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Abstract We present the reduced dynamics of a bead in a Rouse chain which is submerged in a bath
containing a driving agent that renders it out-of-equilibrium. We first review the generalized Langevin
equation of the middle bead in an equilibrated bath. Thereafter, we introduce two driving forces. Firstly,
we add a constant force that is applied to the first bead of the chain. We investigate how the generalized
Langevin equation changes due to this perturbation for which the system evolves towards a steady
state after some time. Secondly, we consider the case of stochastic active forces which will drive the
system to a nonequilibrium state. Including these active forces results in an extra contribution to the
second fluctuation-dissipation relation. The form of this active contribution is analysed for the specific
case of Gaussian, exponentially correlated active forces. We also discuss the resulting rich dynamics of
the middle bead in which various regimes of normal diffusion, subdiffusion and superdiffusion can be
present.

Keywords Rouse model · Active processes · Nonequilibrium reduced dynamics

1 Introduction

Complex systems consisting of a very large number of constituents (e.g. colloidal particles suspended
in a fluid) can, in principle, be deterministically described by Newton’s laws of motion. Despite that,
due to the enormous amount of degrees-of-freedom, the resulting set of equations will not be solvable,
neither analytically nor numerically. However, one is often only interested in the dynamics of one, or
a few, slow variables. We will refer to these variables as “the system”. One can think of the position
of a tagged particle inside a bath of other smaller particles, or the evolution of a reaction coordinate
used to describe the folding of a biopolymer. The equation of motion of the slow variable can then be
obtained by integrating out the fast variables interacting with the slow one. This approach will produce
a closed equation of motion for the slow variable [25]. Such an effective equation of motion is commonly
known as a generalized Langevin equation. Within linear response, the generalized Langevin description
introduces three distinct terms in the effective dynamics of the system: an effective potential, a non-
Markovian friction force and a non-white effective noise. For a system in an equilibrium environment,
the latter two are connected through the (second) fluctuation-dissipation relation.

The simplest example of a generalized Langevin equation is the original Langevin equation intro-
duced by Paul Langevin in 1908 [6]. It gives the reduced dynamics of a Brownian particle in a fluid.
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Fig. 1 Schematic representation of the applied description to acquire the reduced dynamics resulting from the
different baths. OLE stands for original Langevin equation and GLE stands for generalized Langevin equation.

Equating the Newtonian inertial term are two forces, a Stokesian friction force and a thermal white
noise. Both these forces are instantaneous, not influenced by the system’s past, implying that the orig-
inal Langevin equation is a Markovian process for the position of the Brownian particle. This, rather
simple, model is ideal to describe the diffusion of a small particle in a viscous fluid. That is because
the time scale of collisions between the system and fluid particles, which correlates them, is very short.

The effective dynamics we will investigate, are those of a “tagged bead” in a Rouse chain. A Rouse
chain is comprised of masses (or beads) linearly connected by harmonic springs and submerged in a
viscous fluid. It is the simplest model for the dynamics of a polymer [3,14]. One of these beads will
function as our system for which we construct its generalized Langevin equation. The dynamics of our
system is influenced by two baths. First, we have the interaction with the particles of the fluid, which
we refer to as the heat-bath. We apply the original Langevin equation to describe the reduced dynamics
resulting from this bath. This implies that no memory effects will arise. Naturally, the heat-bath not
only couples to the system but also to all other beads. Second, because the tagged bead is part of
a chain, its dynamics depend on the evolution of the rest of the chain, which we call the bead-bath.
Projecting the degrees-of-freedom of the bead-bath on the system will yield a generalized Langevin
equation that represents the reduced dynamics of the system originating from the interaction with
the chain. The bead-bath will therefore impose memory effects, which was to be expected due to the
interconnected nature of the tagged bead and all other beads. Figure 1 gives a schematic representation
on how the reduced dynamics of the tagged bead are acquired from the two baths.

