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Abstract

We present an interior penalty discontinuous Galerkin scheme for a two-phase flow model
in heterogeneous porous media. The model includes dynamic effects and discontinuities in
the capillary pressure. We define the interface conditions arising across material interfaces
in heterogeneous media and show how to account for capillary barriers. We numerically
approximate the mass-conservation laws without reformulation, i.e. without introducing a
global pressure. We prove the existence of a solution to the emerging fully discrete systems,
show the convergence of the numerical scheme, and obtain error-estimates for sufficiently
smooth data. We also present a linearization scheme for the non-linear algebraic system
resulting from the fully discrete discontinuous Galerkin approximation of the model. The
linearization scheme does not require any regularization step. Additionally, in contrast with
Newton or Picard methods, the linearization scheme does not involve computation of deriva-
tives. Finally, to validate our theoretical findings and to show the scope of the applicability of
the scheme, we present 1D and 2D numerical examples in realistic settings for homogeneous
as well as heterogeneous porous media. We rigorously prove that the scheme is robust and
linearly convergent.
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Chapter 1
Introduction

Flow and transport processes in porous media are of high interest in many different fields
of application, e.g., geological CO2-storage [Nordbotten and Celia, 2011], environmental
pollution [Radu and Pop, 2011], designing of diapers [Diersch et al., 2010], filters, etc. In
light of their relevance, it is essential to develop a better understanding of such systems. Ex-
perimental studies are an important and indispensable tool to understand the behaviour of
these processes. However, experimental studies are not always possible, nor feasible. Math-
ematical modelling and simulation tools, relying on mathematical and numerical analysis,
provide an attractive alternative towards studying these processes with minimal societal and
environmental impact.

In this context, porous media models have been developed for describing flow and transport
processes at various scales [Bear, 2013; Helmig, 1997], and many different simulation and
discretization techniques have been proposed in the literature. An important property of the
porous media flow models is the local mass conservation. It is, therefore, desirable that
the numerical schemes used for approximating these models reflect this property. Important
classes of methods that are locally mass-conservative include finite volume methods [Eymard
et al., 2003; Helmig, 1997], mixed finite element methods [Durlofsky, 1993; Radu and Pop,
2011; Radu et al., 2015a], and discontinuous Galerkin methods [Bastian, 2014; Bastian and
Riviere, 2003; Ern et al., 2010; Sun and Wheeler, 2005].

Most of the standard models for two phase flow in porous media were traditionally de-
veloped for large scale reservoir simulations, and typically assumed equilibrium conditions
between the two phases. In these models, it is common to neglect the capillary effects, or
to model the capillary effect using nonlinear algebraic relationships between the phase pres-
sure difference and the saturation of one of the phases (commonly, the wetting phase). Such
relationships are obtained experimentally, typically based on measurements that were made
over long times so that the phases are in equilibrium [Helmig, 1997; Nordbotten and Celia,
2011]. Over the last couple of decades, applications involving smaller scales, like labora-
tory scale, have increasingly attracted attention, particularly from the scientific community,
which has lead to efforts in developing new modelling and discretization approaches. The
flow behaviour at these small scales is different from the large field or reservoir scales in the
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sense that it is essentially dynamic, characterized by non-standard effects like hysteresis and
dynamic capillarity. Such effects can explain experimental results like saturation overshoot
[Di Carlo, 2004] that are ruled out by standard models.

In this thesis, we are particularly interested in the dynamic capillarity effects, and consider
the models where the pressure difference - saturation relationship additionally involves a dy-
namic term, as proposed in [Fucik and Mikyska, 2011; Hassanizadeh and Beliaev, 2001;
Hassanizadeh and Gray, 1993; Hassanizadeh et al., 2002]. We refer to these models as
non-standard models. In contrast to standard, equilibrium based porous media flow mod-
els, dynamic (or non-equilibrium) models, i.e. non-standard models, can explain effects like
saturation overshoot and finger-pattern formation, which have been observed experimentally.
The ability of non-equilibrium models to explain the small-scale experimental results as men-
tioned above has been proved by means of mathematical analysis. For example, the occur-
rence of non-monotonic travelling wave profiles depending on the magnitude of the dynamic
capillarity effects has been analyzed rigorously in [van Duijn et al., 2013]. The existence and
uniqueness of weak solutions for such types of models has been proved in [Cao and Pop,
2015, 2016; Fan and Pop, 2011; Koch et al., 2013; Mikelic, 2010; Rätz and Schweizer, 2014]
or [van Duijn et al., 2016].

Compared to the standard models, the non-equilibrium based models encounter additional
problems arising from the non-linear, possibly degenerate equations, which change their type
depending on the choice of the unknowns. Further, the parameters and non-linearities are
location dependent for realistic models in porous media and major difficulties arise when
modelling the coupling between two homogeneous domains since the properties become dis-
continuous over the interface of the homogeneous domains. In order to obtain a consistent
model for this case, it becomes necessary to impose proper and well designed interface con-
ditions to account for the flux and mass conservation as well as the behaviour of the primary
and secondary variables over the interface. The details and a mathematical derivation of these
conditions can be found in [de Neef and Molenaar, 1997; van Duijn and de Neef, 1998; van
Duijn et al., 1995].

Apart from mathematical modelling, the numerical solution of such models is also a chal-
lenging task. Firstly, rigorously designed numerical approximations are necessary to deal
with the highly nonlinear, possibly degenerate models on each homogeneous subdomain. The
numerical approximations for the homogeneous case have been studied over the last decades
with techniques such as finite difference methods [Peszynska and Yi, 2008] finite volume
methods [Cao et al., 2015; Eymard et al., 2003, 2010; Helmig, 1997; Helmig et al., 2007,
2009], finite element methods [Chavent and Jaffre, 1986; Chen, 2001; Koch et al., 2013; Rätz
and Schweizer, 2014], mixed finite element methods [Durlofsky, 1993; Radu and Pop, 2011;
Radu et al., 2015a], and discontinuous Galerkin methods [Bastian, 2014; Bastian and Riv-
iere, 2003; Epshteyn and Riviere, 2009; Ern et al., 2010; Karpinski and Pop, 2017; Sun and
Wheeler, 2005]. Secondly, in order to account for the material discontinuities over the in-
terface, a proper and consistent communication between the homogeneous domains must be
incorporated into the numerical model, as shown by [Kueper and Frind, 1991a,b]. The mate-
rial discontinuities lead to discontinuities in the numerical solution.Pressures, and saturation
can and will show discontinuities over some interface and these have to be properly resolved,
which imposes additional restriction on the techniques and approximation methods that can
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be used. There are different approaches to deal with this issue, like finite volume methods,
finite element techniques extended by mortar methods [Arzanfudi et al., 2014; Cancès et al.,
2009; Enchéry et al., 2006; Helmig et al., 2009; Hoteit and Firoozabadi, 2008], and discontin-
uous Galerkin (dG) methods [Bastian, 2014; Ern et al., 2010; Mozolevski and Schuh, 2013].
A major benefit of dG methods is, that the scheme, in general, provides a discontinuous so-
lution, and inherently includes inter-elemental interface conditions. Therefore, extending the
dG methods to the context of coupling of multiple homogeneous porous medium domains
can be done naturally. The dG methods also have a direct advantage over the cG (continu-
ous Galerkin) methods which are continuous over inter-elemental interfaces, and thus, lead
to either oscillations or unnecessarily smeared out solutions. The dG methods have grown
more popular in the last decades due to their versatility and easy adaptation to include hetero-
geneities, parallelization, and hp-adaptivity. These methods are well developed for standard,
equilibrium based two-phase flow problems [Epshteyn and Riviere, 2009]. In this thesis,
we analyze and implement an interior penalty discontinuous Galerkin (IPdG) method for
the non-standard porous media models involving two phase flow with dynamic capillarity
effects. We also discuss an extension of the IPdG approximation to deal with possible dis-
continuities when solving two phase flow problems in heterogeneous porous media. The
spatial discretization is built on [Bastian, 2014; Ern et al., 2010], and is extended to include
dynamic capillary pressure effects as in [Karpinski and Pop, 2017; Karpinski et al., 2017].
For time discretization, an implicit Euler approximation is used in order to avoid restrictions
on the timestep size due the temporal discretization. We obtain a numerical scheme which is
capable of a proper approximation of heterogeneous porous media, which is comparable to
the results in [Helmig et al., 2007, 2009].

A common approach when dealing with two phase flow models, both standard and non-
standard, is to employ the so-called global pressure, which allows rewriting the system in a
way that some nonlinear factors in the higher order terms become linear [Chavent and Jaffre,
1986]. The advantage of this approach is that the a priori estimates can be obtained separately
for each of the transformed pressures, which can then be used to estimate the saturation. This
approach is detailed in [Epshteyn and Riviere, 2009]. The drawback of this approach lies in
the fact that the global pressure is not a physical quantity, and one needs to post-process the
results for extracting information that is relevant for the actual application. This is often quite
cumbersome for realistic problems. If the mass balance equations are not reformulated in
terms of the global pressure, the model with the original physical unknowns leads to a strong
coupling of the mass balance equations, making it impossible to obtain the a priori estimate
for the pressures directly. Instead, both pressure and saturation need to be estimated simulta-
neously, as done by [Eymard et al., 2003] and [Koch et al., 2013]. In [Eymard et al., 2003],
the estimates were derived for a standard model using finite volume approach, while in [Koch
et al., 2013], the estimates were derived for non-standard model with dynamic capillarity ef-
fects using finite element approach. In this thesis, we derive estimates for phase pressures
and saturation and provide a rigorous convergence proof for an IPdG approximation for a
non-standard two-phase flow model with dynamic capillarity.

The mathematical model in our case is highly non-linear and therefore, very demanding
in terms of the numerical solution. To resolve the non-linearities, the usual methods include
Newton or Picard methods, see e.g. [Bergamaschi and Putti, 1999; Celia et al., 1990; Neu-
mann et al., 2013], a combination of Newton and Picard methods [Lehmann and Ackerer,
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1998; List and Radu, 2016], or iterative IMPES (implicit pressure explicit saturation) [Kou
and Sun, 2010a,b]. The Newton method shows a local convergence with quadratic order,
but only if the initial guess is close enough to the solution, while Picard-iterations are more
robust but show only a linear convergence. For designing Newton or Picard methods for de-
generate problems, as appearing in porous media flows, it also becomes necessary to include a
regularization step. Another noteworthy alternative to Newton’s method, especially for multi-
component flows, is the semi-smooth Newton method [Kraeutle, 2011]. This method has the
advantage that it includes the equilibrium conditions within the nonlinear solver, which leads
to a stable solution strategy. Its drawback, however, is in its relatively high implementation
cost.

As mentioned, the Newton-scheme shows a high convergence order which makes it very
attractive for solving nonlinear problems. However, the Newton-method requires the calcu-
lation of the Jacobian matrix (or at least a proper approximation of it) for any iteration step,
which, in general, is computationally expensive. Additionally, to guarantee the convergence
of the iterations, the initial guess should be close enough to the solution. This aspect was
analyzed in e.g. [Park, 1995] for the mixed finite element discretization for nonlinear elliptic
problems, where they show that the difference between the initial guess and the exact solu-
tion should be of order hd (h being the mesh size and d the dimension of the domain) for
convergence. For parabolic partial differential equations, a straightforward choice for the ini-
tial guess is the solution obtained at the previous time-step. Nevertheless, to ensure that this
is indeed close enough, the time-step must be chosen sufficiently small, again of order hd.
This restriction becomes more severe when degenerate parabolic problems are considered. In
this case, in locations where one of the phases is not present, the permeability of this phase
vanishes leading to singular Jacobian matrices and ill-conditioned linear systems. To avoid
this, it becomes necessary to regularize the problem, i.e. to consider perturbations assuring
that the problem remains non-degenerate. This is an additional source of errors in the system.
More importantly, the restriction on the time step becomes even more severe in this case, as
it additionally involves a small regularization parameter (see [Radu et al., 2006]). Similar
issues appear for reactive flow models with non-Lipschitz rates [Radu and Pop, 2011]. These
issues with the Newton method have motivated the linearization schemes proposed in [List
and Radu, 2016; Pop et al., 2004; Radu et al., 2015a,b; Slodička, 2002, 2005a,b; Yong and
Pop, 1996] for the finite element, finite volume, and the mixed finite element discretization of
porous media flow models. The idea of the linearization scheme is to add an additional term
in the form of

L · (Solution−Current−Iteration− Solution−Old−Iteration),

with L being a parameter that has to be chosen sufficiently large. The robustness of such
schemes (also called L-schemes) for standard porous media flow models is proved in the pa-
pers mentioned above. Although the L-schemes show only a linear convergence, they may
become faster than the Newton method as they do not require the computation of deriva-
tives. Additionally, the L-schemes do not involve any regularization step, and lead to better
conditioned linear systems within each iteration (see [List and Radu, 2016], where also the
possibility of combining the L-scheme with the Newton iteration has been discussed). The
L-schemes may even involve the same matrix for the linear algebraic system, which offers
the possibility to compute its factorization only once per time step.
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Inspired by the above results, in this thesis we also propose a linearly convergent itera-
tive L-scheme for our model, i.e. a non-standard two phase porous media model of pseudo
parabolic type involving a dynamic term in the phase pressure difference - saturation rela-
tionship (the dynamic capillarity). The model formulation for developing this scheme does
not involve any global or complementary pressure, as opposed to the case in [Radu et al.,
2015a,b]. We present a rigorous convergence proof for the L-scheme, and provide numerical
experiments confirming the theoretical findings. These experiments also include heteroge-
neous media. To the best of our knowledge, this is the first time when such a scheme has
been tested for the case of a heterogeneous medium.

Layout of the thesis
In Chapter 2, we introduce our mathematical model for a two phase flow in homogeneous

and heterogeneous porous media with dynamic and discontinuous capillary pressure effects.
In Chapter 3, we develop an interior penalty discontinuous Galerkin (IPdG) based numeri-
cal discretization scheme for our mathematical model. Next, in Chapter 4, we analyze our
discretization scheme and prove the existence of a discrete solution, the energy estimate for
the discrete solution, and the convergence of the scheme. In Chapter 5, we propose a new
linearization method for our IPdG scheme to resolve the non-linearities in the discrete model.
The proposed scheme is based on [Radu et al., 2015b] and [List and Radu, 2016]. Following
this we prove the convergence of the linearization scheme by estimating the errors of the iter-
ation step with the solution at the next time step. Finally, in Chapter 6, we present several 1D
and 2D numerical examples in heterogeneous porous media with and without discontinuous
capillary pressure effects to show the capabilities of our numerical scheme. We conclude the
thesis by summarizing our work and presenting an outlook on the various possibilities for
extending this work in future in Chapter 7.
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Chapter 2
Mathematical model

In this chapter, we introduce our mathematical model for an isothermal two phase flow
in porous media with dynamic capillarity effects. We first describe the model for homoge-
neous media, and then extend it to heterogeneous domains by defining appropriate interface
conditions at the material interfaces.

2.1 Model assumptions

We let Ω ⊂ Rd (d = 2 or 3) be an open bounded polygonal domain (the porous medium) with
boundary Γ and T > 0 a maximal, finite time. Both Γ and T are considered dimensionless.
We consider a Darcy scale model for the flow of two incompressible and immiscible fluids
(one wetting, and one non-wetting) through a porous medium. This is based on the following
assumptions:

- All physical processes are isothermal.
Extension to the non-isothermal case would require solving an additional governing
equation for the temperature. This is done in e.g. [Acosta et al., 2006; Gupta et al.,
2015]. The temperature, however, only negligibly affects the capillary pressure and the
associated dynamic effects. Therefore, in our model, we ignore the temperature.

- Flow velocities lie well within the Darcy regime.
For some special applications, like highly fractured media, where the flow at micro-
scale is possibly turbulent in nature, the Forchheimer’s law can be used instead of the
Darcy’s law. Some examples of such models can be found in [Hornung, 2012].

- Porous matrix is rigid.
For those porous media applications where the deformations of the porous matrix
are large and cannot be ignored, the model can be extended using concepts of poro-
elasticity or poro-plasticity. Some examples can be found in [Bause et al., 2017; Both
et al., 2017; Gupta et al., 2015].

7
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2.2 Governing equations
Under the assumptions stated above, the mathematical model [Helmig, 1997; Nordbotten and
Celia, 2011] includes the mass conservation laws for each phase (the wetting and non-wetting,
denoted by α = w and n, respectively):

∂t(sαφρα) +∇ · (ραuα) = qα . (2.1)

Here, φ denotes the porosity of the medium, ρα the fluid phase densities, sα the saturation of
phase α, and qα the volumetric sources or sinks. It is assumed that the densities are constant
and that system (2.1) can be divided by the densities. Further, uα is the Darcy velocity of the
phase α, given by

uα = −λα(sw)K∇(pα − gzρα) . (2.2)

Here, pα is the pressure of the phase α,K the intrinsic permeability tensor, g the gravitational

constant with the gravitational potential z, and λα =
kr,α
µα

is the mobility function for phase

α, with relative permeability kr,α and dynamic viscosity µα.

Remark 1 Note that in general the intrinsic permeability tensor K can be non-symmetric.
In this thesis, however, we assume K as a symmetric positive definite tensor.

2.3 Closure relationships
The four governing equations presented above contain six unknown quantities, viz. phase

saturations, pressures and velocities of both phases. To close the system we consider two
more conditions:

1. We assume that at any given point only two phases are present in the system, such that,

sw + sn = 1. (2.3)

2. We parameterize the phase pressure difference as a function of saturation similar to the
standard models [Helmig, 1997], and extend this relationship with a term involving the
time derivative of the saturation [Hassanizadeh and Gray, 1993] to include the non-
standard dynamic capillarity effects,

pc := pn − pw = pc(sw, ∂tsw) . (2.4)

2.4 Primary variables
We chose three primary unknowns, viz. wetting phase saturation sw, non-wetting phase
pressure pn, and phase pressure difference pc, and rewrite the above model as a system of
three equations:

− ∂tswφ−∇ · (λn(sw)K∇(pn − gzρn)) = qn,

∂tswφ−∇ · (λw(sw)K∇ (pn − pc − gzρw)) = qw,

pc = pc(sw, ∂tsw). (2.5)

Note: For readability of the proofs in the subsequent sections, we use pw = pn−pc, although
pw is a secondary variable.
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2.5 Constitutive relationships
The constitutive models for the properties of the fluid-matrix interaction, viz. phase pressure
difference (or capillary pressure) pc and relative permeabilities kr,α are described below.

2.5.1 Dynamic effects in the phase pressure difference
The pressure difference across the wetting and non-wetting phase interface is called the

capillary pressure. This pressure difference arises due to balancing of cohesive forces be-
tween the fluids and the adhesive forces between the fluid-matrix interfaces. On a pore scale,
the capillary pressure is inversely related to the radius of the pore-throat. A common as-
sumption in the modelling of two phase flow in porous media is that the distribution of the
two phases inside the pores of the medium is static, and the phase pressure difference de-
pends only on the properties of the medium and the volumetric distribution of the phases.
The models which are built on this assumption are called the standard, equilibrium-based
models. These models relate the phase pressure difference pc and saturation (commonly, the
wetting phase saturation sw) through nonlinear, algebraic functions which are uniquely in-
vertible. Several parameterizations relating pc and sw using medium specific parameters have
been proposed in the literature. Most prominent examples of such parameterizations include
the Brooks-Corey model [Brooks, 1964], and the van Genuchten model [Mualem, 1976; van
Genuchten, 1980]. These standard models are valid whenever the processes are slow enough,
so that the dynamics of the flow, and in particular the redistribution of the phases inside the
pores before achieving equilibrium, can be ignored.

In the recent years, experiments have brought forth some limitations of the equilibrium-
based models. For example, the experiments in [Di Carlo, 2004] showed that non-monotonic
saturation profiles (over-shoots) can be obtained during infiltration processes in a dry porous
medium, and that the amplitude of such over-shoots depends on the flow velocity. Such
results lie beyond the scope of the equilibrium-based models, which would predict monotonic
profiles regardless of the chosen parameterization. Therefore, alternative modelling theories
were required.

To model non-monotonic profiles, several approaches were proposed where the assumption
of a uniquely invertible representation of the capillary pressure relationship was dropped,
and non-equilibrium or dynamic models were introduced to capture the additional effects
observed in the experiments. These models are called the non-standard models. Many non-
standard models have been proposed, amongst others [Barenblatt et al., 2003; Bourgeat and
Panfilov, 1998; Hassanizadeh and Gray, 1993]. An extensive review of these and some other
models can be found in [Manthey, 2006], where also a more detailed explanation of each
model is included.

In this thesis, we focus on the model developed by Hassanizadeh and Gray in [Has-
sanizadeh and Gray, 1979a,b, 1993], which was analyzed from a thermodynamical perspec-
tive in [Hassanizadeh and Beliaev, 2001]. In this model, the equilibrium-based pc-sw re-
lationship was extended by introducing a dynamic damping parameter τ(sw) > 0, which
can depend on the wetting phase saturation, but is often assumed constant. This parame-
ter accounts for the dynamic change of the capillary pressure, leading the a non-equilibrium
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(non-standard) model. The capillary pressure is then defined as:

pc = pc,eq(sw)− τ∂tsw , (2.6)

involving the time derivative of the saturation. Here, pc,eq is the capillary pressure at equi-
librium, and τ accounts for the dynamic effects. We assume τ to be a positive constant. The
additional dynamic term, i.e. τ∂tsw, delays the flow of the wetting phase and forces it first to
build up before the capillary pressure can be overcome. This leads to a non-monotonic flow
behaviour and a droplet formation (over-shoot) at the tip of an infiltration finger.

Other non-standard effects in the capillary pressure relationship, like terms of even higher
order or hysteresis effects, are not accounted for in this thesis, but can be found in e.g. [Cao
and Pop, 2015; Jha et al., 2011; Rätz and Schweizer, 2014].

