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Abstract

We present an interior penalty discontinuous Galerkin scheme for a two-phase flow model
in heterogeneous porous media. The model includes dynamic effects and discontinuities in
the capillary pressure. We define the interface conditions arising across material interfaces
in heterogeneous media and show how to account for capillary barriers. We numerically
approximate the mass-conservation laws without reformulation, i.e. without introducing a
global pressure. We prove the existence of a solution to the emerging fully discrete systems,
show the convergence of the numerical scheme, and obtain error-estimates for sufficiently
smooth data. We also present a linearization scheme for the non-linear algebraic system
resulting from the fully discrete discontinuous Galerkin approximation of the model. The
linearization scheme does not require any regularization step. Additionally, in contrast with
Newton or Picard methods, the linearization scheme does not involve computation of deriva-
tives. Finally, to validate our theoretical findings and to show the scope of the applicability of
the scheme, we present 1D and 2D numerical examples in realistic settings for homogeneous
as well as heterogeneous porous media. We rigorously prove that the scheme is robust and
linearly convergent.
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Chapter

Introduction

Flow and transport processes in porous media are of high interest in many different fields
of application, e.g., geological C'Os-storage [Nordbotten and Celia, 2011], environmental
pollution [Radu and Pop, 2011], designing of diapers [Diersch et al., 2010], filters, etc. In
light of their relevance, it is essential to develop a better understanding of such systems. Ex-
perimental studies are an important and indispensable tool to understand the behaviour of
these processes. However, experimental studies are not always possible, nor feasible. Math-
ematical modelling and simulation tools, relying on mathematical and numerical analysis,
provide an attractive alternative towards studying these processes with minimal societal and
environmental impact.

In this context, porous media models have been developed for describing flow and transport
processes at various scales [Bear, 2013; Helmig, 1997], and many different simulation and
discretization techniques have been proposed in the literature. An important property of the
porous media flow models is the local mass conservation. It is, therefore, desirable that
the numerical schemes used for approximating these models reflect this property. Important
classes of methods that are locally mass-conservative include finite volume methods [Eymard
et al., 2003; Helmig, 1997], mixed finite element methods [Durlofsky, 1993; Radu and Pop,
2011; Radu et al., 2015a], and discontinuous Galerkin methods [Bastian, 2014; Bastian and
Riviere, 2003; Ern et al., 2010; Sun and Wheeler, 2005].

Most of the standard models for two phase flow in porous media were traditionally de-
veloped for large scale reservoir simulations, and typically assumed equilibrium conditions
between the two phases. In these models, it is common to neglect the capillary effects, or
to model the capillary effect using nonlinear algebraic relationships between the phase pres-
sure difference and the saturation of one of the phases (commonly, the wetting phase). Such
relationships are obtained experimentally, typically based on measurements that were made
over long times so that the phases are in equilibrium [Helmig, 1997; Nordbotten and Celia,
2011]. Over the last couple of decades, applications involving smaller scales, like labora-
tory scale, have increasingly attracted attention, particularly from the scientific community,
which has lead to efforts in developing new modelling and discretization approaches. The
flow behaviour at these small scales is different from the large field or reservoir scales in the
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sense that it is essentially dynamic, characterized by non-standard effects like hysteresis and
dynamic capillarity. Such effects can explain experimental results like saturation overshoot
[Di Carlo, 2004] that are ruled out by standard models.

In this thesis, we are particularly interested in the dynamic capillarity effects, and consider
the models where the pressure difference - saturation relationship additionally involves a dy-
namic term, as proposed in [Fucik and Mikyska, 2011; Hassanizadeh and Beliaev, 2001;
Hassanizadeh and Gray, 1993; Hassanizadeh et al., 2002]. We refer to these models as
non-standard models. In contrast to standard, equilibrium based porous media flow mod-
els, dynamic (or non-equilibrium) models, i.e. non-standard models, can explain effects like
saturation overshoot and finger-pattern formation, which have been observed experimentally.
The ability of non-equilibrium models to explain the small-scale experimental results as men-
tioned above has been proved by means of mathematical analysis. For example, the occur-
rence of non-monotonic travelling wave profiles depending on the magnitude of the dynamic
capillarity effects has been analyzed rigorously in [van Duijn et al., 2013]. The existence and
uniqueness of weak solutions for such types of models has been proved in [Cao and Pop,
2015, 2016; Fan and Pop, 2011; Koch et al., 2013; Mikelic, 2010; Ritz and Schweizer, 2014]
or [van Duijn et al., 2016].

