et al., 2016). Therefore, A(tα) = A(tα+P ) = A(tα+2P ) = · · · = A(tα+jP ) where

tα + jP ≤ T , such that j ∈ {1, 2, . . . , (T − 1)}.

� Chaos (Wang et al., 1990): the network produces different outputs for succes-

sive iterations, thus being difficult to make decisions.
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If the FCM is unable to converge, then the model will produce confusing responses

and thus a pattern cannot be concluded (Nápoles et al., 2016), being impossible to

made suitable decisions. In presence of chaos or cyclic states, the reasoning rule stops

once a maximal number of iterations T is reached. If so, the state vector is calculated

from the last response. However, this output is partially unreliable due to the lack of

convergence. The convergence is often desirable since the responses become consistent

and the expert may understand the system behavior.

3.4 The transfer function

The transfer function f : R→ I in Equations (3.1), (3.2) and (3.3) is a monotonically

non-decreasing function that confines the activation value of each neuron into the

allowed interval, where I = [0, 1] or I = [−1, 1] depending on the problem domain.

According to the cardinality of the state space, transfer functions may be gathered into

two groups (Tsadiras, 2008): discrete and continuous. The most widely used functions

are the bivalent, the trivalent, the hyperbolic tangent and the sigmoid function. Next,

we outline their key advantages and limitations.

1. The bivalent function (see Equation (3.4)). It is a discrete transfer function

that only produces binary responses leading to a finite number of states vectors.

This happens because an FCM is a deterministic system and so, if it reaches a

state to which it has been previously, the FCM will enter in a closed orbit that

will always repeat itself (Tsadiras, 2008). Therefore, a binary FCM will always

converge to a fixed-point or produce cyclic patterns (with an exponential period

in the worst scenario) but it will never produce chaos.

f1(x) =

1 if x > 0

0 if x ≤ 0
(3.4)

2. The trivalent function (see Equation (3.5)). It is a discrete function that

produces a finite number of different outputs, and thus the system will always

converge to a fixed-point or produce cyclic patterns; chaos is not possible. The

disadvantage of discrete functions relies on their poor representation capability

where only qualitative scenarios can be modeled.
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f2(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

(3.5)

3. The sigmoid function (see Equation (3.6)). It is a continuous transfer func-

tion that produces infinite different states freely distributed in the space defined

by the [0, 1]M hypercube, with M being the number of neurons. In this nonlin-

ear function, λ > 0 and h > 0 are two user-specified parameters controlling the

function slope and the offset, respectively. Higher values of λ increase the steep-

ness and make it more sensitive to the neuron’s changes, hence the derivative

grows as the activation value is increased.

f3(x) =
1

1 + e−λ(x−h)
(3.6)

4. The hyperbolic function (see Equation (3.7)). It is another continuous func-

tion that produces infinite state vectors but distributed in the [−1, 1]M hyper-

cube. Besides the fixed-points and the cyclic states, continuous functions may

additionally produce chaos (Tsadiras, 2008). As an advantage, they can be used

for modeling both qualitative and quantitative scenarios.

f4(x) =
e2x − 1

e2x + 1
(3.7)

Figure 3.1 displays the state space of an FCM-based network with three neurons,

for both bivalent and trivalent functions. For the bivalent function, the states are

located at the corners of the [0, 1]2 hypercube, whereas in the case of the trivalent

function, the states are located at the corners, at the middle of the edges, at the

center of the sides and, at the center of the [−1, 1]2 hypercube.

The number of patterns that the network is able to recognize increases with the

number of different outputs that f(.) produces. However, this also increases the risk

of producing chaos or cyclic states with larger exponential periods. This risk may be

reduced (or completely suppressed) if the causal weight matrix fulfills some conditions

ensuring the convergence to a fixed-point attractor.
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(a) Bivalent transfer function. (b) Trivalent transfer function.

Figure 3.1: State space for an FCM with three neurons.

Likewise, in (Bueno and Salmeron, 2009) the authors conducted a simulation com-

paring the inference capability of the above functions. Results showed that the sigmoid

function attains the highest predictive capacity when compared with the other alter-

natives. In point of fact, this nonlinear function will be adopted in this research when

designing our GCM-based classifiers. It should be however emphasized that the selec-

tion of the threshold function is frequently conditioned by the problem requirements,

i.e., the role each neuron plays into the causal network.

As a side remark, although FCMs inherited many aspects from well-known neural

systems, there are important differences regarding to other types of Artificial Neural

Networks. Classical neural models regularly perform like black-boxes, where both the

neurons and the connections do not have a clear meaning for the problem itself, or

results cannot easily be explained. Nevertheless, all neurons in an FCM have a precise

meaning for the physical system being modeled and correspond to specific variables,

objects, states or entities. Furthermore, FCM-based networks do not comprise hidden

neurons since these entities could not be interpreted nor help at explaining whether

a solution is suitable for a given scenario or not.

3.5 FCM-based classifiers

Despite the noticeable advantages of using FCMs for modeling complex systems, their

application in classification scenarios has been less studied. This is motivated by their

poor prediction rates when compared to traditional classifiers in more generic prob-

lems. In spite of this fact, sometimes, FCM-based models are capable of producing

high-quality solutions, even using very simple architectures.
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The first attempt to use FCMs in pattern classification environments was imple-

mented in (Papakostas et al., 2008) and later extended in (Papakostas and Koulou-

riotis, 2010). In these papers, Papakostas and his collaborators defined the basic

principles of FCM-based classifiers. The most prominent challenge to be faced when

constructing an FCM-based classifier lies in how to connect the neural processing

entities in order to preserve the coherence on the network topology. In such causal

structures, input neurons denote features, while decision classes are represented by

output neurons. It should be noticed that the activation value of an input neuron

may depend on the other neural entities or may be totally independent.

In (Papakostas and Koulouriotis, 2010), the authors defined two network topolo-

gies to define the interaction between input and output neurons. The first of these

generic models connects the input neurons to each other, whereas the second model

only connects the input neurons with the output ones.

None of the above approaches confidently reflect the underlying behavior behind

the physical system under investigation. In the first case, we cannot always suppose

that all features are dependent each other. For example, let us assume three concepts:

“C1 - precipitation”, “C2 - take a bus” and “C3 - take a bike”. It is reasonable to

expect that an increase on C1 leads to an increase on the value of C2 and a decrease

on the value of C3. This suggests that C2 and C3 are dependent from C1, although

they have their own initial activation values. On the other hand, an increase on C2

and C3 will not increase/decrease any chance of precipitation. In the second case,

the model fails in capturing the dependence between features when performing the

classification process, therefore leading to poor prediction rates.

Another important issue attached to construction of an FCM-based classifier is

how to compute the decision class. Roughly speaking, a standard FCM-based classifier

can work based on two types of generic architectures:

� Class-per-output architecture. Each decision class is mapped as an output

neuron. After performing the inference process, the predicted class corresponds

to the output neuron with the highest activation value.

� Single-output architecture. Decision classes are determined from the acti-

vation space associated to a single decision neuron:
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1. Using a clustering approach. During the training phase, each decision class

is associated with a cluster center (to be determined by a clustering algo-

rithm). Afterwards, the center having the closest distance to the projected

activation value is assigned to the input object.

2. Using a thresholding approach. During the training phase, each decision

class is associated with a partition (defined by two thresholds) of the ac-

tivation space. In the testing phase, the interval comprising the projected

activation value is then assigned to the input object.

Figure 3.2 and 3.3 show two hybrid typologies (Papakostas and Koulouriotis, 2010)

that include a black-box classifier to improve the prediction rates. In the first hybrid

FCM-based classifier, the black-box produces a confidence degree per decision class.

Sequentially, the confidence vector is used as initial configuration for the FCM model

that corrects the outputs produced by the black-box. In the second model, the input

neurons (i.e., features) are also connected to output ones, so the predictions computed

by the black-box classifier can be understood as a bias.

Figure 3.2: Hybrid FCM-based classifier type-1.
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Figure 3.3: Hybrid FCM-based classifier type-2.

In these hybrid models, both the transparency and interpretability are irremediably

damaged as the classifier is no longer capable of clearly explaining its decision process

nor elucidating the causal relations related to the physical system.

3.6 Concluding note

The fuzzy cognitive mapping seems a suitable Soft Computing technique to cope with

pattern classification problems in a comprehensible fashion. Nevertheless, establishing

the dependency relations between input neurons at the attribute level often requires

the intervention of domain experts to preserve the model coherence. Otherwise, we

cannot ensure that the cognitive network describes the physical system under analysis.

As an alternative, we can rely on Granular Computing techniques to derive accurate

FCM-based classifiers that allow understanding the system behavior at a symbolic

level. Thereby, a low-level reasoning is no longer possible, but the classifier’s decision

process remains transparent and comprehensible.
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Rough Cognitive Networks

This chapter presents the Rough Cognitive Networks, the first granular classifier intro-

duced in this research, which emerge from the synergy between the abstract semantics

of three-way decision rules and cognitive mapping.

4.1 Preliminaries about the algorithm

As discussed in Chapter 2, an equivalence relation induces a partition of the universe,

but this does not necessarily hold if we use similarity relations since an object could

simultaneously belong to different similarity classes. This implies that the similarity

class of an object may activate several decision rules. In such scenarios, making precise

decisions based on the available evidence could be challenging.

For example, let us assume that the similarity class R̄(x) comprises objects as-

sociated with two decision classes D1 and D2. According to the standard three-way

decision rules, we cannot confidently decide D1 nor D2 since R̄(x) is not entirely con-

tained into neither POS(X1) nor POS(X2), with X1 and X2 being the set of objects

labeled as D1 and D2, respectively. Of course, we can calculate confidence levels to de-

termine the most likely decision class. If the available knowledge is enough and there

are a few decision classes then determining the most likely class may be relatively easy

to perform by considering the positive information. However, real-world classification

problems are often characterized by complex features (e.g., imbalance, inconsistency).

Besides, estimating the parameters of more advanced three-way decisions rules may

be as complex as solving the classification problem itself.

31
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4.2 Rough cognitive mapping

Essentially, a Rough Cognitive Network (RCN) can be defined as a GCM where input

neurons represent rough approximation regions and the output neurons denote the

set of class labels for a pattern classification problem. The process of building and

exploiting an RCN, referred to as rough cognitive mapping, involves three well-defined

steps, namely: 1) the information granulation, 2) the network construction, and 3)

the network exploitation for unlabeled objects.

4.2.1 Information granulation

Similarly to the three-way decision rules (Yao, 2009), the first step of our proposal

is oriented to determine the positive, negative and boundary regions related to each

decision class. Let X = {X1, . . . , Xk, . . . , XK} be a partition of the universe U ac-

cording to the values of the decision attribute, where each subset Xk comprises those

objects labeled as Dk. It should be highlighted that attributes may be either nominal

and/or numerical as our approach uses similarity relations to compute the lower and

upper approximations. Therefore, the information granulation refers to the process

of computing the lower and upper approximations for each subset Xk, and next deter-

mining the related positive, negative and boundary regions. Algorithm 1 displays the

steps related to the information granulation stage in its simplified form since rough

regions are determined from lower and upper approximations.

Algorithm 1. Information granulation procedure.

FOREACH subset Xk DO

Compute the positive region POS(Xk)

Compute the negative region NEG(Xk)

Compute the boundary region BND(Xk)

END

The granulation of the information space is a central step towards building a

granular classifier since constructs carry the knowledge to perform the classification

process. One cannot expect achieving high-quality predictions from deficient infor-

mation granules. It is reasonable to suppose that deriving information granules with

higher negative and positive regions will surely lead to higher prediction rates as well.

But this is not true in all situations. Sometimes, the boundary regions help to increase

the classifier’s discriminatory power (Nápoles et al., 2016).
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During the information granulation stage, two important components must be de-

termined. The first of them is the distance function used to measure the dissimilarity

between objects, whereas the second one is the similarity threshold that establishes

whether two objects are inseparable or not. In the context of rough sets based on sim-

ilarity relations, two objects are deemed inseparable if they are identical or reasonably

similar. That is why a similarity threshold is required.