2.5.2 Relative permeabilities
In this work, we study the dynamic effects only in the phase pressure difference. For relative
permeabilities, we assume that the dynamic effects are negligible, and use the equilibrium-
based models like Brooks-Corey [Brooks, 1964] or van Genuchten [van Genuchten, 1980]
in conjunction with the Mualem and Burdine relations [Burdine, 1953; Mualem, 1976] to
parameterize relative permeabilities as functions of wetting phase saturation.

2.6 Initial and boundary conditions
To complete the system, we use the following initial and boundary conditions:

For all x ∈ Ω and at t = 0,

sw(x, 0) = s0(x) with, s0 ∈ H1(Ω). (2.7)
For all x ∈ Γ and all t ∈ [0, T ],

pc(x, t) = pDc (x) , pn(x, t) = pDn (x) (2.8)

with pDn ∈ H
1
2 (Γ) , pDc ∈ H

1
2 (Γ)

where, s0, pDn , and pDc are given functions. H1(Ω) and H
1
2 (Γ) are Sobolev spaces, on Ω or

Γ respectively. A definition and introduction to Sobolev spaces can be found in [Adams and
Fournier, 2003] or [Evans, 1998]. Note that the boundary value of sw is defined implicitly by
the Dirichlet conditions for pc.

Remark 2 For simplicity, here only Dirichlet boundary conditions are considered. Also, the
boundary values are assumed constant in time.

2.7 Interface Conditions
The model presented above is valid only in homogeneous domains. To extend this model

to heterogeneous domains, consider a very simple heterogeneous porous media consisting
of two distinct homogeneous domains Ωh, and Ωl, separated by a material interface Γ. The



11

subscript l and h refer to a lower and a higher equilibrium capillary pressure, i.e. for each
sw ∈ (0, 1] holds pc,eq,l(sw) ≤ pc,eq,h(sw), respectively. (See figure 2.1.) The lower and
higher capillary pressures correspond to higher and lower absolute intrinsic permeability re-
spectively. At the material interface, due to the different properties, additional conditions
need to be considered.
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Figure 2.1: Equilibrium capillary pressure, with Brooks Correy parameterization. In red
pc,eq,h(·) and blue pc,eq,l(·)

.

For the standard models, the interface conditions have been studied extensively in e.g.
[Bertsch et al., 2003; Buzzi et al., 2009; Cancès, 2008; van Duijn and de Neef, 1998] as well
as [Kueper and Frind, 1991a,b]. In [van Duijn and de Neef, 1998], an analytical solution
was derived and analyzed. (Note that in [van Duijn and de Neef, 1998] lower and higher
refers to the absolute permeability.) An important aspect of flow in heterogeneous media
is that, the flow from the high capillary pressure domain Ωh to the low capillary pressure
domain Ωl is possible only if the capillary pressure on Ωl exceeds the entry pressure on Ωh.
This behaviour is commonly known as a capillary barrier. Numerical methods for modelling
capillary barriers/standard models have been studied by [Arzanfudi et al., 2014; Cancès et al.,
2009; Enchéry et al., 2006; Hoteit and Firoozabadi, 2008]

For the non-standard models, the interface conditions were first studied and extended in
[Helmig et al., 2007, 2009] and [Peszynska and Yi, 2008]. Recently, these interface con-
ditions were analyzed rigorously in [van Duijn et al., 2016]. It was shown that if τ > 0,
under certain conditions, flow of the non-wetting phase from Ωl to Ωh is possible even if the
capillary pressure on Ωl has not exceeded the capillary barrier.

To connect the models on each homogeneous subdomain, the following two conditions
must be satisfied for any flow across the interface:

- continuity of the normal component of the fluxes across the interface, and
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- continuity of the pressures across the interface.

The first condition ensures the conservation of mass flux over the interface and leads to the
following condition:

λα,h(sw,h)Kh∇(pα,h − gzρα) · ~n = λα,l(sw,l)Kl∇(pα,l − gzρα) · ~n, (2.9)

where, ~n is the unit-normal vector pointing into Ωl. The second condition assumes continuity
of the pressures over the interfaces and implies a continuity of the capillary pressure. This
may lead to a discontinuity in the saturations across the interface.

Two distinct values of saturation and capillary pressure may exist at each side of the inter-
face. We denote the values at the interface associated with the domain Ωh as sn,h and pc,h,
and the values at the interface associated with the domain Ωl as sn,l and pc,l. We define the
pressures

pc,e,l := pc,eq,l(1) and pc,e,h := pc,eq,h(1), (2.10)

which will denote the entry pressures. Further, we define the capillary pressure difference
δpc,Γ over the interface Γ by:

δpc,Γ := pc,h(sw)− pc,l(sw) (2.11)

This definition translates directly to the capillary pressure potential pc:

pc,h − pc,l = δpc,Γ . (2.12)

Depending on the chosen parameterization of the capillary pressure, the condition of pressure
continuity is not always valid.

In the case of van Genuchten like parameterization, the pressure continuity has to be always
fulfilled.

In the case of Brooks Correy like parameterization, the pressure continuity holds true only
if both phases are present on both sides of the interface. Otherwise, a capillary barrier exists
across the interface, preventing flow from the domain with low capillary pressure to that
with high capillary pressure. The discontinuity in capillary pressure leads to a discontinuity
in the non-wetting phase pressure, whereas the wetting phase pressure remains continuous
across the interface. Physically this can be attributed to the fact, that a phase pressure has
no meaning when the phase is not present. Therefore the phase pressure differences, i.e. the
capillary pressure becomes meaningless. In the standard model an extension of the capillary
pressure from (0, 1) to [0, 1] is possible due to a continuous extension. In the non standard
model this is not possible, as no unique extension can be chosen due to the dynamic capillary
effect as presented in [van Duijn et al., 2013].

Following [van Duijn et al., 2016], whenever sw,h < 1 and sw,l < 1, the non-wetting
phase is present on both sides of the interface and the following holds on Γ:

pc,eq,l(sw)− τl(sw)∂tsw = pc,eq,h(sw)− τh(sw)∂tsw . (2.13)
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If instead no non-wetting phase is present on Ωh and pc,l < pc,e,h, i.e. not enough non-
wetting fluid is present to overcome the capillary barrier, (2.13) is replaced by

sw,h = 1 . (2.14)

Combining (2.13) and (2.14) this leads to:

(1− sw,h) · (pc,h − pc,l) = 0 . (2.15)

Note that, the dynamic capillary pressure effect results in an ordinary differential equation
over the interface.

We elaborate on the behaviour of the pressures in the following three cases:

A. non-wetting phase is absent on the Ωh side of Γ,

B. non-wetting phase is absent on the Ωl side of Γ,

C. non-wetting phase is present on both sides of Γ.

The behaviour is described only from the perspective of the non-wetting phase.

Case A: In this case, sw,h = 1 and ∂tsw,h = 0, which implies pc,h = pc,e,h. As long
as pc,l(sw,l) < pc,e,h, no flow is possible across the interface. This means that the non-
wetting phase has to accumulate until the capillary pressures are balanced, i.e. pc,l(sw,l) =
pc,h(sw,h). Only after this, the non-wetting fluid can flow into Ωh. This is the capillary
barrier in the standard case, which leads to a jump in the capillary potential pc denoted by
δpc,Γ in (2.12).

In the standard case sw,l decreases towards the threshold value s∗w for which the condition
pc,eq,l(s

∗
w) = pc,e,h holds. In the non-standard case however the entry pressure may be

reached at values sw,l > s∗w, due to the dynamic effects of τ > 0. This leads to scenarios,
where flow is possible which can not be observed in the standard case. This is also described
in detail in [van Duijn et al., 2016].

In this case, the wetting phase is always present on both sides of the interface. This implies
continuity of the wetting pressure potential and leads to the following additional condition on
the non-wetting pressure potential :

pn,h − pn,l = pc,h − pc,l = δpc,Γ . (2.16)

This condition will be used in Section 3.4 when constructing the discontinuous Galerkin
scheme.

Case B: Analogously to case A, here sw,l = 1 and ∂tsw,l = 1, leading to pc,l = pc,e,l. In
this case, pc,h(sw,h) ≥ pc,e,l always holds. Therefore, no capillary barrier occurs and flow
across the interface is directly possible. The pressures are always continuous.

Case C: In this case, the pressure continuity and capillary pressure continuity always hold,
and flow across the interface is always possible.
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Summarizing Cases A, B and C, as well as (2.15) and (2.9), we obtain the following rela-
tions over the interface Γ:

λα,h(sw,h)Kh∇(pα,h − gzρα) · ~n = λα,l(sw,l)Kl∇(pα,l − gzρα) · ~n (2.17)
(1− sw,h) · (pc,h − pc,l) = 0 (2.18)

where, ~n defines the vector normal to the interface. Note that, the condition pc,h(sw,h) =
pc,e,h corresponds to sw,h = 1.

2.8 Notation

The notations below are common in functional analysis [Adams and Fournier, 2003] and
will be used throughout this thesis. Whenever values on Γ are involved, these should be
understood in the sense of traces, recalling the definitions of the traces in [Evans, 1998, p.
270]. The following notation will be used in this thesis:

- Lp(Ω) (1 ≤ p <∞) is the usual space of functions that are p-Lebesgue integrable and
L∞(Ω) is the space of functions that are essentially bounded in Ω. The elements of
W k,p(Ω) are the functions admitting weak derivatives up to order k that are again in
Lp. For simplicity, we use the notation Hk(Ω) for W k,2(Ω).

- For 1 ≤ p ≤ ∞ , ‖ · ‖Lp(Ω) and ‖ · ‖Wk,p(Ω) are the standard norms in Lp(Ω),
respectively W k,p(Ω). A simplified notation will be used for the norm in W k,2(Ω),
namely ‖ · ‖Ω,k.

- Hk
0 (Ω) denotes the subspace ofHk(Ω) taking the value 0 on the boundary (in the sense

of traces).

- Lq(0, T ;W k,p(Ω)) denotes the Bochner space of vector spaced valued functions f :
[0, T ]→W k,p(Ω) that are q-Bochner integrable on [0, T ].

- H1(0, T ;L2(Ω)) denotes the Bochner space of L2(Ω) valued functions admitting a
weak time-derivative in L2(0, T ;L2(Ω)).

As for the domain Ω, the traces on Γ will lie in spaces like Lp(Γ), Hk(Γ), etc. In particular,
by H

1
2 (Γ) we mean the traces on Γ of H1(Ω) functions.

2.9 Weak formulation

We now state the weak formulation for our model (2.5) together with the constitutive re-
lationship (2.6) and the initial and boundary conditions (2.7) and (2.8). We multiply the
equations with test-functions in H1

0 (Ω)) and partially integrate to obtain:

Problem 1 [Weak formulation] Find the triple (sw, pn, pc) s.t. sw ∈ H1(0, T ;H1(Ω)),
sw = s0 at t = 0, pn − pDn ∈ L2(0, T ;H1

0 (Ω)), pc − pDc ∈ L2(0, T ;H1
0 (Ω)), and for all
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ψp ∈ H1
0 (Ω), ψs ∈ H1

0 (Ω), and almost every t ∈ [0, T ] it holds

−
∫

Ω

∂tswφψp +

∫
Ω

λn(sw)K∇ (pn − gzρn) · ∇ψp =

∫
Ω

qnψp,∫
Ω

∂tswφψp +

∫
Ω

λw(sw)K∇ (pn − pc − gzρw) · ∇ψp =

∫
Ω

qwψp, (2.19)∫
Ω

pcψs =

∫
Ω

pc,eq(sw)ψs −
∫

Ω

τ∂tswψs.

Existence and uniqueness results for Problem 1 are obtained in [Cao and Pop, 2015, 2016;
Fan and Pop, 2011; Koch et al., 2013; Mikelic, 2010].
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Chapter 3
Numerical scheme

In this chapter, we develop a numerical discretization scheme for our mathematical model
given by Problem 1. The discretization in space is based on an interior penalty discontinuous
Galerkin method, while the discretization in time is based on an implicit Euler method. A par-
ticular focus is laid on the numerical treatment of the interface conditions for heterogeneous
domains.

Preliminaries

Let T be a decomposition of the domain Ω intoN non-degenerate elements Ti. We assume
that T is admissible in the sense of the Definition 2.1 in [Di Pietro and Ern, 2010]. Let F
denote the union of all faces Fj , and let h be the maximal diameter of the elements.

Given Ti ∈ T and Fi ∈ F, we define a set F (Ti) of all the faces associated with the
element Ti, s.t.,

F (Ti) :=

 ⋃
Fj∈F

Fj : Fj ⊂ Ti

 ,

and, a set T (Fi) of all the elements sharing the face Fi, s.t.,

T (Fi) :=

 ⋃
Tj∈T

Tj : Fi ⊂ Tj

 .

In the conforming case, T (Fi) consists of exactly two elements.

With each face F ∈ F connecting element Ti and Tj , we associate a normal-vector ~n
directed from Ti to Tj (j > i).

17
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Following Sec. 1.2.4 in [Di Pietro and Ern, 2012], let Πk(T ) denote the space of polyno-
mials on T with degree≤ k. For the approximation of saturation Sw, we consider the broken
polynomial space with polynomials of order ks as,

V sh (Ω) := {v ∈ L2(Ω) : v|T ∈ Πks(T ) for all T ∈ T} , (3.1)

and, for the approximation of the pressures pn and pc, we consider the broken polynomial
space with polynomials of order kp as,

V ph (Ω) := {v ∈ L2(Ω) : v|T ∈ Πkp(T ) for all T ∈ T} . (3.2)

Note that we represent a general broken polynomial space with Vh(Ω) without specifying the
polynomial order.

For ψi, ψj ∈ Vh(Ω), where, ψi = (ψ|T i)|F is the trace of F on the side of the element
Ti, and similarly, ψj = (ψ|T j )|F is the trace of F on the side of the element Tj , we define
the jump J·K and the average {·} over the face F as,

when F is an interior face : JψK =
(
ψi − ψj

)
and {ψ} =

1

2

(
ψi + ψj

)
, (3.3)

when F is a boundary face : JψK = ψi and {ψ} = ψi, (3.4)

where, the interior face connects elements T i and T j with i < j, and the boundary face has
no element adjacent to Ti.

Next, we define the following norm on the broken polynomial space,

‖v‖2Ω,DG :=
∑
Ti∈T

‖∇v‖2Ti,0 +
∑
Fi∈F

1

|Fi|
‖JvK‖2Fi,0 (3.5)

and use the following lemma [Di Pietro and Ern, 2010]:

Lemma 1 Given a broken polynomial space Vh(Ω), for any q such that,

1 ≤ q ≤ 2d

d− 2
, if d ≥ 3

1 ≤ q <∞, if d = 2 ,

there exists a constant Ĉ depending on the polynomial degree, mesh-parameters
and |Ω|, but independent of the mesh size h, such that, for all v ∈ Vh(Ω), the
following inequality holds:

‖v‖Lq(Ω) ≤ Ĉ‖v‖Ω,DG . (3.6)
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Additionally, we use the following trace inequalities, which can be found in [Warburton
and Hesthaven, 2003], [Riviere et al., 2001], or [Di Pietro and Ern, 2012]:

Lemma 2 Let γ0 denote the trace operator. There exists a constant Ct inde-
pendent of the mesh size h, such that, for any T ∈ T with F ∈ F (T ) and for
all v ∈ Hk(T ), the following holds:

‖γ0v‖0,F ≤ Ct

√
1

|F |
(‖v‖0,T + |F |‖∇v‖0,T ) (3.7)

For v ∈ Πk(T ) and a positive function f(k) depending on the polynomial
degree k, the following holds:

‖γ0v‖0,F ≤ Ct

√
f(k)

|F |
‖v‖0,T (3.8)

We also use the following elementary lemma [Epshteyn and Riviere, 2009]:

Lemma 3 Let C̃ be the maximal number of elements sharing one face, and let
A : T → [0,∞) be a function defined on the triangularization T. Then, the
following inequality holds:∑

Fi

∑
T (Fi)

A(T ) ≤ C̃
∑
Ti

A(Ti)

Finally, we state the following well known (in-)equalities for a, b ∈ R and ε ∈ R+, which
are used throughout the paper:

(a− b) · a =
1

2
(a− b)2 +

1

2
(a2 − b2) (3.9)

ab ≤ ε

2
a2 +

1

2ε
b2. (3.10)

3.1 Discretization in space
The weak form (2.19) of the mathematical model governed by system (2.5) is discretized

in space using an interior penalty discontinuous Galerkin numerical scheme.

Problem 2 [Spatial discretization] Given the penalty parameters σn, σw ∈ R+, the param-
eter θ ∈ {−1, 0, 1} and the function f(·) introduced in Lemma 2 depending on the polyno-
mial order kp, find sw ∈ V sh (Ω), pn ∈ V ph (Ω) and pc ∈ V ph (Ω), s.t., for all ψs ∈ V sh (Ω),
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ψn ∈ V ph (Ω) and ψw ∈ V ph (Ω) the following holds:

PDE-1:
∑
Ti∈T

∫
Ti

−∂tswφψn +
∑
Ti∈T

∫
Ti

λn(sw)K∇ (pn − gzρn)∇ψn

−
∑
Fi∈F

∫
Fi

{λn(sw)K∇ (pn − gzρn) · ~n}JψnK

+θ
∑
Fi∈F

∫
Fi

JpnK{λn(sw)K∇ψn · ~n}+ σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JpnKJψnK

= θ
∑
Fi∈Γ

∫
Fi

JpDn K{λn(sD)K∇ψn · ~n}+ σn
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn KJψnK (3.11)

PDE-2:
∑
Ti∈T

∫
Ti

∂tswφψw +
∑
Ti∈T

∫
Ti

λw(sw)K∇(pn − pc − gzρw)∇ψw

−
∑
Fi∈F

∫
Fi

{λw(sw)K∇(pn − pc − gzρw) · ~n}JψwK

+θ
∑
Fi∈F

∫
Fi

{λw(sw)K∇ψw · ~n}Jpn − pcK + σw
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
Jpn − pcKJψwK

= θ
∑
Fi∈Γ

∫
Fi

{λw(sD)K∇ψw · ~n}JpDn − pDc K + σw
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn − pDc KJψwK

(3.12)

ODE-Pc:
∑
Ti∈T

∫
Ti

pcψs =
∑
Ti∈T

∫
Ti

pc,eq(sw)ψs −
∑
Ti∈T

∫
Ti

τ∂tswψs (3.13)

The parameters σn and σw penalize discontinuities in the solutions (i.e., jumps) over the
faces. The choice of θ = 1 gives the non-symmetric-interior-penalty (NIP) dG-scheme, θ = 0
gives the incomplete-interior-penalty (IIP) dG-scheme, and θ = −1 gives the symmetric-
interior-penalty (SIP) dG-scheme.

3.2 Discretization in time
For the discretization in time, we use an implicit Euler scheme. We subdivide the time

domain [0, T ] into N intervals of size ∆t > 0 with T = N ·∆t. The i-th discrete time-step
is denoted by ti, s.t., ti = i ·∆t.

Given a sufficiently smooth function g(x, t), the time derivative of g is approximated by:

∂−gn+1 :=
g(tn+1, x)− g(tn, x)

∆t
(3.14)
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3.3 Discrete system
Using Problem 2 and (3.14), the fully-discrete scheme can be written as:

Problem 3 [Discrete problem at tn+1] Let Pnn ∈ V
p
h (Ω), Pnc ∈ V

p
h (Ω) and Snw ∈ V sh (Ω),

find Pn+1
n ∈ V ph (Ω), Pn+1

c ∈ V ph (Ω) and Sn+1
w ∈ V sh (Ω), s.t., for all ψs ∈ V sh (Ω), ψn ∈

V ph (Ω) and ψw ∈ V ph (Ω), the following holds:

PDE-1:
∑
Ti∈T

∫
Ti

−∂−Sn+1
w φψn +

∑
Ti∈T

∫
Ti

λn(Sn+1
w )K∇

(
Pn+1
n − gzρn

)
∇ψn

−
∑
Fi∈F

∫
Fi

{λn(Sn+1
w )K∇

(
Pn+1
n − gzρn

)
· ~n}JψnK

+ θ
∑
Fi∈F

∫
Fi

JPn+1
n K{λn(Sn+1

w )K∇ψn · ~n}+ σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JPn+1
n KJψnK

= θ
∑
Fi∈Γ

∫
Fi

JpDn K{λn(sD)K∇ψn · ~n}+ σn
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn KJψnK (3.15)

PDE-2:
∑
Ti∈T

∫
Ti

∂−Sn+1
w φψw +

∑
Ti∈T

∫
Ti

λw(Sn+1
w )K∇(Pn+1

n − Pn+1
c − gzρw)∇ψw

−
∑
Fi∈F

∫
Fi

{λw(Sn+1
w )K∇(Pn+1

n − Pn+1
c − gzρw) · ~n}JψwK

+ θ
∑
Fi∈F

∫
Fi

{λw(Sn+1
w )K∇ψw · ~n}JPn+1

n − Pn+1
c K

+ σw
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JPn+1
n − Pn+1

c KJψwK

= θ
∑
Fi∈Γ

∫
Fi

{λw(sD)K∇ψw · ~n}JpDn − pDc K

+ σw
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn − pDc KJψwK (3.16)

ODE-Pc:
∑
Ti∈T

∫
Ti

Pn+1
c ψs =

∑
Ti∈T

∫
Ti

pc,eq(S
n+1
w )ψs −

∑
Ti∈T

∫
Ti

τ∂−Sn+1
w ψs (3.17)

3.4 Numerical treatment of the heterogeneities
In Section 2.7, we discussed the additional conditions that must be considered at the ma-

terial interfaces separating homogeneous blocks in a heterogeneous porous medium, which
include flux continuity (2.17) and pressure continuity (2.18) across the interface. In this sec-
tion, we present the numerical realization of these conditions in our solution scheme. We
use the ideas proposed by [Ern et al., 2010] and used further in [Bastian, 2014] for a fully
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implicit coupled scheme. In both, [Ern et al., 2010] and [Bastian, 2014], stationary capil-
lary pressure conditions were assumed. We extend the ideas and incorporate non-standard
capillary pressure effects.