Compared to the standard models, the non-equilibrium based models encounter additional
problems arising from the non-linear, possibly degenerate equations, which change their type
depending on the choice of the unknowns. Further, the parameters and non-linearities are
location dependent for realistic models in porous media and major difficulties arise when
modelling the coupling between two homogeneous domains since the properties become dis-
continuous over the interface of the homogeneous domains. In order to obtain a consistent
model for this case, it becomes necessary to impose proper and well designed interface con-
ditions to account for the flux and mass conservation as well as the behaviour of the primary
and secondary variables over the interface. The details and a mathematical derivation of these
conditions can be found in [de Neef and Molenaar, 1997; van Duijn and de Neef, 1998; van
Duijn et al., 1995].

Apart from mathematical modelling, the numerical solution of such models is also a chal-
lenging task. Firstly, rigorously designed numerical approximations are necessary to deal
with the highly nonlinear, possibly degenerate models on each homogeneous subdomain. The
numerical approximations for the homogeneous case have been studied over the last decades
with techniques such as finite difference methods [Peszynska and Yi, 2008] finite volume
methods [Cao et al., 2015; Eymard et al., 2003, 2010; Helmig, 1997; Helmig et al., 2007,
2009], finite element methods [Chavent and Jaffre, 1986; Chen, 2001; Koch et al., 2013; Ritz
and Schweizer, 2014], mixed finite element methods [Durlofsky, 1993; Radu and Pop, 2011;
Radu et al., 2015a], and discontinuous Galerkin methods [Bastian, 2014; Bastian and Riv-
iere, 2003; Epshteyn and Riviere, 2009; Ern et al., 2010; Karpinski and Pop, 2017; Sun and
Wheeler, 2005]. Secondly, in order to account for the material discontinuities over the in-
terface, a proper and consistent communication between the homogeneous domains must be
incorporated into the numerical model, as shown by [Kueper and Frind, 1991a,b]. The mate-
rial discontinuities lead to discontinuities in the numerical solution.Pressures, and saturation
can and will show discontinuities over some interface and these have to be properly resolved,
which imposes additional restriction on the techniques and approximation methods that can



be used. There are different approaches to deal with this issue, like finite volume methods,
finite element techniques extended by mortar methods [Arzanfudi et al., 2014; Cances et al.,
2009; Enchéry et al., 2006; Helmig et al., 2009; Hoteit and Firoozabadi, 2008], and discontin-
uous Galerkin (dG) methods [Bastian, 2014; Ern et al., 2010; Mozolevski and Schuh, 2013].
A major benefit of dG methods is, that the scheme, in general, provides a discontinuous so-
lution, and inherently includes inter-elemental interface conditions. Therefore, extending the
dG methods to the context of coupling of multiple homogeneous porous medium domains
can be done naturally. The dG methods also have a direct advantage over the cG (continu-
ous Galerkin) methods which are continuous over inter-elemental interfaces, and thus, lead
to either oscillations or unnecessarily smeared out solutions. The dG methods have grown
more popular in the last decades due to their versatility and easy adaptation to include hetero-
geneities, parallelization, and hp-adaptivity. These methods are well developed for standard,
equilibrium based two-phase flow problems [Epshteyn and Riviere, 2009]. In this thesis,
we analyze and implement an interior penalty discontinuous Galerkin (IPdG) method for
the non-standard porous media models involving two phase flow with dynamic capillarity
effects. We also discuss an extension of the IPdG approximation to deal with possible dis-
continuities when solving two phase flow problems in heterogeneous porous media. The
spatial discretization is built on [Bastian, 2014; Ern et al., 2010], and is extended to include
dynamic capillary pressure effects as in [Karpinski and Pop, 2017; Karpinski et al., 2017].
For time discretization, an implicit Euler approximation is used in order to avoid restrictions
on the timestep size due the temporal discretization. We obtain a numerical scheme which is
capable of a proper approximation of heterogeneous porous media, which is comparable to
the results in [Helmig et al., 2007, 2009].