For an equilibrated heat-bath the reduced dynamics of the tagged bead was already derived by
D. Panja [11]. We will first give a short review of his findings. Our work extends these results to a
heat-bath which is not in equilibrium but possesses some driving agent. We investigate two specific
driving agents: a constant force on the first bead and nonconservative active forces.

A Rouse chain is widely known as a model that describes the dynamical properties of a polymer.
A bead in the chain represents a rigid group of monomers. Several experiments study the diffusion
of a tagged monomer when the polymer is surrounded by the complex cellular environment [2,24].
Knowing the effective dynamics of such a monomer is therefore crucial if one wants to interpret the
observed diffusion, which often is anomalous. Furthermore, the cellular environment is certainly not in
equilibrium. The nonequilibrium processes we study are therefore inspired by biological phenomena.
The constant force on the first bead is a model for the process where molecular motors drag a polymer
through the cellular environment in a well defined direction. This dragging takes, for example, place
during cell division where the chromosomes are pulled apart by the mitotic spindle [12]. The active
forces on the other hand model the overall non-thermal stress fluctuations inside cell, resulting from
the action of molecular motors on the cytoskeleton. The precise characterisation of these active forces
inside a cell or amidst in vitro cytoskeletons is a matter of current research [4,7,13]. We will assume
the forces to be Gaussian as was recently shown to be true in artificial actin-myosin networks in a
regime where the number of myosin motors is small [19]. Rouse chains subjected to active Gaussian
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noise have been the focus of several recent papers [10,16,17,20], but so far the equation of motion of
a tagged bead was not yet investigated.

2 From Rouse Model to Generalized Langevin Description

A Rouse chain is a simple model for a polymer devised by Prince E. Rouse in 1953 [14]. It comprises
of N beads with mass m linearly connected by harmonic springs with spring constant k. This chain is
submerged in a viscous heat-bath at temperature T and with friction coefficient γ. The motion of the
nth bead, with n = 1, 2, . . . , N , is given by the original Langevin equation. The position of this bead
is given by vector Rn ∈ IR3, and thus we have

m R̈n(t) = −k
(

2Rn(t)−Rn−1(t)−Rn+1(t)
)
− γ Ṙn(t) + ξT,n(t). (1)

In order to apply this formula to all beads, one introduces two ghost beads at n = 0 and n = N+1 whose
positions satisfy R0 = R1 and RN+1 = RN . The last two terms on the right-hand side of equation
(1) represent the (reduced) interaction of the nth bead with the heat-bath. They are, respectively, the
Stokesian friction force and thermal agitation. These processes are connected through the fluctuation-
dissipation relation which states that 〈ξT,n(t) ·ξT,m(t′)〉 = 6γkBTδ(t− t′)δn,m, with kB the Boltzmann
constant. Furthermore, the thermal noise is assumed to be Gaussian with zero mean. The first term
on the right-hand side originates from the harmonic interaction of the springs. If we assume to be in a
low Reynolds number regime, we can apply the overdamped limit to this equation, i.e. m/γ � 1. This
implies that the inertial term on the left-hand side of relation (1) is negligible and therefore drops out.

To acquire the reduced dynamics of a particular tagged bead, one can eliminate all other degrees-of-
freedom from the set of equations of motion that expression (1) entails. This can be done by a change
of variables to normal coordinates (see [3]). This effectively projects the dynamics of all beads on the
dynamics of the tagged bead. It leads to an equation of motion known as the generalized Langevin
equation of the system (i.e. the tagged bead). This calculation was first performed in [11] for the limit
where n is taken as a continuous variable. We give the more general result of a discrete chain. The
detailed derivation can be found in chapter 6 of [23]. A summary of the calculation is given in the
appendix below. Here, we provide a short overview of the main results.

