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Abstract

Rough Cognitive Networks are granular classifiers stemming from the hy-
bridization of Fuzzy Cognitive Maps and Rough Set Theory. Such cognitive
neural networks attempt to quantify the impact of rough granular constructs
(i.e., the positive, negative and boundary regions of a target concept) over
each decision class for the problem at hand. In rough classifiers, determining
the precise granularity level is crucial to compute high prediction rates. Re-
grettably, learning the similarity threshold parameter requires reconstructing
the information granules, which may be time-consuming. In this paper, we
put forth a new multiclassifier system classifier named Rough Cognitive En-
sembles. The proposed ensemble employs a collection of Rough Cognitive
Networks as base classifiers, each operating at a different granularity level.
This allows suppressing the requirement of learning a similarity threshold.
We evaluate the granular ensemble with 140 traditional classification datasets
using different heterogeneous distance functions. After comparing the pro-
posed model to 15 well-known classifiers, the experimental evidence confirms
that our scheme yields very promising classification rates.

Key words: machine learning, granular computing, rough set theory, fuzzy
cognitive maps, rough cognitive networks, ensemble learning

Email addresses: gonzalo.napoles@uhasselt.be (Gonzalo Nápoles)
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1. Introduction1

Pattern classification [1] is one of the most ubiquitous real-world prob-2

lems and certainly one at which humans really excel. It consists of identifying3

the right category (among those in a predefined set) to which an observed4

pattern belongs. These patterns are often described by a set of predictive at-5

tributes of numerical and/or nominal nature. Formally speaking, the pattern6

classification problem [1] is about building a mapping f : U → D that assigns7

to each instance x ∈ U described by the attribute set Ψ = {ψ1 . . . , ψM} a8

decision class Dk from the K possible ones in D = {D1, . . . , DK}. The map-9

ping is learned in a supervised fashion, i.e., by relying on an existing set of10

previously labeled examples that is used to train the classification model.11

The learning process is regularly driven by the minimization of a cost/error12

metric. More complex classification problems include learning in presence of13

class imbalance [2] [3], class noise [4], partially labeled data [5] or multiple14

decision classes per object [6] [7] [8], among other scenarios.15

The literature on classification models (henceforth simply called “classi-16

fiers”) is vast and offers a myriad of techniques that approach the classifica-17

tion problem from multiple angles. Decision trees [9], neural networks [10],18

rule-based models [11], Bayesian networks [12], support vector machines [13]19

or k-nearest neighbors learners [14] stand among the most popular classifiers,20

each having its own inherent advantages and limitations.21

A well-established trend within Machine Learning (ML) is that of com-22

bining the output of multiple base classifiers to predict the class label of a23

given instance. These models are called multiclassifier systems [15] and often24

perform better than any single classifier, especially if some diversity (either25

parametric or structural) is present among the set of base classifiers. This26

heterogeneity may come in the form of independent samples of the training27

data (bootstrapping), multiple parametric configurations, different types of28

base classifiers used as building blocks, etc. Bayesian voting, bagging, boost-29

ing and stacking are common ensemble creation methods [16]. AdaBoost [17]30

and random forests [18] are well-known ensemble learners that have shown31

great promise in solving pattern classification problems.32

A recent survey [16] explores trends in this field, including: (a) using33

multiobjective optimization algorithms to derive several structural elements34

of the ensembles; (b) employing decomposition techniques; (c) resorting to35

negative correlation learning schemes; (d) incorporating elements from fuzzy36

logic and multiple-kernel learning and (e) endowing the models with deep37
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learning features. Other reviews that focus on either a set of techniques or a38

particular domain can be found in the literature as well. For example, Zhao39

et al. [19] revised existing neural network ensembles whereas Yang et. al.40

[20] related ensemble approaches used in bionformatics.41

Another ongoing ML avenue has led to the development of granular clas-42

sifiers [21] [22] [23] [24] [25] [26]. These are classification schemes that abide43

by the principles of Granular Computing [27] [28] [29], an emerging paradigm44

that relies on more symbolic constructs such as sets, intervals or similarity45

classes to replace numerical data as the underlying knowledge representation46

and reasoning vehicle. Granular classifiers offer important advantages over47

traditional ML techniques such as (1) a more human-centric manner of in-48

teracting with real-world information and its inherent uncertainty and (2)49

the ability to deal with the Big Data phenomenon by processing the deluge50

of raw data at higher levels of abstraction.51

Recently, Nápoles and collaborators [30] introduced the notion of rough52

cognitive mapping in the pattern recognition context. Rough Cognitive Net-53

works (RCNs) are granular classifiers featuring a synergy between Fuzzy54

Cognitive Maps (FCMs) [31] and Rough Set Theory (RST) [32]. Being more55

explicit, an RCN can be defined as a sigmoid FCM whose input concepts56

denote information granules (namely, the RST-derived positive, boundary57

and negative regions of the decision classes) whereas output concepts rep-58

resent decision classes of the problem at hand. This granular model seems59

especially suitable to handle inconsistent data given the approximation space60

constructed over each output concept (decision class) by means of the three61

RST-based regions induced by a similarity relation. It is worth mentioning62

that two objects are considered inconsistent if their similarity degree exceeds63

a certain threshold, but they lead to different decisions.64

RCN’s classification performance has been found competitive with respect65

to state-of-the-art classifiers [33] [34] [30]. Despite these encouraging results,66

RCN-based models are still very sensitive to an input parameter denoting67

the similarity threshold upon which the rough information granules are built.68

Determining the exact granularity degree is not trivial, since higher values do69

not necessarily lead to optimal prediction rates. To overcome this drawback,70

Nápoles et. al. [30] proposed a hyperparameter learning method to estimate71

the similarity threshold value from historical data. Nevertheless, evaluating a72

candidate solution implies reconstructing the granular regions from scratch,73

which is time-consuming in large datasets.74

In this paper, we build upon the RCNs formalism by developing a gran-75
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ular ensemble model in order to deal with the RCN’s parametric sensitivity.76

Rough Cognitive Ensembles (RCEs) use a collection of RCNs as base classi-77

fiers, each operating at a different granularity level. It is worth mentioning78

that the concept of granular ensembles seems to still be in its infancy though.79

A good starting point is the use of granular classifiers as base classifiers, given80

the momentum they are presently enjoying. The model proposed in this pa-81

per follows this idea, and it may well be one of the first granular ensemble82

techniques ever put forth. As a result, the hyperparameter learning method83

is no longer required, which notably increases the practical usability of this84

novel granular classifier in real-world applications.85

The second contribution of this paper is oriented to the exhaustive evalu-86

ation of rough cognitive classifiers in presence of 140 ML datasets. As far as87

we know, RCNs have been applied to a few real-life problems, but there is no88

record of their performance in solving standard ML problems. This evalua-89

tion includes studying the algorithm’s performance for several heterogeneous90

distance functions. After comparing the ensemble model to 15 state-of-the-91

art ML algorithms, the experimental evidence suggests that the proposed92

classifier produces highly competitive prediction rates.93

The rest of this paper is structured as follows. Section 2 goes over im-94

portant concepts that are related to this study such as rough sets, three-way95

decision rules and fuzzy cognitive maps. Section 3 emphasizes on the building96

blocks of the granular ensemble, Section 4 presents the foundations of the97

proposed ensemble classifier, while Section 5 describes three-widely used het-98

erogeneous distance functions. Moreover, Section 6 introduces the empirical99

simulations and its ensuing discussion. Section 7 formalizes the concluding100

remarks and future research directions to be explored.101

2. Theoretical background102

This Section sheds light on several important concepts to this study,103

namely classical and extended rough sets, foundations of three-way decision104

rules, cognitive mapping and granular cognitive maps.105

2.1. Rough Set Theory106

RST is a methodology proposed in the early 1980’s for handling uncer-107

tainty that is manifested in the form of inconsistent data [32] [35] [36]. Let108