A common approach when dealing with two phase flow models, both standard and non-
standard, is to employ the so-called global pressure, which allows rewriting the system in a
way that some nonlinear factors in the higher order terms become linear [Chavent and Jaffre,
1986]. The advantage of this approach is that the a priori estimates can be obtained separately
for each of the transformed pressures, which can then be used to estimate the saturation. This
approach is detailed in [Epshteyn and Riviere, 2009]. The drawback of this approach lies in
the fact that the global pressure is not a physical quantity, and one needs to post-process the
results for extracting information that is relevant for the actual application. This is often quite
cumbersome for realistic problems. If the mass balance equations are not reformulated in
terms of the global pressure, the model with the original physical unknowns leads to a strong
coupling of the mass balance equations, making it impossible to obtain the a priori estimate
for the pressures directly. Instead, both pressure and saturation need to be estimated simulta-
neously, as done by [Eymard et al., 2003] and [Koch et al., 2013]. In [Eymard et al., 2003],
the estimates were derived for a standard model using finite volume approach, while in [Koch
et al., 2013], the estimates were derived for non-standard model with dynamic capillarity ef-
fects using finite element approach. In this thesis, we derive estimates for phase pressures
and saturation and provide a rigorous convergence proof for an IPdG approximation for a
non-standard two-phase flow model with dynamic capillarity.

The mathematical model in our case is highly non-linear and therefore, very demanding
in terms of the numerical solution. To resolve the non-linearities, the usual methods include
Newton or Picard methods, see e.g. [Bergamaschi and Putti, 1999; Celia et al., 1990; Neu-
mann et al., 2013], a combination of Newton and Picard methods [Lehmann and Ackerer,



1998; List and Radu, 2016], or iterative IMPES (implicit pressure explicit saturation) [Kou
and Sun, 2010a,b]. The Newton method shows a local convergence with quadratic order,
but only if the initial guess is close enough to the solution, while Picard-iterations are more
robust but show only a linear convergence. For designing Newton or Picard methods for de-
generate problems, as appearing in porous media flows, it also becomes necessary to include a
regularization step. Another noteworthy alternative to Newton’s method, especially for multi-
component flows, is the semi-smooth Newton method [Kraeutle, 2011]. This method has the
advantage that it includes the equilibrium conditions within the nonlinear solver, which leads
to a stable solution strategy. Its drawback, however, is in its relatively high implementation
cost.

As mentioned, the Newton-scheme shows a high convergence order which makes it very
attractive for solving nonlinear problems. However, the Newton-method requires the calcu-
lation of the Jacobian matrix (or at least a proper approximation of it) for any iteration step,
which, in general, is computationally expensive. Additionally, to guarantee the convergence
of the iterations, the initial guess should be close enough to the solution. This aspect was
analyzed in e.g. [Park, 1995] for the mixed finite element discretization for nonlinear elliptic
problems, where they show that the difference between the initial guess and the exact solu-
tion should be of order 2% (h being the mesh size and d the dimension of the domain) for
convergence. For parabolic partial differential equations, a straightforward choice for the ini-
tial guess is the solution obtained at the previous time-step. Nevertheless, to ensure that this
is indeed close enough, the time-step must be chosen sufficiently small, again of order h<.
This restriction becomes more severe when degenerate parabolic problems are considered. In
this case, in locations where one of the phases is not present, the permeability of this phase
vanishes leading to singular Jacobian matrices and ill-conditioned linear systems. To avoid
this, it becomes necessary to regularize the problem, i.e. to consider perturbations assuring
that the problem remains non-degenerate. This is an additional source of errors in the system.
More importantly, the restriction on the time step becomes even more severe in this case, as
it additionally involves a small regularization parameter (see [Radu et al., 2006]). Similar
issues appear for reactive flow models with non-Lipschitz rates [Radu and Pop, 2011]. These
issues with the Newton method have motivated the linearization schemes proposed in [List
and Radu, 2016; Pop et al., 2004; Radu et al., 2015a,b; Slodicka, 2002, 2005a,b; Yong and
Pop, 1996] for the finite element, finite volume, and the mixed finite element discretization of
porous media flow models. The idea of the linearization scheme is to add an additional term
in the form of