As mentioned, the similarity threshold defines the granularity level in the rough

constructs. Smaller threshold values lead to a lower granularity degree, while larger

values lead to a higher granularity level. Regrettably, determining the exact granu-

larity level for the problem at hand is quite challenging. For example, using smaller

similarity values increases the risk of claiming the inseparability between objects that

are in fact separable. In contrast, larger values increases the risk of ignoring authen-

tic inseparability relations between objects. In both scenarios the prediction rates

computed by the classifier will probably be negatively affected. Chapter 5 and 6 will

approach this problem using other Machine Learning resources.

On the other hand, it is noticeable the advantages of the three-way decision model

to derive classification rules from rough granules. Nevertheless, in numerical domains,

a similarity class R̄(x) might activate multiple decision rules. If R̄(x) only contains

objects related to a single decision class, then selecting the correct decision is relatively

easy since the similarity class will completely be contained within a specific decision

region. But what happens if R̄(x) activates the positive region of multiple decisions?

Likewise, what happens if only negative and boundary regions are activated? In such

non-trivial scenarios further inference strategies are required.

In the first scenario, we could calculate confidence levels for each active rule and

then compute the likelihood of each decision. The second scenario seems to be more

complex and depends on the available knowledge. For example, sometimes it is not

possible to infer a decision class only based on the positive regions (e.g., they remain

inactive or have low cardinality). The reader can fairly claim that we can reject the

hypothesis that an object belongs to a decision class if a positive or boundary evidence

cannot be established. Nevertheless, in multiclass classification problems, the negative

evidence will not be redundant; instead it will increase the discriminatory power of

the rough classifier in rather inconsistent problems.

In the next section, we explain how to automatically construct a cognitive neural

network (e.g., FCM-based system with sigmoid neurons) from rough granules by us-

ing the abstract semantics of three-way decision rules. This cognitive network will be

used to conduct the classification process at a higher level.
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4.2.2 Network construction

Without loss of generality, we can define Rough Cognitive Networks as FCMs where

each rough approximation region is mapped to an input neural entity whereas each

decision class gives rise to an output concept. In order to boost the inference capability

of this granular classifier, we adopt neurons equipped with sigmoid transfer functions

instead of using discrete ones. It should be remarked that output neurons do not

influence each other since they are receiving concepts (i.e., their activation value only

depends on the connected neurons). This design is similar to the class-per-output

architecture presented in (Papakostas and Koulouriotis, 2010) where input neurons

represent attributes instead of denoting information granules.

Once the neurons have been determined, we need to compute the causal relations

between them. Such causal values are either estimated by domain experts during the

construction stage or automatically computed from historical data using a learning

algorithm. Aiming at overcoming this issue, we propose a set of rules inspired on the

three-way decision model, which is depicted as follows:

� (R1) IF Ci is Pk AND Cj is Dk THEN wij = 1.0

� (R2) IF Ci is Pk AND Cj is Dv 6=k THEN wij = −1.0

� (R3) IF Ci is Pk AND Cj is Pv 6=k THEN wij = −1.0

� (R4) IF Ci is Nk AND Cj is Dk THEN wij = −1.0

In such rules, Ci and Cj are two neurons, Pk and Nk are the positive and negative

regions related to the kth decision class, respectively, whereas wij ∈ [−1, 1] denotes

the weight between the cause Ci and the effect Cj . Neurons can be gathered into four

categories, namely: positive, negative, boundary and decision neurons.

Rules R1 and R2 define the relation between positive regions and decision neurons.

If the Pk positive region is activated, then the Dk class will be stimulated as well,

since we surely know that objects belonging to the kth positive region will categori-

cally be members of the kth subset. On the contrary, decisions Dv 6=k will be inhibited

in order to increase the classifier’s discriminatory power. Activating the kth positive

region (i.e., R̄(x) ∩ POS(Xk) 6= ∅) does not necessarily imply accepting the object x

to be a member of the subset Xk, but it suggests a positive causal influence over the

kth decision class. The Dk decision class will surely be accepted if R̄(x) ⊆ POS(Xk),

which is in concordance with the three-way decision rules.
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The R3 rule follows an equivalent reasoning: if the Pk positive region is activated,

then positive regions unrelated to the kth class (i.e. Pv 6=k) will be inhibited as well.

This suggests that the probability of accepting a decision class is inversely dependent

on the others, thus avoiding the neurons’ saturation phenomenon.

The R4 rule describes the causal relation between the Nkth negative region and

the kth decision class: if the Nk negative region is activated, then the kth class must

be inhibited, since the evidence R̄(x) ∩ NEG(Xk) suggests rejecting this decision.

However, we cannot conclude anything about the other decisions, unless the classifi-

cation problem has only two classes. If R̄(x) ⊆ NEG(Xk), then the kth class must

be rejected as the three-way decision rules suggest.

According to the three-way rules, boundary regions suggest a decision of abstain-

ing, but an object x ∈ BND(Xk) could be still associated with the kth alternative.

Let us suppose a problem having three decision classes D1, D2 and D3, an unlabeled

object x such that x ∈ BND(X1), x ∈ BND(X2) and x /∈ BND(X3). This means

that x could be labeled as either D1 or D2 to the same extent, but there is no evidence

supporting the third decision class. The following rule (R5) includes the knowledge

about boundary regions during the network construction stage.

� (R5) IF (Ci is Bk AND Cj is Dv) AND (BND(Xk) ∩ BND(Xv) 6= ∅) THEN

wij = 0.5

Neurons representing empty boundary regions (i.e., BND(Xk) = ∅) will not be in-

cluded into the model to keep the topology as simpler as possible. This implies that an

RCN will comprise at most |D| output neurons, 3|D| input neurons and 3|D|(1 + |D|)
causal edges, where D is the set of decision classes. Algorithm 2 shows the procedure

that allows building the network from granular regions.

Algorithm 2. Network construction procedure.

FOREACH subset Xk DO

Add a neuron Pk as the POS(Xk) region

Add a neuron Nk as the NEG(Xk) region

Add a neuron Bk as the BND(Xk) region

END

FOREACH decision Dk DO

Add a neuron Dk as the kth decision

END
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FOREACH neuron Ci DO

FOREACH neuron Cj DO

Configure wij according to rules R1 −R5

END

END

Figure 4.1 displays an RCN to solve any pattern classification problem with two

decision classes. In this example, we assume that BND(X1)∩BND(X2) 6= ∅, which

means that the available information (i.e., the training dataset) involves some degree

of inconsistency. The reader can perceive that we added a self-reinforcement positive

causal edge to each input neuron with the goal of preserving its initial excitation level

when performing the FCM inference process.

Figure 4.1: Rough Cognitive Network for 2-class problems.

It should be highlighted that Kosko’s formulation does not allow neurons to be

influenced by themselves. The purpose of this constraint is to preserve the coherent

interpretation of the modeled system. However, under this restriction, the activation

value of input neurons (i.e., concepts that are not influenced by other neural entities)

will be overwritten in the second iteration step. As an alternative, we could adopt

the Equation (2.6) to perform the neural inference process, but it is equivalent to use

the Kosko’s rule with self-reinforced neurons. This feature may be understood as the

memory that input neurons have about their own excitation value.
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4.2.3 Network exploitation

The last step is related to the network exploitation. Let x be an unlabeled object and

Ax(D) =
[
Ax(D1), . . . ,Ax(Dk), . . . ,Ax(DK)

]
is the preference vector comprising the

likelihood of x to be a member of each decision class. Therefore, the classification

process is equivalent to computing the preference vector and determining the most

likely decision class. The unlabeled object is presented to the granular network as the

activation vector A(0) to perform the FCM inference process. This vector encodes the

initial activation value of input neurons as follows:

A(0) =
[
A(0)
x (P1), . . . ,A(0)

x (Pk), . . . ,A(0)
x (PK),A(0)

x (N1), . . . ,A(0)
x (Nk), . . . ,A(0)

x (NK),

A(0)
x (B1), . . . ,A(0)

x (Bk), . . . ,A(0)
x (BK),A(0)

x (D1), . . . ,A(0)
x (Dk), . . . ,A(0)

x (DK)
]

where A(.) refers to the activation of each neuron. It should be remarked that output

neurons remain inactive when activating the network since their activation value is

computed from the recurrent propagation of the evidence over the granular network.

This implies that A(0)
x (D1) = . . . = A(0)

x (Dk) = . . . = A(0)
x (DK) = 0.

In order to compute the activation vector A(0), we use the similarity class R̄(x)

and the inclusion degree to gauge the extent to which R̄(x) is included into each rough

approximation region. Equations (4.1) shows this inclusion measure, which essentially

provides a relative measure to exhibit information concentration.

Pr(X|R̄(x)) =
|R̄(x) ∩X|
|X|

(4.1)

For instance, let us suppose that |POS(X1)| = 20, |R̄(x)| = 10, while the number

of objects that belong to the positive region is |R̄(x) ∩ POS(Xk)| = 7. This implies

that the activation degree of the P1 neuron is given by A(0)
x (P1) = 7/20 = 0.35, which

actually denotes the conditional probability of accepting D1 given the similarity class

R̄(x) associated to the input object, that is Pr(Dk|R̄(x)). Therefore, the kth positive

neuron will affect the D1 decision neuron with excitation degree A(0)
x (P1) = 0.35 and

causal weight wij = 1. Rules R6 −R8 generalize this activation method for all input

neurons representing non-empty granular regions.

� (R6) IF Ci is Pk THEN A(0)
x (Pk) = |R̄(x) ∩ POS(Xk)|

|POS(Xk)|

� (R7) IF Ci is Nk THEN A(0)
x (Nk) = |R̄(x) ∩ NEG(Xk)|

|NEG(Xk)|

� (R8) IF Ci is Bk THEN A(0)
x (Bk) = |R̄(x) ∩ BND(Xk)|

|BND(Xk)|
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In short, the exploitation of the proposed granular classifier is composed of two

main stages related to the activation of input neurons and the classification process

itself. Algorithm 3a shows the steps related to the first stage.

Algorithm 3a. Network activation procedure.

FOREACH decision Dk DO

Calculate A(0)
x (Pk) according to rule R6

Calculate A(0)
x (Nk) according to rule R7

Calculate A(0)
x (Bk) according to rule R8

END

Once the A(0) vector has been computed, the FCM reasoning rule is performed

until either the network converges to a fixed-point or a maximal number of iterations

T is reached. Next, the decision class with the highest activation value is assigned to

the target object. Algorithm 3b summarizes this process.

Algorithm 3b. Network reasoning procedure.

FOR t = 0 TO T DO

converged← TRUE

FOREACH neuron Ci DO

Compute A
(t+1)
i using the FCM rule

IF A
(t)
i 6= A

(t+1)
i THEN

converged← FALSE

END

END

IF converged THEN

RETURN argmaxk{A(t+1)
x (Dk)}

END

END

IF not converged THEN

RETURN argmaxk{A(T )
x (Dk)}

END
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Sometimes we could identify scenarios on which multiple decision classes have the

highest probability of being produced (i.e., two aggregated neurons bear the same

maximal activation value). These situations are common in highly inconsistent prob-

lems where there is a lack of conclusive knowledge. To solve this issue, we select the

decision class Dk associated with the closest neighbor of the test instance x ∈ X, such

that Dk has the highest output probability. This heuristic provides a fair compro-

mise between the decision class computed by the granular classifier and the intrinsic

relation among those instances that represent the same pattern.

4.3 Classifier convergence

In this section, we briefly discuss some aspects related to the classifier convergence.

Unlike feed-forward neural networks, FCM-based systems produce a state vector at

each iteration step due to their recurrent nature. This iterative updating mechanism

is repeated until either the network converges to a fixed-point attractor or a maximal

number of iterations is reached. The former scenario implies that a hidden pattern

was discovered (Kosko, 1988) while the latter suggests that the system outputs are

either cyclic or chaotic. Ensuring the FCM convergence is a key aspect, otherwise

the model will produce unreliable (non-interpretable) responses.

In the context of FCM-based classifiers, the term convergence refers to the network

ability to eventually produce the same decision class over successive iteration steps

(Nápoles et al., 2016). Aiming at formalizing this scenario, we introduced the notion

of slightly-stable FCM-based classifiers. It refers to classifiers that produce numerically

dissimilar responses that lead to the same decision class.

The lack of stability in FCM-based systems could be caused by three key factors

(Nápoles et al., 2017): i) the weight matrix, ii) the strategy for updating the neurons’

values and iii) the transfer function used in the reasoning rule.