Consider a Rouse chain of N = 2M+1 beads, the reduced dynamics of the position r(t) = RM+1(t)
of the middle bead obeys the following generalized (overdamped) Langevin equation [11]

γ ṙ(t) = ξT (t)−
∫ t

0

dτ K(t− τ) ṙ(τ) + Φ(t). (2)

The term on the left-hand side and the first term on the right-hand side of this equation are the viscous
friction and thermal white noise acting on the middle bead, which already appeared in equation (1) and
which have not been integrated out (they are, in fact, the projected variables of the heat-bath). The
other two forces on the right-hand side of the equation of motion originate from the complex interaction
with the remaining 2M beads. The convolution integral represents a non-Markovian friction on the
middle bead. The past velocity profile of the bead influences the present friction, this influence is
characterized by a memory kernel K(t). The memory kernel is a large sum over decaying exponentials

K(t) =
8k

N

M∑
p=1

cos2
(

(2p− 1)π

2N

)
exp(−t/τp). (3)

The characteristic times of the exponentials are given by τp = γN2/(kπ2(2p − 1)2) for large N . The
slowest time τ1 ∼ N2 is referred to as the Rouse time and it is physically related to the time for the
polymer to diffuse over its own radius of gyration. It can be shown that for large N this kernel has
the following approximate form K(t) ≈

√
4γk/π exp(−t/τ1) t−1/2, i.e. it displays an initial power-law

decay followed by a decaying exponential. The last term in the equation of motion is the effective
noise. An explicit expression of Φ(t) is given in the appendix. Using that expression it can be shown
that the effective noise is a Gaussian centered random variable whose correlation is connected to the
non-Markovian friction through the fluctuation-dissipation relation. We have

〈Φ(t) ·Φ(t′)〉 = 3kBTK(|t− t′|). (4)
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From this equation it is clear that the effective noise is not white but correlated through time, i.e. it
is coloured noise. Just as previous velocities of the system can influence its present friction, so will
effective noise from the past have effect on the present effective noise. Both effects are dictated by
the memory kernel. Because both noise terms, thermal and effective, obey the fluctuation-dissipation
relation, the system will surely reach thermal equilibrium. Notice that in this case, the bead-bath does
not produce an effective potential on the middle bead.

Two points need to be made about result (2). Firstly, as remarked in the introduction, a generalized
Langevin equation for a slow variable is usually derived within linear response theory. As the Rouse
model is linear, expression (2) is the full exact result. Secondly, the thermal noise ξT,n(t) only con-
tributes to Φ(t), not to the memory kernel K(t). Mathematically this can be traced to ξT,n(t) being a
nonhomogeneous term in the set of equations (1). Adding other nonhomogeneous terms will therefore
only lead to modifications of the noise-term of equation (2).

In the following two sections, we will assume that the heat-bath, in addition to the friction and
thermal forces, also possesses some driving force that will pull our system away from equilibrium.
First, we look at a constant force which is applied to the first bead. This force is conservative, but its
potential does not have a minimum. Therefore, the system will not thermalize but rather arrive at a
steady state after some characteristic time. The regime before the steady state, where the whole chain
responds to the new force, is called the transient phase. Second, we assume the heat-bath exerts, apart
from the thermal random forces, active random forces.

3 Constant Force

Applying a constant force to the first bead will add an extra term to equation (1). This term is given
by fn(t) = fH(t)δn,1ex. The strength of the force is determined by f and the Heaviside function H(t)
ensures that the force is turned on at t = 0. The arbitrary direction of the force is in the positive
x-direction. The effect of such a term on the motion of a bead was already investigated by T. Sakaue
[15]. We will however approach the problem from a slightly different angle.

Taking into account this force during the elimination of the bead-bath variables leads to the fol-
lowing reduced dynamics of the middle bead

γ ṙ(t) = ξT (t)−
∫ t

0

dτ K(t− τ) ṙ(τ) + Φ(t) +F(t). (5)

The new term on the right-hand side of this equation of motion represents the gradual increase of the
constant force’s influence on the middle bead. This effective force is given by (see [23] for the entire
derivation)

F(t) =
2f

N

M∑
p=1

(−1)p cos

(
(2p− 1)π

2N

)
cot

(
(2p− 1)π

2N

)[
exp(−t/τp)− 1

]
H(t) ex. (6)