DS = (U ,Ψ ∪ {d}) denote a decision system where U is a non-empty fi-109

nite set of objects called the universe of discourse, Ψ is a non-empty finite110
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set of attributes describing any object in U and d /∈ Ψ represents the deci-111

sion attribute. Any subset X ∈ U can be approximated by two crisp sets,112

which are referred to as its lower and upper approximations and denoted by113

ΦX = {x ∈ U | [x]Φ ∈ X} and ΦX = {x ∈ U | [x]Φ ∩X 6= ∅}, respectively.114

In this classic formulation, the equivalence class [x]Φ comprises the set of ob-115

jects in U that are deemed inseparable from x according to the information116

contained in the attribute subset Φ ⊆ Ψ.117

The lower and upper approximations are the basis for computing the118

positive, negative and boundary regions of any set X. The positive region119

POS(X) = ΦX includes those objects that are certainly contained in X; the120

negative region NEG(X) = U −ΦX denotes those objects that are certainly121

not related to X, while the boundary region BND(X) = ΦX−ΦX captures122

the objects whose membership to the set X is uncertain, i.e., they might123

be members of X. These three rough regions comprise information granules124

upon which the RCN leans to map its set of input-type neurons and produce125

conclusions, as explained later in Section 3.126

2.1.1. Using similarity relations in RST127

In the classical RST formulation, two objects are considered inseparable128

w.r.t. Φ ⊆ Ψ if they have identical values for all attributes. This definition is129

adequate for nominal attributes but is too rigid when dealing with numerical130

ones, given that marginal differences between two numerical values could toss131

two nearly identical objects into different inseparability classes. To counter132

this stringent definition, the equivalence requirement on the inseparability133

relation R is relaxed by resorting to similarity relations.134

Equation (1) shows an indiscernibility relation, where 0 ≤ S(x, y) ≤ 1 is135

a similarity function. This weaker binary relation states that objects x and136

y are deemed inseparable as long as their similarity degree S(x, y) exceeds a137

similarity threshold 0 ≤ ξ ≤ 1. This user-specified parameter determines the138

granularity degree; therefore, its precise estimation may become essential for139

designing high-performing rough classifiers.140

R : xRy ⇐⇒ S(x, y) ≥ ξ (1)

The similarity function could be formulated in a variety of ways. In this141

study, we assume that S(x, y) = 1−δ(x, y), where δ(x, y) denotes the distance142

between objects x and y. As a further contribution, this paper investigates143

the effect of using different distance functions over the overall prediction rates144

computed by the proposed rough cognitive classifiers.145
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It should be noticed that the similarity relation R does not induce a146

partition of U into a set of equivalence classes but rather a covering of U147

into multiple similarity classes R̄(x). This suggests that an object x could148

simultaneously belong to more than one similarity class at the same time.149

Next, we revise the theoretical foundations of three-way decision rules, which150

comprise the core of rough cognitive mapping.151

2.1.2. The three-way-decisions model152

Yao [37] introduced the three-way decision rules based on three disjoint153

regions produced by the lower and upper approximations, namely, the posi-154

tive region POS(X), the boundary region BND(X), and the negative region155

NEG(X). By exploiting the positive and negative regions we can extract156

confident decisions while including the boundary regions in the reasoning157

process allows concluding an alternative decision that is neither positive nor158

negative. These classification rules are depicted as follows:159

• Des([x]Φ)→P Des(X), for [x]Φ ⊆ POS(X)160

• Des([x]Φ)→B Des(X), for [x]Φ ⊆ BND(X)161

• Des([x]Φ)→N Des(X), for [x]Φ ⊆ NEG(X)162

In these rules Des([x]Φ) represents the logic formula defining the equiv-163

alence class [x]Φ and Des(X) is the name of the concept. A positive rule164

is used for accepting, a negative rule for rejecting and a boundary rule for165

abstaining. More precisely, if [x]Φ ⊆ POS(X), we accept x to be a mem-166

ber of the concept X. If [x]Φ ⊆ NEG(X), we reject x to be a member of167

X. If [x]Φ ⊆ BND(X), we neither accept nor reject x to be a member of168

X; instead, we make a decision of deferment, abstaining or non-commitment169

[38]. Such rules model our inability to make a definite acceptance or rejection170

decision in scenarios with insufficient information.171

Within the classic rough set model, the above classification rules are172

unnecessarily restrictive, but one can generalize these rules to avoid such173

limitations. The studies in [39] and [38] introduced a general probabilistic174

approach, called Decision-theoretic Rough Set model, which uses two states175

and three actions to characterize the decision process.176

As mentioned before, the abstract semantic of three-way decision rules is177

used for automatically constructing the RCN topology. This allows hybridiz-178

ing RST elements with the neural reasoning mechanism of fuzzy cognitive179

mapping in an attempt to design an effective granular classifier.180
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2.2. Fuzzy Cognitive Maps181

Without lack of generality, FCMs can be defined as interpretable recurrent182

neural networks widely used in modeling and simulation purposes [31]. They183

consist of a set of concepts (i.e., objects, variables or entities for a particular184

problem) and their causal relations. The activation value of such concepts185

(also called neurons) regularly takes values in the [0, 1] interval. The higher186

the activation value of a neuron, the stronger its influence over the system187

under investigation. On the other hand, the strength of the causal relation188

between two concepts Ci and Cj is quantified by a weight wij ∈ [−1, 1] and189

denoted via a directed edge from Ci to Cj. There are three possible types of190

causal relationships among neural processing entities that express the type191

of influence from one neuron to the others:192

• If wij > 0 then an increment (decrement) in the cause Ci produces an193

increment (decrement) of the effect Cj with intensity |wij|.194

• If wij < 0 then an increment (decrement) in the cause Ci produces a195

decrement (increment) of the neuron Cj with intensity |wij|.196

• If wij = 0 then there is no causal relation between Ci and Cj.197

The activation update rule in an FCM is displayed in Equation (2), with198

A(0) being the initial activation vector. This rule is iteratively repeated until199

a stop condition is met. A new activation vector is calculated at each discrete200

time step t. After a fixed number of iterations, the map will arrive at one of201

the following states: (i) equilibrium point, (ii) limited cycle or (iii) chaotic202

behavior [40]. The map is said to have converged if it reaches a fixed-point203

attractor. Otherwise, the process terminates after a maximum number of204

iterations T is reached. Whichever the case, the FCM output corresponds to205

the response vector at the last discrete time step.206

A
(t+1)
i = f

(
M∑
j=1

wjiA
(t)
j + A

(t)
i

)
, i 6= j (2)