Several studies (Hopfield, 1982) (Bruck, 1990) (Baran and Coughlin, 1990) have

shown that a symmetric zero-diagonal matrix in conjunction with an asynchronous

updating strategy lead to fixed-points. A perfectly symmetric weight matrix implies

the existence of a large number of cycles with positive feedback loops that amplify

any initial change, thus leading to an exponential growth or decline (Tsadiras, 2008).

An antisymmetric weight matrix encourages the existence of negative cycles with an

odd number of connections, thus providing the system with negative feedback loops

that counteract any stimulus. As a result, the recurrent system creates limit cycles

wherein some state vectors are periodically produced.
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This implies that RCN-based classifiers are likely to converge since the proposed

topology has rather symmetric properties. More explicitly, the network topology is

comprised of three kind of neural entities: independent input neurons (i.e., negative

and boundary entities), dependent input neurons (i.e., positive entities) and output

neurons. Definitions 1, 2 and 3 formalize the semantics behind such categories in a

pattern classification context, which actually can be used to briefly analyze the overall

convergence properties of rough cognitive models.

Definition 1. We say that a concept Ci is an independent input neuron if its

activation value does not depend on the other input neurons.

Definition 2. We say that a concept Ci is a dependent input neuron if its acti-

vation value is influenced by other input neurons.

Definition 3. We say that a neural entity Ci is an output neuron if its activation

value only depends on the connected input neurons.

From the above definitions we can conclude that independent input neurons will

converge by definition as their activation values remain unaltered. Likewise, depen-

dent input neurons are likely to converge because they are symmetrically connected

to each other. This implies that output neurons will converge as well because their

activation values are computed from stable input neurons.

As a tangential research, we introduced a learning algorithm to improve the con-

vergence of FCM-based classifiers without modifying the weight set estimated during

the construction phase (Nápoles et al., 2013) (Nápoles et al., 2014). This algorithm

computes the sigmoid function parameters associated with each neural processing unit

that leads to improved convergence features. More recently, we published several vari-

ations of this learning method (Nápoles et al., 2016) (Nápoles et al., 2016) (Nápoles

et al., 2017) that produce stronger results. This suggests that we have the proper

tools to deal with the lack of convergence of continuous FCM-based systems without

altering the network structure. However, in the context of rough cognitive mapping,

the use of these learning procedures is not required since the proposed topology seems

to naturally converge to multiple fixed-point attractors.
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4.4 How the classifier works?

Before introducing the simulations, it seems convenient to illustrate how the proposed

classifier operates. Let us consider a classification problem comprising three decision

classes D1, D2 and D3 such that the values of the decision attribute induces a partition

X = {X1, X2, X3} of the universe. In this partition, each subset Xk comprises those

objects labeled as Dk. Likewise, let us suppose a hypothetical scenario where there

is no positive information (i.e., A(0)
x (Pk) = 0,∀k), A(0)

x (N1) = 0.4, A(0)
x (N2) = 0.04,

A(0)
x (N3) = 0.26, A(0)

x (B1) = 0.6, A(0)
x (B2) = 0.74, A(0)

x (B3) = 0.75, while decision

neurons are initially inactive (i.e., A(0)
x (Dk) = 0,∀k).

Figure 4.2 illustrates the neural (recurrent) reasoning process of an RCN-based

classifier for the above configuration. The vertical axis represents the the activation

degree of positive, negative, boundary and decision neurons at each iteration, whereas

the horizontal axis denotes the iterations. Observe that boundary and negative neu-

rons do not change their activation value when performing the recurrent reasoning

process as they were conceived as independent input neurons.

(a) Activation value of positive neurons. (b) Activation value of negative neurons.

(c) Activation value of boundary neurons. (d) Activation value of decision neurons.

Figure 4.2: Rough cognitive reasoning: an example.
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From the above simulation, we can perceive that the decision process is based on

the hesitant (boundary) and certain-negative information. The negative information

suggests rejecting the decision classes in the following order: D1 � D3 � D2, therefore

implying that D2 is most likely to be produced. Likewise, the boundary information

suggests accepting D2 and D3 with the same likelihood, while it greatly rejects the

hypothesis of x to be a member of X1. Overall, the available evidence coming from the

rough information granules advocates for the strong rejection of D1 while accepting

D2 over the D3 decision class. Of course, the confidence of the FCM inference process

is subject to the quality of information granules.

It is worth mentioning the transparency on the decision process attached to the

proposed granular classifier. Not too many classification algorithms can claim this

valuable feature without harming their predictive capability. In RCN-based classifiers

we can easily understand the whole decision process by using inclusion equations and

causal relations. What is more, we can interpret the physical system under analysis at

a high-level by relying on the causal relations between rough information constructs.

However, a low-level interpretability is no longer possible.

4.5 Concluding note

This chapter introduced the concept of rough cognitive mapping in the context of

pattern classification. One of the advantages of this classifier relies on its transparency

when performing the reasoning process. This is a result of combining Soft Computing

techniques that allow elucidating the inference process at different transparency levels.

However, numerical simulations reported in (Nápoles et al., 2016b) (Nápoles et al.,

2016) (Nápoles et al., 2017a) have shown that the RCNs’ performance is quite sensitive

to the similarity threshold defining whether two objects are considered similar or not.

The next chapter focuses on addressing the parametric requirement of the proposed

algorithm using other Machine Learning approaches.
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Rough Cognitive Ensembles

This chapter presents the Rough Cognitive Ensembles, the second classifier introduced

in this research, which attempts addressing the parametric requirement when granu-

lating the information space in the RCN construction stage.

5.1 Preliminaries about the algorithm

A well-established trend within Machine Learning is that of combining the output of

several classifiers to predict the class of a given object. These models are called multi-

classifier systems (Dietterich, 2000) and often perform better than any single classifier,

especially if some diversity (either parametric or structural) is present among the set

of base classifiers. This heterogeneity may come in the form of independent samples of

the training data (bootstrapping), multiple parametric configurations, different types

of base classifiers used as building blocks, etc. Bayesian voting, bagging, boosting and

stacking are common ensemble methods (Ren et al., 2016). AdaBoost (Fan et al.,

1999) and Random Forests (Breiman, 2001) are ensemble learners that have shown

great promise in solving pattern classification problems.

A recent survey (Ren et al., 2016) explores trends in this field, including: a) using

multiobjective optimization algorithms to derive several structural elements of the

ensembles; b) employing decomposition techniques; c) resorting to negative correla-

tion learning schemes; d) incorporating elements from fuzzy logic and multiple-kernel

learning and e) endowing the models with deep learning features. The broad research

possibilities that bring ensemble learning techniques seem adequate to increase the

practical usability of the proposed rough classifier.
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5.2 Motivation and challenges

A pivotal issue when constructing an RCN is related to the precise estimation of the

similarity threshold. This parameter determines whether two objects are similar or

not, which then influences the construction of the similarity classes upon which the

rough approximations regions are built. Regrettably, the RCN performance is highly

sensitive to this user-specified parameter, therefore small variations on the granularity

degree may lead to quite different outcomes. Aiming at alleviating this problem, in

(Nápoles et al., 2016b) (Nápoles et al., 2016) we proposed a hyperparameter learning

method to estimate the similarity threshold value from historical data. The drawback

of this procedure relies on its computational complexity due to the fact that a single

evaluation requires recalculating the lower and upper approximations of all decision

classes, which could be time-consuming for large-scale datasets.

Let us assume that U1 ⊂ U is the training set and U2 ⊂ U is the hold-out test

(validation) set such that U1 ∩ U2 = ∅. The computational complexity of building

the upper and lower approximations is O(|Φ||U1|2), with Φ being the attribute set,

whereas the complexity of building the network topology is O(|D|2), with D being the

set of decision classes. Besides, the complexity of exploiting the granular network for

|U2| instances is O(|U2||Φ||U1|2). This implies that the overall temporal complexity

of evaluating a single parameter value is O(max{|Φ||U1|2, |D|2, |U2||Φ||U1|2}). Due

to the fact that |U1| ≥ |U2| in most Machine Learning scenarios, we can conclude

that the overall complexity of this learning method is O(T |Φ||U1|3), where T is the

number of iterations. Unfortunately, this may negatively affect the practical usability

of RCNs in solving real-world pattern classification problems.

On the other hand, estimating a suitable similarity threshold for the hold-out test

does not necessarily ensure that the granular network will produce optimal predictions

in other scenarios. This happens because the validation and test sets must be disjoint,

and so the parameter learning method fits the model to the examples in the validation

set. Furthermore, it might occur that R̄(x) = ∅ for some testing object as a result of

estimating a very strict threshold for validation examples. If this happens, the model

uses the k-nearest neighbors to activate the network.

This chapter is devoted to designing a granular ensemble model using RCNs as

base classifiers in order to suppress the hyperparameter learning requirement of rough

cognitive mapping. Before presenting the proposed ensemble classifier, we first revise

the foundations of some ensemble learning techniques.
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5.3 Ensemble learning approaches

A suitable approach to increase the global realibility on the classification process is to

combine the output of multiple classifers into a single response. Several algorithms use

this approach by learning an ensemble of models when performing the classification

process. Relevant ensemble learners include bagging, boosting and stacking ; they can,

more often than not, increase the predictive capability of a single classification model

(Witten and Frank, 2011). Besides, they involve general learning schemes that can

be adopted to solve both classification and regression problems.

� Bagging. Combining the decisions of different models means amalgamating the

various outputs into a single prediction. The simplest way to accomplish that in

the case of classification is to use a voting strategy. Bagging and boosting both

adopt this approach, although they derive the individual learners in different

ways. In bagging the models receive equal weight, while in boosting weighting

is used to give more influence to the more successful ones.

Let us suppose that several training datasets of the same size are randomly

chosen from a common problem domain. Bagging uses a collection of classifiers

of the same type to construct the ensemble, each built over a different training

dataset. As a rule, the base classifier must be sensitive to small perturbations

on the training dataset. This implies that there will be test objects for which

some of the base classifiers will produce incorrect decision classes, whereas other

will successfully predict the expected decision class.

Voting is an adequate strategy to produce (hopefully more accurate) consensus

decisions. If one decision class receives more votes than any other, it is taken

as the correct one (Witten and Frank, 2011). Generally, the more the merrier:

the consensus is more reliable as more votes are taken into account. Decisions

rarely deteriorate, but improvements cannot be ensured.

� Boosting. Bagging exploits the sensitivity of the base classifier to perturbations

in the training set, where each model is built separately. Similarly to bagging,

boosting combines base classifiers of the same type and uses voting to produce

the consensus decision. However, boosting is iterative since each base classifier

is influenced by the performance of previously built models (Witten and Frank,

2011). Moreover, boosting encourages the new model to be focused on those

objects that have been incorrectly classified by the previous ones. This is done by

assigning greater weights to harder instances; thus base classifiers complement

each other by exploiting their learned model.



46 Chapter 5

� Stacking Unlike bagging and boosting, stacking is not normally used to com-

bine classifiers of the same type; instead it uses models having different nature.

Moreover, voting is only effective if most classifiers perform well, otherwise the

inferred prediction class will be a wrong one. Stacking replaces the voting strat-

egy by a metalearner that attempts predicting which classifiers are the reliable

ones when combining their outputs. Although introduced some years ago, stack-

ing is not widely used since there is no a generalized best way to construct the

ensemble learner (Witten and Frank, 2011). Furthermore, its foundations are

difficult to analyze in a theoretically sound way.

Ensemble learning models are likely to produce stronger prediction rates, although

certainly such improvements cannot be ensured in all scenarios. However, how could

we take advantage of this approach to face the limitations coming from the parametric

requirement of the proposed rough cognitive classifier?

5.4 Rough ensemble mapping

In this section, we build upon the ensemble learning formalism by developing a gran-

ular ensemble to deal with the RCNs’ parametric sensitivity. The proposed classifier,

named Rough Cognitive Ensembles (RCEs), uses a collection of RCNs as base classi-

fiers, each operating at a different granularity level. It is worth mentioning that the

concept of granular ensembles seems to still be in its infancy though. A good starting

point is the use of granular classifiers as base classifiers, given the momentum they are

presently enjoying. The model presented in this section follows this idea, and it may

well be one of the first granular ensemble techniques ever put forth. As a result, the

hyperparameter learning is no longer required, which notably increases the practical

usability of rough cognitive mapping in real-world applications.