It is clear that when the elapsed time is much shorter than the smallest characteristic time, i.e. t� τM ,
the effective force on the middle bead is essentially zero. The constant force has not yet had time to
propagate through the chain to reach the middle bead, leaving this bead unaware of its presence. So
for such early times we retrieve the equilibrium generalized Langevin equation (2), implying that the
system remains thermalized. When the force does reach the tagged bead, the system will undergo a
transient phase where the effective force on it will build up. We refer to [15] and [21], for a discussion
on the resulting time-evolution of the system. For long times, t � τ1, the effective force takes on a
constant value, causing the system to acquire a steady state velocity (see [21] for a discussion on this
velocity). This constant value should be equal to the original applied force since it has fully propagated
the chain. We indeed find this to be true for N � 1

F(t� τ1) = −2f

N

M∑
p=1

(−1)p cos

(
(2p− 1)π

2N

)
cot

(
(2p− 1)π

2N

)
ex = −2f

N
(−M)ex = f ex. (7)

Figure 2 shows the time-evolution of the effective force’s magnitude compared to that of the constant
force. It is a numerical evaluation of relation (6). As expected, the effective force is, for early times, zero
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Fig. 2 Lin-log plot of the ratio of the effective force to the constant force as a function of time. We have
F (t) = |F(t)|. The vertical dotted line indicates the longest characteristic time τ1. The horizontal dotted line
is drawn at F/f = 1/2. The number of beads is N = 1025, also kBT = γ = 1 and k = 3, so τM/τ1 ≈ 10−6.

and for long times it is equal to f . It reaches about half of its final value at the longest characteristic
time τ1. In fact, in [21] it was shown that the effect of the force diffuses through the chain, so that the
time to reach the middle bead is of the order (N/2)2, i.e. this time is of the order of the Rouse time.

4 Active Forces

We now assume that in addition to thermal noise, the beads also feel active random forces. These could
arise from the interaction of the polymer with active Brownian particles as was investigated in recent
simulations [5,18,26]. Or they could represent active forces on a biopolymer immersed in a cell or in
an artificial cytoskeleton [1]. To model this process, we add a stochastic term, ξA,n(t), to the equations
of motion (1). We first consider the general case where this new random force is Gaussian distributed
with zero mean and a correlation that is a function of the absolute difference in time and uncorrelated
between different beads

〈ξA,n(t) · ξA,m(t′)〉 = A(|t− t′|)δn,m(1− δn,M+1). (8)

The second delta assumes that the active random forces do not couple to the tagged bead. Extending
the model to one where they do couple is trivial and does not yield conceptually different results.
After eliminating the degrees-of-freedom of the chain, one finds that the expression of the generalized
Langevin equation (2) still holds. There is no change in the friction term, the kernel K(t) is still given
by equation (3). The full expression for the noise Φ(t) in this case is again given in the appendix. It
remains a centered Gaussian random variable. However, the correlation of the effective noise will be
seriously affected. In a steady state regime, where t and t′ are large, the correlation has the following
expression

〈Φ(t) ·Φ(t′)〉neq = 3kBT
(
K(|t− t′|) +K+(t, t′)

)
. (9)

As can be seen, the correlation of the effective noise now comprises of two terms, the entropic
memory kernel K(t) from the equilibrium bath and a new memory kernel K+(t, t′). At first sight, it
may appear surprising that the active forces only modify the correlation of Φ(t). This is because the
active forces in equation (1) do not couple to the dynamical variables Rn(t), they only appear as a
nonhomogeneous term. If there would be a direct coupling between the active noise and the position of
the beads, the former would also modify the kernel K(t). From this expression we clearly see that the
effective noise no longer obeys the fluctuation-dissipation relation, because no corresponding dissipative
term exists for K+(t, t′). Disobeying this relation results in a drift away from thermal equilibrium, hence
the subscript “neq” which indicates the nonequilibrium character of this correlation. Result (9) is of
the same form as that recently derived by C. Maes [8,9] in a study of the second fluctuation-dissipation
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relation out of equilibrium. In that work, K+(t, t′) is referred to as the frenetic contribution and could
be related to a change in dynamical activity of the fast variables. In our case, such an interpretation
is not obvious to us. We therefore call K+(t, t′) simply the “active contribution”. It is given by