3.4.1 Pressure condition

We exploit the structure of the dG-scheme and extend the penalty terms to realize the pressure-
continuity condition at the interface. This is possible because each element is an independent
entity by itself; the communication between the elements occurs only through the interfacial
terms, i.e., average terms and penalty terms. When the mesh-interfaces and the material-
interfaces are aligned, the penalty terms can be naturally extended to incorporate the physical
behaviour at the material interfaces. This gives us the possibility to deal with edge aligned
heterogeneities without additional numerical constructs.

The dynamic capillary pressure effects for flow in heterogeneous porous media were first
rigorously addressed by Weiss et al. in [Helmig et al., 2009] and [Helmig et al., 2007]. They
used finite volume scheme for spatial discretization, and described the interface conditions
using variational inequalities, which were incorporated in the numerical scheme through a
mortar technique. In addition, they used an active-set strategy together with an inexact New-
ton strategy to solve the non-linear system.

To describe the numerical approximation, we use the same notation as in Section 2.7.
To incorporate the jumps in the saturation, we introduce an additional penalty parameter to
(3.17), which penalizes jumps over the interface, such that the pressure continuity is fulfilled.
For a face F ∈ F with F ⊂ Γ, we use the capillary pressure condition (2.18) and define the
the modified jump term:

Jpc(Sn+1
w )K′ =

{
pc,e,h − pc,h(Sn+1

w,h ) if pc,l(Sn+1
w,l ) < pc,e,h and Sn+1

w,h = 1

pc,h(Sn+1
w,h )− pc,l(Sn+1

w,l ) otherwise
.

(3.18)

Whether case A, B, or C from Section 2.7 is applicable, is decided by the condition:

pc,l(S
n+1
w,l ) < pc,e,h and Sn+1

w,h = 1 ,

which guarantees that if case A applies, non-wetting fluid accumulates until pc,l reaches the
entry pressure pc,e,h. As long as the capillary pressure is less than the entry pressure and
no non-wetting phase is present on Ωh , case A is active and saturation will accumulate.
Additionally, the capillary pressure potential and non-wetting pressure potential are discon-
tinuous. To ensure that in case B no capillary barrier inhibits the flow, the condition Sn+1

w,h = 1
is checked. In all other cases we ensure continuity of the pressure potentials, i.e. case C is
active.

In the present context for edges over the interface Γ one obtains

Jpc(Sn+1
w )K′ = 0,
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which ensures the condition

pc,e,h = pc,h(Sn+1
w,h ) or pc,h(Sn+1

w,h ) = pc,l(S
n+1
w,l ).

Depending on the currently active case, this leads to continuous or discontinuous capillary
pressure respectively. On the other edges we obtain pressure continuity.

The additional condition (2.16) in case A will lead to a discontinuity in the non-wetting
pressure potential. In the spirit of (3.18) we extend the continuity condition, i.e. the jump
terms, in the non-wetting phase mass balance equation (3.15). Using (2.16) we define:

JPn+1
n K′ =

{
Pn+1
n,h − P

n+1
n,l − δnpc,F if pc,l(Sn+1

w,l ) < pc,e,h and Sn+1
w,h = 1

Pn+1
n,h − P

n+1
n,l otherwise

, (3.19)

where, we use δnpc,F as defined in (2.12) with the additional superscript denoting the timestep
at which the evaluation takes place. Also in this case, we have either pressure continuity or
JPn+1
n K matches the jump in the capillary pressure.

3.4.2 Discrete scheme with interface conditions
Using (3.19) and (3.18) we get the following scheme:

Problem 4 [Discrete problem at tn+1 with interface conditions] Let Pnn ∈ V ph (Ω), Pnc ∈
V ph (Ω), and Snw ∈ V sh (Ω). Find Pn+1

n ∈ V ph (Ω), Pn+1
c ∈ V ph (Ω), and Sn+1

w ∈ V sh (Ω), s.t.,
for all ψs ∈ V sh (Ω), ψn ∈ V ph (Ω), and ψw ∈ V ph (Ω), the following holds:

PDE-1:
∑
Ti∈T

∫
Ti

−∂−Sn+1
w φψn +

∑
Ti∈T

∫
Ti

λn(Sn+1
w )K∇(Pn+1

n − gzρn)∇ψn

−
∑
Fi∈F

∫
Fi

{λn(Sn+1
w )K∇(Pn+1

n − gzρn) · ~n}JψnK

+ θ
∑
Fi∈F

∫
Fi

JPn+1
n K′{λn(Sn+1

w )K∇ψn · ~n}+ σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JPn+1
n K′JψnK

= θ
∑
Fi∈ΓD

∫
Fi

JPDn K{λn(sD)K∇ψn · ~n}+ σn
∑
Fi∈ΓD

∫
Fi

f(kp)

|Fi|
JPDn KJψnK (3.20)

PDE-2:
∑
Ti∈T

∫
Ti

∂−Sn+1
w φψw +

∑
Ti∈T

∫
Ti

λw(Sn+1
w )K∇(Pn+1

n − Pn+1
c − gzρw)∇ψw

−
∑
Fi∈F

∫
Fi

{λw(Sn+1
w )K∇(Pn+1

n − Pn+1
c − gzρw) · ~n}JψwK

+ θ
∑
Fi∈F

∫
Fi

{λw(Sn+1
w )K∇ψw · ~n}JPn+1

n − Pn+1
c K

+ σw
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JPn+1
n − Pn+1

c KJψwK
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= θ
∑
Fi∈ΓD

∫
Fi

{λw(sD)K∇ψw · ~n}JPDn − PDc K

+ σw
∑
Fi∈ΓD

∫
Fi

f(kp)

|Fi|
JPDn − PDc KJψwK (3.21)

ODE-Pc:
∑
Ti∈T

∫
Ti

Pn+1
c ψs =

∑
Ti∈T

∫
Ti

pc,eq(S
n+1
w )ψs −

∑
Ti∈T

∫
Ti

∂−T (Sn+1
w )ψs

+ σs
∑
Fi∈F

∫
Fi

f(ks)

|Fi|
Jpc,eq(Sn+1

w )− ∂−T (Sn+1
w )K′JψwK (3.22)

3.4.3 Flux continuity
The flux continuity is implicitly enforced by the proposed scheme 4. To show this we proceed
the same way as in [Ern et al., 2010]. For a solution of the scheme the following condition
holds due to (3.20):∑

Ti∈T

∫
Ti

−∂−Sn+1
w φψn +

∑
Ti∈T

∫
Ti

λn(Sn+1
w )K∇(Pn+1

n − gzρn)∇ψn

−
∑
Fi∈F

∫
Fi

{λn(Sn+1
w )K∇(Pn+1

n − gzρn) · ~n}JψnK

+ θ
∑
Fi∈F

∫
Fi

JPn+1
n K′{λn(Sn+1

w )K∇ψn · ~n}+ σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JPn+1
n K′JψnK

= 0

By partial integration and using the relationship,

JuvK = {u}JvK + {v}JuK ,

for the interior edges we obtain:∑
Ti∈T

∫
Ti

(
−∂−Sn+1

w φ−∇ ·
(
λn(Sn+1

w )K∇(Pn+1
n − gzρn)

))
ψn

+
∑
Fi∈F

∫
Fi

{ψn}Jλn(Sn+1
w )K∇(Pn+1

n − gzρn) · ~nK

+ θ
∑
Fi∈F

∫
Fi

JPn+1
n K′{λn(Sn+1

w )K∇ψn · ~n}

+ σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JPn+1
n K′JψnK = 0

The first term is the weak residual of the conservation law for the non-wetting phase. The
second term enforces the normal flux continuity across the interface, and the third and the
fourth terms ensure the continuity of the pressure. Note that we are using the extended jump
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definition (3.19), leading to either a continuous or discontinuous pressure across the interface
respectively. In either cases, due to the construction of the jump terms, for a convergent
solution

JPn+1
n K′ = 0

holds true.

In a similar way, we partially integrate the wetting phase equation (3.21) and get:∑
Ti∈T

∫
Ti

(
∂−Sn+1

w φ−∇ ·
(
λw(Sn+1

w )K∇(Pn+1
n − Pn+1

c − gzρw)
))
ψw

+
∑
Fi∈F

∫
Fi

{ψw}Jλw(Sn+1
w )K∇(Pn+1

n − Pn+1
c − gzρw) · ~nK

+ θ
∑
Fi∈F

∫
Fi

JPn+1
n − Pn+1

c K{λw(Sn+1
w )K∇ψw · ~n}

+ σw
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JPn+1
n − Pn+1

c KJψwK = 0 .

Again, the first term represents the weak residual of the conservation law for the wetting
phase. The second term gives the normal flux continuity across the interface, and the third
and the fourth terms ensure the continuity of the pressure.
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Chapter 4
Convergence Analysis of the
Numerical Scheme

In this chapter, we prove that the numerical scheme is well-posed and convergent. We
first show the existence of a discrete solution using a fixed-point argument, followed by the
energy estimates for the discrete solutions. Finally, we show the convergence of the scheme
by proving some error estimates.

Preliminaries We make the following assumptions to prove existence and convergence of
the numerical scheme:

(A4.1) The initial and boundary conditions in (2.7) and (2.8) are sufficiently smooth. Addi-
tionally, the initial condition is compatible with the boundary condition, i.e. the initial
condition fulfills the boundary condition at t = 0.

(A4.2) The permeability matrix K ∈ Rd×d is symmetric and positive definite, i.e. there exist
two constants κ and κ, s.t., for any vector x ∈ Rd, the following holds:

κ‖x‖2 ≤ xTKx ≤ κ‖x‖2

(A4.3) The equilibrium capillary pressure function pc,eq(·) is in C2(R), and is assumed to be
positive, bounded and decreasing. Let Pc,eq(·) define the primitive, i.e.:

Pc,eq(S) :=

{∫ S
1
pc,eq(ξ)dξ =

∫ S
0
pc,eq(ξ)dξ −

∫ 1

0
pc,eq(ξ)dξ for S ≤ 1

0 otherwise
. (4.1)

It can be inferred that Pc,eq(S) is concave and non-positive.

(A4.4) The functions λw(·) and λn(·) are Lipschitz-continuous and bounded from above and
below by the constants 0 < λα < λα <∞.
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For the error analysis, let sw(t, x), pn(t, x), and pc(t, x) be the exact solutions of the prob-
lem. For simplicity, we will use siw = sw(ti, x), pin = pn(ti, x), and pic = pc(ti, x). For all
t ∈ [0, T ] we denote the projection of pn(t), pc(t), and sw(t) onto the space V ph (Ω) or V sh (Ω)
with, p̃n(t) ∈ V ph (Ω), p̃c(t) ∈ V ph (Ω), and s̃w(t) ∈ V sh (Ω), respectively. Further, we assume
for all t ∈ [0, T ] that p̃n(t) ∈W 1,∞(Ω), p̃c(t) ∈W 1,∞(Ω) and s̃w(t) ∈W 1,∞(Ω). We also
assume that the solutions possess enough regularity such that the the following approximation
properties are fulfilled:

For all t ∈ [0, T ], lpn ∈ R+, lpc ∈ R+, ls ∈ R+, and T ∈ T, for p̃n(t) ∈ W 1,∞, p̃c(t) ∈
W 1,∞ and s̃w(t) ∈W 1,∞ there exists a constant C independent of h, ks, kp and ∆t s.t.,

for 0 < q ≤ lpn , ‖pn(t)− p̃n(t)‖T,q ≤ C
hmin(kp+1,lpn )−q

k
lpn−q
p

‖pn(t)‖T,lpn (4.2)

for 0 < q ≤ lpc , ‖pc(t)− p̃c(t)‖T,q ≤ C
hmin(kp+1,lpc )−q

k
lpc−q
p

‖pc(t)‖T,lpc (4.3)

for 0 < q ≤ ls , ‖sn(t)− s̃n(t)‖T,q ≤ C
hmin(ks+1,ls)−q

kls−qs

‖sn(t)‖T,ls (4.4)

The proof for the results (4.2), (4.3) and (4.4) can be found in [Babuska and Suri, 1987].
Recall that the norm ‖ · ‖T,q is defined as ‖ · ‖W q,2(T ), see also Section 2.8.

Further, we write the numerical errors for i = 1, . . . , N as,

eis,h = Si − s̃iw , eis = s̃iw − si , eipα,h = P iα − p̃iα , eipα = p̃iα − piα .

4.1 Existence of a discrete solution
We now prove the existence of a discrete solution for the Problem 3.

For given real numbers Pn,l ∈ R, Pc,l ∈ R and Sw,k ∈ R, we define P̃n, P̃c ∈ V ph (Ω) and
S̃w ∈ V sh (Ω) by,

P̃n =

dp∑
l=0

Pn,lϕ
p
l P̃c =

dp∑
l=0

Pc,lϕ
p
l S̃w =

ds∑
k=0

Sw,kϕ
s
k , (4.5)

where ϕpi and ϕsk are elements of a basis for V ph (Ω) and V sh (Ω) and dp ∈ N and ds ∈ N
denote the dimension. We define the coefficient vectors P̂n, P̂c ∈ Rdp and Ŝw ∈ Rds by:

P̂n =
(
Pn,1, Pn,2, . . . , Pn,dp

)T
P̂c =

(
Pc,1, Pc,2, . . . , Pc,dp

)T
Ŝw =

(
Sw,1, Sw,2, . . . , Sw,ds

)T
. (4.6)
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Furthermore, for given real numbers Snw,k ∈ R, we define Pw,l ∈ R for l = 0, . . . , dp and
dSw,k ∈ R for k = 0, . . . , ds , with,

Pw,l := Pn,l − Pc,l ,

and dSw,k =
1

∆t
(Sw,k − Snw,k) , (4.7)

which gives us P̃w ∈ V ph (Ω), Snw ∈ V sh (Ω) and d̃Sw ∈ V sh (Ω), s.t.,

P̃w := P̃n − P̃c =

dp∑
i=0

Pw,iϕ
p
i ,

and d̃Sw :=
1

∆t
(S̃w − Snw) =

ds∑
k=0

dSw,kϕ
s
k . (4.8)

The coefficient vectors P̂w ∈ Rdp and d̂Sw ∈ Rds are defined analogous to (4.6).

Next, we define 〈·, ·〉`2 as the `2-scalar product on R2dp+ds , and ‖ · ‖`2 as the induced
`2-norm on R2dp+ds .

Note that for a coefficient vector X̂ ∈ R2dp+ds and the induced vector X̃ ∈ V ph (Ω) ×
V ph (Ω) × V sh (Ω) there exists constants c > 0, c ∈ R and C > 0, C ∈ R, such that the
following inequality holds:

c‖X̃‖Ω,0 ≤ ‖X̂‖2`2 = 〈X̂, X̂〉`2 ≤ C‖X̃‖Ω,0 . (4.9)

Note that the constants c and C may depend on the mesh size h.

Using the definitions (4.5), (4.7) and (4.8) in (3.15)-(3.17), we define FPni , FPci , FSk ∈ R
for i = 0, 1, . . . , dp and k = 0, 1, . . . , ds, s.t.,

FPnl :=
∑
Ti∈T

∫
Ti

− 1

∆t
(S̃w − Snw)φϕpl +

∑
Ti∈T

∫
Ti

λn(S̃w)K∇P̃n∇ϕpl

−
∑
Fi∈F

∫
Fi

{λn(S̃w)K∇P̃n · ~n}Jϕpl K

+ θ
∑
Fi∈F

∫
Fi

JP̃nK{λn(S̃w)K∇ϕpl · ~n}+ σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JP̃nKJϕ

p
l K

− θ
∑
Fi∈Γ

∫
Fi

JpDn K{λn(sD)K∇ϕpl · ~n} − σn
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn KJϕpl K (4.10)

FPcl :=
∑
Ti∈T

∫
Ti

1

∆t
(S̃w − Snw)φϕpl +

∑
Ti∈T

∫
Ti

λw(S̃w)K∇(P̃n − P̃c)∇ϕpl

−
∑
Fi∈F

∫
Fi

{λw(S̃w)K∇(P̃n − P̃c) · ~n}Jϕpl K
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+ θ
∑
Fi∈F

∫
Fi

{λw(S̃w)K∇ϕpl · ~n}JP̃n − P̃cK

+ σw
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JP̃n − P̃cKJϕpl K

− θ
∑
Fi∈Γ

∫
Fi

{λw(sD)K∇ϕpl · ~n}Jp
D
n − pDc K

− σw
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn − pDc KJϕpl K , (4.11)

FSk :=
∑
Ti∈T

∫
Ti

φP̃cϕ
s
k −

∑
Ti∈T

∫
Ti

φpc,eq(S̃w)ϕsk

−
∑
Ti∈T

∫
Ti

φτ
1

∆t
(S̃w − Snw)ϕsk . (4.12)

As before, we define analogous to (4.6) the coefficient vectors F̂Pn , F̂Pc ∈ Rdp and F̂S ∈
Rds . Observe that, if FPni = FPci = FSk = 0 for all i = 0, 1, . . . , dp and k = 0, 1, . . . , ds,
then P̃n, P̃c and S̃w are a solution to the Problem 3.

The definitions (4.5)-(4.12) define a continuous mapping P : R2dp+ds → R2dp+ds by,

P(P̂n, P̂w, d̂Sw) = (F̂Pn , F̂Pc , F̂S) .

Existence To prove existence of a solution to our system, we use Lemma 1.4 in [Temam,
2001, p. 164]:

Lemma 4 LetX be a finite dimensional Hilbert space with scalar product 〈·, ·〉
and norm ‖ · ‖ and let P be a continuous mapping from X into itself such that,

〈P (ξ) , ξ〉 > 0 for ‖ξ‖ = k > 0 .

Then, there exists a ξ ∈ X , ‖ξ‖ ≤ k s.t.,

P(ξ) = 0 .

Another version of this lemma can be found in Chapter IV of [Girault and Raviart, 1986].

To apply Lemma 4 we chose R2dp+ds as the Hilbert spaceX and we use the scalar product
〈·, ·〉`2 and the norm ‖ · ‖`2 . Further, let

(
P̂n P̂c Ŝw

)
∈ R2dp+ds and define R > 0 as

R :=〈
(
P̂n P̂c Ŝw

)
,
(
P̂n P̂c Ŝw

)
〉 = 〈P̂n, P̂n〉+ 〈P̂w, P̂w〉+ 〈d̂Sw, d̂Sw〉.
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Specifically, we show that whenever

R >
∑
Ti∈T

∫
Ti

φ
1

∆t
|Pc,eq(Snw)|+

(
σn
2

+
λn

2
θ2C2

t C̃

λn

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0

+

(
σw
2

+
λw

2
θ2C2

t C̃

λw

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDw‖2Fi,0,

then one gets

〈F̂Pn , P̂n〉+ 〈F̂Pc , P̂w〉+ 〈F̂S , d̂Sw〉

=

dp∑
i=0

Pn,iF
Pn
i +

dp∑
i=0

(Pn,i − Pc,i)FPci +

ds∑
k=0

dSw,kF
S
k

> 0 , (4.13)

which gives the following existence result:

Lemma 5 For sufficiently large σn, σw , the Problem 3 has a solution.

Proof 1 We estimate the terms (I) :=
∑dp
i=0 Pn,iF

Pn
i , (II) :=

∑dp
i=0 Pw,iF

Pc
i , and

(III) :=
∑ds
k=0 dSw,kF

S
k separately.

Estimate for (I) We start with:

(I) =
∑
Ti∈T

∫
Ti

λn(S̃w)
∣∣∣K 1

2∇P̃n
∣∣∣2 + σn

∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JP̃nK2

− (1− θ)
∑
Fi∈F

∫
Fi

{λn(S̃w)K∇P̃n · ~n}JP̃nK−
∑
Ti∈T

∫
Ti

1

∆t
(S̃w − Snw)φP̃n

− θ
∑
Fi∈Γ

∫
Fi

JpDn K{λn(sD)K∇P̃n · ~n} − σn
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn KJP̃nK

= P1 + P2 − P3 − P4 − P5 − P6 .

Using the assumption (A4.4) for P1 + P2, we get:

P1 + P2 ≥ λn
∑
Ti∈T

∥∥∥K 1
2∇P̃n

∥∥∥2

Ti,0
+ σn

∑
Fi∈F

f(kp)

|Fi|
‖JP̃nK‖2Fi,0 . (4.14)

Using Cauchy-Schwarz inequality together with the assumption (A4.4), we get:

P3 ≤ λn(1− θ)
∑
Fi∈F

‖{K 1
2∇P̃n}‖Fi,0‖JP̃nK‖Fi,0 .
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For a fixed face Fi, let T± be the adjacent elements. By the trace inequality (3.8), the
following holds:

λn(1− θ)
∑
Fi∈F

‖{K 1
2∇P̃n}‖Fi,0‖JP̃nK‖Fi,0

≤ λn(1− θ)Ct

√
f(kp)

|Fi|
1

2

∑
FiF

(∥∥∥K 1
2∇P̃n

∥∥∥
T+,0

+
∥∥∥K 1

2∇P̃n
∥∥∥
T−,0

)
‖JP̃nK‖Fi,0 .