5.4.1 Information granulation

Without loss of generality, an RCE can be understood as a collection of RCNs, each

operating at a different granularity degree. To induce different granularity levels, we

use a random similarity threshold when constructing the three approximation regions

associated with each base classifier. This approach attempts removing the parameter

learning requirement, which in fact does not necessarily lead to the best predictions

when testing the learned classifier. Definition 4 summarizes the semantics behind the

granular cognitive ensembles presented in this research.
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Definition 4. An RCE Γ(R) is composed of a set R = {R(ξ1), . . . ,R(ξi), . . . ,R(ξN )}
of N different RCNs as base classifiers, where the ith granular network R(ξi) is built

by using a (randomly) selected similarity threshold ξi.

The reader can observe that the granulation process does not change itself. This

means that the granulation of the information space in the R(ξi) classifier is subject

to the (randomly) selected similarity threshold.

Theoretical and empirical results (Tumer and Ghosh, 1995) (Breiman, 1996) (Turner

and Oza, 1999) have shown that combining multiple classifiers leads to optimal per-

formance if these classifiers are not strongly correlated each another. In the proposed

ensemble, the diversity among base classifiers is promoted by using different similarity

thresholds (ξ1, . . . , ξi, . . . , ξN ) instead of using a single value.

However, the fact that ξi ≤ ξj =⇒ R̄(ξj)(x) ⊆ R̄(ξi)(x) may lead to correlated

base classifiers if they operate under the same conditions. In order to increase diversity

we can introduce randomization. Instance-based learners depend mostly on attributes

used to compute the distance between objects. Therefore, we can promote diversity by

using a random subset of attributes (i.e., random subspace method). In the context of

rough classification, using random attributes may not be the best choice since rough

approximations are often built upon a reduct of the attribute set.

Moreover, unlike nearest-neighbor classifiers, RCN-based models are sensitive to

perturbations on the training dataset due to the presence of the similarity threshold,

even when using the same subset of attributes. As an alternative, we can perform

instance bagging (Breiman, 1996) in order to counter the correlation coming from the

fact that ξi ≤ ξj =⇒ R̄(ξj)(x) ⊆ R̄(ξi)(x). Instance bagging attempts neutralizing

the instability of the base classifier by modifying the original training set (i.e., deleting

some instances and replicating others). During this process, instances are randomly

sampled with replacement from the original dataset to create a new one with the

same size (Witten and Frank, 2011). This allows establishing a reasonable trade-off

between ensemble diversity and accuracy (Nápoles et al., 2017a).

5.4.2 The ensemble architecture

Once the information granulation stage is complete, we aggregate the individual out-

puts to determine the most likely decision class. With this goal in mind, we adopt a

standard voting scheme where the decision class for each test object is obtained by

voting on all the N granular classifiers. Actually, the voting scheme can be naturally

modeled by using an extended FCM-based network.
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Figure 5.1 illustrates an RCE comprised of a set R = {R(ξ1), . . . ,R(ξi), . . . ,R(ξN )}
of different RCNs as base classifiers, where the ith granular network R(ξi) is built by

using the ξi similarity threshold. In this example, K = |D| denotes the number of de-

cision classes, D
(i)
k is a sigmoid neuron comprising the preference degree of producing

the kth class according to the R(ξi) network, whereas Dk is a neuron that gathers the

voting preference related with the kth decision class. The reader can perceive that the

classification process is now performed from the activation value of aggregated-type

neurons. Hopefully, this bagging granular model will produce higher prediction rates

with regard to RCNs using fixed similarity thresholds.

Figure 5.1: RCE-based classifier for K-class problems.

It should be mentioned that weights connecting D
(i)
k and Dk neurons are set to

one (i.e., wij = 1) in order to perform a standard voting process. Similarly, we can

implement a weighted voting process by assigning greater causal weights to relations

coming from more confident granular classifiers.

Moreover, we can estimate such weights in a supervised fashion to achieve higher

prediction rates. Notice that this learning approach does not require computing the

rough approximation regions for each error function evaluation since it is performed

after the networks have been constructed. This procedure should be efficient due to

the low cardinality of the search space. However, this alternative is not explored in

our research, instead it becomes a future research work.



Rough Cognitive Ensembles 49

5.4.3 The exploitation scheme

The ensemble’s exploitation phase is focused on determining the decision classes for

unlabeled objects. This is equivalent to activating each RCN comprised in the ensem-

ble, perform the inference process and select the most likely decision class according

to the voting scheme. Therefore, the R(ξi) network will produce a response vector

Ax(D(i)) =
[
Ax(D

(i)
1 ), . . . , Ax(D

(i)
k ), . . . , Ax(D

(i)
K )
]

where Ax(D
(i)
k ) represents the

activation degree of the kth output neuron according to the ith granular network,

with x being the test object. This allows computing the aggregated response vector

Ax(D) =
[
Ax(D1), . . . , Ax(Dk), . . . , Ax(DK)

]
by combining the N response vectors

produced by the base classifiers over the K decision classes.

In order to activate the rough cognitive ensemble, we need to computeN excitation

vectors {A(0)
[x|ξi]}

N
i=1 where A

(0)
[x|ξi] is used to perform the neural reasoning process in the

ith cognitive network. It should be remarked that the ith activation vector denotes

the inclusion degree of the similarity class R̄(ξi)(x) into each rough granule, which are

built using the ξi similarity threshold. Formally, the ith activation vector associated

with the unlabeled object x could be defined as follows:

A
(0)
[x|ξi] =

[
A(0)

[x|ξi](P1), . . . ,A(0)
[x|ξi](Pk), . . . ,A(0)

[x|ξi](PK), . . . ,A(0)
[x|ξi](N1), . . . ,A(0)

[x|ξi](Nk),

. . . ,A(0)
[x|ξi](NK), . . . ,A(0)

[x|ξi](B1), . . . ,A(0)
[x|ξi](Bk), . . . ,A(0)

[x|ξi](BK)
]

where A(0)
[x|ξi](Pk), A(0)

[x|ξi](Nk) and A(0)
[x|ξi](Bk) denote the activation degree of the kth

positive, negative and boundary neuron, respectively. These initial activation values

are computed using the rules R6 - R8 depicted in Section 4.2.3.

When activating the granular ensemble classifier, output (decision) neurons remain

inactive. Sometimes, there is further knowledge about the probability of producing

a specific class given a new object (e.g., resulting from an intermediate classification

process). If so, we could use this information to activate the output neurons in order

to improve the performance. However, in this research we assume that the available

evidence is coming from the information granulation stage.

Once the neural reasoning process is completed (i.e., either an equilibrium point

is discovered or a maximal number of iterations T is reached), the predicted decision

class is derived from the Ax(D) aggregated output vector.
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5.5 Numerical simulations

In this section, we evaluate the performance of the ensemble approach using the three

distance functions described in Chapter 2. More explicitly, we compare the prediction

capability of the RCN-based classifiers using a fixed, reasonable similarity threshold

(i.e., ξ = 0.98), the ensemble model without bagging (RCE) and the ensemble model

performing instance bagging (RCB). In the case of ensemble variants, we use N = 10

base classifiers to keep the computational complexity low.

Appendix B outlines the properties of the 140 datasets adopted for simulation

purposes (e.g., imbalance ratio, number of instances, attributes and decision classes).

Each dataset has been partitioned using a 10-fold cross-validation procedure where

the dataset has been split into ten folds, each containing 10% of the available objects.

For each fold, an algorithm is trained with the objects contained into the training

partition (90% of the available data) and then tested with the current fold. It should

be mentioned that test partitions are kept aside to evaluate the performance of the

learned hypothesis. An object will never be used for training and testing purposes at

the same time, otherwise the prediction rates will be inflated.

Figure 5.2 summarizes the average Cohen’s Kappa coefficient (Smeeton, 1985)

achieved by each model. This coefficient measures the inter-rater agreement for cate-

gorical items and it is often deemed a more robust measure than the standard accuracy

since it takes into account the agreement occurring by chance. Appendix C provides

the full Kappa results attached to this simulation.

Figure 5.2: Average Kappa measure for RCE-based classifiers.

The preliminary results suggest that using an ensemble approach that performs

instance bagging is actually convenient towards increasing the prediction rates of the

rough cognitive models. In order to examine the existence of statistically significant
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differences in performance, we perform the Friedman two-way analysis of variances by

ranks introduced in (Friedman, 1937). The Friedman test is a multiple-comparison

nonparametric statistical method that detects whether at least two of the samples in

a group represent populations with different median values or not.

This test suggests rejecting the null hypothesis (p-value = 7.989819E−11 < 0.05)

using a confidence interval of 95%. This implies that there exist significant perfor-

mance differences between at least two algorithms across all the selected datasets.

Figure 5.3 shows the Friedman’s rank values (the lower the better), where RCB using

the HVDM distance function emerged as the best model.

Figure 5.3: Friedman’s rank values for RCE-based classifiers.

The next step is orienetd to determine whether the superiority of the RCB-HVDM

classifier is statistically significant or not. By doing so, we resorted to the Wilcoxon

signed rank test (Wilcoxon, 1945) and multiple post-hoc procedures that allow cor-

recting the p-values, as was recently suggested in (Benavoli et al., 2016). The post-hoc

procedures are required since in pairwise analysis, if we try to draw a conclusion in-

volving more than one pairwise comparison, we accumulate an error coming from

their combination. Therefore, we are losing control on the Family-Wise Error Rate,

defined as the probability of making one or more false discoveries among the set of

hypotheses associated to multiple pairwise tests.

Table 5.1 reports the p-value computed by the Wilcoxon signed rank test as well

as the corrected ones associated with each pairwise comparison using RCB-HVDM

as the control method. We assume that a null hypothesis H0 can be rejected if at

least one of the adopted post-hoc procedures supports the rejection. The statistical

analysis supports the superiority of the RCB-HVDM classifier as all the conservative

hypotheses were rejected, save for the one concerning to the RCB-HMOM vs. RCB-
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HVDM pair. This suggests that RCB-HMOM and RCB-HVDM perform comparably

although the RCB-HMOM algorithm is ranked first.

Table 5.1: Adjusted p-values using RCB-HVDM as the control method.

Algorithm p-value Bonferroni Holm Holland Hypothesis

RCN-HEOM 6.67E-10 5.33E-09 5.33E-09 5.33E-09 Rejected

RCN-HVDM 3.44E-08 2.75E-07 2.40E-07 2.40E-07 Rejected

RCN-HMOM 5.59E-08 4.47E-07 3.35E-07 3.35E-07 Rejected

RCE-HEOM 1.75E-06 1.40E-05 8.76E-06 8.76E-06 Rejected

RCE-HVDM 0.001107 0.008861 0.004430 0.004423 Rejected

RCE-HMOM 0.003157 0.025261 0.009473 0.009443 Rejected

RCB-HEOM 0.010440 0.083525 0.020881 0.020772 Rejected

RCB-HMOM 0.848561 1.000000 0.848561 0.848561 Accepted

Figures 5.4 and 5.5 display the impact of using different heterogeneous distance

functions and different ensemble strategies, respectively. Thus, we can conclude that

performing instance bagging is convenient regardless of the adopted distance function.

Second, it seems that selecting an ensemble scheme may reduce the negative effects

of using a non-optimal distance function for a particular dataset.

Figure 5.4: RCEs’ average Kappa measure: distance function.
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Figure 5.5: RCEs’ average Kappa measure: ensemble approach.

It should be noticed that tuning the similarity threshold parameter (Nápoles et al.,

2016) could lead to higher prediction rates, but it will excessively increase the compu-

tational complexity of building the (optimized) granular classifier. That is why this

learning procedure is not included in this thesis.

5.6 Concluding note

The numerical simulations confirm the superiority of the RCE-based variants over the

RCN algorithm discussed in the previous chapter. The proposed granular ensemble

removed the need for a parameter tuning stage, which became the key motivation to

explore ensemble techniques. By doing so, each base classifier operates at a different

granularity degree while performing instance bagging to increase the overall diversity

among the individual classifiers. In point of fact, the simulations have shown that the

HMOM distance function in conjunction with the instance bagging strategy lead to

higher prediction rates across benchmark problems.
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Chapter 6

Fuzzy-Rough Cognitive

Networks

This chapter presents the Fuzzy-Rough Cognitive Networks, the third method intro-

duced in this research, which attempts addressing the parametric requirement when

granulating the information space in the construction stage.