The function f(·) in Equation (2) denotes a monotonically non-decreasing207

nonlinear function used to clamp the activation value of each neuron to the208

allowed interval. Examples of such functions are the bivalent function, the209

trivalent function and the sigmoid variants [41]. In this study, we confine210

ourselves to using a sigmoid function f(Ai) = 1/(1 + exp(−λAi)) since it has211
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exhibited superior prediction capabilities [41]. In the sigmoid function, the212

parameter λ > 0 denotes the steepness factor and influences the sensitivity of213

the neuron. Nápoles et al. [30] empirically concluded that, in the framework214

of rough cognitive mapping, 2 ≤ λ ≤ 5 are suitable values.215

FCMs have been augmented with different types of information granules,216

thus giving rise to high-level constructs known as Granular Cognitive Maps217

(GCMs). Pedrycz [42] mentions the allocation of information granularity as218

a pivotal driving force behind the development of these types of granular219

structures and describes five protocols as its realization mechanisms. For220

example, Pedrycz [43] and his collaborators [44] put forth a granular repre-221

sentation of time series in which FCM nodes are generated after the cluster222

prototypes induced by fuzzy c-means [45] over the space of amplitude and223

change of amplitude. More recently, Nápoles et. al. [8] extended this model224

to solve graded multilabel classification problems.225

Homenda et. al. [46] adopted numeric intervals as the granulation vehicle226

for their GCM weight matrix. As a result, each FCM weight is no longer a227

number but an interval. The authors elaborate on three methodologies for228

building a GCM from scratch by maintaining an adequate balance between229

specificity and generality in the design of the interval-based FCM weights230

and the ensuing map operations. They found the resulting GCM had a good231

degree of coverage without a loss in precision.232

Another development in the realm of GCMs is that of RCNs, which is233

the underlying building block for the proposed model. Section 3 elaborates234

on RCNs and stresses their advantages and limitations.235

3. Rough Cognitive Networks236

Nápoles et. al. [33] [34] [30] recently introduced the concept of rough cog-237

nitive mapping, which hybridizes RST and FCMs. In this granular model,238

the abstract semantics of three-way decision rules is used to define the FCM239

topology. This allows overcoming the limitations in the expression and archi-240

tecture of traditional cognitive mapping as the network topology (i.e., map241

concepts and causal relations) are directly computed from historical data,242

removing the the expert intervention requirements. Definition 1 formalizes243

the semantics behind this granular cognitive classifier.244

Definition 1. A Rough Cognitive Network R(ξi) is a sigmoid FCM whose245

input neurons represent rough approximation regions and the output neurons246

denote the set of class labels for a pattern classification problem.247
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The first step when constructing an RCN is related to the granulation248

of the input data using RST. The positive, boundary and negative regions249

of each decision class according to a predefined attribute subset Φ ⊆ Ψ are250

computed using the training dataset and a predefined similarity relation R251

to define the similarity classes (see Section 2.1). The similarity relations may252

employ either the whole attribute set Ψ or a subset Φ ⊆ Ψ, in case a feature253

selection technique has identified one as such.254

It is important to notice that when solving ML problems with numer-255

ical attributes, the similarity class of a new instance R̄(x) might activate256

multiple decision rules. If R̄(x) only comprises instances related to a single257

decision class, then the similarity class will be completely contained within258

a specific decision region. If the similarity class activates the positive region259

of multiple decisions, the RCN will calculate confidence levels for each active260

rule and then compute the preference degree associated with each decision.261

In more complex scenarios where only negative and boundary regions are262

activated, RCNs are capable of using the knowledge about positive, negative263

and boundary regions for computing the decision class.264

The second step when constructing an RCN is the automated topology265

design, where a sigmoid FCM is automatically created from the aforemen-266

tioned RST-based information granules. In this scheme, each rough region267

is mapped to an input-type neural entity whereas each decision class gives268

rise to an output-type concept. Thus, the RCN graph will comprise at most269

3|D| + |D| = 4|D| neurons, with D = {D1, . . . , DK} being the set of deci-270

sion classes. It should be stated that output neurons do not influence other271

neurons since they are receiver concepts and are only used to compute the272

response vector. Rules R1 − R4 formalize the direction and intensity of the273

causal weights in the proposed topology; these weights are estimated by using274

the abstract semantics of three-way decision rules.275

• (R1) IF Ci is Pk AND Cj is Dk THEN wij = 1.0276

• (R2) IF Ci is Pk AND Cj is Dv 6=k THEN wij = −1.0277

• (R3) IF Ci is Pk AND Cj is Pv 6=k THEN wij = −1.0278

• (R4) IF Ci is Nk AND Cj is Dk THEN wij = −1.0279

In such rules, Ci and Cj represent two map neurons, Pk and Nk are the280

positive and negative regions related to the kth decision respectively while281
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−1 ≤ wij ≤ 1 is the causal weight between the cause Ci and the effect Cj.282

The reader may observe that neurons can be grouped into four categories283

(positive, negative, boundary and decision neurons) which allows designing284

the network using the principles behind three-way decision rules.285

Although the boundary regions are concerned with an abstaining decision,286

an instance x ∈ BND(Xk) could be positively related to the kth decision287

alternative. Therefore, an additional rule considering the knowledge about288

boundary regions is introduced:289

• (R5) IF Ci is Bk AND Cj is Dv AND BND(Xk) ∩ BND(Xv) 6= ∅290

THEN wij = 0.5291

The last step is related to the network exploitation on which the response292

vector Ax(D) = [Ax(D1), . . . , Ax(Dk), . . . , Ax(DK)] is computed. The input293

pattern x is presented to the granular classifier as an input vector A(0) that294

allows activating the causal network. Rules R6 − R8 formalize the method295

used to activate the input neurons, which is based on the inclusion degree of296

the pattern to each rough granular region.297

• (R6) IF Ci is Pk THEN A
(0)
i = |R̄(x) ∩ POS(Xk)|

|POS(Xk)|298

• (R7) IF Ci is Nk THEN A
(0)
i = |R̄(x) ∩ NEG(Xk)|

|NEG(Xk)|299

• (R8) IF Ci is Bk THEN A
(0)
i = |R̄(x) ∩ BND(Xk)|

|BND(Xk)|300

Once the excitation vector A(0) has been computed, the reasoning rule301

depicted in Equation (2) is performed until either the network converges to302

a fixed-point or a maximal number of iterations is reached. Next, the class303

with the highest activation value is assigned to the pattern.304

Figure 1 displays an RCN for solving two-class pattern classification prob-305

lems. Notice that we added a self-reinforcement positive causal connection306

to each input neuron with the goal of preserving its initial excitation level307

when performing the neural updating rule.308

Rough cognitive mapping brings up the following advantages:309

1. It allows handling pattern classification problems with both numerical310

and nominal attributes, since the rough regions are constructed on the311

basis of weak binary (similarity) relations.312
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Figure 1: RCN for pattern recognition problems with two decision classes.