Further, with Lemma 3 and Cauchy-Schwarz inequality we obtain:

λn(1− θ)Ct

√
f(kp)

|Fi|
1

2

∑
Fi∈F

(∥∥∥K 1
2∇P̃n

∥∥∥
T+,0

+
∥∥∥K 1

2∇P̃n
∥∥∥
T−,0

)
‖JP̃nK‖Fi,0

≤

(∑
Ti∈T

∥∥∥K 1
2∇P̃n

∥∥∥2

Ti,0

) 1
2
(
λn

2
(1− θ)2C2

t C̃
f(kp)

|Fi|
∑
Fi∈F

‖JP̃nK‖2Fi,0

) 1
2

,

which, on using the scaled Young’s inequality, leads to:

P3 ≤
ε1
2

∑
Ti∈T

∥∥∥K 1
2∇P̃n

∥∥∥2

Ti,0
+

1

2ε1
λn

2
(1− θ)2C2

t C̃
∑
Fi∈F

f(kp)

|Fi|
‖JP̃nK‖2Fi,0 . (4.15)

The term P5 is estimated in a similar way as P3 leading to:

P5 ≤
ε2
2

∑
Ti∈T

∥∥∥K 1
2∇P̃n

∥∥∥2

Ti,0
+

1

2ε2
λn

2
θ2C2

t C̃
∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0 , (4.16)

and, the term P6 is estimated as:

P6 ≤
ε3
2

∑
Fi∈Γ

f(kp)

|Fi|
‖P̃n‖2Fi,0 +

σ2
n

2ε3

∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0 . (4.17)

Choosing ε1 = ε2 =
λn
2 , and ε3 = σn in (4.14), (4.15), (4.16) and (4.17), we get the

following estimate for the term (I):

(I) ≥
∑
Ti∈T

∫
Ti

− 1

∆t
(S̃w − Snw)φP̃n +

∑
Ti∈T

λn

2
‖K 1

2∇P̃n‖2Ti,0

+

(
σn
2
− (1− θ)2λn

2
C2
t C̃

2λn

) ∑
Fi∈F

f(kp)

|Fi|
‖JP̃nK‖2Fi,0

−

(
σn
2

+
λn

2
θ2C2

t C̃

λn

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0 (4.18)

Estimate for (II) To estimate term (II), we follow the same steps as for term (I). We use
the assumption (A4.4), trace inequalities from Lemma 2, Lemma 3, Cauchy-Schwarz and
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scaled Young’s inequality, in that order, and with ε4 = ε5 =
λw
2 and ε6 = σw, we arrive at

the following estimate:

(II) ≥
∑
Ti∈T

∫
Ti

1

∆t
(S̃w − Snw)φP̃w +

∑
Ti∈T

λw

2
‖K 1

2∇P̃w‖2Ti,0

+

(
σw
2
− (1− θ)2λw

2
C2
t C̃

2λw

) ∑
Fi∈F

f(kp)

|Fi|
‖JP̃wK‖2Fi,0

−

(
σw
2

+
λw

2
θ2C2

t C̃

λw

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDw‖2Fi,0 . (4.19)

Estimate for (III) We start with:

(III) =
∑
Ti∈T

∫
Ti

φP̃c
1

∆t
(S̃w − Snw)−

∑
Ti∈T

∫
Ti

φpc,eq(S̃w)
1

∆t
(S̃w − Snw)

+
∑
Ti∈T

∫
Ti

φτ
1

∆t2
(S̃w − Snw)2 .

Using the primitive defined in (4.1), we get the following estimate:

(III) ≥
∑
Ti∈T

∫
Ti

φP̃c
1

∆t
(S̃w − Snw) +

∑
Ti∈T

∫
Ti

φ
1

∆t

(
|Pc,eq(S̃w)| − |Pc,eq(Snw)|

)
+
∑
Ti∈T

∫
Ti

φτ
1

∆t2
(S̃w − Snw)2 . (4.20)

Combined estimate For sufficiently large σn and σw, using (3.6) from Lemma 1 with
q = 2, and summing the estimates (4.18), (4.19) and (4.20), we obtain:

dpn∑
i=0

Pn,iF
Pn
i +

dpc∑
j=0

Pw,jF
Pc
j +

ds∑
k=0

dSw,kF
S
k

≥ C‖P̃n‖2Ω,0 + C‖P̃w‖2Ω,0 + C‖d̃Sw‖2Ω,0

+
∑
Ti∈T

∫
Ti

φ
1

∆t
|Pc,eq(S̃w)| −

∑
Ti∈T

∫
Ti

φ
1

∆t
|Pc,eq(Snw)|

−

(
σn
2

+
λn

2
θ2C2

t C̃

λn

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0

−

(
σw
2

+
λw

2
θ2C2

t C̃

λw

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDw‖2Fi,0 . (4.21)

Observe that the positivity of the last but one terms in (4.18) and (4.19) is only guaranteed
under restrictions on σn and σw. However, these restrictions do not depend on the time step
or the argument in the mapping P. Now, one can choose the radius R as announced above to
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guarantee that the right hand side in (4.21) is positive, and using (4.9) leads to the estimate
(4.13), and the existence of a zero for P and hence of a solution to Problem 3 follows directly
by Lemma 4.

4.2 Discrete energy estimate

Lemma 6 For sufficiently large σn and σw, there exists a constantC independent of ∆t,
h and the polynomial degrees kp and ks, s.t., the following energy estimate holds:

∆t

N∑
n=0

∑
Ti∈T

∥∥∂−Sn+1
w

∥∥2

Ti,0
+ ∆t

N∑
n=0

∑
Ti∈T

∥∥∥K 1
2∇Pn+1

n

∥∥∥2

Ti,0

+ ∆t

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|
‖JPn+1

n K‖2Fi,0 + ∆t

N∑
n=0

∑
Ti∈T

‖K 1
2∇Pn+1

w ‖2Ti,0

+ ∆t

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|
‖JPn+1

w K‖2Fi,0 +
∑
Ti∈T

∫
Ti

|Pc,eq(SN+1
w )|

≤ C
∑
Ti∈T

∫
Ti

|Pc,eq(S0
w)|+ C∆t

N∑
n=0

∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0

+ C∆t

N∑
n=0

∑
Fi∈Γ

f(kp)

|Fi|
‖pDw‖2Fi,0 (4.22)

Proof 2 Starting with the discrete system at tn+1 (i.e. Problem 3), we test in (3.15) with
Pn+1
n , in (3.16) with Pn+1

w = Pn+1
n − Pn+1

c and in (3.17) with ∂−Sn+1
w .

Note that we define a generic constant C = C(τ, σα, λα, λα, θ, Ct, C̃) for α = w, n. We
proceed with the same steps as in the proof of Lemma 5 and obtain:∑

Ti∈T

φτ
∥∥∂−Sn+1

w

∥∥2

Ti,0
+
λn

2

∑
Ti∈T

∥∥∥K 1
2∇Pn+1

n

∥∥∥2

Ti,0
+
λw

2

∑
Ti∈T

‖K 1
2∇Pn+1

w ‖2Ti,0

+

(
σn −

1

2λn
λn

2
(1− θ)2C2

t C̃
2

) ∑
Fi∈F

f(kp)

|Fi|
‖JPn+1

n K‖2Fi,0

+

(
σw −

1

2λw
λw

2
(1− θ)2C2

t C̃
2

) ∑
Fi∈F

f(kp)

|Fi|
‖JPn+1

w K‖2Fi,0

≤
∑
Ti∈T

∫
Ti

1

∆t

(
Pc,eq(S

n+1
w )− Pc,eq(Snw)

)
+

(
σn
2

+
λn

2
θ2C2

t C̃
2

λn

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0
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+

(
σw
2

+
λw

2
θ2C2

t C̃
2

λw

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDw‖2Fi,0

The final estimate (4.22) is obtained by multiplying the above inequality by ∆t and sum-
ming over all n = 0 . . . N .

4.3 Error Estimates

After showing the existence of a discrete solution and deriving the general energy esti-
mates, we now show a convergence result for the scheme.

4.3.1 Estimate for the non-wetting phase

Lemma 7 For a sufficiently large σn there exists a constant C independent of h, ∆t, kp
and ks such that the following estimate holds:∑

Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pn,h
+
∑
Ti∈T

‖K 1
2∇en+1

pn,h
‖2Ti,0

+
∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0

≤ C
(

5

2λn
+

3f(ks)

2σnf(kp)

)
λ′n‖K

1
2∇p̃n+1

n ‖2Ω,∞
∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0

+ Cλ′n
5

2λn
‖K 1

2∇p̃n+1
n ‖2Ω,∞‖en+1

s ‖2Ω,0 + C
5λn
2λn
‖K 1

2∇en+1
pn ‖

2
Ω,0

+
3f(ks)

2σnf(kp)
λ′nC̃‖K

1
2∇p̃n+1

n ‖Ω,∞(‖en+1
s ‖2Ω,0 + h2‖∇en+1

s ‖2Ω,0)

+ C

(
3σnC

2
t C̃

2
+

5θλn
2
C2
t C̃

λn

)
(h−2‖en+1

pn ‖
2
Ω,0 + ‖∇en+1

pn ‖
2
Ω,0)

+ C
3λn

2
C2
t C̃

2σn

(∥∥∥K 1
2∇en+1

pn

∥∥∥2

Ω,0
+ h2

∥∥∥K 1
2∇2en+1

pn

∥∥∥2

Ω,0

)

Proof 3 We subtract (3.11) and (3.15) and test with en+1
pn,h

to get:

∑
Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pn,h

+
∑
Ti∈T

∫
Ti

[
λn(Sn+1

w )K∇Pn+1
n − λn(sw)K∇pn

]
∇en+1

pn,h



36

+ σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
[
JPn+1
n K− JpnK

]
Jen+1
pn,h

K

=
∑
Fi∈F

∫
Fi

[
{λn(Sn+1

w )K∇Pn+1
n · ~n} − {λn(sw)K∇pn · ~n}

]
Jen+1
pn,h

K

− θ
∑
Fi∈F

∫
Fi

[
JPn+1
n K{λn(Sn+1

w )K∇en+1
pn,h
· ~n} − JpnK{λn(sw)K∇en+1

pn,h
· ~n}

]

We rewrite this equation termwise as:

P1 + P2 + P3 = P4 ,

and estimate each term individually.

We expand each term P1 to P4 by adding and subtracting p̃n.

Estimate for P2

P2 =
∑
Ti∈T

∫
Ti

λn(Sn+1
w )K∇en+1

pn,h
∇en+1

pn,h

+
∑
Ti∈T

∫
Ti

(
λn(Sn+1

w )− λn(sw)
)
K∇p̃n+1

n ∇en+1
pn,h

+
∑
Ti∈T

∫
Ti

λn(sw)K∇en+1
pn ∇e

n+1
pn,h

=: P2,1 + P2,2 + P2,3

where, we estimate P2,1, P2,2 and P2,3 as:

P2,1 ≥
∑
Ti∈T

λn‖K
1
2∇en+1

pn,h
‖2Ti,0 (4.23)

P2,2 ≤
∑
Ti∈T

∫
Ti

λ′n(Sn+1
w − sn+1

w )K∇p̃n+1
n · ∇en+1

pn,h

≤
∑
Ti∈T

∫
Ti

λ′n(en+1
s,h + en+1

s )K∇p̃n+1
n · ∇en+1

pn,h

≤ε2,2
2

∑
Ti∈T

‖K 1
2∇en+1

pn,h
‖2Ti,0

+ λ′n
2 1

2ε2,2
‖K 1

2∇p̃n+1
n ‖2Ω,∞

∑
Ti∈T

(
‖en+1
s,h ‖

2
Ti,0 + ‖en+1

s ‖2Ti,0
)

(4.24)

P2,3 ≤
ε2,3
2

∑
Ti∈T

‖K 1
2∇en+1

pn,h
‖2Ti,0 +

λn
2

2ε2,3

∑
Ti∈T

‖K 1
2∇en+1

pn ‖
2
Ti,0 (4.25)
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Estimate for P3

P3 =σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|

[
Jen+1
pn,h

K + Jen+1
pn K

]
Jen+1
pn,h

K = P3,1 + P3,2

where,

P3,1 =σn
∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0 , (4.26)

and,

P3,2 ≤
ε3,2
2

∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0

+
1

2ε3,2
σ2
nC

2
t C̃(h−2‖en+1

pn ‖
2
Ω,0 + ‖∇en+1

pn ‖
2
Ω,0) (4.27)

Estimate for P4

P4 =(1− θ)
∑
Fi∈F

∫
Fi

[
{λn(Sn+1

w )K∇en+1
pn,h
· ~n}}

]
Jen+1
pn,h

K

+
∑
Fi∈F

∫
Fi

{
(λn(Sn+1

w )− λn(sw))K∇p̃n+1
n · ~n

}
Jen+1
pn,h

K

+
∑
Fi∈F

∫
Fi

{λn(sw)K∇en+1
pn · ~n}Jen+1

pn,h
K

− θ
∑
Fi∈F

∫
Fi

Jen+1
pn K{λn(sw)K∇en+1

pn,h
· ~n}

− θ
∑
Fi∈F

∫
Fi

Jp̃n+1
n K{(λn(Sn+1

w )− λn(sw))K∇en+1
pn,h
· ~n}

=P4,1 + · · ·+ P4,5

where, we estimate P4,1 to P4,4 separately, in the same way as (4.15) in Lemma 5:

P4,1 ≤
ε4,1
2

∑
Ti∈T

∥∥∥K 1
2∇en+1

pn,h

∥∥∥2

Ti,0

+ (1− θ)2 1

2ε4,1
λn

2
C2
t C̃
∑
Fi

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0 (4.28)

P4,2 ≤λ′nC̃‖K
1
2∇p̃n+1

n ‖Ω,∞
∑
Fi∈F

∫
Fi

{(en+1
s,h + en+1

s )}Jen+1
pn,h

K

≤ε4,2
2

∑
Fi

f(ks)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0 +

1

2ε4,2
λ′n

2
C̃‖K 1

2∇p̃n+1
n ‖2Ω,∞

2∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0

+
1

2ε4,2
λ′n

2
C̃‖K 1

2∇p̃n+1
n ‖2Ω,∞(‖en+1

s ‖2Ω,0 + h2‖∇en+1
s ‖2Ω,0) (4.29)
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P4,3 ≤

(
λn

2
C2
t C̃

∑
Ti∈T

(∥∥∥K 1
2∇en+1

pn

∥∥∥2

Ti,0
+ |Fi|2

∥∥∥K 1
2∇2en+1

pn

∥∥∥2

Ti,0

)) 1
2

·

(∑
Fi

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0

) 1
2

≤ λn
2
C2
t C̃

1

2ε4,3

(∥∥∥K 1
2∇en+1

pn

∥∥∥2

Ω,0
+ h2

∥∥∥K 1
2∇2en+1

pn

∥∥∥2

Ω,0

)
+
ε4,3
2

∑
Fi

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0 (4.30)

P4,4 ≤
ε4,4
2

∑
Ti∈T

∥∥∥K 1
2∇en+1

pn,h

∥∥∥2

Ti,0

+
1

2ε4,4
θ2λn

2
C2
t C̃(h−2‖en+1

pn ‖
2
Ω,0 + ‖∇en+1

pn ‖
2
Ω,0) (4.31)

If p̃n+1
n is continuous, the jump term in P4,5 vanishes making P4,5 = 0. Otherwise, we

proceed with the same steps as for P4,4. We use the continuity of pn to replace Jp̃n+1
n K by

Jen+1
pn K and get the following estimate for P4,5:

P4,5 ≤
ε4,5
2

∑
Ti∈T

∥∥∥K 1
2∇en+1

pn,h

∥∥∥2

Ti,0

+
1

2ε4,5
θ2λn

2
C2
t C̃(h−2‖en+1

pn ‖
2
Ω,0 + ‖∇en+1

pn ‖
2
Ω,0) (4.32)

Combined estimate Putting the estimates (4.23) to (4.32) together, we get:∑
Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pn,h

+
(
λn −

ε2,2
2
− ε2,3

2
− ε4,1

2
− ε4,4

2
− ε4,5

2

) ∑
Ti∈T

‖K 1
2∇en+1

pn,h
‖2Ti,0

+

(
σn −

f(kp)

2

(
ε3,2 + ε4,3 +

(1− θ)2λnCtC̃

ε4,1

)
− f(ks)ε4,2

2

) ∑
Fi∈F

1

|Fi|
‖Jen+1

pn,h
K‖2Fi,0

≤
(

1

2ε2,2
+

1

2ε4,2

)
λ′n

2‖K 1
2∇p̃n+1

n ‖2Ω,∞
∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0

+ λ′n
2 1

2ε2,2
‖K 1

2∇p̃n+1
n ‖2Ω,∞‖en+1

s ‖2Ω,0 +
λn

2

2ε2,3

∑
Ti∈T

‖K 1
2∇en+1

pn ‖
2
Ti,0

+
1

2ε4,2
λ′n

2
C̃‖K 1

2∇p̃n+1
n ‖2Ω,∞(‖en+1

s ‖2Ω,0 + h2‖∇en+1
s ‖2Ω,0)

+
1

2ε3,2
σ2
nC

2
t C̃

∑
Ti∈T

(|Fi|−2‖en+1
pn ‖

2
Ti,0 + ‖∇en+1

pn ‖
2
Ti,0)
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+ λn
2
C2
t C̃

1

2ε4,3

(∥∥∥K 1
2∇en+1

pn

∥∥∥2

Ω,0
+ h2

∥∥∥K 1
2∇2en+1

pn

∥∥∥2

Ω,0

)
+

(
1

2ε4,4
+

1

2ε4,5

)
θ2λn

2
C2
t C̃(h−2‖en+1

pn ‖
2
Ω,0 + ‖∇en+1

pn ‖
2
Ω,0) (4.33)

Choosing ε2,2 = ε2,3 = ε4,1 = ε4,4 = ε4,5 =
λn

5
, and ε3,2 =

f(ks)

f(kp)
ε4,2 = ε4,3 =

σn
3
,

we arrive at the desired estimate for the non-wetting phase.

4.3.2 Estimate for the wetting phase

Lemma 8 For a sufficiently large σw there exists a constant C independent of h, ∆t, kp
and ks such that the following estimate holds:∑

Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pw,h
+
∑
Ti∈T

‖K 1
2∇en+1

pw,h
‖2Ti,0

+
∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pw,h
K‖2Fi,0

≤ C
(

5

2λw
+

3f(ks)

2σwf(kp)

)
λ′w‖K

1
2∇p̃n+1

w ‖2Ω,∞
∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0

+ Cλ′w
5

2λw
‖K 1

2∇p̃n+1
w ‖2Ω,∞‖en+1

s ‖2Ω,0 + C
5λw
2λw
‖K 1

2∇en+1
pw ‖

2
Ω,0

+
3f(ks)

2σwf(kp)
λ′wC̃‖K

1
2∇p̃n+1

w ‖Ω,∞(‖en+1
s ‖2Ω,0 + h2‖∇en+1

s ‖2Ω,0)

+ C

(
3σwC

2
t C̃

2
+

5θλw
2
C2
t C̃

λw

)
(h−2‖en+1

pw ‖
2
Ω,0 + ‖∇en+1

pw ‖
2
Ω,0)

+ C
3λw

2
C2
t C̃

2σw

(∥∥∥K 1
2∇en+1

pw

∥∥∥2

Ω,0
+ h2

∥∥∥K 1
2∇2en+1

pw

∥∥∥2

Ω,0

)

Proof 4 The proof is the same as for the non-wetting phase (Section 4.3.1) and is therefore
left out.
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4.3.3 Estimate for the capillary pressure

Lemma 9 There exists a constant C independent of h, ∆t, kp and ks such that the
following estimate holds:

φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h +

|p′c,eq|φ
2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0

+
|p′c,eq|φ

2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0 + φτ

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

≤3φ

2τ

∑
Ti∈T

∫
Ti

‖en+1
pc ‖

2
Ti,0 +

|p′c,eq|φ
4

∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0 +

L2
pcφ

|p′c,eq|
∑
Ti∈T

‖en+1
s ‖2Ti,0

+
τφ

2
∆t
∑
Ti∈T

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ti,0 dt+

3τφ

2

∑
Ti∈T

‖∂ten+1
s ‖2Ti,0 (4.34)

Proof 5 We subtract (3.17) in Problem 3 from (3.13) in Problem 2, and use ψpc = φ∂−en+1
s,h

to get

φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h + φ

∑
Ti∈T

∫
Ti

en+1
pc ∂−en+1

s,h

− φ
∑
Ti∈T

∫
Ti

(pc,eq(S
n+1
w )− pc,eq(s̃n+1

w ) + pc,eq(s̃
n+1
w )− pc,eq(sw))∂−en+1

s,h

+ φ
∑
Ti∈T

∫
Ti

τ(∂−en+1
s,h + (∂− − ∂t)s̃n+1

w + ∂te
n+1
s )∂−en+1

s,h

= φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h + Pc1 + Pc2 + Pc3

= 0 . (4.35)

Estimate for Pc1 We use Hölder’s and Young’s inequality to obtain

Pc1 ≤
φ2

2εpc1

∑
Ti∈T

∫
Ti

‖en+1
pc ‖

2
Ti,0 +

εpc1
2

∑
Ti∈T

∫
Ti

‖∂−en+1
s,h ‖

2
Ti,0 (4.36)

Estimate for Pc2

Pc2 =− φ
∑
Ti∈T

∫
Ti

(pc,eq(S
n+1
w )− pc,eq(s̃n+1

w ))∂−en+1
s,h

− φ
∑
Ti∈T

∫
Ti

(pc,eq(s̃
n+1
w )− pc,eq(sw))∂−en+1

s,h
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=Pc2,1 + Pc2,2. (4.37)

Here Pc2,1 is estimated as

Pc2,1 =φ
∑
Ti∈T

∫
Ti

|p′c,eq(ξ)|en+1
s,h ∂

−en+1
s,h ≥ φ|p

′
c,eq|

∑
Ti∈T

∫
Ti

en+1
s,h ∂

−en+1
s,h

=
|p′c,eq|φ

2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0.