6.1 Preliminaries about the algorithm

Rough sets (Pawlak, 1982) and fuzzy sets (Zadeh, 1965) are two natural computing

paradigms to deal with characteristics of imperfect data and knowledge in a human-

like fashion. The former model provides approximations of a target set in the presence

of incomplete information, characterizing those objects that certainly, and possibly,

belong to the concept. The latter (often linguistic) model establishes that an object

can belong to several sets or relations with different degrees.

Fuzzy sets have become a pivotal piece within the Soft Computing paradigm (Kec-

man, 2001) (Pratihar, 2015). This paradigm comprises a collection of techniques that

are tolerant to typical characteristics of imperfect data and knowledge. During the

last decades, new approaches generalizing the original fuzzy set theory (often called

type-1 fuzzy set theory) have been developed. Type-2 fuzzy sets, intuitionistic fuzzy

sets, interval-valued fuzzy sets and fuzzy-rough sets have in common that they can

all be formally characterized by membership functions taking values in a partially

ordered set (Cock et al., 2007), which is no longer the same (but an extension of) the

set of membership degrees used in fuzzy set theory.
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6.2 Motivation and challenges

In the previous chapter, we introduced the notion of rough ensemble mapping in an

attempt to suppress the hyperparameter learning requirement related to the informa-

tion granulation stage. Voting several classifiers by using an instance bagging scheme

produces a combined classification model that often performs significantly better than

the single model built from the original training data, and is never substantially worse.

However, whether it is the best alternative is questionable.

For example, bagging follows the bias-variance decomposition principle (Witten

and Frank, 2005) for an infinite number of training datasets. In real-world classi-

fication problems, there is only one training set, and acquiring more data is either

impossible or expensive. To face this limitation, bagging performs a random sampling

(with replacement) from the original training dataset to create a new one with the

same size. The new (artificial) datasets are different from one another but are certainly

not independent because they are all based on the same data source. Sometimes, we

need to generate larger ensemble structures to address the lack of fresh training sets.

Therefore, whether such larger structures lead to a good balance between prediction

rates and computational efficiency may be questionable. In a nutshell, if the ensemble

size is equal to the number of iteration required to estimate the similarity threshold,

then there is no such claimed ensemble efficiency.

On the other hand, these combined models share the disadvantage of being rather

hard to analyze: they can comprise several individual models, and although they per-

form well, it is not easy to understand in intuitive terms what factors are contributing

to the improved decisions. This suggests that an ensemble approach may negatively

affect the transparency of rough cognitive mapping.

This chapter explores the inclusion of fuzzy sets into the proposed granular classi-

fier as an alternative to the ensemble scheme. Though, the goal remains unchangeable:

to suppress the hyperparameter learning requirement when granulating the informa-

tion space. Next, we review the foundations of fuzzy-rough sets.

6.3 Fuzzy-Rough Set Theory

In fuzzy-rough sets, rather than assessing objects’ indiscernibility, we may measure

their approximate equality. As a result, objects are categorized into classes, or gran-

ules, with soft boundaries based on their similarity to one another.
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6.4 Fuzzy-rough cognitive mapping

The hybridization between rough sets and fuzzy sets was originally investigated by

Dubois and Prade (Dubois and Prade, 1990), and later extended and/or modified by

several authors. In this research, we adopt the approach proposed by Inuiguchi et

al. (Inuiguchi et al., 2015) since it includes some mathematical properties that may

be convenient when designing our classifier. Under these fuzzy conditions, objects

are categorized into information granules with soft boundaries, and therefore, a strict

similarity threshold is no longer required.

Let us assume a fuzzy set X ∈ U and a fuzzy binary relation R, where µX(x) and

µR(y, x) are their membership functions, respectively. The function µX : U → [0, 1]

computes the degree to which x ∈ U is a member of X, whereas µR : U × U → [0, 1]

quantifies the degree to which y is presumed to be a member of X from the evidence

that x is a member of the fuzzy set X. For the sake of simplicity, R(x) is defined by

its membership function, that is, µR(x)(y) = µR(y, x).

Aiming at defining the fuzzy lower and upper approximation, we should consider

the degree to which x is a member of X under the knowledge R. This can be measured

by the truth value of statement ‘y ∈ R(x) implies y ∈ X’ under fuzzy sets R(x) and

X. More explicitly, the truth value can be computed by using a necessity measure

infy∈U I(µR(y, x), µXk(y)) with an implication function I : [0, 1]× [0, 1]→ [0, 1] such

that I(0, 0) = I(0, 1) = I(1, 0) = I(1, 1) = 0, where I(., a) decreases and I(a, .)

increases, ∀a ∈ [0, 1]. Equation (6.1) displays the membership function defining the

fuzzy lower approximation R∗(X) associated to the fuzzy set X.

µR∗(Xk)(x) = min

{
µXk(x), inf

y∈U
I(µR(y, x), µXk(y))

}
(6.1)

Following the same reasoning, we can obtain a membership function for the upper

approximation, assuming that X is a fuzzy set and R is a fuzzy binary relation. By

doing so, we should measure the truth value of statement ‘∃y ∈ U such that x ∈ R(y)’

under fuzzy sets R(x) and X. The true value of this statement can be obtained

by a possibility measure supy∈U T (µR(x, y), µXk(y)) with a conjunction function T :

[0, 1] × [0, 1] → [0, 1] such that T (0, 0) = T (0, 1) = T (1, 0) = T (1, 1) = 0, where

both T (., a) and T (a, .) increase, ∀a ∈ [0, 1]. Equation (6.2) shows the membership

function for the upper approximation R∗(X) associated to X.

µR∗(Xk)(x) = max

{
µXk(x), sup

y∈U
T (µR(x, y), µXk(y))

}
(6.2)
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It should be remarked that the intersection of two fuzzy sets X and Y is regularly

defined as µX∩Y = min{µX(x), µY (x)},∀x ∈ U , while the union is commonly defined

as µX∪Y = max{µX(x), µY (x)},∀x ∈ U . However, some researchers replace the min

operator with a t-norm and the max operator with a t-conorm (Inuiguchi et al., 2015).

Besides, the Inuiguchi’s model does not assume that µR(x, x) = 1,∀x ∈ U . Instead,

we compute the minimum between µX(x) and infy∈U I(µR(y, x), µXk(y)) when com-

puting µR∗(Xk)(x), and the maximum between µX(x) and supy∈U T (µR(x, y), µXk(y))

when computing µR∗(Xk)(x). This allows preserving the inclusiveness of R∗(X) into

the fuzzy set X and the inclusiveness of X into R∗(X).

Based on the above elements, one can easily define the three fuzzy-rough regions.

Equation (6.3), (6.4) and (6.5) formalize the membership functions associated to the

positive, negative and boundary regions, respectively.

µPOS(Xk)(x) = µR∗(Xk)(x) (6.3)

µNEG(Xk)(x) = 1− µR∗(Xk)(x) (6.4)

µBND(Xk)(x) = µR∗(Xk)(x)− µR∗(Xk)(x) (6.5)

These memberships functions allow completely removing the threshold, therefore

leading to the fuzzy-rough modeling. In this model, abrupt transitions between classes

are replaced by gradual ones, allowing that an element can belong to several classes

with different degrees. In the next section, we explain how to exploit such fuzzy-rough

granules by using a cognitive neural network.

6.4.1 Information granulation

Fuzzy-Rough Cognitive Networks (FRCNs) transform the attribute space into a fuzzy-

rough one. This result in fuzzy-rough information granules that will be exploited by

a recurrent neural network. Similarly to the RCN model, the first step when building

an FRCN is related to the granulation of available information.

Let X = {X1, . . . , Xk, . . . , XK} be a partition of the universe U according to the

values of the decision attribute, such that the subset Xk comprises those objects la-

beled as Dk. Based on this partition, we can straightforwardly define the membership

degree of y ∈ U to a subset Xk (see Equation 6.6). Observe that we assume that all

objects labeled as Dk have maximal membership degree to the kth subset; however,

more sophisticated variants can be formalized as well.
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µXk(y) =

1 if y ∈ Xk

0 if y /∈ Xk

(6.6)

Another element to be defined is the membership function µR(y, x) associated to

the fuzzy binary relation. Equation 6.7 displays the function adopted in this thesis,

which depends on the membership degree of object x to X, and the similarity degree

between x and y. In this paper, the similarity degree ϕ(x, y) denotes the complement

of a normalized distance δ(x, y) between objects x and y.

µR(y, x) = µXk(x)(1− δ(x, y)) (6.7)

Granulating the information space in this approach is equivalent to i) computing

the membership functions attached to the lower and upper fuzzy approximations (i.e.,

µR∗(Xk)(x) and µR∗(Xk)(x)) and consequently ii) computing the membership functions

associated to the positive, negative and boundary fuzzy regions (i.e., µPOS(Xk)(x),

µNEG(Xk)(x) and µBND(Xk)(x)). The fuzzy granulation step produces a covering of

the universe of discourse defined by membership functions.

6.4.2 Network construction

After granulating the information space, the resultant fuzzy-rough constructs are

used to build an FCM-based neural network. Similarly to RCN models, input neurons

denote positive or negative fuzzy-rough regions, whereas output neurons comprise the

decision classes for the problem at hand. In this granular model, including the fuzzy-

rough boundary regions into the model does not significantly increase the classifier’s

discriminatory ability (Nápoles et al., 2017b). This behavior is not surprising because

in crisp-rough environments the hesitant evidence is more conclusive when compared

to the evidence coming from fuzzy-rough granules. Thus, the neural network topology

can be designed by using the following construction rules:

� (R∗1) IF Ci = P ∗k AND Cj = Dk THEN wij = 1.0

� (R∗2) IF Ci = N∗k AND Cj = Dk THEN wij = −1.0

� (R∗2) IF Ci = P ∗k AND Cj = Dv 6=k THEN wij = −1.0

� (R∗4) IF Ci = P ∗k AND Cj = Pv 6=k THEN wij = −1.0
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where Ci is the ith neural processing entity, Dk denotes the kth decision class,

while P ∗k and N∗k are neurons denoting the positive and negative rough-fuzzy region

associated to the kth decision class, respectively.

Figure 6.1 portrays the network topology associated to the FRCN classifier for

any binary classification problem. More generically, any FRCN comprises 2|D| input

neurons, |D| output neurons and |D|(4+ |D|) causal relations, with D being the set of

all possible decision classes. Observe that, unlike neural networks that their complex-

ity depends on the number of features, the number of neurons in an FRCN network

is determined by the number of decision classes.

Figure 6.1: Fuzzy-Rough Cognitive Network for 2-class problems.

6.4.3 Network exploitation

Once the granular network has been constructed, we can determine the decision class

for unlabeled objects by activating the input neurons and performing the reasoning

process. To activate the neurons, we use the similarity degree between the unlabeled

object x and y ∈ U as well as the membership degree of y to each fuzzy-rough granular

region. Figure 6.2 and 6.3 show the semantics behind this activation mechanism for

the kth positive and negative granule, respectively.

More explicitly, such figures illustrate how to determine the degree to which the

unlabeled object belongs to the fuzzy intersection defined from the membership func-

tions µPOS(Xk)(y) (or µNEG(Xk)(y)), and the fuzzy similarity relation between x and

y ∈ X. The excitation of the kth input neuron is given by the inclusion degree of the

fuzzy intersection set into the kth fuzzy-rough region.
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Figure 6.2: Inclusion degree of x into the kth positive region.

Figure 6.3: Inclusion degree of x into the kth negative region.

Equation (6.8) formalizes how to compute the excitation degree of the kth positive

neuron, where T2 denotes a t-norm1, ϕ(y, x) is the similarity degree between y and

x whereas µPOS(Xk)(y) represents the membership grade of y to the kth rough-fuzzy

positive granule. Using an equivalent equation, we can activate input neurons denot-

ing fuzzy-rough negative regions. Output neurons remain inactive at the outset of the

reasoning process since they are used to collect the evidence coming from propagating

the initial information though the causal network.

A(P ∗k ) =

∫
T2(ϕ(y, x), µPOS(Xk)(y))dy∫

µPOS(Xk)(y)dy
(6.8)

1A t-norm operator is a conjunction function T : [0, 1] × [0, 1] → [0, 1] that must fulfill three

conditions: i) ∀a ∈ [0, 1], T (a, 1) = T (1, a) = a, (ii) ∀a, b ∈ [0, 1], T (a, b) = T (b, a), and (iii)

∀a, b, c ∈ [0, 1], T (a, T (b, c)) = T (T (a, b), c).
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Due to the fact that the universe of discourse U is finite in real-world problems, the

use of integrals may not be convenient. Rules (R∗5) and (R∗6) display a more practical

mechanism to activate the granular neural network.