K+(t, t′) =
8k2

3γ2kBTN

M∑
p=1

S2p
∫ t

0

dτ

∫ t′

0

dτ ′A(|τ − τ ′|) exp(−(t− τ)/τp) exp(−(t′ − τ ′)/τp), (10)

where Sp = sin ((2p− 1)π/N).
The above expression for the active contribution can be solved for some specific forms of the

correlation A(t) of the new random force. Here we will present the case where the driving force is
characterized by an exponential correlation because of its relevance for a polymer in a bath of active
Brownian particles or in an actin-myosin network [7]. We assume

A(|t− t′|) = 3C exp(−|t− t′|/τA). (11)

These active random forces can be understood as directionally persistent forces of characteristic
strength

√
C and persistence time τA. This time gives the average time over which these random

forces maintain their direction, after which they choose an uncorrelated new direction. After a lengthy,
yet elementary, calculation one finds

K+(|t− t′|) =
8Ck2

γ2kBTN

M∑
p=1

τ2p S2p
1− (τp/τA)2

[
exp(−|t− t′|/τA)−

(
τp
τA

)
exp(−|t− t′|/τp)

]
. (12)

Just as the equilibrium memory kernel, the active contribution is a sum over exponentials and only a
function of the absolute difference in time. It is possible to approximate this expression when we allow
some assumptions on the active forces characteristics to be made.

4.1 Large persistence time

When τA � τ1, we find the following simple form for the active contribution

K+(|t− t′|) =
CN

kBT
exp(−|t− t′|/τA). (13)

We used here that
∑M
p=1(τpSp)2 = γ2N2/8k2 for large N . This expression can be understood in the

following way: in the previous section, on the constant force, we found that a force on a bead needs
a duration of order τ1 to fully reach the middle bead (see figure 2). Because the persistence in a
particular direction of these active forces is indeed much longer than τ1, they act like a constant force
for a considerable amount of time. Therefore, all beads fully transpose the active force on them to the
middle bead, yielding N times equation (11). The nonequilibrium effective noise subsequently becomes

〈Φ(t) ·Φ(t′)〉neq = 3kBT K(|t− t′|) +NA(|t− t′|). (14)

This result is general for any function A(t) that decays with a typical time scale τA � τ1. One can
interpret this result as two effective noises. The first is the equilibrium thermal random force, governed
by memory kernel K(t). The second is the original active force that acts on every bead, but enhanced
by a factor N .

4.2 Small persistence time

When we take τA � τM in equation (12), we can do the following

K+(|t− t′|) = − 8Ck2

γ2kBTN

M∑
p=1

τ2A S2p
[
exp(−|t− t′|/τA)−

(
τp
τA

)
exp(−|t− t′|/τp)

]
. (15)
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Using the definition of the equilibrium memory kernel (3) and applying
∑M
p=1 S2p ≈ N/4 for large N ,

results in

K+(|t− t′|) = −2τ2ACk
2

γ2kBT
exp(−|t− t′|/τA) +

τA C

γkBT
K(|t− t′|). (16)

The first term in this expression can be neglected since the persistence time τA is very small. The
nonequilibrium effective noise becomes

〈Φ(t) ·Φ(t′)〉neq = 3kBT∗K(|t− t′|), (17)

with kBT∗ = kBT + τAC/γ. We thus find an effective noise that has an equilibrium expression but
with a higher effective temperature than the case where no active forces are present. The system will
therefore appear to thermalize under this new temperature. The reason for this behaviour is because
the low-persistence-time active forces mimic the thermal noise ξT,n(t) on the beads. Applying a well
known representation of the Dirac delta function