For Pc2,2, using Young’s Inequality and the Lipschitz continuity one has

Pc2,2 ≤φ
∑
Ti∈T

∫
Ti

Lpce
n+1
s en+1

s,h ≤
εpc22

2

∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0 +

L2
pcφ

2

2εpc22

∑
Ti∈T

‖en+1
s ‖2Ti,0

Estimate for Pc3

Pc3 =φτ
∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 + φτ

∑
Ti∈T

∫
Ti

(∂− − ∂t)s̃n+1
w ∂−en+1

s,h

+ φτ
∑
Ti∈T

∫
Ti

∂te
n+1
s ∂−en+1

s,h

=Pc3,1 + Pc3,2 + Pc3,3 (4.38)

We approximate the consistency error in Pc3,2 using a Taylor expansion

1

∆t
(s̃n+1
w − s̃nw)− ∂ts̃n+1

w =
1

∆t

∫ tn+1

tn

(t− tn)∂tts̃
n+1
w dt ,

which leads to the following estimate for Pc3,2

Pc3,2 ≤
τ2φ2

2εpc32

∑
Ti∈T

‖(∂− − ∂t)s̃n+1
w ‖2Ti,0 +

εpc32

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

≤εpc32

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 +

τ2φ2

6εpc32
∆t
∑
Ti∈T

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ti,0 dt .

To estimate Pc3,3, we use Young’s inequality:

Pc3,3 ≤
εpc33

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 +

τ2φ2

2εpc33

∑
Ti∈T

‖∂ten+1
s ‖2Ti,0

Combined estimate We substitute the estimates (4.36), (4.37) and (4.38) into (4.35) to get

φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h +

|p′c,eq|φ
2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0
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+
|p′c,eq|φ

2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0 + φτ

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

≤ φ2

2εpc1

∑
Ti∈T

∫
Ti

‖en+1
pc ‖

2
Ti,0 +

εpc1
2

∑
Ti∈T

∫
Ti

‖∂−en+1
s,h ‖

2
Ti,0

+
εpc22

2

∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0 +

L2
pcφ

2

2εpc22

∑
Ti∈T

‖en+1
s ‖2Ti,0

+
εpc32

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 +

τ2φ2

6εpc32
∆t
∑
Ti∈T

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ti,0 dt

+
εpc33

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 +

τ2φ2

2εpc33

∑
Ti∈T

‖∂ten+1
s ‖2Ti,0

Setting εpc1 = εpc32 = εpc33 =
φτ

3
and, εpc22 =

|p′c,eq|φ
2

, we get the desired estimate.

4.3.4 Convergence result
We are now in a position to deduce the following theorem about the convergence of the

scheme:

Theorem 1 For sufficiently large σn and σw, there exists a constant C independent of h
and ∆t, s.t., the following estimate holds:

∑
Ti∈T

‖eN+1
s,h ‖

2
Ti,0 +

N∑
n=0

∑
Ti∈T

‖en+1
s,h − e

n
s,h‖2Ti,0 + ∆t

N∑
n=0

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

+∆t

N∑
n=0

∑
Ti∈T

(
‖∇en+1

pw,h
‖2Ti,0 + ‖∇en+1

pn,h
‖2Ti,0

)

+∆t

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)

≤C
∑
Ti∈T

‖e0
s,h‖2Ti,0 + C

h2 min(ks+1,ls)

k2ls−2
s

(
1 +

1

k2
s

)
∆t

N∑
n=0

‖sw(t)‖2Ω,ls + C∆t2

+C
h2 min(ks+1,ls)

k2ls
s

∆t

N∑
n=0

‖∂tsw(t)‖2Ω,ls

+C
h2 min(kp+1,lpn )−2

k
2lpn−2
p

(
1 +

1

k2
p

+ k2
p

)
∆t

N∑
n=0

‖pn(t)‖2Ω,lpn

+C
h2 min(kp+1,lpc )−2

k
2lpc−2
p

(
1 +

1

k2
p

+ k2
p

)
∆t

N∑
n=0

‖pc(t)‖2Ω,lpc
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Proof 6 We add the results of Lemma 7, 8, and 9, and rearrange them to get:∑
Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pn,h
+
∑
Ti∈T

∫
Ti

[
∂−Sn+1

w − ∂tsw
]
φen+1

pw,h

+φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h +

|p′c,eq|φ
2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0

+
|p′c,eq|φ

2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0 + φτ

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

+
∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)
+
∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)
≤3φ

2τ

∑
Ti∈T

∫
Ti

‖en+1
pc ‖

2
Ti,0 +

|p′c,eq|φ
4

∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0 +

L2
pcφ

|p′c,eq|
∑
Ti∈T

‖en+1
s ‖2Ti,0

+
τφ

2
∆t
∑
Ti∈T

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ti,0 dt+

3τφ

2

∑
Ti∈T

‖∂ten+1
s ‖2Ti,0

+
∑
α=w,n

[
C

(
5

2λα
+

3f(ks)

2σαf(kp)

)
λ′α‖K

1
2∇p̃n+1

α ‖2Ω,∞
] ∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0

+
∑
α=w,n

[
C

5λ′α
2λα
‖K 1

2∇p̃n+1
α ‖2Ω,∞‖en+1

s ‖2Ω,0 + C
5λα
2λα

∑
Ti∈T

‖K 1
2∇en+1

pα ‖
2
Ti,0

+
3f(ks)λ′αC̃

2σαf(kp)
‖K 1

2∇p̃n+1
α ‖Ω,∞(‖en+1

s ‖2Ω,0 + h2‖∇en+1
s ‖2Ω,0)

+ C

(
3σαC

2
t C̃

2
+

5θ2λα
2
C2
t C̃

λα

)
(h−2‖en+1

pα ‖
2
Ω,0 + ‖∇en+1

pα ‖
2
Ω,0)

+ C
3λα

2
C2
t C̃

2σα

(∥∥∥K 1
2∇en+1

pα

∥∥∥2

Ω,0
+ h2

∥∥∥K 1
2∇2en+1

pα

∥∥∥2

Ω,0

)]
(4.39)

We combine the first three summation terms of (4.39) to get:∑
Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pn,h
+
∑
Ti∈T

∫
Ti

[
∂−Sn+1

w − ∂tsw
]
φen+1

pw,h

+ φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h

=
∑
Ti∈T

∫
Ti

φ
[
∂−en+1

s,h + (∂− − ∂t)s̃n+1
w + ∂te

n+1
s

]
(en+1
pn,h
− en+1

pc,h
− en+1

pn,h
)
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+ φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h

= −
∑
Ti∈T

∫
Ti

φ(∂− − ∂t)s̃n+1
w en+1

pc,h
−
∑
Ti∈T

∫
Ti

φ∂te
n+1
s en+1

pc,h

=: Ps1 + Ps2

Estimate for Ps1

Ps1 ≤
εps1

2

∑
Ti∈T

‖en+1
pc,h
‖2Ti,0 +

φ2

6εps1
∆t
∑
Ti∈T

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ti,0 dt . (4.40)

Estimate for Ps2

Ps2 ≤
εps2

2

∑
Ti∈T

‖en+1
pc,h
‖2Ti,0 +

φ2

2εps2

∑
Ti∈T

‖∂ten+1
s ‖2Ti,0 (4.41)

To absorb the error ‖en+1
pc,h
‖2Ti,0, we use the triangle inequality together with Lemma 1 to

get the following estimate:∑
Ti∈T

‖en+1
pc,h
‖2Ti,0 ≤

∑
Ti∈T

‖∇en+1
pn,h
‖2Ti,0 +

∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0

+
∑
Ti∈T

‖∇en+1
pw,h
‖2Ti,0 +

∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pw,h
K‖2Fi,0 . (4.42)

After substituting the estimates (4.40) and (4.41) together with the estimate (4.42) into the

estimate (4.39), and choosing εps1 = εps2 =
1

2
we get:

|p′c,eq|φ
2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0

+
φτ

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 +

1

2

∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)
+

1

2

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)

≤
∑
α=w,n

[
C

(
5

2λα
+

3f(ks)

2σαf(kp)

)
λ′α‖K

1
2∇p̃n+1

α ‖2Ω,∞ +
|p′c,eq|φ

4

] ∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0

+
L2
pcφ

|p′c,eq|
‖en+1
s ‖2Ω,0 +

3φ

2τ
‖en+1
pc ‖

2
Ω,0 +

(
3τφ

2
+ φ2

)
‖∂ten+1

s ‖2Ω,0

+

(
τφ

2
+
φ2

3

)
∆t

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ω,0 dt
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+
∑
α=w,n

[
C
λ′α5

2λα
‖K 1

2∇p̃n+1
α ‖2Ω,∞‖en+1

s ‖2Ω,0 + C
5λα
2λα
‖K 1

2∇en+1
pα ‖

2
Ω,0

+
3f(ks)λ′αC̃

2σαf(kp)
‖K 1

2∇p̃n+1
α ‖Ω,∞(‖en+1

s ‖2Ω,0 + h2‖∇en+1
s ‖2Ω,0)

+ C

(
3σαC

2
t C̃

2
+ C

5θ2λα
2
C2
t C̃

λα

)
(h−2‖en+1

pα ‖
2
Ω,0 + ‖∇en+1

pα ‖
2
Ω,0)

+ Cλα
2
C2
t C̃

3

2σα

(∥∥∥K 1
2∇en+1

pα

∥∥∥2

Ω,0
+ h2

∥∥∥K 1
2∇2en+1

pα

∥∥∥2

Ω,0

)]
(4.43)

Using a generic constant C, we rewrite (4.43) as:

|p′c,eq|φ
2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0

+
φτ

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 +

1

2

∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)
+

1

2

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)

≤

(
C +

|p′c,eq|φ
4

) ∑
Ti∈T

C‖en+1
s,h ‖

2
Ti,0 + C‖en+1

s ‖2Ω,0 + C‖en+1
pc ‖

2
Ω,0

+C∆t

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ω,0 dt+C‖∂ten+1

s ‖2Ω,0 + Ch2‖∇en+1
s ‖2Ω,0

+
∑
α=w,n

[
C‖∇en+1

pα ‖
2
Ω,0 + Ch−2‖en+1

pα ‖
2
Ω,0 + Ch2

∥∥∇2en+1
pα

∥∥2

Ω,0

]

Multiplying the above inequality by ∆t, summing over n = 0, . . . , N , and absorbing
‖eN+1
s,h ‖2Ω,0, we get:(

|p′c,eq|φ
2

− C∆t

) ∑
Ti∈T

‖eN+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

N∑
n=0

∑
Ti∈T

‖en+1
s,h − e

n
s,h‖2Ti,0

+
∆t

2

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)

+
∆t

2

N∑
n=0

∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)

+
φτ

2
∆t

N∑
n=0

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

≤
|p′c,eq|φ

2

∑
Ti∈T

‖e0
s,h‖2Ti,0 +

(
C +

|p′c,eq|φ
4

)
∆t

N−1∑
n=0

∑
Ti∈T

C‖en+1
s,h ‖

2
Ti,0



46

+C∆t

N∑
n=0

‖en+1
s ‖2Ω,0 + C∆t

N∑
n=0

‖en+1
pc ‖

2
Ω,0 + C∆t

N∑
n=0

‖∂ten+1
s ‖2Ω,0

+C∆t2
∫ T

0

‖∂tts̃n+1
w ‖2Ω,0 dt+Ch2∆t

N∑
n=0

‖∇en+1
s ‖2Ω,0

+
∑
α=w,n

∆t

[
C

N∑
n=0

‖∇en+1
pα ‖

2
Ω,0 + Ch−2

N∑
n=0

‖en+1
pα ‖

2
Ω,0 + Ch2

N∑
n=0

∥∥∇2en+1
pα

∥∥2

Ω,0

]

For a sufficiently small ∆t, we use Grönwall’s inequality, and postulate that there exists a
constant independent of ∆t, h, kpor ks, s.t.:(

|p′c,eq|φ
2

− C∆t

) ∑
Ti∈T

‖eN+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

N∑
n=0

∑
Ti∈T

‖en+1
s,h − e

n
s,h‖2Ti,0

+
∆t

2

N∑
n=0

∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)

+
∆t

2

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)

+
φτ

2
∆t

N∑
n=0

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

≤
|p′c,eq|φ

2

∑
Ti∈T

‖e0
s,h‖2Ti,0 + C∆t

N∑
n=0

‖en+1
s ‖2Ω,0 + C∆t

N∑
n=0

‖en+1
pc ‖

2
Ω,0

+C∆t2
∫ T

0

‖∂tts̃n+1
w ‖2Ω,0 dt+C∆t

N∑
n=0

‖∂ten+1
s ‖2Ω,0 + Ch2∆t

N∑
n=0

‖∇en+1
s ‖2Ω,0

+C∆t

N∑
n=0

‖∇en+1
pn ‖

2
Ω,0 + Ch−2∆t

N∑
n=0

‖en+1
pn ‖

2
Ω,0 + Ch2∆t

N∑
n=0

∥∥∇2en+1
pn

∥∥2

Ω,0

+C∆t

N∑
n=0

‖∇en+1
pw ‖

2
Ω,0 + Ch−2∆t

N∑
n=0

‖en+1
pw ‖

2
Ω,0 + Ch2∆t

N∑
n=0

∥∥∇2en+1
pw

∥∥2

Ω,0

Using the error estimates (4.2), (4.3) and (4.4), and the triangle inequality for the error
terms in pw = pn − pc, we can write:(

|p′c,eq|φ
2

− C∆t

) ∑
Ti∈T

‖eN+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

N∑
n=0

∑
Ti∈T

‖en+1
s,h − e

n
s,h‖2Ti,0

+
∆t

2

N∑
n=0

∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)

+
∆t

2

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)
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+
φτ

2
∆t

N∑
n=0

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

≤C
∑
Ti∈T

‖e0
s,h‖2Ti,0 + C∆t

N∑
n=0

h2 min(ks+1,ls)

k2ls
s

‖sw(t)‖2Ω,ls + C∆t2

+C∆t

N∑
n=0

h2 min(ks+1,ls)

k2ls
s

‖∂tsw(t)‖2Ω,ls + Ch2∆t

N∑
n=0

h2 min(ks+1,ls)−2

k2ls−2
s

‖sw(t)‖2Ω,ls

+C∆t

N∑
n=0

h2 min(kp+1,lpn )−2

k
2lpn−2
p

‖pn(t)‖2Ω,lpn + Ch−2∆t

N∑
n=0

h2 min(kp+1,lpn )

k
2lpn
p

‖pn(t)‖2Ω,lpn

+Ch2∆t

N∑
n=0

h2 min(kp+1,lpn )−4

k
2lpn−4
p

‖pn(t)‖2Ω,lpn + C∆t

N∑
n=0

h2 min(kp+1,lpc )−2

k
2lpc−2
p

‖pc(t)‖2Ω,lpc

+Ch−2∆t

N∑
n=0

h2 min(kp+1,lpc )

k
2lpc
p

‖pc(t)‖2Ω,lpc + Ch2∆t

N∑
n=0

h2 min(kp+1,lpc )−4

k
2lpc−4
p

‖pc(t)‖2Ω,lpc

from where, the stated estimate follows.

From the Theorem we can directly deduce the following Corollary:

Corollary 1 For sufficiently smooth solutions pn ∈ L2(0, T ;Hkp+1(Ω)), pc ∈
L2(0, T ;Hkp+1(Ω)) and sw ∈ H2(0, T ;Hks+1(Ω)) and sufficiently large σn and σw,
there exists a constant C independent of h and ∆t, s.t., the following estimate holds:

‖eN+1
s,h ‖

2
Ω,0 + ∆t

N∑
n=0

‖∂−en+1
s,h ‖

2
Ω,0 + ∆t

N∑
n=0

(
‖en+1
pc,h
‖2Ω,DG + ‖en+1

pn,h
‖2Ω,DG

)
≤C∆t2 + C

h2ks

k2ks
s

+ C
h2kp

k
2kp−2
p

4.4 Numerical Experiments

In this section, we verify the convergence rates derived in Theorem 1 through numerical
experiments. We consider an analytical solution to compute the L2- and H1-errors. We show
the h and ∆t dependence through successive refinement of the spatial mesh, respectively of
the time step.

Problem definition We consider the domain Ω = (0, 1)× (0, 1) ⊂ R2 and t ∈ [0, 1]. The
properties of the phases and the porous medium are listed in Table 4.1.
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Table 4.1: Properties for Test problem 1

Phase Properties
wetting phase dynamic viscosity µw

[
kg
ms

]
1

non-wetting phase dynamic viscosity µn

[
kg
ms

]
1

wetting phase density ρw

[
kg
m3

]
1

non-wetting phase density ρn

[
kg
m3

]
1

Hydraulic Properties
absolute permeability K

[
m2
]

1
residual wetting phase saturation Srw 0
residual non-wetting phase saturation Srn 0
porosity ϕ 0.4
damping coefficient τ [Pa · s] 1
Brooks-Correy Parameters
entry pressure pd [Pa] 1
pore size distribution index λ 2

The right hand side in the equations are chosen such that the exact solution for t ≥ 0
equals:

pn(t, x, y) =
1

4
cos((x+ y)π − t) +

1

2

sw(t, x, y) =
1

4
sin((x+ y)π − t) +

1

2
pc(t, x, y) = pc,eq(sw(t, x, y))− τ∂tsw(t, x, y)

Implementation We chose θ = 1, which gives a NIP dG-scheme, and the penalty param-
eters as σw = σn = 10. We implement the numerical scheme in the C++ based DUNE-
PDELab framework [Bastian et al., 2007, 2010, 2011]. For linearization, we use the Newton-
Raphson scheme with a line-search strategy [Deuflhard, 2004]. We solve the resulting linear
system with SuperLU solver [Demmel et al., September 1999].

Simulation To show the spatial convergence rates, we consider two cases: Case 1 with
polynomials of order 1, and Case 2 with polynomials of order 2. We make five simulations
each with the following mesh and time step refinements:

p-order=1 p-order=2
no. of elements time step size time step size

Run-1: 2× 2 ∆t = 1 ∆t = 1 ,
Run-2: 4× 4 ∆t = 1/2 ∆t = 1/4 ,
Run-3: 8× 8 ∆t = 1/4 ∆t = 1/16 ,
Run-4: 16× 16 ∆t = 1/8 ∆t = 1/64 ,
Run-5: 32× 32 ∆t = 1/16 ∆t = 1/256 .
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In Case 1, a linear convergence rate is expected. In Case 2, we use quadratic polynomials,
and let the time step size ∆t depend quadratically on the size of the elements h. This prevents
the errors due to the time discretization from becoming dominating and thus affecting the
convergence rates. Here, we expect a quadratic convergence rate.

In case 3, to show the time convergence rates, we make five simulations with polynomial
order 2 and the following mesh and time step refinements:

p-order=2
no. of elements time step size

Run-1: 2× 2 ∆t = 1 ,
Run-2: 4× 4 ∆t = 1/2 ,
Run-3: 8× 8 ∆t = 1/4 ,
Run-4: 16× 16 ∆t = 1/8 ,
Run-5: 32× 32 ∆t = 1/16 .

In this case, the time steps are chosen such that the error due to time discretization is ulti-
mately dominating.

Results The solution of the problem at time t = 1 and with a refinement of 32 × 32 is
shown in Figures 4.1a, 4.1b and 4.1c.

In Figure 4.2, we show the spatial convergence rates for the test problem. Figures 4.2a and
4.2b show the calculated error for piecewise linear polynomials for the non-wetting pressure
pn, capillary pressure pc, and wetting saturation sw. Figures 4.2c and 4.2d show the calcu-
lated error for piecewise quadratic polynomials for pn, pc, and sw. In Figure 4.3, we show
the temporal convergence rates for the test problem, with piecewise quadratic polynomials
for pn, pc, and sw.

Observe the agreement with the theoretical convergence rates obtained in Theorem 1. For
Case 1, we observe a linear convergence order, and for Case 2 a quadratic convergence order.
In Case 3 we see a linear convergence order due to the time discretization. The expected
convergence rates for each of the cases are plotted in green for reference in Figures 4.2 and
4.3.



50

(a) pn (b) pc (c) sw

(d) Plot over the diagonal Y = X ,
legend: sw ,pn and pc

Figure 4.1: Simulation results at t = 1.



51

������ ������ ������ ������ ������
����	�

����	�

������

������

��
�

�

�
����
�



��
�

�

����
�
����
�



��
�

�

����
�����


����
����
�����

�������������	
����



�
��
��

�
�

(a) H1 error for piecewise linear polynomials
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(b) L2 error for piecewise linear polynomials
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(c) H1 error for piecewise quadratic polynomials
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(d) L2 error for piecewise quadratic polynomials

Figure 4.2: hp-convergence rates.
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Figure 4.3: Temporal convergence rates
L2 error for piecewise quadratic polynomials.
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Chapter 5
Linearization scheme

The non-linearities in Problem 4 can be resolved in different ways. The basic idea is to
approximate the nonlinearities such, that a linear problem remains to solve. The L-scheme is
an alternative linearization method similar to a fixed point iteration.

The main trait of the scheme is, that an additional term involving the scaling parameter
“L” is used, to enhance the convergence properties. The parameter L represents a generalized
approximation of the first derivative with respect to the unknown nonlinear variables, which
is used in a Newton method. The choice of this parameter is restricted with respect to the
non-linearity, which come from the convergence analysis of the scheme [Karpinski et al.,
2017]:

Ls ≥ sup
s

dpc,eq(s)

ds
, (5.1)

Ls,T ≥ sup
s

dT (s)

ds
(5.2)

The main benefit of the scheme is, that contrary to the Newton method, only a mild restriction
on the timestep-size independent of the spatial discretization is imposed [Karpinski et al.,
2017; Radu et al., 2015b].

Assumptions We base the linearization scheme on the following assumptions:

(A5.1) For the initial and boundary data one has s0 ∈ H1(Ω), pDn (x) ∈ H 1
2 (Γ) and a function

sD(x) ∈ H 1
2 (Γ) exists s.t. pDc (x) = pc,eq(s

D(x)). Further, the initial and boundary
conditions are compatible.