2. It yields a numeric vector of preference degrees associated to decision313

classes instead of binary decisions for each alternative, which is often a314

desirable feature in decision-making scenarios.315

3. The RCN topology is learned from historical data, thus freeing the user316

from an entangled and likely subjective modeling phase to derive the317

causal relationships among the different concepts.318

4. The granulation step allows reasoning at a higher level of abstraction,319

thus reducing the dimensionality of the feature space. Concequently, the320

number of neural processing entities in the causal network does not scale321

up with the number of features descrinig the objects, which facilitates322

the processing of Big Dimensionality problems.323

4. Rough Cognitive Ensembles324

A key issue when constructing an RCN is related to the proper selection of325

the similarity threshold. This parameter defines whether two objects are sim-326

ilar or not, which then influences the creation of the similarity classes upon327

which the rough approximations (RCN input nodes) are built. Regrettably,328

the RCN performance is highly sensitive to this user-specified parameter,329

thus small variations on the granularity degree may lead to quite different330

outcomes. As an alternative, Nápoles et. al. [30] proposed a hyperparame-331

ter learning method to estimate the similarity threshold value from historical332

data. The main drawback of this procedure relies on its computational com-333
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plexity due to the fact that a single objective function evaluation requires re-334

calculating the lower and upper approximations of all decision classes, which335

could be time-consuming for large-scale datasets.336

Let us assume that U1 ⊂ U is the training set and U2 ⊂ U is the held-out337

test (validation) set such that U1 ∩ U2 = ∅. The computational complexity338

of building the upper and lower approximations is O(|Φ||U1|2), with Φ being339

the attribute set, whereas the complexity of building the network topology340

is O(|D|2), with D being the set of decision classes. Besides, the complexity341

of exploiting the granular network for |U2| instances is O(|U2||Φ||U1|2). This342

implies that the temporal complexity of evaluating a single parameter value343

is O(max{|Φ||U1|2, |D|2, |U2||Φ||U1|2}). Due to the fact that |U1| ≥ |U2| in344

most machine learning scenarios, we can conclude that the overall complexity345

of this learning method is O(T |Φ||U1|3), where T is the number of cycles.346

Unfortunately, this may negatively affect the practical usability of RCNs in347

solving real-world pattern classification problems.348

On the other hand, estimating a suitable similarity threshold does not349

necessarily ensure that the granular network will produce optimal predictions.350

This happens because the validation and test sets must be disjoint, and so the351

parameter learning method fits the model to the examples in the validation352

set. Moreover, it might occur that R̄(x) = ∅ for some testing object as a353

result of estimating a very strict threshold for validation examples. If so, the354

model uses the k-nearest neighbors to activate the network.355

Next, we introduce the notion of Rough Cognitive Ensembles (RCEs) in356

an attempt to get rid of the parameter learning scheme while increasing the357

performance of rough cognitive mapping.358

4.1. The ensemble architecture359

Informally speaking, an RCE is an ensemble of several RCNs, where each360

individual granular network operates at a different granularity degree. To in-361

duce different granularity degrees, we use a random similarity threshold when362

constructing the three approximation regions associated with each base clas-363

sifier. This approach attempts to eliminate the parameter learning require-364

ment, which in fact does not necessarily lead to optimal prediction rates when365

testing the classifier. Definition 2 summarizes the semantics of the granular366

cognitive ensembles presented in this research.367
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Definition 2. A Rough Cognitive Ensemble Γ(R) is a multiclassifier system368

composed of a set R = {R(ξ1), . . . ,R(ξi), . . . ,R(ξN )} of N different RCNs as369

base classifiers, where the ith granular cognitive network R(ξi) is constructed370

from a (randomly) selected granularity degree.371

Another important aspect when designing a classifier ensemble is related372

to the aggregation of multiple outputs. Combining the decisions of different373

models means amalgamating the various outputs into a single prediction.374

The simplest way to do this in classification models is adopting a standard375

(or weighted) voting scheme. Voting gives a significant improvement in clas-376

sification accuracy and stability [48]. The higher the number of base classi-377

fiers, the merrier: predictions made by voting become more reliable as more378

votes are taken into account. Therefore, the classification result for each test379

instance is obtained by voting on all N classifiers.380

Theoretical and empirical results [49] [50][18] have shown that combining381

multiple base classifiers leads to optimal performance if these classifiers are382

not strongly correlated with one another. In the proposed granular ensemble,383

the diversity among base classifiers is promoted by using different similarity384

thresholds [ξ1, . . . , ξi, . . . , ξN ] instead of using a single value.385

Figure 2 displays an RCE comprised of N base classifiers with K decision386

classes, where D
(i)
k denotes the kth decision class for the ith granular network387

R(ξi) and Dk is the aggregated-type concept associated with the kth decision388

class. In this architecture, the function A(.) is used to compute the activation389

value of all sigmoid neurons involved in the ensemble.390

The reader may notice that if ξi ≤ ξj then R̄(ξj)(x) ⊆ R̄(ξi)(x), which could391

produce correlated base classifiers. In order to increase diversity we can in-392

troduce randomization. Instance-based learners depend mostly on attributes393

used to compute the distance/similarity between objects. This suggests that394

we can promote diversity by using a random subset of attributes (i.e., ran-395

dom subspace method). However, in the context of rough classification, using396

random attributes may not be the best choice since rough approximations397

are often built upon a reduct of the attribute set.398

Besides, unlike nearest-neighbor classifiers, RCN-based models are sensi-399

tive to perturbations on the training data due to the presence of the simi-400

larity threshold, even when using the same subset of attributes. Hence, we401

can perform instance bagging [51] in order to counter the correlation coming402

from the rule ξi ≤ ξj =⇒ R̄(ξj)(x) ⊆ R̄(ξi)(x). Instance bagging attempts403

to neutralize the instability of the base classifier by modifying the original404
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Figure 2: Rough Cognitive Ensemble of N networks for problems with M classes.

training set (i.e., deleting some instances and replicating others). During this405

process, instances are randomly sampled with replacement from the original406

dataset to create a new one with the same size [52]. This allows establishing407

a reasonable trade-off between ensemble diversity and accuracy.408

4.2. The exploitation scheme409

The exploitation phase of the proposed granular ensemble is focused on410

computing a vectorAx(D(i)) = [Ax(D
(i)
1 ), . . . , Ax(D

(i)
k ), . . . , Ax(D

(i)
K )] for each411

granular classifier. In this output vector, Ax(D
(i)
k ) represents the activation412

degree of the kth output neuron according to the ith granular network, with413

x being the test instance. This allows computing the aggregated vector414

Ax(D) = [Ax(D1), . . . , Ax(Dk), . . . , Ax(DK)] by combining the responses of415

the N base granular classifiers over K decision classes.416

In order to activate the ensemble, we need to compute N excitation vec-417

tors {A(0)
[x|ξi]}

N
i=1 where A(0)

[x|ξi] is used to perform the neural reasoning process418

in the ith cognitive network. The ith activation vector denotes the inclusion419

degree of the similarity class R̄(ξi)(x) into each information granule, accord-420

ing to the corresponding similarity threshold ξi. Formally, the ith activation421

vector could be mathematically defined as follows:422
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A(0)
[x|ξi] =

[
A

(0)
[x|ξi](P1), . . . , A

(0)
[x|ξi](Pk), . . . , A

(0)
[x|ξi](PK),

. . . , A
(0)
[x|ξi](N1), . . . , A

(0)
[x|ξi](Nk), . . . , A

(0)
[x|ξi](NK), . . . ,

A
(0)
[x|ξi](B1), . . . , A

(0)
[x|ξi](Bk), . . . , A

(0)
[x|ξi](BK)