� (R∗5) IF Ci = P ∗k THEN A
(0)
i =

∑
y∈U T2(ϕ(y,x),µPOS(Xk)(y))∑

y∈U µPOS(Xk)(y)

� (R∗6) IF Ci = N∗k THEN A
(0)
i =

∑
y∈U T2(ϕ(y,x),µNEG(Xk)(y))∑

y∈U µNEG(Xk)(y)

Once the initial activation vectorA(0) associated to the unlabeled object y has been

computed, we perform the neural reasoning process until (i) a fixed-point attractor is

discovered, or alternatively (ii) a maximal number of iterations is reached. Afterwards,

the label of the output neuron having the highest activation value is assigned to the

object. In this classification scheme, ties are broken using a nearest neighbor approach:

the model chooses the closest instance (i.e., an object from the universe) to the test

object and returns the attached decision class.

6.5 Numerical simulations

This section is focused on determining the combination of fuzzy operators leading to

improved prediction rates for FRCN-based models. Tables 6.1 and 6.2 display the

t-norms and fuzzy implicators used in our simulations.

Table 6.1: Fuzzy operators explored in the FRCN algorithm: t-norms.

T-norm Formulation

Standard intersection T (x, y) = min{x, y}

Algebraic product T (x, y) = xy

Lukasiewicz T (x, y) = max{0, x+ y − 1}

Drastic product T (x, y) =


x , y = 1

y , x = 1

0 , otherwise

In a nutshell, the FRCN algorithm requires to define a fuzzy implicator and two

t-norms. The I implicator is used to compute the membership degree of an object to
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Table 6.2: Fuzzy operators explored in the FRCN algorithm: implicators.

Implicator Formulation

Standard I(x, y) =


1 , x ≤ y

0 , x > y

Kleene-Dienes I(x, y) = max{1− x, y}

Lukasiewicz I(x, y) = min{1− x+ y, 1}

Zadeh I(x, y) = max{1− x,min{x, y}}

Godel I(x, y) =


1 , x ≤ y

y , x > y

Larsen I(x, y) = xy

Mamdani I(x, y) = min{x, y}

Reichenbach I(x, y) = 1− x+ xy

Yager I(x, y) =


1 , x = y = 0

yx , otherwise

Goguen I(x, y) =


1 , x ≤ y

y/x , otherwise

the lower approximations, the T1 t-norm is used to compute the membership degree

of an object to the upper approximations, whereas the T2 t-norm is used to activate

the neural processing entities. For the sake of simplicity, we use the same t-norm to

compute the membership degree to the upper approximations as well as to exploit the

neural network. Similarly to the ensemble simulations, we adopt the Kappa coefficient

to measure the performance of the fuzzy-rough models.

Figure 6.4 portrays the average Kappa coefficient achieved by each fuzzy-rough

granular classifier for different combinations of t-norms and fuzzy implicators, using

the HMOM distance as the standard dissimilarity function. Appendix D sows the full

Kappa results attached to this numerical simulation.

It should be noticed that the FRCN classifier computes the best prediction rates

when using the Lukasiewicz t-norm to activate the network, regardless of the operator

attached to the membership functions µR∗(Xk)(x) and µR∗(Xk)(x). Thus, hereinafter

we will use the Lukasiewicz t-norm and the Lukasiewicz implicator as standard fuzzy

operators in all simulations conducted in this research.
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Figure 6.4: Average Kappa measure for FRCN-based classifiers.

Next, we compare the prediction capability of the proposed fuzzy-rough classifier

with regards to the crisp model using the distance functions presented in Chapter 2.

Figures 6.5 and 6.6 summarize the average Kappa measure attained by each variant.

The results confirm that the fuzzy-rough models always report higher prediction rates

regardless of the adopted distance function. Besides, in the fuzzy configuration, the

HMOM distance function seems to stand as the best choice.

Figure 6.5: FRCNs’ average Kappa measure: distance function.
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Figure 6.6: FRCNs’ average Kappa measure: fuzzy approach.

Aiming at performing a more rigorous statistical analysis, we compute the Fried-

man two-way analysis of variances by ranks. The test suggests rejecting the conser-

vative hypothesis (p-value = 8.12680478E − 10 < 0.05) using a confidence interval of

95%. Therefore, we conclude that there exist significant differences between at least

two algorithms. Figure 6.7 reports the rank values (the lower the better) where the

FRCN-HMOM variant stands as the best-performing classifier.

Figure 6.7: Friedman’s rank values for RCE-based classifiers.
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Table 6.3 reports the p-value computed by the Wilcoxon test and the corrected

p-values associated with each pairwise comparison using FRCN-HMOM as the control

method. Similarly, we assume that a null hypothesis can be rejected if at least one of

the post-hoc procedures advocates for the rejection. The statistical analysis confirms

FRCN-HMOM’s superiority as all the null hypotheses were rejected.

Table 6.3: Adjusted p-values using FRCN-HMOM as the control method.

Algorithm p-value Bonferroni Holm Holland Hypothesis

RCN-HEOM 2.15E-07 0.000001 0.000001 0.000001 Rejected

RCN-HMOM 2.50E-07 0.000001 0.000001 0.000001 Rejected

RCN-HVDM 0.000003 0.000015 0.000009 0.000009 Rejected

FRCN-HEOM 0.000076 0.000380 0.000152 0.000152 Rejected

FRCN-HVDM 0.007897 0.039485 0.007897 0.007897 Rejected

Likewise, the fuzzy-rough classifier also suppresses the requirement of estimating

a similarity threshold when comparing to the base RCN model. This implies that the

parameter tuning step is no longer needed, thus significantly increasing the practical

usability of rough cognitive mapping in classification scenarios.

6.6 Concluding note

The simulations confirm that FRCNs are a suitable alternative to deal with the para-

metric requirement of rough cognitive mapping. In this model, we can understand the

decision process by using fuzzy inclusion equations and causal relations. The results

also suggest that the HMOM distance function in conjunction with the Lukasiewicz

operators lead to improved prediction rates across datasets adopted for simulation.

It is worth mentioning that the fuzzy classifier seems to be more convenient than the

ensemble model because its simpler structure. In the next chapter we provide further

reasons to adopt the fuzzy-rough classifier in the remaining simulations, which include

a statistical comparison between both models.
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Further simulations

This chapter is devoted to evaluating the discriminatory power of the proposed classi-

fication model. More explicitly, we carry out an exhaustive comparative study against

state-of-the-art classifiers across benchmark datasets.

7.1 Benchmark datasets summary

Similarly to the previous simulations, we leaned upon 140 classification datasets taken

from the KEEL (Alcalá et al., 2010) and UCI Machine Learning (Lichman, 2013)

repositories. These problems comprise different characteristics and allow evaluating

the predictive capability of both state-of-the-art and granular classifiers under consid-

eration. Appendix B outlines the properties of these datasets (e.g., imbalance ratio,

number of instances, attributes and decision classes).

In these ML problems, the number of attributes ranges from 2 to 262, the number

of decision classes from 2 to 100, and the number of objects from 14 to 12,906. The

benchmark set includes 13 noisy and 47 imbalanced datasets, with the imbalance ra-

tio fluctuating between 5:1 and 2160:1. In order to avoid out-of-range situations in

the distance functions, the numerical attributes have been normalized. On the other

hand, we replaced missing values with the mean or the mode depending on whether

the attribute was numerical or nominal, respectively.

67
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7.2 Comparison against traditional classifiers

The above simulations have shown that both RCEs and FRCNs are capable of out-

performing RCNs using a fixed (reasonable) threshold. As a result, the estimation

of the similarity threshold parameter is no longer a concern. But are they similar

in performance? To answer this question we applied the Wilcoxon signed rank test

for pairwise comparisons. The test suggests accepting the conservative hypothesis (p-

value=0.7387 > 0.05) using a confidence interval of 95%. Therefore, we can conclude

that both approaches perform similarly for adopted datasets.

However, the fuzzy approach is preferred since it fits the parsimony principle: the

simpler the better. Besides, the bagging scheme and the ensemble model itself make

the RCE algorithm less transparent than the fuzzy variant, thus notably reducing one

of the main contributions attached to the rough cognitive mapping. That is why we

decided to use the FRCN-HMOM algorithm (hereinafter simply called FRCN) in the

remaining numerical simulations performed in this chapter.

7.2.1 Classifiers adopted for comparison

As a further simulation, we compare the FRCN algorithm against several well-known

state-of-the-art classifiers in terms of prediction rates. The traditional classifiers are

gathered in six categories that are depicted as follows:

� Rule-based models

– Decision Table (DT) (Kohavi, 1995). The algorithm searches for matches

in the body using a subset of attributes. If no instances are found, the

majority class in the table is returned; otherwise, the majority class of all

matching instances is returned.

� Bayesian models

– Näıve Bayes (NB) (John and Langley, 1995). A probabilistic classification

algorithm using estimator classes, where numeric estimator precision values

are chosen based on the analysis of the training data.

– Näıve Bayes Updateable (NBU) (John and Langley, 1995). Implements

an incremental NB classifier that learns one instance at a time. Instead

of using normal density measures for numerical attributes, this algorithm

employs a kernel estimator without discretization.
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� Function-based models

– Simple Logistic (SL) (Sumner et al., 2005). A classifier building linear

logistic regression models. LogitBoost with simple regression functions as

base learners is used for fitting the logistic models.

– Multilayer Perceptron (MLP) (Hecht-Nielsen, 1989). Neural network that

uses the backpropagation algorithm to train the model.

– Support Vector Machines (SMO). (Keerthi et al., 2001) Implements John

Platt’s sequential minimal optimization algorithm for training a support

vector classifier. In our research, we adopted a quadratic polynomial kernel

to perform the numerical simulations.

� Tree-based models

– Decision Tree (J48) (Quinlan, 1986). Induces classification rules in the

form of a pruned/unpruned decision tree.

– Random Tree (RT) (Amit and Geman, 1997). Decision tree without prun-

ing that considers k randomly chosen attributes at each node.

– Random Forest (RF) (Breiman, 2001). Bagging of random trees.

– Fast Decision Tree (FDT) (Su and Zhang, 2006). Builds a tree using

information gain and prunes it using reduced-error pruning.

– Best-first Decision Tree (BFT) (Shi, 2007). Classification trees that use

binary split for both nominal and numeric attributes.

– Logistic Model Tree (LMT) (Landwehr et al., 2005). Decision trees for

classification that use logistic regression functions at the leaves.

� Instance-based models

– Nearest Neighbor (NN) (Aha et al., 1991). Instance-based (lazy) classifier

that simply chooses the closest instance (i.e., an object from the universe)

to the test instance and returns its class.

– k-Nearest Neighbors (kNN) (Aha et al., 1991). Lazy learner that computes

the class based upon the classes of the k training instances that are most

similar to the test instance, as determined by a similarity function.
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– K∗ classifier (K∗) (Cleary et al., 1995). Instance-based classifier similar

to kNN that uses an entropy-based distance function.

– Locally Weighted Learning (LWL) (Atkeson et al., 1997). An instance-

based algorithm that assigns weights to the problem instances, which are

then used by a specified weight instance handler.

� Fuzzy-rough models

– Fuzzy-Rough k-Nearest Neighbors (FRNN) (Jensen and Cornelis, 2008).

Nearest neighbor model that utilizes the lower and upper approximations

from fuzzy rough set theory to classify test instances.

– Vaguely-quantified k-Nearest Neighbors (VQNN) (Jensen and Cornelis, 2011).

Fuzzy-rough model that emulates the linguistic quantifiers some and most

when performing the classification process.

It should be mentioned that we retain the default parameter settings implemented

in Weka v3.6.11 (Hall et al., 2009) during the simulations, as no algorithm performs

parameter tuning. In (Triguero et al., 2015) the authors correctly stated that a proper

parametric setting increases the algorithms’ performance over different data sources.

Nevertheless, a robust classifier should produce good results even when its parameters

might not have been optimized for a specific problem.