(A5.2) The permeability matrix K ∈ Rd×d is symmetric and positive definite, i.e. there exist
two constants κ and κ, s.t., for any vector x ∈ Rd, the following holds:

κ‖x‖2 ≤ xTKx ≤ κ‖x‖2

53
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(A5.3) The equilibrium capillary pressure function pc,eq(·) is in C2(R), and is assumed pos-
itive, bounded and decreasing. Further we assume that there exist Lpc,eq , lpc,eq > 0
such that for all S ∈ R it holds

0 < lpc,eq ≤
∣∣p′c,eq(·)∣∣ ≤ Lpc,eq <∞. (5.3)

(A5.4) The functions λw(·) and λn(·) are Lipschitz-continuous and two constants λα, λα > 0
exist such that for all S ∈ R,

0 < λα < λα(S) < λα <∞, (α ∈ {w, n}). (5.4)

(A5.5) The dynamic capillary pressure function τ(·) is in C2(R), positive, bounded, and de-
creasing. Letting T (·) denote its primitive, we assume that there exist LT , lT > 0 such
that for all S ∈ R one has

0 < lT ≤ τ(S) ≤ LT <∞. (5.5)

To develop the linearization scheme for the nonlinear Problem 3, we start with the dis-
cretization in time (3.14) to obtain a sequence of time-discrete problems (n = 0, . . . , N − 1):

Problem 5 [Time discrete problem] Given snw, pnn and pnc , find sn+1
w , pn+1

n and pn+1
c , s.t.,

the following holds:

sn+1
w − snw

∆t
φ+∇ ·

(
λn(sn+1

w )K∇(pn+1
n − gzρn)

)
= 0

sn+1
w − snw

∆t
φ+∇ ·

(
λw(sn+1

w )K∇(pn+1
n − pn+1

c − gzρw)
)

= 0

pn+1
c = pc,eq(s

n+1
w )− T (sn+1

w )− T (snw)

∆t

Observe that, at each time step, this results into a nonlinear problem. For solving it we
propose an iteration scheme that builds on the ideas in [List and Radu, 2016; Pop et al.,
2004; Radu et al., 2015a,b; Slodička, 2002, 2005a,b; Yong and Pop, 1996] (the ”L”-scheme).
The idea is to construct a sequence of triplets (sn+1,i−1

w , pn+1,i−1
n , pn+1,i−1

c ) converging as
i→∞ to the solution (sn+1

w , pn+1
n , pn+1

c ) of Problem 5. Recalling Assumptions (A5.3) and
(A5.5), we let Ls, Ls,T > 0 be two positive constants satisfying

Ls ≥ Lpc,eq and Ls,T ≥ LT (5.6)

and define the following linearization scheme:

Problem 6 [Linearization scheme] Let i > 0 and sn+1,i−1
w , pn+1,i−1

n , pn+1,i−1
c be given.
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Find sn+1,i
w , pn+1,i

n , and pn+1,i
c such that

− sn+1,i
w − snw

∆t
φ+∇ ·

(
λn(sn+1,i−1

w )K∇(pn+1,i
n − gzρn)

)
= 0

sn+1,i
w − snw

∆t
φ+∇ ·

(
λw(sn+1,i−1

w )K∇(pn+1,i
n − pn+1,i

c − gzρw)
)

= 0

pn+1,i
c − pc,eq(sn+1,i−1

w ) +
T (sn+1,i−1

w )− T (snw)

∆t

+ Ls(s
n+1,i
w − sn+1,i−1

w ) + Ls,T

(
sn+1,i
w − sn+1,i−1

w

∆t

)
= 0

Remark 3 Observe that the first two equations are nothing but the semi-implicit discretiza-
tion of the corresponding in Problem 5, whereas the third equation includes two additional
terms involving the parameters Ls and Ls,T . Formally one can see that if the scheme is con-
vergent, these terms are vanishing and the limit solves the nonlinear time discrete problem.
In [Karpinski et al., 2017] it is proven that the scheme converges indeed, and that this con-
vergence holds for any initial guess. However, since this is an evolution problem, it is natural
to use the solution at the previous time step at starting point, i.e. sn+1,0

w = snw, pn+1,0
n = pnn,

and pn+1,0
c = pnc .

5.1 Discrete system
Starting from Problem 6 and with the parameters Ls, Ls,T satisfying (5.6), the fully dis-

crete linearized scheme becomes

Problem 7 [Fully discrete linearization scheme] Let Pnn ∈ V
p
h (Ω), Pnc ∈ V

p
h (Ω), and Snw ∈

V sh (Ω). Given Pn+1,i−1
n ∈ V ph (Ω), Pn+1,i−1

c ∈ V ph (Ω), and Sn+1,i−1
w ∈ V sh (Ω) with

Pn+1,0
n = Pnn , Pn+1,0

c = Pnc , and Sn+1,0
w = Snw, find Pn+1,i

n ∈ V ph (Ω), Pn+1,i
c ∈ V ph (Ω),

and Sn+1,i
w ∈ V sh (Ω), s.t., for all ψs ∈ V sh (Ω), ψn ∈ V ph (Ω), and ψw ∈ V ph (Ω), the following

holds:

PDE-1: −
∑
Tr∈T

∫
Tr

∂−Sn+1,i
w φψn +

∑
Tr∈T

∫
Tr

λn(Sn+1,i−1
w )K∇

(
Pn+1,i
n − gzρn

)
∇ψn

−
∑
Fr∈F

∫
Fr

{λn(Sn+1,i−1
w )K∇

(
Pn+1,i
n − gzρn

)
· ~n}JψnK

+ θ
∑
Fr∈F

∫
Fr

JPn+1,i
n K{λn(Sn+1,i−1

w )K∇ψn · ~n}

+ σn
∑
Fr∈F

∫
Fr

f(kp)

|Fr|
JPn+1,i
n KJψnK

= θ
∑
Fr∈Γ

∫
Fr

JpDn K{λn(sD)K∇ψn · ~n}+ σn
∑
Fr∈Γ

∫
Fr

f(kp)

|Fr|
JpDn KJψnK (5.7)

PDE-2:
∑
Tr∈T

∫
Tr

∂−Sn+1,i
w φψw +

∑
Tr∈T

∫
Tr

λw(Sn+1,i−1
w )K∇

(
Pn+1,i
w − gzρw

)
∇ψw
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−
∑
Fr∈F

∫
Fr

{λw(Sn+1,i−1
w )K∇

(
Pn+1,i
w − gzρw

)
· ~n}JψwK

+ θ
∑
Fr∈F

∫
Fr

{λw(Sn+1,i−1
w )K∇ψw · ~n}JPn+1,i

w K

+ σw
∑
Fr∈F

∫
Fr

f(kp)

|Fr|
JPn+1,i
w KJψwK

= θ
∑
Fr∈Γ

∫
Fr

{λw(sD)K∇ψw · ~n}JpDn − pDc K

+ σw
∑
Fr∈Γ

∫
Fr

f(kp)

|Fr|
JpDn − pDc KJψwK (5.8)

ODE-Pc:
∑
Tr∈T

∫
Tr

Ls(S
n+1,i
w − Sn+1,i−1

w )ψs +
∑
Tr∈T

∫
Tr

Ls,T

(
Sn+1,i
w − Sn+1,i−1

w

∆t

)
ψs

+
∑
Tr∈T

∫
Tr

Pn+1,i
c ψs −

∑
Tr∈T

∫
Tr

pc,eq(S
n+1,i−1
w )ψs

+
∑
Tr∈T

∫
Tr

T (Sn+1,i−1
w )− T (Snw)

∆t
ψs = 0 (5.9)

In line with Remark 3, the solution at the previous time step is chosen as initial guess for
the fully discrete the iteration scheme. However, the convergence result proved in [Karpinski
et al., 2017] does not require this starting point.

5.2 Linearization of the interface condition
To linearize the interface condition, we evaluate which of the cases in Section 2.7, i.e.

which case of (3.18), has to be considered. This detection is for both linearization schemes
evaluated explicitly, i.e. we use the values of the previous time step. In the same way the
calculation of the jump for the non-wetting pressure (2.12) is evaluated at the previous time-
step. It is possible to also linearize those conditions, as it was done by Weiss et al. in [Helmig
et al., 2009]. There, an active and non-active set strategy was proposed and implemented.

A first order Taylor expansion is used to linearize the nonlinear jump condition in (5.9)
over the interface, leading to the following scheme:

Problem 8 [Fully discrete linearization scheme] Let Pnn ∈ V
p
h (Ω), Pnc ∈ V

p
h (Ω), and Snw ∈

V sh (Ω). Given Pn+1,i−1
n ∈ V ph (Ω), Pn+1,i−1

c ∈ V ph (Ω), and Sn+1,i−1
w ∈ V sh (Ω) with

Pn+1,0
n = Pnn , Pn+1,0

c = Pnc , and Sn+1,0
w = Snw, find Pn+1,i

n ∈ V ph (Ω), Pn+1,i
c ∈ V ph (Ω),

and Sn+1,i
w ∈ V sh (Ω), s.t., for all ψs ∈ V sh (Ω), ψn ∈ V ph (Ω), and ψw ∈ V ph (Ω), the following

holds:

PDE-1: −
∑
Ti∈T

∫
Ti

∂−Sn+1,i
w φψn +

∑
Ti∈T

∫
Ti

λn(Sn+1,i−1
w )K∇

(
Pn+1,i
n − gzρn

)
∇ψn
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−
∑
Fi∈F

∫
Fi

{λn(Sn+1,i−1
w )K∇

(
Pn+1,i
n − gzρn

)
· ~n}JψnK

+ θ
∑
Fi∈F

∫
Fi

JPn+1,i
n K′{λn(Sn+1,i−1

w )K∇ψn · ~n}

+ σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JPn+1,i
n K′JψnK

= θ
∑
Fi∈ΓD

∫
Fi

JPDn K{λn(sD)K∇ψn · ~n}+ σn
∑
Fi∈ΓD

∫
Fi

f(kp)

|Fi|
JPDn KJψnK

(5.10)

PDE-2:
∑
Ti∈T

∫
Ti

∂−Sn+1,i
w φψw +

∑
Ti∈T

∫
Ti

λw(Sn+1,i−1
w )K∇

(
Pn+1,i
w − gzρw

)
∇ψw

−
∑
Fi∈F

∫
Fi

{λw(Sn+1,i−1
w )K∇

(
Pn+1,i
w − gzρw

)
· ~n}JψwK

+ θ
∑
Fi∈F

∫
Fi

{λw(Sn+1,i−1
w )K∇ψw · ~n}JPn+1,i

w K

+ σw
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JPn+1,i
w KJψwK

= θ
∑
Fi∈ΓD

∫
Fi

{λw(sD)K∇ψw · ~n}JPDn − PDc K

+ σw
∑
Fi∈ΓD

∫
Fi

f(kp)

|Fi|
JPDn − PDc KJψwK (5.11)

ODE-Pc:
∑
Ti∈T

∫
Ti

Ls(S
n+1,i
w − Sn+1,i−1

w )ψs +
∑
Ti∈T

∫
Ti

Ls,T

(
Sn+1,i
w − Sn+1,i−1

w

∆t

)
ψs

+
∑
Ti∈T

∫
Ti

Pn+1,i
c ψs −

∑
Ti∈T

∫
Ti

pc,eq(S
n+1,i−1
w )ψs

+
∑
Ti∈T

∫
Ti

T (Sn+1,i−1
w )− T (Snw)

∆t
ψs

− σs
∑
Fi∈F

∫
Fi

f(ks)

|Fi|
q
pc,eq(S

n
w)− p′c,eq(Snw)

(
Sn+1,i+1
w − Snw

)y′ JψsK
+ σs

∑
Fi∈F

∫
Fi

f(ks)

|Fi|

s
T ′(Snw)

Sn+1,i+1
w − Snw

∆t

{′
JψsK = 0 (5.12)
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5.3 Convergence Analysis of the Linearization Scheme
In this section, we present a rigorous proof for the convergence of the linear iterative

scheme introduced in Section 5.1.

We use the following notations for the errors at the i-th iteration:

eis = Sn+1,i
w − Sn+1

w , eipα = Pn+1,i
α − Pn+1

α (5.13)

where α = n,w, c. To simplify the presentation, we also use the following notation for the
errors in λn(·), λw(·), T (·), and pc,eq(·), respectively:

eiλn = λn(Sn+1,i
w )− λn(Sn+1

w ) eiλw = λw(Sn+1,i
w )− λw(Sn+1

w )

eipc,eq = pc,eq(S
n+1,i
w )− pc,eq(Sn+1

w ) eiT = T (Sn+1,i
w )− T (Sn+1

w ) . (5.14)

The following theorem states the convergence of the linear iterative scheme. It is proved
under a mild restriction on the time step which is uniform w.r.t. the spatial mesh.

Theorem 2 Convergence L-scheme
Under assumptions (A5.1)-(A5.5) and with a sufficiently small ∆t, the iterative
scheme (5.7)-(5.9) converges linearly.

To prove the convergence of the scheme, we subtract (5.7), (5.8) and (5.9) from (3.15),
(3.16) and (3.17) respectively to get the following system of equations:

PDE-1: −
∑
Tr∈T

∫
Tr

(∂−Sn+1,i
w − ∂−Sn+1

w )φψn

+
∑
Tr∈T

∫
Tr

(λn(Sn+1,i−1
w )K∇Pn+1,i

n − λn(Sn+1
w )K∇Pn+1

n )∇ψn

−
∑
Fr∈F

∫
Fr

{(λn(Sn+1,i−1
w )K∇Pn+1,i

n − λn(Sn+1
w )K∇Pn+1

n ) · ~n}JψnK

+ θ
∑
Fr∈F

∫
Fr

JPn+1,i
n K{λn(Sn+1,i−1

w )K∇ψn · ~n} − JPn+1
n K{λn(Sn+1

w )K∇ψn · ~n}

+ σn
∑
Fr∈F

∫
Fr

f(kp)

|Fr|
JPn+1,i
n − Pn+1

n KJψnK = 0 (5.15)

PDE-2:
∑
Tr∈T

∫
Tr

(∂−Sn+1,i
w − ∂−Sn+1

w )φψw

+
∑
Tr∈T

∫
Tr

(λw(Sn+1,i−1
w )K∇(Pn+1,i

n − Pn+1,i
c )∇ψw
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−
∑
Tr∈T

∫
Tr

(λw(Sn+1
w )K∇(Pn+1

n − Pn+1
c )∇ψw

−
∑
Fr∈F

∫
Fr

{(λw(Sn+1,i−1
w )K∇(Pn+1,i

n − Pn+1,i
c ) · ~n}JψwK

+
∑
Fr∈F

∫
Fr

{(λw(Sn+1
w )K∇(Pn+1

n − Pn+1
c )) · ~n}JψwK

+ θ
∑
Fr∈F

∫
Fr

{λw(Sn+1,i−1
w )K∇ψw · ~n}JPn+1,i

n − Pn+1,i
c K

− θ
∑
Fr∈F

∫
Fr

{λw(Sn+1
w )K∇ψw · ~n}JPn+1

n − Pn+1
c K

+ σw
∑
Fr∈F

∫
Fr

f(kp)

|Fr|
J(Pn+1,i

n − Pn+1,i
c )− (Pn+1

n − Pn+1
c )KJψwK = 0 (5.16)

ODE-Pc:
∑
Tr∈T

∫
Tr

Ls(S
n+1,i
w − Sn+1,i−1

w )ψs +
∑
Tr∈T

∫
Tr

Ls,T

(
Sn+1,i
w − Sn+1,i−1

w

∆t

)
ψs

+
∑
Tr∈T

∫
Tr

(Pn+1,i
c − Pn+1

c )ψs −
∑
Tr∈T

∫
Tr

(pc,eq(S
n+1,i−1
w )− pc,eq(Sn+1

w ))ψs

+
∑
Tr∈T

∫
Tr

(∂−T (Sn+1,i−1
w )− ∂−T (Sn+1

w ))ψs = 0 (5.17)

We proceed by first obtaining error estimates separately for the phase pressures in Sections
5.3.1 and 5.3.2 and for the capillary pressure in Section 5.3.3. These estimates are then
combined to prove the convergence of the linearization scheme in Section 5.3.4.

5.3.1 Estimate for the non-wetting phase

Taking ψn = eipn in (5.15), we get,

−
∑
Tr∈T

∫
Tr

∂−eisφe
i
pn +

∑
Tr∈T

∫
Tr

λn(Sn+1,i−1
w )K|∇eipn |

2 + σn
∑
Fr∈F

∫
Fr

f(kp)

|Fr|
JeipnK2

=−
∑
Tr∈T

∫
Tr

(λn(Sn+1,i−1
w )− λn(Sn+1

w ))K∇Pn+1
n ∇eipn

+ (1− θ)
∑
Fr∈F

∫
Fr

JeipnK{λn(Sn+1,i−1
w )K∇eipn · ~n}

−
∑
Fr∈F

∫
Fr

{(λn(Sn+1,i−1
w )− λn(Sn+1

w ))K∇Pn+1
n ) · ~n}JeipnK

−
∑
Fr∈F

∫
Fr

θ{(λn(Sn+1,i−1
w )− λn(Sn+1

w ))K∇eipn · ~n}JP
n+1
n K
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=:P1 + P2 + P3 + P4

We start with the term P4:

|P4| ≤ ‖Pn+1
n ‖Ω,∞θ

∑
Fr∈F

∫
Fr

|{(λn(Sn+1,i−1
w )− λn(Sn+1

w ))K∇eipn · ~n}| .

Using the trace inequality (3.8), Lemma 3, Cauchy-Schwarz inequality and Young’s in-
equality (3.10), we get,

|P4| ≤ ‖Pn+1
n ‖Ω,∞θ

∑
Tr∈T

(
1√
|Fr|

C̃Ct

√
f(k)

|Fr|
∥∥ei−1
λn

∥∥
Tr,0

C̃Ct

√
f(k)

|Fr|
√
|Fr|

∥∥∥K 1
2∇eipn

∥∥∥
Tr,0

)

≤

√√√√∑
Tr∈T

‖Pn+1
n ‖2Ω,∞θ2C̃4C4

t

f2(k)

|Fr|2
∥∥ei−1
λn

∥∥2

Tr,0

√∑
Tr∈T

∥∥∥K 1
2∇eipn

∥∥∥2

Tr,0

≤ 1

2ε4
‖Pn+1

n ‖2Ω,∞θ2C̃4C4
t

f2(k)

|Fr|2
∑
Tr∈T

∥∥ei−1
λn

∥∥2

Tr,0
+
ε4
2

∑
Tr∈T

∥∥∥K 1
2∇eipn

∥∥∥2

Tr,0

for any ε4 > 0.

For the terms P1, P2, and P3, after carrying out steps similar to Section 4.3.1, we obtain
for any ε1, ε2, ε3 > 0,

|P1| ≤
ε1
2

∑
Tr∈T

‖K 1
2∇eipn‖

2
Tr,0 +

1

2ε1
C‖∇Pn+1

n ‖Ω,∞
∑
Tr∈T

‖ei−1
λn
‖2Tr,0

|P2| ≤
ε2
2

∑
Tr∈T

∥∥∥K 1
2∇en+1

pn

∥∥∥2

Tr,0
+ (1− θ)2 1

2ε2
λn

2
C2
t C̃

2
∑
Fr

f(kp)

|Fr|
‖Jen+1

pn K‖2Fr,0

|P3| ≤
ε3
2

∑
Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0 +

1

2ε3
‖K∇Pn+1

n ‖Ω,∞C̃2C2
t

∑
Tr∈T

‖ei−1
λn
‖2Tr,0 .

Observe that the estimate for P3 involves the essential boundedness for the gradient of the
pressure Pn+1

n . Assumptions (A5.2)-(A5.5) ensure that the problem remains non-degenerate
and therefore, the pressures have essential bounded gradients (see e.g. [Cao and Pop, 2015]).
These estimates can be extended to the time discrete problems, with the time derivative of
the saturation being replaced by the finite difference approximation, noting that these divided
differences satisfy the same bounds as ∂ts (see [Cao and Pop, 2016]). The extension to the
finite element approximation follows from [Nitsche and Wheeler, 1981/82] (also see [Li,
2015]).
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Combining the estimates for |P1| to |P4|, and choosing ε3 = σn and ε1 = ε2 = ε4 =
λn
3 ,

we get the following estimate for the non-wetting phase:

−
∑
Tr∈T

∫
Tr

(∂−eis)φe
i
pn +

λn

2

∑
Tr∈T

‖K 1
2∇eipn‖

2
Tr,0

+

(
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn

) ∑
Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

≤
(
Cn,1 + Cn,2

θ2

|Fr|2

) ∑
Tr∈T

‖ei−1
λn
‖2Tr,0 (5.18)

for some Cn,1, Cn,2 not depending on the discretization parameters.

5.3.2 Estimate for the wetting phase

We choose ψw = eipw in (5.16), and proceed in a similar way as for the non-wetting phase,
to get the following estimate for the wetting phase:

∑
Tr∈T

∫
Tr

(∂−eis)φe
i
pw +

λw

2

∑
Tr∈T

‖K 1
2∇eipw‖

2
Tr,0

+ (
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw
)
∑
Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤
(
Cw,1 + Cw,2

θ2

|Fr|2

) ∑
Tr∈T

‖ei−1
λw
‖2Tr,0 (5.19)

for some Cw,1, Cw,2 not depending on the discretization parameters.