]
where A

(0)
[x|ξi](Pk), A

(0)
[x|ξi](Nk) and A

(0)
[x|ξi](Bk) denote the activation degree423

of the kth positive, negative and boundary region, respectively. These values424

are computed according to the activation rules R6 - R8.425

When activating the granular ensemble classifier, output-type neurons426

remain inactive since their activation value is computed from the recurrent427

propagation of the evidence over the ith granular network. This implies that428

A
(0)
[x|ξi](D1) = . . . = A

(0)
[x|ξi](Dk) = . . . = A

(0)
[x|ξi](DK) = 0. Sometimes, there is429

additional knowledge about the probability of producing a specific decision430

class given an instance (e.g., resulting from an intermediate classification431

process). In these cases, we could use this knowledge to activate the output432

neurons in order to improve the performance.433

Once the neural reasoning step is completed (i.e., either an equilibrium434

point is discovered or a maximal number of iterations is reached), the pre-435

dicted class is derived from the aggregated output vector:436

Ax(D) = [Ax(D1), . . . , Ax(Dk), . . . , Ax(DK)] .

This aggregated vector is obtained by voting on all N base classifiers over437

the K decision classes. Therefore, the activation degree Ax(Dk) denotes the438

probability P (Dk|x ∈ X) of producing the kth decision class given x ∈ X,439

and is computed according to Equation (2). The reader may notice that we440

can simulate the voting scheme in the cognitive network by connecting the441

kth output-type neuron D
(i)
k with the corresponding decision neuron, and442

next performing a single-ahead reasoning process.443

Sometimes we could identify scenarios on which multiple decision classes444

have the highest probability of being produced (i.e., two aggregated neurons445

bear the same maximal activation value). These situations are common in446

highly inconsistent problems where there is a lack of conclusive knowledge.447

To solve this issue, we select the decision class Dk associated with the closest448

neighbor of the test instance x ∈ X, such that Dk has the highest output449

probability. This heuristic provides a fair compromise between the decision450
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class computed by the granular ensemble and the intrinsic relation among451

those instances that represent the same pattern.452

5. Heterogeneous distance functions453

As mentioned, the distance function plays a pivotal role when designing454

instance-based classifiers. As far as we know, there is no study on the impact455

of this component on the performance of RCN-based classifiers. In this sec-456

tion, we revise the mathematical formulation of three widely used distance457

functions taken from [53] that allow comparing heterogeneous instances, i.e.,458

objects comprising both numerical and nominal attributes.459

Let Φ = {φ1, . . . , φM} denote the attribute set, where φj can be either460

numerical or nominal, and it has a weight 0 ≤ ωj ≤ 1 attached that quantifies461

its relevance. The dissimilarity function δ(x, y) between two instances x and462

y can be computed using one of the following distance functions:463

• The Heterogeneous Euclidean-Overlap Metric (HEOM). This464

heterogeneous distance function computes the normalized Euclidean465

distance between numerical attributes and an overlap metric for nomi-466

nal attributes. Equations (3) and (4) define the HEOM distance func-467

tion, where x(j) and y(j) are the normalized values of the jth attribute468

for heterogeneous instances x and y, respectively.469

δHEOM(x, y) =

√√√√∑|Φ|j=1 ωjσj(x, y)∑|Φ|
j=1 ωj

(3)

where470

σj(x, y) =


0 if φj is nominal ∧ x(j) = y(j)

1 if φj is nominal ∧ x(j) 6= y(j)

(x(j)− y(j))2 if φj is numerical

(4)

471

• The Heterogeneous Manhattan-Overlap Metric (HMOM). This472

heterogeneous variant is similar to the HEOM function since it replaces473

the Euclidean distance with the Manhattan distance when computing474
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the dissimilarity between two numerical values. Equations (5) and (6)475

formalize the HMOM distance function, whose calculation requires less476

computational effort compared to HEOM’s.477

δHMOM(x, y) =

∑|Φ|
j=1 ωjρj(x, y)∑|Φ|

j=1 ωj
(5)

where478

ρj(x, y) =


0 if φj is nominal ∧ x(j) = y(j)

1 if φj is nominal ∧ x(j) 6= y(j)

|x(j)− y(j)| if φj is numerical

(6)

479

• The Heterogeneous Value Difference Metric (HVDM). This480

function involves a stronger strategy for quantifying the dissimilarity481

between two discrete attribute values. Instead of computing the match-482

ing between attribute values, it measures the correlation between such483

attributes and decision classes. Equations (7) and (8) show the HVDM484

function variant adopted in this research.485

δHVDM(x, y) =

√√√√∑|Φ|j=1 ωjτj(x, y)∑|Φ|
j=1 ωj

(7)

where486

τj(x, y) =

 1
K

∑K
k=1

(
βφj,x(j),k

βφj,x(j)
−

βφj,y(j),k

βφj,y(j)

)2

if φj is nominal

(x(j)− y(j))2 if φj is numerical
(8)

whereas βφj ,x(j) is the number of instances in the training set that have487

value x(j) for attribute φj, and βφj ,x(j),k denotes the number of instances that488

have value x(j) for attribute φj and output class k.489

In these distance functions, approximating the relevance of each attribute490

may result in improved prediction rates. To overcome this issue, we compute491

the gain ratio [54] associated with the jth attribute:492
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G(φj, X) =
I(X)− E(φj, X)

IC(φj)
(9)

where493

I(X) = −
K∑
k=1

|X ∩Dk|
|X|

log2
|X ∩Dk|
|X|

(10)

measures the randomness of the distribution of available instances in X over494

K decision classes, whereas E(φj, X) is given by495

E(φj, X) =

Lj∑
l=1

|Xl|
|X|

I(Xl) (11)

where Lj is the number of possible values for the φj attribute and Xl denotes496

the instance set in X having value vl for the φj attribute. In order to counter497

this metric’s bias in favor of attributes with a larger number of values, the498

following normalization factor is introduced:499

IC(φj) = −
Lj∑
l=1

|Xl|
|X|

log2
|Xl|
|X|

(12)

In our approach, the gain ration associated to the jth attribute replaces500

the weight ωj when computing the dissimilarity degree between two hetero-501

geneous instances. If
∑
ωj = 0, then attribute weighting is not performed.502

Of course, we can adopt more sophisticated measures as the distance between503

partitions, but it will increase the computational cost.504

6. Numerical simulations505

In this section, we conduct several experiments in order to evaluate the506

prediction capabilities of the proposed ensemble classifier. With this goal in507

mind, we fist determine the best-performing variant among multiple ensemble508

models and demonstrate RCE’s superiority with regards to the RCN-based509

classifiers. In these simulations we also evaluate the algorithm’s performance510

for different distance functions. Afterwards, we compare the prediction ca-511

pability of the best-performing ensemble method against 15 well-established512

classifiers across 140 pattern classification datasets.513
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6.1. Dataset characterization514

We leaned upon 140 well-known pattern classification datasets taken from515

the KEEL [55] and UCI ML [56] repositories. These ML problems comprise516

different characteristics and allow evaluating the predictive capability of both517

state-of-the-art and granular algorithms under consideration.518

Table 1 outlines the number of instances, attributes and decision classes519

for each dataset. The presence of noise and the imbalance ratio (calculated520

as the ratio of the size of the majority class to that of the minority class) are521

also given. In this paper, we say that a dataset is imbalanced if the number522

of instances belonging to the majority decision class is at least five times the523

number of instances belonging to the minority class.524

Table 1: Characterization of the ML datasets adopted for the simulations.