δ(x) = lim
ε→0

1

2ε
exp(−|x|/ε), (18)

the correlation of the active forces (i.e. equation (8) together with equation (11)) indeed becomes
approximately equal to 6τACδ(t − t′)δn,m. The two Gaussian white noises, thermal and active, can
thus be combined into one: ξn(t) = ξT,n(t)+ξA,n(t). Naturally, this new random force is also Gaussian
distributed with zero mean. Its correlation is

〈ξn(t) · ξm(t′)〉 = 6γ

[
kBT +

τA C

γ

]
δ(t− t′)δn,m. (19)

When using this noise in equation (1) instead of ξT,n(t), it is clear that we can redo the equilibrium
calculations, but assuming the effective temperature T∗. This will also yield the nonequilibrium effective
noise (17) derived above.

Figure 3 shows the numerical evaluation of K(t) and K+(t), equations (3) and (12) respectively.
For very early times, the equilibrium memory kernel is constant. Thereafter, for times up to τ1, this
kernel shows a power-law decay after which it crosses over to an exponential decay, as was mentioned
before. The behaviour of the active contribution K+(t) correctly shows a dependency on the value of
τA. In the left of figures 4 we demonstrate that for small persistence time τA, the active contribution is
indeed equal to the equilibrium memory kernel multiplied by τAC/γkBT . For large persistence time τA
on the other hand, the right of figures 4 shows that K(t) is not exponential for early times while K+(t)
is for all times, corresponding nicely with equation (13). The maximum value of the active contribution
K+(t) never exceeds CN/kBT , which figure 3 clearly shows.

5 Resulting motion of the tagged bead

To find the time-evolution of the middle bead, one should solve equation (2) using the nonequilibrium
version of the fluctuation-dissipation relation (9). Since the equation is linear, this can easily be done
using Laplace transform methods. Alternatively, one could solve the set of equations of motion (1) with
the inclusion of active forces. This alternative derivation was already performed in [20]. In that paper,
the more general case of a Rouse chain moving in a viscoelastic environment and in the presence of
active forces was studied. Little attention was paid to the viscous limit.

Using the results of [20] or by direct solution of equation (2) it is possible to obtain the mean squared
displacement ∆2(t) ≡ 〈(r(t)−r(0))2〉 of the middle bead for the case of exponentially correlated active
noise. The result, with τ̃p = τ(p+1)/2, is given by

∆2(t) =
6

γN

(
kBT +

τA C

γ

)
t+

12 kBT

γN

N−1∑
p=2,even

τ̃p

(
1− exp

(
− t/τ̃p

))
+

6 τ2A C

γ2N

(
exp

(
− t/τA

)
− 1

)

+
12C

γ2N

N−1∑
p=2,even

τA τ̃
2
p

τA − τ̃p

[
τA

τA + τ̃p

(
1− exp

(
− (τ−1A + τ̃−1p )t

))
+

1

2

(
exp

(
− 2t/τ̃p

)
− 1

)]
.

(20)
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Fig. 4 Left: Log-log plot that shows the same three K+(t) curves from figure 3, with τA/τ1 = 10−7, 10−5 and
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Log-lin plot of the two upper K+(t) curves from figure 3, with τA/τ1 = 101 and 103. Also shown are K(t) (solid
black line) and equation (13) (dotted lines).

In absence of active forces (C = 0) only two terms survive. It is well known that for that case there
are three time regimes [3,11]. For t < τM , the bead doesn’t feel the effect of the neighbouring beads
yet, and it diffuses, i.e. ∆2(t) ∼ t. For t > τ1 the bead follows the diffusion of the chain as a whole,
i.e. we have again ∆2(t) ∼ t but with a diffusion constant that is a factor N smaller. Finally, in the
intermediate time regime τM < t < τ1 the bead feels that it is inside a chain leading to a subdiffusion
with an exponent 1/2, i.e. ∆2(t) ∼ t1/2. This behaviour is shown in Fig. 5 (dashed line).