5.3.3 Estimate for the capillary pressure

With ψs = eis in (5.17), we obtain,

∑
Tr∈T

∫
Tr

Ls(S
n+1,i
w − Sn+1,i−1

w )eis +
∑
Tr∈T

∫
Tr

Ls,T

(
Sn+1,i
w − Sn+1,i−1

w

∆t

)
eis

+
∑
Tr∈T

∫
Tr

eipce
i
s −

∑
Tr∈T

∫
Tr

(pc,eq(S
n+1,i−1
w )− pc,eq(Sn+1

w ))eis

+
∑
Tr∈T

∫
Tr

(∂−T (Sn+1,i−1
w )− ∂−T (Sn+1

w ))eis = 0 (5.20)

Note that, from (5.13)-(5.14), we can write

∂−T (Sn+1,i−1
w )− ∂−T (Sn+1

w ) =
1

∆t
(T (Sn+1,i−1

w )− T (Sn+1
w )) .
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Using (3.9) in (5.20), we get,

Ls
2

∑
Tr∈T

‖eis‖2Tr,0 +
Ls,T

2
∆t

∑
Tr∈T

‖∂−eis‖2Tr,0 +
∑
Tr∈T

∫
Tr

eipce
i
s

+
Ls
2

∑
Tr∈T

‖eis − ei−1
s ‖2Tr,0 +

Ls,T
2

∆t
∑
Tr∈T

‖∂−eis − ∂−ei−1
s ‖2Tr,0

−
∑
Tr∈T

∫
Tr

ei−1
pc,eqe

i
s +

∑
Tr∈T

∫
Tr

1

∆t
ei−1
T eis

=
Ls
2

∑
Tr∈T

‖ei−1
s ‖2Tr,0 +

Ls,T
2

∆t
∑
Tr∈T

‖∂−ei−1
s ‖2Tr,0 . (5.21)

Following Assumption (A5.3), pc,eq(·) is monotonous and we have,

−(pc,eq(x)− pc,eq(y))(x− y) = |pc,eq(x)− pc,eq(y)| · |x− y| ,

Similar argument holds for T (·). Using the above equalities for pc,eq(·) and T (·), (5.21)
becomes,

Ls
2

∑
Tr∈T

‖eis‖2Tr,0 +
Ls,T

2
∆t

∑
Tr∈T

‖∂−eis‖2Tr,0 +
∑
Tr∈T

∫
Tr

eipce
i
s

+
Ls
2

∑
Tr∈T

‖eis − ei−1
s ‖2Tr,0 +

Ls,T
2

∆t
∑
Tr∈T

‖∂−eis − ∂−ei−1
s ‖2Tr,0

+
∑
Tr∈T

∫
Tr

|ei−1
pc,eq | · |e

i−1
s |+

∑
Tr∈T

∫
Tr

| 1

∆t
ei−1
T | · |e

i−1
s |

=
Ls
2

∑
Tr∈T

‖ei−1
s ‖2Tr,0 +

Ls,T
2

∆t
∑
Tr∈T

‖∂−ei−1
s ‖2Tr,0

+
∑
Tr∈T

∫
Tr

ei−1
pc,eq (e

i
s − ei−1

s ) +
∑
Tr∈T

∫
Tr

1

∆t
ei−1
T (ei−1

s − eis) .

Using the Lipschitz continuity of pc,eq(·) and T (·), and the Young’s inequality, we get,

Ls
2

∑
Tr∈T

‖eis‖2Tr,0 +
Ls,T

2
∆t

∑
Tr∈T

‖∂−eis‖2Tr,0 +
∑
Tr∈T

∫
Tr

eipce
i
s

+
Ls
2

∑
Tr∈T

‖eis − ei−1
s ‖2Tr,0 +

Ls,T
2

∆t
∑
Tr∈T

‖∂−eis − ∂−ei−1
s ‖2Tr,0

+
1

LPc

∑
Tr∈T

‖ei−1
pc,eq‖

2
Tr,0 +

1

LT∆t

∑
Tr∈T

‖ei−1
T ‖

2
Tr,0

≤ Ls
2

∑
Tr∈T

‖ei−1
s ‖2Tr,0 +

Ls,T
2

∆t
∑
Tr∈T

‖∂−ei−1
s ‖2Tr,0

+
1

2Ls

∑
Tr∈T

‖ei−1
pc,eq‖

2
Tr,0 +

Ls
2

∑
Tr∈T

‖eis − ei−1
s ‖2Tr,0
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+
1

2Ls,T∆t

∑
Tr∈T

‖ei−1
T ‖

2
Tr,0 +

Ls,T∆t

2

∑
Tr∈T

‖ 1

∆t
(ei−1
s − eis)‖2Tr,0 .

Finally, using (5.6), we get the following estimate for the capillary pressure:

Ls
2

∑
Tr∈T

‖eis‖2Tr,0 +
Ls,T

2
∆t

∑
Tr∈T

‖∂−eis‖2Tr,0 +
∑
Tr∈T

∫
Tr

eipce
i
s

+
1

2Ls

∑
Tr∈T

‖ei−1
pc,eq‖

2
Tr,0 +

1

2Ls,T∆t

∑
Tr∈T

‖ei−1
T ‖

2
Tr,0

≤ Ls
2

∑
Tr∈T

‖ei−1
s ‖2Tr,0 +

Ls,T
2

∆t
∑
Tr∈T

‖∂−ei−1
s ‖2Tr,0 . (5.22)

5.3.4 Combined estimates

Multiplying (5.22) with
φ

∆t
, and adding the resulting equation to the sum of (5.18) and

(5.19), and observing that,∑
Tr∈T

∫
Tr

φ

∆t
eipce

i
s +

∑
Tr∈T

∫
Tr

∂−eis(φe
i
pw − φe

i
pn)

=
∑
Tr∈T

∫
Tr

φ

∆t
eipce

i
s −

∑
Tr∈T

∫
Tr

∂−eise
i
pc

=0

leads to,

Ls
2

φ

∆t

∑
Tr∈T

‖eis‖2Tr,0 +
Ls,Tφ

2

∑
Tr∈T

‖∂−eis‖2Tr,0

+
φ

2Ls∆t

∑
Tr∈T

‖ei−1
pc,eq‖

2
Tr,0 +

φ

2Ls,T∆t2

∑
Tr∈T

‖ei−1
T ‖

2
Tr,0

+
λn

2

∑
Tr∈T

‖K 1
2∇eipn‖

2
Tr,0 +

(
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn

) ∑
Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

+
λw

2

∑
Tr∈T

‖K 1
2∇eipw‖

2
Tr,0 +

(
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw

) ∑
Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤
(
Cn,0 + Cn,1 +

Cn,2θ
2

|Fr|2

) ∑
Tr∈T

‖ei−1
λn
‖2Tr,0

+

(
Cw,0 + Cw,1 +

Cw,2θ
2

|Fr|2

) ∑
Tr∈T

‖ei−1
λw
‖2Tr,0

+
Lsφ

2∆t

∑
Tr∈T

‖ei−1
s ‖2Tr,0 +

Ls,Tφ

2

∑
Tr∈T

‖∂−ei−1
s ‖2Tr,0 .
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After multiplying with ∆t and rearranging the terms, we get,

Lsφ

2

∑
Tr∈T

‖eis‖2Tr,0 +
∆tLs,Tφ

2

∑
Tr∈T

‖∂−eis‖2Tr,0

+
φ

2Ls

∑
Tr∈T

‖ei−1
pc,eq‖

2
Tr,0 +

φ

2Ls,T∆t

∑
Tr∈T

‖ei−1
T ‖

2
Tr,0

+
∆tλn

2

∑
Tr∈T

‖K 1
2∇eipn‖

2
Tr,0 +

∆tλw

2

∑
Tr∈T

‖K 1
2∇eipw‖

2
Tr,0

+ ∆t

(
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn

) ∑
Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

+ ∆t

(
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw

) ∑
Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤∆t

(
Cn,0 + Cn,1 +

Cn,2θ
2

|Fr|2

) ∑
Tr∈T

‖ei−1
λn
‖2Tr,0

+ ∆t

(
Cw,0 + Cw,1 +

Cw,2θ
2

|Fr|2

) ∑
Tr∈T

‖ei−1
λw
‖2Tr,0

+
Lsφ

2

∑
Tr∈T

‖ei−1
s ‖2Tr,0 +

∆tLs,Tφ

2

∑
Tr∈T

‖∂−ei−1
s ‖2Tr,0 .

Using the Lipschitz continuity of λn, λw, T−1, and p−1
c,eq , we can rewrite this as,

Lsφ

2

∑
Tr∈T

‖eis‖2Tr,0 +
∆tLs,Tφ

2

∑
Tr∈T

‖∂−eis‖2Tr,0

+
l2pc,eqφ

2Ls

∑
Tr∈T

‖ei−1
s ‖2Tr,0 +

l2T∆tφ

2Ls,T

∑
Tr∈T

‖∂−ei−1
s ‖2Tr,0

+
∆tλn

2

∑
Tr∈T

‖K 1
2∇eipn‖

2
Tr,0 +

∆tλw

2

∑
Tr∈T

‖K 1
2∇eipw‖

2
Tr,0

+ ∆t

(
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn

) ∑
Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

+ ∆t

(
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw

) ∑
Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤ Lsφ

2

∑
Tr∈T

‖ei−1
s ‖2Tr,0 +

∆tLs,Tφ

2

∑
Tr∈T

‖∂−ei−1
s ‖2Tr,0

+ ∆t
(
L2
λnCn + L2

λwCw
)(

2 +
θ2

|Fr|2

) ∑
Tr∈T

‖ei−1
s ‖2Tr,0 .
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From this we obtain,

Lsφ

2

∑
Tr∈T

‖eis‖2Tr,0 +
∆tLs,Tφ

2

∑
Tr∈T

‖∂−eis‖2Tr,0

+

[
l2pc,eqφ

2Ls
−∆tC

(
2 +

θ2

|Fr|2

)] ∑
Tr∈T

‖ei−1
s ‖2Tr,0 +

l2T∆tφ

2Ls,T

∑
Tr∈T

‖∂−ei−1
s ‖2Tr,0

+
∆tλn

2

∑
Tr∈T

‖K 1
2∇eipn‖

2
Tr,0 +

∆tλw

2

∑
Tr∈T

‖K 1
2∇eipw‖

2
Tr,0

+ ∆t

(
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn

) ∑
Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

+ ∆t

(
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw

) ∑
Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤Lsφ
2

∑
Tr∈T

‖ei−1
s ‖2Tr,0 +

∆tLs,Tφ

2

∑
Tr∈T

‖∂−ei−1
s ‖2Tr,0,

which can be reformulated as,

Lsφ

2

∑
Tr∈T

‖eis‖2Tr,0 +
∆tLs,Tφ

2

∑
Tr∈T

‖∂−eis‖2Tr,0

+
∆tλn

2

∑
Tr∈T

‖K 1
2∇eipn‖

2
Tr,0 +

∆tλw

2

∑
Tr∈T

‖K 1
2∇eipw‖

2
Tr,0

+ ∆t

(
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn

) ∑
Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

+ ∆t

(
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw

) ∑
Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤

[
Lsφ

2
−

(
l2pc,eqφ

2Ls
−∆tC

(
2 +

θ2

|Fr|2

))] ∑
Tr∈T

‖ei−1
s ‖2Tr,0

+

(
∆tLs,Tφ

2
− l2T∆tφ

2Ls,T

) ∑
Tr∈T

‖∂−ei−1
s ‖2Tr,0 .

For ∆t small enough, this leads to a contraction for the terms
∑
Tr∈T ‖e

i
s‖2Tr,0 and∑

Tr∈T ‖∂
−eis‖2Tr,0, which concludes the proof for the convergence of the proposed lin-

earization scheme.

Remark 4 To obtain the contraction, it is required that the time-step is chosen s.t.,

∆t <
l2pc,eqφ

2LsC

(
2 +

θ2

|Fmin|2

) (5.23)
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where, |Fmin| is the measure of the smallest face. This restriction is milder when compared to
the typical stability conditions imposed for explicit methods (like IMPES), or for the Newton
method (see e.g. [Radu et al., 2006] for the analysis for a simplified two-phase model).
Moreover, for the IIP dG-scheme, in which θ = 0, the constraint on the time-step does
not depend on the mesh size at all and is similar to the one for the L-method for standard,
equilibrium two-phase flows with τ = 0 (see [Radu et al., 2015a]).

Remark 5 To guarantee the convergence, the parameters Ls and Ls,T must satisfy (5.6). For
degenerate problems, if e.g. the equilibrium capillary pressure function is not Lipschitz, one
needs to first regularize the problem in order to ensure the convergence of the scheme.

Remark 6 The convergence result can be extended to conforming discretizations, like finite
elements, when the approximation lies in W 1,2(Ω). On can carry out the similar steps as
above, but now jumps and averages over faces do not appear anymore. As with the IIP dG-
method, for the conforming discretizations the restriction on the time step does not depend
on the mesh size, leading to results similar to [Radu et al., 2015a].

5.4 Numerical Example
In this section, we present a numerical example to show the effectiveness of the proposed
L-scheme. The numerical scheme is implemented in C++ based DUNE-PDELab framework
[Bastian et al., 2008a,b, 2010, 2011]. We chose a test problem with a known analytical
solution. The test setting is described in Section 5.4.1. In Section 5.4.2, we make a parameter
study to compare the behaviour of the L-scheme with the Newton-method.

5.4.1 Test-setting
We consider the domain Ω = (0, 2) × (0, 2) ⊂ R2 and the time interval [0, 3]. The

other parameters are listed in Table 5.1. The right hand sides (i.e. sources) in the governing
equations, and the boundary and initial conditions are chosen such, that the following are the
exact solutions of the model

pn(t, x, y) =
1

4
cos((x+ y)π − t) +

1

2
,

Sw(t, x, y) =
1

4
sin((x+ y)π − t) +

1

2
,

pc(t, x, y) = pc,eq(Sw(t, x, y))− ∂tT (Sw(t, x, y)).

We chose θ = 0 and the penalty parameters as σw = σn = 10. We set

T (Sw(t, x, y)) := τSw(t, x, y) ,

which corresponds to a constant damping factor τ . h − p convergence for this example is
shown in [Karpinski and Pop, 2017].

5.4.2 Parameter study
For each combination of no. of elements N = {8× 8, 16× 16, 32× 32} and timestep-

size ∆t[s] =

{
1

8
,

1

16
,

1

32

}
, and polynomial order ks = 1 and kp = 1, we simulate the
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Table 5.1: Example 1 - Properties

Phase Properties
wetting phase dynamic viscosity µw

[
kg
ms

]
1

non-wetting phase dynamic viscosity µn

[
kg
ms

]
1

wetting phase density ρw

[
kg
m3

]
1

non-wetting phase density ρn

[
kg
m3

]
1

Hydraulic Properties
absolute permeability K

[
m2
]

1
residual wetting phase saturation Srw 0
residual non-wetting phase saturation Srn 0
porosity ϕ 0.4
damping coefficient τ [Pa · s] 1
Brooks-Correy Parameters
entry pressure pd [Pa] 1
pore size distribution index λ 2

test problem with Newton method and the L-scheme with different choices of L-parameter
Ls = {4, 8, 16}. The L-parameters are chosen with respect to the theory, i.e. (5.6). In this
example holds 0.7 ≤ |p′c,eq(sw)| ≤ 4, so we choose Ls ≥ 4. We also consider polynomial
order ks = 2 and kp = 2, and simulate the test problem with Newton method and the
L-scheme with Ls = 4 for each combination of N and ∆t as above. As an initial guess
for the non-linear solvers, we chose the solution of the previous timestep. The comparative
performance of the Newton method and the L-scheme with different L-parameters is shown
in Tables 5.2-5.5 in terms of average number of iterations per timestep, average computation
time per timestep, and total computation time. As expected, the Newton scheme, which has a
quadratic order of convergence, solves twice as fast as the L-scheme, which has a linear order
of convergence.

In Figures 5.1-5.4, we compare the convergence at time T = 1s. Figure 5.1 shows the
convergence of the Newton method compared with the L-Scheme in terms of the L2-error of
the residual, which we use as a convergence criterion for both the Newton and the L-scheme.
Figures 5.2-5.4 compare the L2-error of the pressures Pn, Pc and the saturation Sw, and also
show the expected convergence rates. To obtain the expected convergence rates, we chose 1

2
and 1

4 of the rate obtained for L = 16 for L = 8 and L = 4, respectively. In our results we
observe that the real convergence rate is at least as good as the expected convergence rate, and
the convergence rates for pressures and saturation coincide. We also observe that with half the
parameter L we get double the convergence rate. It is interesting to see that for the pressures
in Figure 5.3 and 5.4 the first step does not fit the expected trend, but for the saturation the
expected convergence rates are obtained within the first step. In each Figure 5.2-5.4 the
convergence rate in horizontal direction, i.e. with timestep refinement, increases with the
decreasing timestep size. Half the time step leads to double the convergence rate. In vertical
direction, i.e. with spatial refinement, a similar trend is not observed. The convergence
rates are constant with respect to change of the refinement level h. This result reflects the
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Table 5.2: Comparison between Newton method and L-scheme with Ls = 4
Polynomial orders ks = 1 and kp = 1

L-Scheme Newton method
N ∆t = 1

8 ∆t = 1
16 ∆t = 1

32 ∆t = 1
8 ∆t = 1

16 ∆t = 1
32

Number of iterations per timestep [−]
8× 8 6 4 3 2 2 1.5

16× 16 5 4 3 2 2 1
32× 32 5 3 2 2 2 1

Computation time per step [s]
8× 8 1.79 1.45 0.85 0.51 0.71 0.55

16× 16 5.81 4.61 3.56 2.84 2.05 1.44
32× 32 28.28 17.65 11.61 13.58345 13.44 7.88

Total computation time [s]
8× 8 42.96 69.78 81.67 12.52 29.26 39.62

16× 16 139.53 221.36 342.13 69.28 120.70 140.45
32× 32 678.66 847.39 1114.45 293.39 612.21 722.29

independence of the convergence on the spatial discretization and shows the dependence only
with respect to the timestep ∆t. This is in accordance with our theoretical findings.

We repeat the above simulations for polynomial order kp = ks = 1 starting with a bad
initial guess of sw = 0.5 for the non-linear solver. In this case, we observe that the Newton
method does not converge at all. The L-scheme still shows convergence due to its property

of global convergence, however, only for ∆t =
1

32
. For larger timesteps the L-scheme does

not converge due to the restriction on the timestep size (5.23). The performance of the L-
scheme in terms of average number of iterations per timestep, average computation time per
timestep, and total computation time is tabulated in Table 5.6. In Figures 5.5 and 5.6, we
show the convergence behaviour at T = 1s. It is interesting to observe that the scheme takes
a few steps to find a close enough solution, after which it converges as expected. Here we
see a clear advantage of the proposed L-scheme over the Newton method for solving realistic
problems where the solution from last timestep may not always be a good initial guess. This
also presents a possibility to combine the L-scheme with the Newton scheme, where the L-
scheme can be used to find a good initial guess for the Newton scheme. This approach is also
discussed in [List and Radu, 2016].



69

Table 5.3: Comparison between Newton method and L-scheme with Ls = 8
Polynomial orders ks = 1 and kp = 1

L-Scheme Newton method
N ∆t = 1

8 ∆t = 1
16 ∆t = 1

32 ∆t = 1
8 ∆t = 1

16 ∆t = 1
32

Number of iterations per timestep [−]
8× 8 8 5 4 2 2 1.5

16× 16 8 5 3 2 2 1
32× 32 7 4 3 2 2 1

Computation time per step [s]
8× 8 2.57 1.52 1.08 0.51 0.71 0.55

16× 16 9.59 5.86 3.45 2.84 2.05 1.44
32× 32 38.93 22.92 17.21 13.58345 13.44 7.88

Total computation time [s]
8× 8 61.75 72.89 104.05 12.52 29.26 39.62

16× 16 230.19 281.31 330.81 69.28 120.70 140.45
32× 32 934.29 1099.97 1652.56 293.39 612.21 722.29

Table 5.4: Comparison between Newton method and L-scheme with Ls = 16
Polynomial orders ks = 1 and kp = 1

L-Scheme Newton method
N ∆t = 1

8 ∆t = 1
16 ∆t = 1

32 ∆t = 1
8 ∆t = 1

16 ∆t = 1
32

Number of iterations per timestep [−]
8× 8 14 8 5 2 2 1.5

16× 16 13 7 4 2 2 1
32× 32 12 7 4 2 2 1

Computation time per step [s]
8× 8 4.30 2.64 1.69 0.51 0.71 0.55

16× 16 17.08 9.33 5.26 2.84 2.05 1.44
32× 32 72.93 45.56 25.14 13.58345 13.44 7.88

Total computation time [s]
8× 8 103.17 126.58 162.28 12.52 29.26 39.62

16× 16 409.96 447.62 504.65 69.28 120.70 140.45
32× 32 1750.22 2187.12 2413.52 293.39 612.21 722.29
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Table 5.5: Comparison between Newton method and L-scheme with Ls = 4
Polynomial orders ks = 2 and kp = 2

L-Scheme Newton method
N ∆t = 1

8 ∆t = 1
16 ∆t = 1

32 ∆t = 1
8 ∆t = 1

16 ∆t = 1
32

Number of iterations per timestep [−]
8× 8 6 4 3 2 2 1.5

16× 16 5 4 3 2 2 1
32× 32 5 3 2 2 2 1

Computation time per step [s]
8× 8 3.59 2.26 1.81 0.51 0.71 0.55

16× 16 14.81 11.56 8.66 2.84 2.05 1.44
32× 32 114.73 67.74 45.64 13.58345 13.44 7.88

Total computation time [s]
8× 8 86.04 108.40 173.76 12.52 29.26 39.62

16× 16 355.38 554.69 831.02 69.28 120.70 140.45
32× 32 2753.48 3251.66 4381.63 293.39 612.21 722.29

Table 5.6: L-scheme with bad initial guess
Polynomial orders ks = 1 and kp = 1

N Ls =16 Ls =8 Ls =4

Number of iterations per timestep [−]
8× 8 9 7 6

16× 16 8 7 6
32× 32 8 6 5

Computation time per step [s]
8× 8 2.56 2.04 1.73

16× 16 9.36 8.14 6.90
32× 32 45.97 35.63 28.04

Total computation time [s]
8× 8 245.66 195.45 165.71

16× 16 898.24 781.01 662.81
32× 32 6261.64 3420.12 2691.76
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(a) N = 8 × 8, ∆t = 0.125 (b) N = 8 × 8, ∆t = 0.0625 (c) N = 8 × 8, ∆t = 0.03125

(d) N = 16 × 16, ∆t = 0.125 (e) N = 16 × 16, ∆t = 0.0625 (f) N = 16 × 16, ∆t = 0.03125

(g) N = 32 × 32, ∆t = 0.125 (h) N = 32 × 32, ∆t = 0.0625 (i) N = 32 × 32, ∆t = 0.03125

Figure 5.1: Residual at T = 1s and polynomial order ks = kp = 1
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(a) N = 8 × 8, ∆t = 0.125 (b) N = 8 × 8, ∆t = 0.0625 (c) N = 8 × 8, ∆t = 0.03125

(d) N = 16 × 16, ∆t = 0.125 (e) N = 16 × 16, ∆t = 0.0625 (f) N = 16 × 16, ∆t = 0.03125

(g) N = 32 × 32, ∆t = 0.125 (h) N = 32 × 32, ∆t = 0.0625 (i) N = 32 × 32, ∆t = 0.03125

Figure 5.2: L2-Error for Sw at T = 1s and polynomial order ks = 1
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(a) N = 8 × 8, ∆t = 0.125 (b) N = 8 × 8, ∆t = 0.0625 (c) N = 8 × 8, ∆t = 0.03125

(d) N = 16 × 16, ∆t = 0.125 (e) N = 16 × 16, ∆t = 0.0625 (f) N = 16 × 16, ∆t = 0.03125

(g) N = 32 × 32, ∆t = 0.125 (h) N = 32 × 32, ∆t = 0.0625 (i) N = 32 × 32, ∆t = 0.03125

Figure 5.3: L2-Error for Pn at T = 1s and polynomial order kp = 1
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(a) N = 8 × 8, ∆t = 0.125 (b) N = 8 × 8, ∆t = 0.0625 (c) N = 8 × 8, ∆t = 0.03125

(d) N = 16 × 16, ∆t = 0.125 (e) N = 16 × 16, ∆t = 0.0625 (f) N = 16 × 16, ∆t = 0.03125

(g) N = 32 × 32, ∆t = 0.125 (h) N = 32 × 32, ∆t = 0.0625 (i) N = 32 × 32, ∆t = 0.03125

Figure 5.4: L2-Error for Pc at T = 1s and polynomial order kp = 1
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(a) N = 8 × 8 (b) N = 16 × 16 (c) N = 32 × 32

Figure 5.5: L2-Error for Residuals at T = 1s for ∆t = 0.03125 and polynomial order
kp = ks = 1 for the case of a bad initial guess
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(a) pn, N = 8 × 8 (b) pn, N = 16 × 16 (c) pn, N = 32 × 32

(d) pc, N = 8 × 8 (e) pc, N = 16 × 16 (f) pc, N = 32 × 32

(g) sw , N = 8 × 8 (h) sw , N = 16 × 16 (i) sw , N = 32 × 32

Figure 5.6: L2-Error for pn, pc, and sw at T = 1s for ∆t = 0.03125 and polynomial order
kp = ks = 1 for the case of a bad initial guess



Chapter 6
Numerical Examples in
Heterogeneous Media

In this chapter, we show the capabilities of our scheme through different numerical exam-
ples in heterogeneous media.