Dataset Instances Attributes Classes Noisy Imbalance
abalone 4174 8 28 no 689:1
acute-inflammation 120 6 2 no no
acute-nephritis 120 6 2 no no
anneal 898 38 6 no 85:1
anneal.orig 898 38 6 no 85:1
appendicitis 106 7 2 no no
arrhythmia 452 262 13 no 122:1
audiology 226 69 24 no 57:1
australian 690 14 2 no no
autos 205 25 7 no 22:1
balance-noise 625 4 3 yes 5:1
balance-scale 625 4 3 no 5:1
ballons 16 4 2 no no
banana 5300 2 2 no no
bank 4521 16 2 no 7:1
blood 748 4 2 no no
breast 277 9 2 no no
bc-wisconsin-diag 569 31 2 no no
bc-wisconsin-prog 198 34 2 no no
bridges-version1 107 12 6 no no
bridges-version2 107 12 6 no no
car 1728 6 4 no 17:1

Continued on next page
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Table 1 – Continued from previous page
Dataset Instances Attributes Classes Noisy Imbalance
cardiotocography-10 2126 35 10 no 10:1
cardiotocography-3 2126 35 3 no 9:1
chess 3196 36 2 no no
cleveland 297 13 5 no 12:1
colic 368 22 2 no no
colic.orig 368 27 2 no no
collins 500 23 15 no 13:1
contact-lenses 24 4 3 no no
contraceptive 1473 9 3 no no
credit-a 690 15 2 no no
credit-g 1000 20 2 no no
crx 653 15 2 no no
csj 653 34 6 no no
cylinder-bands 540 39 2 no no
dermatology 358 34 6 no 5:1
echocardiogram 131 11 2 no 5:1
ecoli 336 7 8 no 71:1
ecoli0 220 7 2 no no
ecoli-0vs1 220 7 2 no no
ecoli1 336 7 2 no no
ecoli2 336 7 2 no 5:1
ecoli3 336 7 2 no 8:1
ecoli-5an-nn 336 7 8 yes 71:1
energy-y1 768 8 38 no no
energy-y2 768 8 38 no no
eucalyptus 736 19 5 no no
flags 194 28 8 no 15:1
glass 214 9 6 no 8:1
glass0 214 9 2 no no
glass-0123vs456 214 9 2 no no
glass1 214 9 2 no no
glass-10an-nn 214 9 6 yes 8:1
glass2 214 9 2 no no
glass-20an-nn 214 9 6 yes 8:1
glass3 214 9 2 no 6:1

Continued on next page

20



Table 1 – Continued from previous page
Dataset Instances Attributes Classes Noisy Imbalance
glass-5an-nn 214 9 6 yes 8:1
glass6 214 9 2 no 6:1
haberman 306 3 2 no no
hayes-roth 160 4 3 no no
heart-5an-nn 270 13 2 yes no
heart-statlog 270 13 2 no no
hypothyroid 3772 29 4 no 1740:1
ionosphere 351 34 2 no no
iris 150 4 3 no no
iris0 150 4 2 no no
iris-10an-nn 150 4 3 yes no
iris-20an-nn 150 4 3 yes no
iris-5an-nn 150 4 3 yes no
labor 57 16 2 no no
led7digit 500 7 10 no no
libras 360 90 15 no no
liver-disorders 345 6 2 no no
lung-cancer 32 56 3 no no
lymph 148 18 4 no 40:1
mammographic 830 5 2 no no
mfeat-factors 2000 216 10 no no
mfeat-fourier 2000 76 10 no no
mfeat-karhunen 2000 64 10 no no
mfeat-morpho 2000 6 10 no no
mfeat-pixel 2000 240 10 no no
mfeat-zernike 2000 47 10 no no
molecular-biology 106 57 2 no no
monk-2 432 6 2 no no
mushroom 5644 22 2 no no
musk-1 476 167 2 no no
musk-2 6598 167 2 no 5:1
new-thyroid 215 5 2 no 5:1
nursery 12960 8 5 no 2160:1
optdigits 5620 64 10 no no
ozone 2536 72 2 no 33:1

Continued on next page
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Table 1 – Continued from previous page
Dataset Instances Attributes Classes Noisy Imbalance
page-blocks 5473 10 5 no 175:1
parkinsons 195 22 2 no no
pendigits 10992 16 10 no no
phoneme 5404 5 2 no no
pima 768 8 2 no no
pima-10an-nn 768 8 2 yes no
pima-20an-nn 768 8 2 yes no
pima-5an-nn 768 8 2 yes no
planning 182 12 2 no no
plant-margin 1600 64 100 no no
plant-shape 1600 64 100 no no
plant-texture 1599 64 100 no no
postoperative 90 8 3 no 32:1
primary-tumor 339 17 22 no 84:1
saheart 462 9 2 no no
segment 2310 19 7 no no
solar-flare-1 323 5 6 no 11:1
solar-flare-2 1066 12 6 no 7:1
sonar 208 60 2 no no
soybean 683 35 19 no 11:1
spambase 4601 57 2 no no
spectfheart 267 44 2 no no
spectrometer 531 101 48 no 29:1
splice 3190 60 3 no no
sponge 76 44 3 no 23:1
tae 151 5 3 no no
tic-tac-toe 958 9 2 no no
vehicle 846 18 4 no no
vehicle0 846 18 2 no no
vehicle1 846 18 2 no no
vehicle2 846 18 2 no no
vehicle3 846 18 2 no no
vertebral2 310 6 2 no no
vertebral3 310 6 3 no no
vote 435 16 2 no no

Continued on next page
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Table 1 – Continued from previous page
Dataset Instances Attributes Classes Noisy Imbalance
vowel 990 13 11 no no
wall-following 5456 24 4 no 6:1
waveform 5000 40 3 no no
weather 14 4 2 no no
wine 178 13 3 no no
wine-5an-nn 178 13 3 yes no
winequality-red 1599 11 6 no 68:1
winequality-white 4898 11 7 no 439:1
wisconsin 683 9 2 no no
yeast 1484 8 10 no 92:1
yeast1 1484 8 2 no no
yeast3 1484 8 2 no 8:1
zoo 101 16 7 no 10:1