In the presence of active forces the motion is more complicated. We first describe the motion of a
free particle (i.e. a single bead, not constricted by springs) in presence of thermal and exponentially
correlated active forces [22,23]. After a short initial period in which the particle shows normal diffusion,
it will perform superdiffusion with an exponent 2, i.e. ∆2(t) ∼ t2, for the period in which the active
forces are persistent, i.e. t < τA. For t > τA, the free particle will diffuse normally again.

We can now envisage two scenarios. First, consider the case of large persistence times, τA � τ1.
Analogous to the dynamics in absence of active forces, the bead will, for early and long times, behave as
a free particle. However, in contrast to the non-active case, a free particle will display both diffusive and
superdiffusive dynamics. So the bead will first diffuse, then cross-over to superdiffusion with ∆2(t) ∼ t2
and after that it will again diffuse. This behaviour is true for t < τM and t > τ1. For intermediate
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Fig. 5 Mean squared displacement of the middle bead in a Rouse chain in absence of active forces (dashed
line) and in presence of active forces with small persistence time (lower full line, τA/τ1 = 10−7) and large
persistence time (upper full line, τA/τ1 = 10). Also indicated are the different regimes of diffusive, subdiffusive
and superdiffusive behaviour.

times, however, the bead experiences the restrictment of its neighbouring beads. This affects the
superdiffusive regime and yields a superdiffusion with a smaller exponent. In [20], we derived that this
exponent is equal to 3/2. This type of behaviour indeed shows up if we plot ∆2(t) as a function of
time using expression (20) for τA = 10τ1 (figure 5, upper full line). Second, we discuss the case of small
persistence times, τA � τM . Now the bead will only show the behaviour of a free particle for times up
to τA. So, after a short superdiffusive regime, the bead moves like a bead in a chain with only thermal
noise, i.e. subdiffusion ∆2(t) ∼ t1/2 followed by diffusion with an amplitude that is N times smaller.
However, this equilibrium-like behaviour has a somewhat larger prefactor. This is in agreement with
what we learned in the previous section, where the behaviour of the bead could be described in terms
of an effective temperature. This behaviour is shown in figure 5 (lower full line) for τA = 10−7τ1.

6 Conclusions

In the present paper, we studied the equation of motion of a bead in a Rouse chain with a constant
force on the first bead and in an active environment. When the driving agent consisted of the constant
force, we showed how this force propagates through the chain, increasing its influence on the middle
bead. This introduced the middle bead to a transient phase after which it reached a steady state. When
the active forces acted as the driving agent, we found that the fluctuation-dissipation relation picks
up a new memory term. Apart from the equilibrium entropic memory kernel, an active contribution is
added to the correlation of the effective noise. For exponentially correlated active forces, we found that
when the persistence time is large, the active contribution is equal to N times the active correlation on
a particular bead. When the persistence time is small, the system can be described with equilibrium
reduced dynamics at an effective temperature T∗ = T + (τAC/γkBT ). These two regimes lead to two
different possible motions for the tagged bead. For persistence times that are large in comparison with
the Rouse time, various regions of diffusion and superdiffusion are expected. If, on the other hand, the
persistence time is much smaller than the Rouse time, the only effect of the active forces will be that
the motion in absence of active forces (diffusive to subdiffusive ∼ t1/2 to diffusive) is observed but
the amplitude of that motion will be somewhat larger, an effect that can be seen as coming from the
higher effective temperature.

Appendix

In this appendix we give a brief outline of our calculations. For more details we refer to chapter 6
of [23]. We consider a Rouse chain with N = 2M + 1 beads. Their position vectors obey the equation
of motion (1). We will denote the position of the middle bead by r(t) = RM+1(t).
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In order to derive the equation of motion for the middle bead, we introduce left and right normal
coordinates XL

p (t) and XR
p (t) (p = 1, 2, . . . ,M), which are defined as

XL
p (t) =

2√
N

M∑
n=1

Cpn Rn(t), (21)

XR
p (t) = − 2√

N

N∑
n=M+2

Cpn Rn(t), (22)

where the transformation coefficients Cpn are given by

Cpn = cos

(
2p− 1

N

(
n− 1

2

)
π

)
.