In Example 1, Section 6.1, we consider a 2D problem with homogeneous and heteroge-
neous permeability fields, and continuous capillary pressure. In Example 2, Section 6.2, we
verify our numerical scheme for heterogeneous porous media with discontinuous capillary
pressure. For this, we consider a 1D problem from the text book by Rainer Helmig [Helmig,
1997]. Next, in Example 3, Section 6.3, we simulate a 1D inflow problem and compare the
performance of the L-scheme and the Newton scheme. Finally, in Example 4, Section 6.4, we
simulate a 2D lens problem with heterogeneous permeability field, discontinuous capillary
pressure and capillary barrier effects, and gravitational effects to show the capabilities of our
schemes.

6.1 Example 1: Inflow problem with homogeneous and het-
erogeneous permeability fields

We consider an inflow problem in a domain Ω = (0m, 1m) × (0m, 1m), over a time
interval [0s, 2500s]. The material properties and model parameters are listed in Table 6.1.
We consider two cases: a homogeneous medium (case A) and a non-homogeneous (case B)
one. The initial and the boundary conditions are listed in Table 6.2.

We discretize the domain into 50 × 50 = 2500 elements and chose a time-step of dt =
10s. For the L-scheme we take Ls = 0.1. Since the dynamic term is linear, no additional
linearization is needed. We again chose θ = 0 and σw = σn = 10.

The result for case A at t = 1500s is shown in Figure 6.1a, and for case B at t = 2500s is
shown in Figure 6.1b. In case A, a straight finger is formed, propagating with the flow (from
left to right). In case B, given the choice of the absolute permeability field K, a preferential
flow path is formed along the medium with higher permeability, i.e. from the lower left to

77



78

Table 6.1: Example 1 - Properties

case A case B
Phase Properties
water dynamic viscosity µw

[
kg
ms

]
10−3 10−3

oil dynamic viscosity µn

[
kg
ms

]
10−3 10−3

water density ρw

[
kg
m3

]
103 103

oil density ρn

[
kg
m3

]
1.623 ·103 1.623 · 103

Hydraulic Properties

absolute permeability K
[
m2
]

10−11


10−11 if x < 0.5, y < 0.5

10−11 if x > 0.5, y > 0.5

10−12 elsewhere
residual water saturation Srw 0 0
residual oil saturation Srn 0 0
porosity ϕ 0.2 0.2
damping coefficient τ [Pa · s] 105 105

Brooks-Corey Parameters
entry pressure pd [Pa] 2.5 · 103 2.5 · 103

pore size distribution index λ 2 2

Table 6.2: Example 1 - Boundary and initial conditions

case A case B
Boundary values
x = 0m

water saturation Sw

{
0.6 if 0.2 < y < 0.4

0.2 else

{
0.6 if 0.4 < y < 0.6

0.2 else
oil pressure pn [Pa] 1.5 · 105 1.5 · 105

x = 1m
water saturation Sw 0.2 0.2
oil pressure pn [Pa] 1.0 · 105 1.0 · 105

y = 0m and y = 1m

flow rate of water qw

[
kg
m2s

]
0.0 0.0

flow rate of oil qn

[
kg
m2s

]
0.0 0.0

Initial values
water saturation Sw 0.2 0.2
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(a) Sw at t = 1500s for case A. (b) Sw at t = 2500s for case B.

Figure 6.1: Example 1 - Saturation profiles at time t = 2500s for a homogeneous medium
(left) and a heterogeneous one (right).

the upper right quadrant. The saturation overshoots in both cases are a manifestation of the
dynamic capillarity. For both cases, the L-scheme performs as expected.

6.2 Example 2: Benchmark problem for verification of the
numerical scheme with discontinuous capillary pressure

We consider the benchmark problem described in [Helmig, 1997], p. 275, section 5.5.
The problem considers infiltration of non-aqueous phase liquid (NAPL) into a fully water
saturated domain. A schematic of the problem is shown in Figure 6.2. The domain is 0.5m
in length, and is divided into three parts with interfaces at x = 0.15m and x = 0.35m.
Sub-domain 1 (0 ≤ x < 0.15) and sub-domain 3 (0.35m ≤ x < 0.5m) are made of a porous
material with lower entry pressure Pe, while the subdomain 2 (0.15 ≤ x < 0.35) is made of a
porous material with a higher entry pressure Pe. The properties of the fluids and the materials
in each sub-domain are listed in Table 6.3.

On the boundary ΓL we prescribe an inflow condition, and on the boundary ΓR we pre-
scribe Dirichlet conditions for pn and Sw. The initial condition for the Sw corresponds to
a fully saturated porous media. An overview of the initial and boundary conditions can be
found in Table 6.4.

We solve the problem in 1D, discretize the domain into 320 elements of size h = 0.003125
with polynomial degrees of kp = ks = 1, and chose a timestep of ∆t = 1s.
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MATERIAL 1
( LOW  P

e 
)

MATERIAL 2
( HIGH  P

e 
)

MATERIAL 1
( LOW  P

e 
)

ΓL ΓRI I I II

X=0.0m X=0.15m X=0.35m X=0.5m

Figure 6.2: Example 2 - Test schematic.
Here, ΓL and ΓR are the left and the right boundary, respectively, and II and III are the
material interfaces.

Figure 6.3: Example 2 - Sn profile at t = 2150 s.

The result of the simulation is given in Figure 6.3. The comparison to the results of Helmig
[Helmig, 1997, p. 286, fig 5.39] shows a good match, which verifies the correctness of our
implementation.

6.3 Example 3: Comparison of Newton scheme and L-scheme
with discontinuous capillary pressure

We consider a 1D infiltration problem similar to Example 2, and compare the performance
of the Newton scheme and the L-scheme with additional dynamic capillary pressure effects.
The schematic for the problem is shown in Figure 6.4. We again divide the domain into three
sub-domains to cover both transitions: from low to high entry pressure, and from high to
low entry pressure. The domain has a length of 2m and has material interfaces at x = 0.5m
and x = 1m. The phase and the material properties are listed in Table 6.5. The problem is
simulated without additional gravitational effects.
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Table 6.3: Example 2 - Material properties.

Fluid Phase Properties
dyn. viscosity wetting phase µw

[
kg
ms

]
0.001

dyn. viscosity non-wetting phase µn

[
kg
ms

]
0.001

density wetting phase ρw

[
kg
m3

]
1000

density non-wetting phase ρn

[
kg
m3

]
1400

Hydraulic Properties Material 1 Material 2
abs. permeability K

[
m2
]

5.04 · 10−10 5.26 · 10−11

res. wetting phase saturation Srw 0.08 0.1
res. non-wetting phase saturation Srn 0 0
porosity ϕ 0.4 0.39
Brooks-Correy Parameters Material 1 Material 2
entry pressure pd [Pa] 370 1324
pore size distr. index λ 3.86 2.49

Table 6.4: Example 2 - Boundary and initial conditions.

Boundary values
x = 0m

wetting phase flow qw

[
kg
sm2

]
0

non-wetting phase flow qn

[
kg
sm2

]
0.05

x = 0.5m
wetting phase saturation Sw 1.
non-wetting fluid pressure pn [Pa] 1.99630 · 105

Initial values
wetting phase saturation Sw 1
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MATERIAL 1
( LOW  P

e 
)

MATERIAL 2
( HIGH  P

e 
)

MATERIAL 1
( LOW  P

e 
)

ΓL ΓRI I I II

X=0.0m X=0.5m X=1.0m X=2.0m

Figure 6.4: Example 3 - Schematic

The initial and the boundary conditions are given in Table 6.6. At t = 0, the domain is
saturated with the wetting phase for x > 0.25. For x ≤ 0.25, we define a cubic profile for
wetting phase saturation (see Table 6.6). At the boundaries, for t ≥ 0, Dirichlet conditions
are prescribed.

We solve the problem for all combinations of time step sizes ∆t[s] = [0.125, 0.25, 0.5]
and number of elements N = [100, 200 400]. We chose a minimal residual of εRES <
10−6 for convergence. For the L-scheme, we choose L = 0.1.

We compare the performance of the Newton scheme and the L-scheme in terms of the
average computation time, average iteration steps necessary, and the total computation time
for different time and spatial discretizations. Table 6.7 shows the average number of iterations
needed for convergence, Table 6.8 shows the average computation time per time-step, and
Table 6.9 shows the total computation time for each scheme. We can observe that as the
mesh size and the time step size decrease, the performance of the L-scheme approaches that
of the Newton scheme.

In Figure 6.5, we plot the non-wetting phase saturation profiles in the domain at selected
time steps for the simulation run with ∆t = 0.125s and N = 400. Due to the dynamic
capillary effects, we obtain saturation overshoots as the front propagates. The retardation co-
efficient τ was chosen high enough to allow a plateau to build up. To compare the Newton and
L-schemes, we plot both simulation results over each other. The continuous lines represent
the results of the L-scheme, while the dots represent the results of the Newton scheme.

The accuracy of both schemes is similar, where as the number of iterations necessary for
convergence for the L-scheme are twice as many as those for the Newton scheme which is due
to the linear convergence of the L-scheme against the quadratic convergence of the Newton
scheme.

6.4 Example 4: 2D Lens problem
We consider a two dimensional problem where a non-wetting fluid (e.g. NAPL) is infil-

trating a domain which is initially fully saturated with the wetting fluid (e.g. water). The
schematic of the problem is shown in Figure 6.6. The computational domain contains two
distinct zones, each composed of a different material, signifying the material heterogeneity.
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Table 6.5: Example 3 - Material properties

Phase Properties
dyn. viscosity wetting phase µw

[
kg
ms

]
10−3

dyn. viscosity non-wetting phase µn

[
kg
ms

]
0.9 · 10−3

density wetting phase ρw

[
kg
m3

]
103

density non-wetting phase ρn

[
kg
m3

]
1.460

Hydraulic Properties Material 1 Material 2
abs. permeability K

[
m2
]

6 · 10−10 1.5 · 10−10

res. wetting phase saturation Srw 0 0
res. non-wetting phase saturation Srn 0 0
porosity ϕ 0.4 0.4
retardation coefficient τ [Pa · s] 104 2× 104

Brooks-Correy Parameters Material 1 Material 2
entry pressure pd [Pa] 2500 5000
pore size distr. index λ 2 2

Table 6.6: Example 3 - Boundary and initial conditions

Boundary values
x = 0m
wetting phase saturation Sw 0.5
non-wetting fluid pressure pn [Pa] 1.5 · 105

x = 0.5m
wetting phase saturation Sw 1.
non-wetting fluid pressure pn [Pa] 1.0 · 105

Initial values

wetting phase saturation Sw

{
1 if x > 0.25

1− 0.5 · (128x3 − 48x2 + 1) otherwise

Table 6.7: Example 3 - Comparison of average number of iterations

L-Scheme Newton-Scheme
N ∆t = 0.5 ∆t = 0.25 ∆t = 0.125 ∆t = 0.5 ∆t = 0.25 ∆t = 0.125

100 6 4.4 3.5 2.6 2 1.7
200 5.8 4.1 3.2 3 2.3 1.8
400 5.7 3.8 3 3.8 2.7 2



84

(a) t = 0 s

(b) t = 10 s

(c) t = 20 s

(d) t = 50 s

(e) t = 75 s

(f) t = 100 s

Figure 6.5: Example 3 - Non-wetting saturation profiles for N = 400 and ∆t = 0.125 s
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Table 6.8: Example 3 - Comparison of average computation time per step in seconds [s]

L-Scheme Newton-Scheme
N ∆t = 0.5 ∆t = 0.25 ∆t = 0.125 ∆t = 0.5 ∆t = 0.25 ∆t = 0.125

100 2.19 1.49 1.06 0.86 0.69 0.63
200 3.90 2.64 1.88 1.84 1.57 1.19
400 7.42 4.43 2.68 4.28 3.39 2.57

Table 6.9: Example 3 - Comparison of total computation time in seconds [s]

L-Scheme Newton-Scheme
N ∆t = 0.5 ∆t = 0.25 ∆t = 0.125 ∆t = 0.5 ∆t = 0.25 ∆t = 0.125

100 451.36 601.066 839.497 171.278 276.7 515.319
200 801.253 1098.01 1544.75 369.994 625.383 954.94
400 1560.24 1852.81 2161.04 854.712 1334.55 2021.59

The material II has a higher capillary pressure than material I in the sense of the description
in Section 2.7. All relevant properties of both the materials are listed in Table 6.10. The
infiltration of the non-wetting fluid is prescribed as a Dirichlet value at the upper boundary,
while the lower boundary is assumed to be blind. On the left and right boundaries, no-flow
condition is prescribed. Gravitational effects are also included.

Figure 6.6: Example 4 - Schematic

We simulate two different scenarios to
demonstrate the effects of the standard
and non-standard capillary pressure rela-
tionships in the presence of a material het-
erogeneity:

Case A: without dynamic capillary pres-
sure effects, i.e. τ = 0, and

Case B: with dynamic capillary pressure
effects. The values for τ are listed in Table
6.10.

Case A: τ = 0 The results are presented
in Figures 6.7a - 6.7e. We use a refine-
ment of h = 0.025 and ∆t = 0.5. As
in the one dimensional examples, the non-
wetting phase front propagates until the in-
terface (Figure 6.7a ). There it first has to
accumulate due to the capillary barrier (Fig-
ure 6.7b ). While a direct infiltration is not possible, a certain amount of the non-wetting
phase flows around the lense leading to two additional fronts (Figure 6.7c ). Those additional
fronts can not infiltrate the lense from the side, as the threshold capillary pressure for infiltra-
tion is not reached. As soon as the entry condition on the upper interface is fulfilled, the main
non-wetting phase front starts flowing through the domain at a lower speed, due to the higher
lower intrinsic permeability. (Figure 6.7d ) At the lower interface, leaving the interface no
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Table 6.10: Example 4 - Material properties

Fluid Phase Properties
dyn. viscosity wetting phase µw

[
kg
ms

]
10−3

dyn. viscosity non-wetting phase µn

[
kg
ms

]
0.9 · 10−3

density wetting phase ρw

[
kg
m3

]
103

density non-wetting phase ρn

[
kg
m3

]
1.460

Hydraulic Properties Material 1 Material 2
abs. permeability K

[
m2
]

6 · 10−10 1.5 · 10−10

res. wetting phase saturation Srw 0 0
res. non-wetting phase saturation Srn 0 0
porosity ϕ 0.4 0.4
retardation coefficient τ [Pa · s]

Case A 0 0
Case B 105 2 · 105

Brooks-Correy Parameters Material 1 Material 2
entry pressure pd [Pa] 2500 5000
pore size distr. index λ 2 2

barrier occurs and flow is directly possible.(Figure 6.7e )

Case B: τ > 0 With dynamic capillary pressure effects we get similar results as in case A.
The results are presented in Figures 6.7f - 6.7j. We again use a refinement of h = 0.025 and
∆t = 0.5. The additional dynamic term leads to a retardation effect, resulting in a slower
propagation of the front. Mass accumulates at the tip of the resulting inflow-finger (Figure
6.7f ). Like in the standard case, reaching the upper interface an info is not directly possible
and non-wetting phase saturation accumulates (Figure 6.7g ). Again two fingers are formed
flowing around the lense each of them with an overshoot at the tip (Figure 6.7h ). As soon
as an inflow is possible, the main front propagates forward, forming again an overshoot. At
the lower boundary we once again don’t observe a capillary barrier, and the flow is directly
possible (Figure 6.7j ).

Figure 6.8 makes the retardation effect of the dynamic capillary pressure more clearly, we
plotted the results next to each other in and used the same time in each figure, to visualize the
difference in infiltration speed.
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Figure 6.7: Example 4 - Results
bottom: with τ > 0, top: without τ = 0

(a) t = 37.5 s (b) t = 100 s (c) t = 175 s (d) t = 250 s (e) t = 375 s

(f) t = 125 s (g) t = 200 s (h) t = 300 s (i) t = 400 s (j) t = 500 s
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Figure 6.8: Example 4 - Effect of the retardation coefficient
left: τ = 0, right: τ > 0

(a) t = 125 s (b) t = 200 s

(c) t = 300 s (d) t = 400 s



Chapter 7
Outlook

In this thesis, we presented a discontinuous Galerkin (dG) based numerical discretization
for a two phase flow model in heterogeneous porous media with dynamic and discontinuous
capillary pressure. For the mathematical model, we elaborated on the interface conditions to
account for the discontinuities in the capillary pressure due to heterogeneities in the porous
media, and presented an extension for our dG scheme to include these interface conditions.
In the numerical model, the governing mass balance equations were not reformulated and no
un-physical primary variable, like total pressure, was used. We rigorously proved existence,
stability, and convergence of our numerical scheme for the homogeneous case. We were able
to obtain h-p error estimates, which we were able to test and verify numerically. Further, we
developed a linearization scheme for the discrete non-linear system which is based on a fixed
point iteration. The performance of the linearization can be adjusted by a parameter L. Some
advantages of this scheme are that it does not require computation of derivatives, is glob-
ally convergent and converges even for ill conditioned problems. The scheme was rigorously
analysed and we were able to prove convergence. We showed that the scheme converges
linearly under a mild time step restriction independent of the spatial discretization. The per-
formance of the linearization method was also numerically tested in an extensive parameter
study. Finally, we presented several 1D and 2D numerical examples in heterogeneous media
with and without discontinuous capillary pressure to show the capabilities of our numerical
scheme.

The numerical scheme was developed to easily incorporate nonlinearities and non-standard
extensions to the capillary pressure. However, within the scope of this thesis, we restricted
the model to include only linear dynamic capillary pressure effects. We made regularity as-
sumptions on the equilibrium capillary pressure curve and the relative permeability functions,
and restricted the numerical treatment to the non-degenerate case. It will be interesting to ex-
tend the current model towards a degenerate case, i.e., when one phase vanishes, and based
on this, we could directly extend the model to multiphase flows, and possibly also to multi-
component flows. Hysteresis in capillary pressure is also a problem of great interest. Another
natural extension for the mathematical model is to include nonlinear retardation coefficients.
This leads to one very interesting possibility of defining the retardation coefficients as nons-
mooth functions which can implicitly mimic a hysteretic effect without using scanning curves

89



90

from the previous timestep. With these model extensions, of course the regularity assump-
tions on the constitutive relations do not hold anymore and the convergence proof would also
then need to be adapted to account for the nonsmooth, nonlinear capillary pressure curves.

For numerical solution of the problem and to get the correct interface behaviour, we need
very fine meshes. This is computationally quite expensive, particularly also because in our
problem formulation, we have an extra equation to solve for the capillary pressure. To make
the solution less expensive without compromising the quality of the solution at interface,
one option would be to consider h-p adaptivity. Another possibility would be to use domain
decomposition with different refinement levels together with moving meshes.

In this thesis, we use generic linear solvers, which are not optimized for our problem.
We can greatly improve the performance of our numerical scheme by implementing problem
specific pre-conditioners. Also, parallel domain decomposition methods might be a valuable
improvement for the solution of our linear system.

Lastly, we showed that our proposed linearization scheme converges globally for any initial
guess value for the solution, whereas the Newton scheme converges quadratically, but only
locally and can have issues with convergence for ill behaved, realistic problems. It will be in-
teresting to investigate the possibility of combining the linearization scheme with the Newton
scheme to make the Newton scheme more robust for application to realistic problems.
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