525

In the adopted datasets, the number of attributes ranges from 2 to 262,526

the number of decision classes from 2 to 100, and the number of instances527

from 14 to 12,906. These ML problems involve 13 noisy and 47 imbalanced528

datasets, where the imbalance ratio ranges from 5:1 to 2160:1. In order to529

avoid the out-of-range issues in the adopted heterogeneous distance func-530

tions, the numerical attributes have been normalized. On the other hand, we531

replaced missing values by the mean or the mode depending if the attribute532

is numerical or nominal, respectively.533

Each dataset has been partitioned using a 10-fold cross-validation proce-534

dure, i.e., the dataset has been split into ten folds, each one containing ap-535

proximately 10% of the instances. For each fold, a ML algorithm is trained536

with the instances contained in the training partition (9 folds) and then537

tested with the current fold. It should be mentioned that test partitions are538

kept aside to evaluate the performance of the learned model.539

6.2. State-of-the-art classifiers used for comparison540

In this subsection, we outline the classifiers adopted for benchmarking541

purposes. The variants and default parameter settings implemented in Weka542

v3.6.11 [57] have been retained throughout the simulations. It should be high-543

lighted that these default parameter values are common across all datasets,544

thus no algorithm performs hyperparameter tuning.545
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As Triguero et. al. [58] stated, a good choice of parameter values increases546

the algorithms’ performance over different data sources. Nevertheless, a ro-547

bust model should allow good-enough results to be obtained even when its548

parameters might not have been optimized for a specific dataset. Observe549

that robustness is not a requirement for accuracy since we can optimize the550

model parameters and produce higher prediction rates, but it also increases551

the computational complexity of setting up the classifier.552

In spite of the above facts, the key reason behind the decision of not per-553

forming hyperparameter learning relies on the aim of our research, namely:554

to suppress the parametric requirements when constructing a Rough Cognitive555

Network. Accordingly, the following simulations focus on examining the pre-556

diction capability of the ensemble model against well-established classifiers,557

even when no algorithm undergoes parameter tuning.558

The classifiers used for comparison are: Decision Table (DT) [59], Naive559

Bayes (NB) [60], Naive Bayes Updateable (NBU) [60], Support Vector Ma-560

chines (SMO) with sequential minimal optimization algorithm [61], Multi-561

layer Perceptron (MLP) [62], Simple Logistic (SL) [63], Decision Tree (J48)562

[64], Fast Decision Trees (FDT) [65], Best-first Decision Trees (BFT) [66],563

Logistic Model Trees (LMT) [67], Random Trees (RT) [68], Random Forests564

(RF) [18], k-nearest neighbors learner (kNN) [69], K∗ instance-based classi-565

fier (K*) [70] and Locally Weighted Learning (LWL) [71].566

In the case of RCN variants, we set the similarity threshold to ξ = 0.98567

for all datasets while the similarity threshold ξi associated with the ith base568

classifier is uniformly distributed in the [0.96, 1) interval. Aiming at reducing569

the complexity of the granular ensemble, we employed N = 10 base classifiers570

in the subsequent numerical simulations.571

6.3. Determining the best-performing granular classifier572

The first simulation focused on determining the best-performing granular573

model. With this goal in mind, we evaluated the prediction capability of574

standard RCNs, the ensemble model without bagging (RCE) and the ensem-575

ble model performing instance bagging (RCB) across three heterogeneous576

distance functions. Figure 3 displays the average Cohen’s kappa coefficient577

achieved by each ML algorithm. The Cohen’s kappa coefficient [72] measures578

the inter-rater agreement for categorical items. It is usually deemed a more579

robust measure than the standard accuracy since this coefficient takes into580

account the agreement occurring by chance.581
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Figure 3: Average Kappa measure computed by the rough classifiers.

In order to examine the existence of statistically significant differences582

in performance, we computed the Friedman two-way analysis of variances583

by ranks [73]. The Friedman test is a multiple-comparison nonparametric584

statistical method that detects whether at least two of the samples in a585

group represent populations with different median values or not. The test586

suggests rejecting the null hypothesis H0 (p-value = 7.989819E − 11 < 0.05)587

using a confidence interval of 95%. This implies that there exist statistically588

significant performance differences between at least two algorithms across589

all the selected datasets. Figure 4 shows the rank values computed by the590

Friedman test, where the RCB algorithm using the HVDM distance function591

emerged as the best-ranked granular classifier.592

Figure 4: Friedman’s rank for the rough classifiers.
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The next step is to determine whether the superiority of the RCB-HVDM593

classifier is statistically significant or not. By doing so, we resorted to the594

Wilcoxon signed rank test [74] and several post-hoc procedures to adjust the595

p-values, as recently suggested Benavoli et al. [75]. The post-hoc procedures596

are required since in pairwise analysis, if we try to draw a conclusion involving597

more than one pairwise comparison, we accumulate an error coming from598

their combination. Therefore, we are losing control on the Family-Wise Error599

Rate, defined as the probability of making one or more false discoveries among600

all the hypotheses associated to multiple pairwise tests.601

Table 2 reports the unadjusted p-value computed by the Wilcoxon signed602

rank test as well as the corrected p-values associated with each pairwise com-603

parison using RCB-HVDM as the control method. We assume that a null604

hypothesis H0 can be rejected if at least one of the adopted post-hoc proce-605

dures supports the rejection. The statistical analysis supports the superiority606

of the RCB-HVDM classifier as all the conservative hypotheses were rejected,607

save for the one concerning to the RCB-HMOM vs. RCB-HVDM pair. This608

suggests that RCB-HMOM and RCB-HVDM perform comparably although609

the RCB-HMOM algorithm is ranked first.610

Table 2: Adjusted p-values according to different post-hoc procedures using the best-
performing ensemble classifier (RCB-HVDM) as a control method.

Algorithm p-value Bonferroni Holm Holland Hypothesis
RCN-HEOM 6.67E-10 5.33E-09 5.33E-09 5.33E-09 Rejected
RCN-HVDM 3.44E-08 2.75E-07 2.40E-07 2.40E-07 Rejected
RCN-HMOM 5.59E-08 4.47E-07 3.35E-07 3.35E-07 Rejected
RCE-HEOM 1.75E-06 1.40E-05 8.76E-06 8.76E-06 Rejected
RCE-HVDM 0.001107 0.008861 0.004430 0.004423 Rejected
RCE-HMOM 0.003157 0.025261 0.009473 0.009443 Rejected
RCB-HEOM 0.010440 0.083525 0.020881 0.020772 Rejected
RCB-HMOM 0.848561 1.000000 0.848561 0.848561 Accepted

Figure 5 displays the impact of using (a) different heterogeneous distance611

functions and (b) different ensemble strategies. From this figure we can for-612

malize two key conclusions. First, performing instance bagging is convenient613

regardless of the underlying distance function. Second, it seems that selecting614

an ensemble scheme may reduce the negative effects of using a non-optimal615

distance function for a particular dataset.616
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(a) Distance function. (b) Ensemble scheme.

Figure 5: Average Kappa measure according to different criteria.

The above simulations confirm the superiority of the RCE-based models617

over the base RCN classifier. Furthermore, the proposed ensemble classifier618

removed the need for an RCN parameter tuning stage, which became one of619

the main motivations of this study.620

6.4. Comparison against state-of-the-art classifiers621

In this subsection, we compare the prediction ability of the best-performing622

granular ensemble (RCB-HVDM, hereinafter simply called RCE) against the623

traditional classifiers mentioned in Section 6.2. Analogously to the previous624

simulations, we utilized Cohen’s kappa coefficient to quantify the algorithms’625

performance. Figure 6 portrays the average Kappa measure attained by each626

algorithm across the 140 problems in our testbed.627

Figure 6: Average Kappa measure computed by adopted classifiers.
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For this experiment, the Friedman test suggests rejecting the null hypoth-628

esis (p-value = 1.519139E − 10 < 0.05) using a confidence level of 95%, thus629

there are significant differences between at least two algorithms across the630

selected datasets. Figure 7 shows the rank values computed by the Friedman631

test. From these results, it is clear that LMT is the best-ranked algorithm,632

RCE is the fourth-best ranked, whereas LWL is the worst one. LMT refers to633

logistic model trees, i.e., classification trees with logistic regression functions634

at the leaves while LWL is an instance-based classifier that employs locally635

weighted linear regression to make predictions.636

Figure 7: Friedman’s ranking for adopted classifiers.