7.2.2 Statistical analysis and discussion

Analogously to the previous simulations, we utilize the Kappa coefficient to quantify

the algorithms’ performance. Figure 7.1 shows the average Kappa measure attained

by each algorithm across benchmark problems. Likewise, the reader can find the full

Kappa results attached to this simulation in Appendix E.

The results have shown that LMT is the best-performing classifier, whereas FRCN

arises as the second-best ranked algorithm. The LMT classifier is another ensemble

that use boosting to build very effective decision trees with logic functions in the

leaves. More explicitly, it uses the LogitBoost algorithm to induce trees with linear-

logistic regression models at the leaves. However, it uses an internal cross-validation

process at each subset to determine the proper number of iterations for the boosting

procedure. This process is equivalent to find the optimal similarity threshold value in

rough cognitive models through a hyperlearning algorithm.
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Figure 7.1: Average Kappa measure for traditional classifiers.

In this experiment, the Friedman test advocates for rejection of the conservative

hypothesis (p-value = 1.4396928E − 10 < 0.1) using a confidence level of 90%. This

suggests that there are significant differences between at least two algorithms across

the selected datasets. Figure 7.2 portrays the rank values computed by the Friedman

test. It is clear that LMT is the best-ranked algorithm, FRCN is the fourth-best

ranked, while the LWL method is ranked at the last position.

Figure 7.2: Friedman’s rank values for traditional classifiers.
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Table 7.1 summarizes the p-values reported by the Wilcoxon signed rank test and

the corrected p-values according to the post-hoc procedures using the FRCN model

as the control method. The adjusted p-values confirm that the LMT ensemble is the

best-performing classifier in our study, with no significant differences spotted between

the proposed fuzzy-rough cognitive model and MLP, RF, SMO and SL, as the null

hypothesis was accepted in each of these pairwise comparisons. Observe however that

none of these high-performance models provide an introspection mechanism into their

decision model. In the case of the FRCN algorithm, the transparency is achieved by

using fuzzy inclusion equations and causal relations.

Table 7.1: Adjusted p-values using FRCN as the control method.

Algorithm p-value Bonferroni Holm Holland Hypothesis

LWL 7.69E-18 1.38E-16 1.38E-16 0.000000 Rejected

RT 1.29E-11 2.34E-10 2.21E-10 2.21E-10 Rejected

DT 4.94E-11 8.91E-10 7.92E-10 7.91E-10 Rejected

NBU 3.79E-08 6.82E-07 5.68E-07 5.68E-07 Rejected

FDT 6.31E-07 1.13E-05 0.000008 8.83E-06 Rejected

FRNN 8.94E-07 0.000016 0.000011 1.16E-05 Rejected

NN 2.15E-06 0.000038 0.000025 2.57E-05 Rejected

NB 5.51E-06 0.000099 0.000060 6.06E-05 Rejected

BFT 3.20E-05 0.000576 0.000320 0.000319 Rejected

kNN 7.13E-05 0.001285 0.000642 0.000642 Rejected

K∗ 0.005752 0.103543 0.046019 0.045103 Rejected

LMT 0.006376 0.114778 0.046019 0.045103 Rejected

J48 0.010528 0.189511 0.063170 0.061531 Rejected

VQNN 0.010947 0.197052 0.063170 0.061531 Rejected

SL 0.109578 1.000000 0.438314 0.371388 Accepted

SMO 0.273587 1.000000 0.820761 0.616689 Accepted

RF 0.940694 1.000000 1.000000 0.996482 Accepted

MLP 1.000000 1.000000 1.000000 1.000000 Accepted
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From the above experiments, we can conclude that the FRCN algorithm allows

suppressing the parameter learning method of rough cognitive mapping while outper-

forming most state-of-the-art classifiers used for comparison. It is equally noticeable

the superiority of FRCN when compared with other instance-based learners such as

kNN, K∗, LWL or FRNN. On the other hand, the complexity of constructing and

exploiting an FRCN is O(|U2||U1||Φ|}), where |Φ| is the attribute set, whereas U1 and

U2 denote the training and test set, respectively. This means that the proposed model

requires less computational effort to produce accurate predictions with regards to the

crisp variant constructed over a fixed similarity threshold.

7.3 When is our classifier the best choice?

In our last experiment, we attempt characterizing the scenarios on which the granular

classifier outperforms a baseline model. In this case, we select the k-nearest neighbors

classifier (Aha et al., 1991) as both algorithms are instance-based models. In order

to discover these patterns, we learn a low-level interpretable classifier from a gener-

ated dataset. Being more explicit, we construct a synthetic dataset with instances

comprising five descriptive attributes (i.e., number of instances, number of attributes,

number of classes, whether the problem is noisy or not, and the imbalance ratio) and

two decision classes (P - positive, N - negative). In a nutshell, an object describes

the features of a particular benchmark dataset and whether our model was capable

of outperforming the baseline model for that problem.

We labeled an instance as positive if κ(RCN)−κ(kNN) ≥ 0.05, with κ(.) being the

kappa coefficient computed by a particular problem. If κ(RCN)− κ(kNN) ≤ −0.05

then the instance is labeled as negative, while problems where −0.05 < |κ(RCN) −
κ(kNN)| < 0.05 were not included in the study to achieve a better separability

between classes. As a result, we obtained a dataset comprised of 63 valid instances

(i.e., 47 labeled as positive and 16 labeled as negative).

As practical example, the anneal problem (see Appendix B) includes 898 objects,

38 attributes, 6 decision classes. Moreover, this dataset has no noise but a high degree

of imbalance (85:1). Due to the fact that κ(RCN) = 0.983 and κ(kNN) = 0.920 we

can infer the following synthetic instance: “898, 38, 6, no, high, P”. These instances

have three numerical attributes, two nominal attributes and the (nominal) decision

class. Of course, other features can be considered as well.
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Once the dataset has been created, we train a decision tree model (Quinlan, 1986)

to predict whether the proposed classifier will be suitable for solving a new classifica-

tion problem or not. Decision tree classifiers derive a rule set that allow interpreting

the prediction results at a low-level. Figure 7.3 displays the unpruned decision tree

obtained after running the underlying learning scheme.

Figure 7.3: Decision tree characterizing the model performance.

The decision tree classifier yielded an 86% accuracy, which can be interpreted

as the confidence of the derived rule set. These rules have shown that the granular

classifier outperforms the kNN algorithm in rather balanced problems, or alternatively

in those problems that exhibit a certain imbalance degree but are defined by a reasonable

number of attributes. Furthermore, the derived rules have shown that our classifier

seems to be less sensitive to noise effects. Despite such promising findings, one future

research direction will be focused on determining other potentialities behind this novel

rough classifier. In that sense, further work need to be done.
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Concluding remarks

In this chapter, we outline the main contributions, the key results and future research

directions to be accomplished in a near future

8.1 Contributions and discussion

In recent years, the increasing amount of available data has motivated researchers to

introduce new classification models to acquire, process and interpret the problem data

using more symbolic approaches. Another problem that notably affects the perfor-

mance of traditional classifiers is the quality of data (i.e., partial truth, inconsistency,

noise, vague and imprecise information). The inherent difficulty attached to the above

issues becomes more evident in modern decision-making problems where experts are

interested on both accuracy and transparency. Regrettably, most accurate classifiers

(e.g., Random Forests, Neural Networks or Support Vector Machines) do not provide

an intrinsic introspection mechanism into its inference process, thus performing like

black-boxes. That is why further approaches are required.

In this research, we have presented the notion of rough cognitive mapping in the

context of pattern classification. Rough Cognitive Networks are granular neural net-

works that allow elucidating their reasoning process using inclusion degree equations

and causal relations. While we were focused on developing a granular classifier capa-

ble of attaining competitive prediction rates, other relevant contributions came to the

light. For example, our approach comprises a suitable alternative to automatically

construct high-level FCM-based systems from historical records, hence overcoming the

construction issues of cognitive mapping. This suggests that the human intervention

is not required when deriving the classifier structure.
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The first rough classifier presented in this thesis comprised a suitable model to-

wards solving classification problems in a comprehensible way. Nevertheless, its per-

formance was highly conditioned by the threshold defining whether two objects can

be considered similar or not. The first (perhaps instuitive) alternative presented in

(Nápoles et al., 2016b) (Nápoles et al., 2016) was to estimate the value of this param-

eter in a supervised fashion. Although it proved to be effective in terms of accuracy,

this harsh approach increased the computational time required to build the network,

thus reducing the practical usability of our classifier.

Aiming at overcoming this problem from a more elegant perspective, we introduced

two RCN-based classifiers: Rough Cognitive Ensembles and Fuzzy-Rough Cognitive

Networks. The former is a granular ensemble model where each base RCN operates

at a different granularity degree, whereas the latter replaced the crisp-rough constructs

with fuzzy-rough ones. Numerical simulations have shown that both approaches are

capable of outperforming the primary RCN model using a (reasonable) fixed similarity

threshold. Likewise, the results also showed that the Lukasiewicz operators and the

HMOM distance function report the best prediction rates.

Although both variants perform comparably, the reader can easily perceive why

the fuzzy approach is preferred: we can achieve the same accuracy using an ensemble

composed of ten crisp networks that using a single fuzzy-rough classifier! Furthermore,

the fuzzy-rough classifier allows smoothly elucidating its decision process based on its

foundations: fuzzy inclusion degrees and causal relations.

The comparison against state-of-the-art classifiers have shown that there are no

significant differences between our model and the best-performing methods (i.e., SL,

MLP, SVM and RF), with the exception of the LMT ensemble that stands as the

best classifier in the study. Nonetheless, as already mentioned, these best-performing

algorithms perform like black-boxes, and thus they are unable to plainly explain why

a specific decision class is assigned to an unlabeled object.

It is worth mentioning that the proposed granular classifier performs better than

other instance-based learners (e.g., kNN or K*) across selected datasets. This may

be a direct result of its ability to infer a decision class when no positive evidence is

available, i.e., based on the negative and hesitant information. Further simulations

have shown that our algorithm outperforms the kNN algorithm in 1) rather balanced

problems, or alternatively in 2) those problems that exhibit some imbalance degree

but are defined by a reasonable number of attributes.
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8.2 Future research lines

Of course, rough cognitive mapping is no panacea. While the theoretical foundations

behind FRCNs (the best-performing model) seem quite intuitive for mathematicians,

it may not be intuitive enough for decision-makers with no background in computer

science or related areas. Therefore, as a future research work, we will explore new

strategies to automatically construct low-level FCM-based classifiers from historical

data. Deriving FCM-based models with lower abstraction levels leads to more trans-

parent classifiers, but the accuracy may be compromised.

Furthermore, the automatic construction of low-level FCM-based models from

data is challenging and remains an open problem. Existing construction procedures

for cognitive mapping are unable to derive authentic causal structures. This happens

because they are oriented to fit the network to the historical data, without considering

the domain semantics. Some authors attempted overcoming this drawback using cor-

relation measures, which fail in capturing the conceptual meaning of causal relations.

Being more explicit, it is well-known that causality does surely imply the existence of

correlation, but the opposite does not necessarily hold.

The notion of rough cognitive mapping opens new research avenues toward solving

more complex classification problems in which each observation may be associated

with multiple decisions. Therefore, as a continuity of our research, we are currently

implementing an RCN-based model for multilabel classification problems, which uses

a pair of equivalence/similarity relations to granulate a multilabel information space.

The former indiscernibility relation determines whether two objects are considered

inseparable according to their descriptive attributes, whereas the latter examines the

inseparability based on the decision attributes. While this approach is straightforward

from the Granular Computing viewpoint, further strategies to construct the network

topology and activate the neurons should be investigated.
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Appendix A

Classifying a new instance:

the Iris dataset

This appendix describes how the proposed granular classifier operates by using the

well-known Iris datatset (see Appendix B) as an example. This classification problem

comprises 150 examples from which each 50 of them belong to the following decision

classes: Iris-Setosa, Iris-Versicolor and Iris-Virginica. Aiming at exemplify how the

classifier works, we separate one object of each class for testing the classification model

and the remaining 147 instances will be used for training.

The first step when constructing the classifier is related to the granulation of the

information space. By doing so, the method internally computes a symmetric matrix

storing the similarity between all instances in the dataset. In this example, we adopt

a similarity threshold equals to 0.95 and the HEOM distance function to determine

those objects that are deemed inseparable to each other. By relying on this similarity

matrix, we can compute the positive, negative and boundary regions associated to

each decision class (see Algorithm 1, 2.1).