A long but straightforward calculation shows that these normal coordinates obey the following equa-
tions of motion

γ Ẋ
L

p (t) = −kλpXL
p (t)− (−1)p

2k√
N
Sp r(t) + fLp (t), (23)

γ Ẋ
R

p (t) = −kλpXR
p (t)− (−1)p

2k√
N
Sp r(t) + fRp (t), (24)

with λp = 4 sin2 ((2p− 1)π/2N), Sp = sin((2p− 1)π/N) and

fLp (t) =
2√
N

M∑
n=1

Cpn ξT,n(t), (25)

fRp (t) = − 2√
N

N∑
n=M+2

Cpn ξT,n(t). (26)

The differential equations (23-24) are uncoupled, linear and nonhomogeneous. They can therefore be
solved immediately. Inverting (21-22), we can write the positions of the beads in terms of the normal
coordinates. This gives (for n = 1, 2, . . . ,M and m = M + 2,M + 3, . . . , N)

Rn(t) =
2√
N

M∑
p=1

Cpn XL
p (t), (27)

Rm(t) = − 2√
N

M∑
p=1

Cpm XR
p (t). (28)

Using these expressions one can easily show that the position of the middle bead evolves according to

γ ṙ(t) = ξT (t)− 2kr(t)− 2k√
N

M∑
p=1

(−1)pSp

(
XL
p (t) + XR

p (t)
)
. (29)

Inserting the solutions of (23-24) gives for the equation of motion of the tagged middle bead

γ ṙ(t) = ξT (t)− 2kr(t)− 2k√
N

M∑
p=1

(−1)pSp

[(
XL
p (0) + XR

p (0)
)
e−t/τp

+
1

γ

∫ t

0

dτ
(
fLp (τ) + fRp (τ)

)
e(τ−t)/τp − (−1)p

4k

γ
√
N
Sp

∫ t

0

dτ r(τ)e(τ−t)/τp

]
. (30)

The last integral can be rewritten using integration by parts∫ t

0

dτ r(τ)e(τ−t)/τp = τpr(t)− τpr(0)e−t/τp − τp
∫ t

0

dτ e(τ−t)/τp ṙ(τ).
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When we put this back into the equation of motion, we can group some terms and identify them in
the context of the generalized Langevin equation. We finally get

γ ṙ(t) = ξT (t)−
∫ t

0

dτ K(t− τ) ṙ(τ) + Φ(t), (31)

where the memory kernel equals

K(t) =
8k2

γN

M∑
p=1

τpS
2
p e
−t/τp , (32)

and the effective noise is given by

Φ(t) = − 2k√
N

N∑
p=1

(−1)pSp e
−t/τp

[
XL
p (0) + XR

p (0) + (−1)p
4k√
N
τpSp r(0)

+
1

γ

∫ t

0

dτ
(
fLp (τ) + fRp (τ)

)
eτ/τp

]
. (33)

From this definition and the relations (25-26), it can be seen Φ(t) is a Gaussian random variable. Long
yet straightforward calculations can show that the average of this random variable is zero and that its
correlation is given by relation (4).

When active forces ξA,n(t) are added, the calculation proceeds along the same line. The main
difference is that the functions fLp (t) and fRp (t) are modified to include the active forces. The definitions
(25-26) are now replaced by

fLp (t) =
2√
N

M∑
n=1

Cpn

(
ξT,n(t) + ξA,n(t)

)
, (34)

fRp (t) = − 2√
N

N∑
n=M+2

Cpn

(
ξT,n(t) + ξA,n(t)

)
. (35)

With this modified definition, the equations of motion of the normal coordinates are still given by (23-
24) and the equation of motion of the tagged particles is still given by (30). As a result the memory
kernel K(t) is not modified. The only difference is that the extra terms due to the active forces in
(34-35) will lead to a different form for the effective noise correlation. Another calculation then leads
to the results for the noise correlation given in the main text, i.e. the expressions (9) and (10).
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