Table 3 shows the p-values reported by the Wilcoxon signed rank test637

and the corrected p-values according to the post-hoc procedures using the638

granular ensemble (RCE) as the control method. The results point to the639

fact that LML stands as the best-performing classifier in our study, with no640

significant differences spotted between our proposal and RF, MLP, SL and641

J48, as the null hypothesis was accepted in each of these pairwise compar-642

isons. Note however that SL and J48 report slightly lower Kappa measures.643

More importantly, the granular ensemble is capable of outperforming the re-644

maining classifiers. This confirms the reliability of the granular ensemble in645

solving ML problems with a wide range of features.646

The last experiment is oriented to characterizing those problems for which647

RCEs constitute the best algorithmic choice. Nevertheless, detecting these648

features manually from a table comprising 140 datasets and 15 algorithms is649

quite challenging and may lead to misleading conclusions.650
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Table 3: Adjusted p-values according to different post-hoc procedures using the proposed
ensemble classifier (RCB-HVDM) as a control method.

Algorithm p-value Bonferroni Holm Holland Hypothesis
LWL 3.22E-19 4.83E-18 4.83E-18 0.000000 Rejected
RT 3.11E-12 4.66E-11 4.35E-11 4.35E-11 Rejected
DT 6.67E-10 1.00E-08 8.67E-09 8.67E-09 Rejected

NBU 8.75E-08 1.31E-06 1.05E-06 1.05E-06 Rejected
kNN 4.47E-07 6.70E-06 4.91E-06 4.91E-06 Rejected
FDT 1.52E-06 2.28E-05 1.52E-05 1.52E-05 Rejected
NB 8.06E-05 0.001210 7.26E-04 7.25E-04 Rejected

SMO 0.000469 0.007038 0.003753 0.003747 Rejected
K* 0.000471 0.007072 0.003753 0.003747 Rejected

BFT 0.000510 0.007649 0.003753 0.003747 Rejected
LMT 0.000997 0.014962 0.004987 0.004977 Rejected
J48 0.059231 0.888460 0.236922 0.216691 Accepted
RF 0.399342 1.000000 1.000000 0.783288 Accepted
SL 0.486293 1.000000 1.000000 0.783288 Accepted

MLP 0.990836 1.000000 1.000000 0.990835 Accepted

Metalearning is a subfield of ML where automatic learning algorithms651

are applied on metadata concerning classification/prediction simulations. Al-652

though different researchers hold different views as to what the term exactly653

means, the main goal is to use such metadata (i.e., problems’ features) to un-654

derstand how learning models can become flexible in solving different kinds655

of classification problems [76]. Moreover, under the proper conditions, meta-656

learning also allows detecting the features on which a specific algorithm may657

outperform a set of baseline classification models.658

In some scenarios, it is enough to predict whether the algorithm under659

analysis will be successful or not, while in others the purpose is to understand660

why the algorithm behaves the way it does.661

In this paper, we use the well-known kNN classifier [69] as baseline algo-662

rithm since both belong to the same family (i.e., instance-based classifiers).663

The ML metadata include five features, namely: the number of instances,664

number of attributes, number of classes, whether the problem is noisy or not,665

and the imbalance ratio. Moreover, we consider a decision attribute with two666

classes (P - positive, N - negative). Observe that this dataset will comprise667

the algorithms’ behaviors for adopted problems.668
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Therefore, a ML problem will be labeled as positive if the proposed algo-669

rithm was capable of outperforming the baseline classifier, otherwise it will670

be labeled as negative. More explicitly, we assume that an instance is positive671

if κ(RCE) − κ(kNN) ≥ 0.05, with κ(.) denoting the kappa coefficient for a672

particular problem. If κ(RCE)−κ(kNN) ≤ −0.05 then the instance is labeled673

as negative, while those problems where −0.05 < |κ(RCE)− κ(kNN) < 0.05674

were not included in the new dataset in order to increase the separability675

between instances used to build the metaclassifier.676

For instance, the audiology problem includes 226 objects, 69 attributes, 24677

decision classes and it does not involve noisy features, but a high imbalance678

degree (57:1). Since κ(RCE) = 0.75 and κ(kNN) = 0.59 we can infer the679

synthetic instance: “226, 69, 24, no, high, P”. Following the same procedure,680

we obtain an artificial ML dataset comprising 63 instances (i.e., 47 labeled681

as positive and 16 labeled as negative). From this knowledge we can identify682

when our classification model is the best choice.683

The next step focuses on training a decision tree classifier [64] to predict684

whether the ensemble will be adequate for solving a new ML problem or not.685

More importantly, decision tree classifiers allow deriving rules to interpret686

the prediction results. Figure 8 displays the unpruned decision tree obtained687

after running the underlying learning scheme.688

Figure 8: Decision tree characterizing the ensemble performance.
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The decision tree classifier yielded an 86% accuracy, which can be in-689

terpreted as the confidence of the derived rule set. Such rules suggest that690

the granular ensemble outperforms the kNN algorithm in rather balanced691

problems, or alternatively in those problems that exhibit a certain imbal-692

ance degree but are defined by a reasonable number of attributes. Moreover,693

the derived rules have shown that our classifier seems to be less sensitive to694

noise, which could be a direct result of performing instance bagging over base695

classifiers with variable granularity levels.696

7. Concluding remarks697

In this paper, we introduced the notion of Rough Cognitive Ensembles as698

an alternative to deal with the hyperparameter learning requirements of the699

RCN algorithm. This granular classifier can be defined as a multiclassifier700

system composed of a set of RCNs, each operating at a different granularity701

degree. Tit should be noticed that inducing different granularity degrees can702

be achieved by using a different similarity threshold for each base classifier.703

On the other hand, we perform instance bagging to reduce the correlation704

coming from the rule ξi ≤ ξj =⇒ R̄(ξj)(x) ⊆ R̄(ξi)(x).705

We conducted an extensive empirical analysis to assess the prediction706

capability of the proposed classifier. The results have corroborated that the707

ensemble model performing instance bagging leads to higher prediction rates708

regardless of the underlying dissimilarity functional. In spite of this fact, the709

HVDM function often reports improved prediction rates.710

From the comparison between the best-performing ensemble model and711

15 state-of-the-art classifiers, we can confirm the reliability of our proposal712

in solving pattern classification problems. The statistical analysis concluded713

that our granular classifier is capable of outperforming most ML algorithms714

while remaining competitive w.r.t. RF, MLP, SL and J48.715

On the other hand, there is no doubt about the statistical superiority of716

RCEs when compared to other well-known instance-based learners. Aiming717

at explaining this behavior, we derived a rule set from a decision tree using718

the kNN learner as baseline classifier. The obtained rules have shown that the719

proposed algorithm performs well in presence of imbalanced classes as long as720

the problem comprises a reasonable number of attributes. In spite of these721

findings, the future research will be focused on exploring other appealing722

theoretical properties behind this novel rough classifier.723
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