Table A.1 reports the regions attached to each decision class, where an object is

represented by its row index into the training set. The negative region NEG(XSetosa)

for Iris-Setosa contains those objects that do not fulfill the similarity relation for that

decision class, the positive region POS(XSetosa) comprises those objects that are

similar to each other and they are labeled as Iris-Setosa, while the boundary region

BND(XSetosa) includes those objects that fulfill the similarity relation but some of

them are labeled as Iris-Versicolor or Iris-Virginica. Analogously, we can understand

the semantics behind the remaining information granules.
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Table A.1: Positive, negative and boundary regions for each decision class.

Class Region Resulting Set

Setosa

Positive

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48}

Negative

{49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,

109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,

121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,

133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,

145, 146}

Boundary {}

Versicolor

Positive

{49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,

65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83,

84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97}

Negative

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 98, 99,

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,

112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,

125, 126, 127, 128, 129, 131, 132, 133, 134, 136, 137, 138,

139, 140, 141, 142, 143, 144, 145}

Boundary {68, 70, 81, 124, 130, 135, 146}

Virginica

Positive

{98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,

122, 123, 125, 126, 127, 128, 129, 131, 132, 133, 134, 136,

137, 138, 139, 140, 141, 142, 143, 144, 145}

Continued on next page
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Table A.1 – Continued from previous page

Class Region Resulting Set

Negative

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,

67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85,

86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97}

Boundary {68, 70, 81, 124, 130, 135, 146}

After granulating the information space, the network structure is built following

the Algorithm 2, Section 4.2.2. At this point the Rough Cognitive Networks is ready

to perform the classification process. Table A.2 shows a testing object x taken from

the Iris dataset, which was not included into the training set.

Table A.2: Example instance from Iris dataset to be classified by the RCN.

Attributes sepallength sepalwidth petallength petalwidth class

Values 0.75 0.5 0.627119 0.541667 Iris-versicolor

In order to activate the neurons, we compute the similarity class associated to the

target object, that is R̄(x) = {3, 6, 9, 10, 16, 19, 26, 27, 34, 35, 38, 39, 45, 47, 48}.
Equations A.7 and A.2, and A.3 display the use of the inclusion degree expression for

computing the activation value of neurons representing the positive regions of each

decision class, according to Algorithm 3a, Section 4.2.3:

A(0)
x (PSetosa) =

|R̄(x) ∩ POS(XSetosa)|
|POS(XSetosa)|

=
|R̄(x)|

|POS(XSetosa)|
=

15

49
= 0.306

(A.1)

A(0)
x (PV ersicolor) =

|R̄(x) ∩ POS(XV ersicolor)|
|POS(XV ersicolor)|

=
|∅|

|POS(XV ersicolor)|
=

0

49
= 0.0

(A.2)
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A(0)
x (PV irginica) =

|R̄(x) ∩ POS(XV irginica)|
|POS(XV irginica)|

=
|∅|

|POS(XV irginica)|
=

0

49
= 0.0

(A.3)

Equations A.4, A.5 and A.8 show how to compute the activation value for neurons

representing the negative regions, whereas A.7 and A.8 neurons denoting boundary

regions for Iris-Versicolor and Iris-Virginica, respectively.

A(0)
x (NSetosa) =

|R̄(x) ∩ NEG(XSetosa)|
|NEG(XSetosa)|

=
|∅|

|NEG(XSetosa)|
=

0

98
= 0.0

(A.4)

A(0)
x (NV ersicolor) =

|R̄(x) ∩ NEG(XV ersicolor)|
|NEG(XV ersicolor)|

=
|R̄(x)|

|NEG(XV ersicolor)|
=

15

94
= 0.159

(A.5)

A(0)
x (NV irginica) =

|R̄(x) ∩ NEG(XV irginica)|
|NEG(XV irginica)|

=
|R̄(x)|

|NEG(XV irginica)|
=

15

95
= 0.157

(A.6)

A(0)
x (BV ersicolor) =

|R̄(x) ∩ BND(XV ersicolor)|
|BND(XV ersicolor)|

=
|∅|

|BND(XV ersicolor)|
=

0

7
= 0.0

(A.7)

A(0)
x (BV irginica) =

|R̄(x) ∩ BND(XV irginica)|
|BND(XV irginica)|

=
|∅|

|BND(XV irginica)|
=

0

7
= 0.0

(A.8)

Observe the case where the boundary region for the class value “Setosa” is empty,

therefore the activation value for this neuron is automatically set to zero. Similarly,

the decision neurons are set to zero in the activation vector:
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A(0) = [0.306, 0.0, 0.0, 0.0, 0.159, 0.157, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Once the A(0) vector is obtained, we perform the neural inference process until a

maximum number of iteration T = 10 is reached. Figure A.1 displays the activation

value of neurons comprised into the network at each iteration step.

(a) Activation value of decision neurons. (b) Activation value of positive neurons.

(c) Activation value of negative neurons. (d) Activation value of boundary neurons.

Figure A.1: Activation value of neurons for Iris dataset over 10 iterations.

As a final step, the decision class with the highest activation value is assigned to

the object x according to Algorithm 3b, Section 4.2.3. In this case, the decision class

predicted by the granular classifier for x is Iris-Setosa 1.

1Thanks to Marilyn Bello and Isel Grau for running this example.
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Description of benchmark

datasets
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Table B.1: Characterization of benchmark problems.

Dataset ID Instances Attributes Classes Noisy Imbalance

abalone 1 4174 8 28 no 689:1

acute-inflammation 2 120 6 2 no no

acute-nephritis 3 120 6 2 no no

anneal 4 898 38 6 no 85:1

anneal.orig 5 898 38 6 no 85:1

appendicitis 6 106 7 2 no no

arrhythmia 7 452 262 13 no 122:1

audiology 8 226 69 24 no 57:1

australian 9 690 14 2 no no

autos 10 205 25 7 no 22:1

balance-noise 11 625 4 3 yes 5:1

balance-scale 12 625 4 3 no 5:1

ballons 13 16 4 2 no no

banana 14 5300 2 2 no no

bank 15 4521 16 2 no 7:1

blood 16 748 4 2 no no

breast 17 277 9 2 no no

bc-wisconsin-diag 18 569 31 2 no no

bc-wisconsin-prog 19 198 34 2 no no

bridges-version1 20 107 12 6 no no

bridges-version2 21 107 12 6 no no

car 22 1728 6 4 no 17:1

cardiotocography-10 23 2126 35 10 no 10:1

cardiotocography-3 24 2126 35 3 no 9:1

chess 25 3196 36 2 no no

cleveland 26 297 13 5 no 12:1

colic 27 368 22 2 no no

colic.orig 28 368 27 2 no no

Continued on next page
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Table B.1 – Continued from previous page

Dataset ID Instances Attributes Classes Noisy Imbalance

collins 29 500 23 15 no 13:1

contact-lenses 30 24 4 3 no no

contraceptive 31 1473 9 3 no no

credit-a 32 690 15 2 no no

credit-g 33 1000 20 2 no no

crx 34 653 15 2 no no

csj 35 653 34 6 no no

cylinder-bands 36 540 39 2 no no

dermatology 37 358 34 6 no 5:1

echocardiogram 38 131 11 2 no 5:1

ecoli 39 336 7 8 no 71:1

ecoli0 40 220 7 2 no no

ecoli-0vs1 41 220 7 2 no no

ecoli1 42 336 7 2 no no

ecoli2 43 336 7 2 no 5:1

ecoli3 44 336 7 2 no 8:1

ecoli-5an-nn 45 336 7 8 yes 71:1

energy-y1 46 768 8 38 no no

energy-y2 47 768 8 38 no no

eucalyptus 48 736 19 5 no no

flags 49 194 28 8 no 15:1

glass 50 214 9 6 no 8:1

glass0 51 214 9 2 no no

glass-0123vs456 52 214 9 2 no no

glass1 53 214 9 2 no no

glass-10an-nn 54 214 9 6 yes 8:1

glass2 55 214 9 2 no no

glass-20an-nn 56 214 9 6 yes 8:1

glass3 57 214 9 2 no 6:1

Continued on next page
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Table B.1 – Continued from previous page

Dataset ID Instances Attributes Classes Noisy Imbalance

glass-5an-nn 58 214 9 6 yes 8:1

glass6 59 214 9 2 no 6:1

haberman 60 306 3 2 no no

hayes-roth 61 160 4 3 no no

heart-5an-nn 62 270 13 2 yes no

heart-statlog 63 270 13 2 no no

hypothyroid 64 3772 29 4 no 1740:1

ionosphere 65 351 34 2 no no

iris 66 150 4 3 no no

iris0 67 150 4 2 no no

iris-10an-nn 68 150 4 3 yes no

iris-20an-nn 69 150 4 3 yes no

iris-5an-nn 70 150 4 3 yes no

labor 71 57 16 2 no no

led7digit 72 500 7 10 no no

libras 73 360 90 15 no no

liver-disorders 74 345 6 2 no no

lung-cancer 75 32 56 3 no no

lymph 76 148 18 4 no 40:1

mammographic 77 830 5 2 no no

mfeat-factors 78 2000 216 10 no no

mfeat-fourier 79 2000 76 10 no no

mfeat-karhunen 80 2000 64 10 no no

mfeat-morpho 81 2000 6 10 no no

mfeat-pixel 82 2000 240 10 no no

mfeat-zernike 83 2000 47 10 no no

molecular-biology 84 106 57 2 no no

monk-2 85 432 6 2 no no

mushroom 86 5644 22 2 no no

Continued on next page
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Table B.1 – Continued from previous page

Dataset ID Instances Attributes Classes Noisy Imbalance

musk-1 87 476 167 2 no no

musk-2 88 6598 167 2 no 5:1

new-thyroid 89 215 5 2 no 5:1

nursery 90 12960 8 5 no 2160:1

optdigits 91 5620 64 10 no no

ozone 92 2536 72 2 no 33:1

page-blocks 93 5473 10 5 no 175:1

parkinsons 94 195 22 2 no no

pendigits 95 10992 16 10 no no

phoneme 96 5404 5 2 no no

pima 97 768 8 2 no no

pima-10an-nn 98 768 8 2 yes no

pima-20an-nn 99 768 8 2 yes no

pima-5an-nn 100 768 8 2 yes no

planning 101 182 12 2 no no

plant-margin 102 1600 64 100 no no

plant-shape 103 1600 64 100 no no

plant-texture 104 1599 64 100 no no

postoperative 105 90 8 3 no 32:1

primary-tumor 106 339 17 22 no 84:1

saheart 107 462 9 2 no no

segment 108 2310 19 7 no no

solar-flare-1 109 323 5 6 no 11:1

solar-flare-2 110 1066 12 6 no 7:1

sonar 111 208 60 2 no no

soybean 112 683 35 19 no 11:1

spambase 113 4601 57 2 no no

spectfheart 114 267 44 2 no no

spectrometer 115 531 101 48 no 29:1

Continued on next page
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Table B.1 – Continued from previous page

Dataset ID Instances Attributes Classes Noisy Imbalance

splice 116 3190 60 3 no no

sponge 117 76 44 3 no 23:1

tae 118 151 5 3 no no

tic-tac-toe 119 958 9 2 no no

vehicle 120 846 18 4 no no

vehicle0 121 846 18 2 no no

vehicle1 122 846 18 2 no no

vehicle2 123 846 18 2 no no

vehicle3 124 846 18 2 no no

vertebral2 125 310 6 2 no no

vertebral3 126 310 6 3 no no

vote 127 435 16 2 no no

vowel 128 990 13 11 no no

wall-following 129 5456 24 4 no 6:1

waveform 130 5000 40 3 no no

weather 131 14 4 2 no no

wine 132 178 13 3 no no

wine-5an-nn 133 178 13 3 yes no

winequality-red 134 1599 11 6 no 68:1

winequality-white 135 4898 11 7 no 439:1

wisconsin 136 683 9 2 no no

yeast 137 1484 8 10 no 92:1

yeast1 138 1484 8 2 no no

yeast3 139 1484 8 2 no 8:1

zoo 140 101 16 7 no 10:1
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Nápoles, G., ón, L. C., Falcon, R., Bello, R., Vanhoof, K., 2017. On the accuracy-

convergence trade-off in sigmoid fuzzy cognitive maps. IEEE Transactions on Fuzzy

Systems.
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