L - (Solution_Current_Iteration — Solution_Old_Iteration),

with L being a parameter that has to be chosen sufficiently large. The robustness of such
schemes (also called L-schemes) for standard porous media flow models is proved in the pa-
pers mentioned above. Although the L-schemes show only a linear convergence, they may
become faster than the Newton method as they do not require the computation of deriva-
tives. Additionally, the L-schemes do not involve any regularization step, and lead to better
conditioned linear systems within each iteration (see [List and Radu, 2016], where also the
possibility of combining the L-scheme with the Newton iteration has been discussed). The
L-schemes may even involve the same matrix for the linear algebraic system, which offers
the possibility to compute its factorization only once per time step.



Inspired by the above results, in this thesis we also propose a linearly convergent itera-
tive L-scheme for our model, i.e. a non-standard two phase porous media model of pseudo
parabolic type involving a dynamic term in the phase pressure difference - saturation rela-
tionship (the dynamic capillarity). The model formulation for developing this scheme does
not involve any global or complementary pressure, as opposed to the case in [Radu et al.,
2015a,b]. We present a rigorous convergence proof for the L-scheme, and provide numerical
experiments confirming the theoretical findings. These experiments also include heteroge-
neous media. To the best of our knowledge, this is the first time when such a scheme has
been tested for the case of a heterogeneous medium.

Layout of the thesis

In Chapter 2, we introduce our mathematical model for a two phase flow in homogeneous
and heterogeneous porous media with dynamic and discontinuous capillary pressure effects.
In Chapter 3, we develop an interior penalty discontinuous Galerkin (IPdG) based numeri-
cal discretization scheme for our mathematical model. Next, in Chapter 4, we analyze our
discretization scheme and prove the existence of a discrete solution, the energy estimate for
the discrete solution, and the convergence of the scheme. In Chapter 5, we propose a new
linearization method for our IPdG scheme to resolve the non-linearities in the discrete model.
The proposed scheme is based on [Radu et al., 2015b] and [List and Radu, 2016]. Following
this we prove the convergence of the linearization scheme by estimating the errors of the iter-
ation step with the solution at the next time step. Finally, in Chapter 6, we present several 1D
and 2D numerical examples in heterogeneous porous media with and without discontinuous
capillary pressure effects to show the capabilities of our numerical scheme. We conclude the
thesis by summarizing our work and presenting an outlook on the various possibilities for
extending this work in future in Chapter 7.
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Chapter

Mathematical model

In this chapter, we introduce our mathematical model for an isothermal two phase flow
in porous media with dynamic capillarity effects. We first describe the model for homoge-
neous media, and then extend it to heterogeneous domains by defining appropriate interface
conditions at the material interfaces.

2.1 Model assumptions

We let Q C R? (d = 2 or 3) be an open bounded polygonal domain (the porous medium) with
boundary I" and 7" > 0 a maximal, finite time. Both I" and T" are considered dimensionless.
We consider a Darcy scale model for the flow of two incompressible and immiscible fluids
(one wetting, and one non-wetting) through a porous medium. This is based on the following
assumptions:

- All physical processes are isothermal.
Extension to the non-isothermal case would require solving an additional governing
equation for the temperature. This is done in e.g. [Acosta et al., 2006; Gupta et al.,
2015]. The temperature, however, only negligibly affects the capillary pressure and the
associated dynamic effects. Therefore, in our model, we ignore the temperature.

- Flow velocities lie well within the Darcy regime.
For some special applications, like highly fractured media, where the flow at micro-
scale is possibly turbulent in nature, the Forchheimer’s law can be used instead of the
Darcy’s law. Some examples of such models can be found in [Hornung, 2012].

- Porous matrix is rigid.
For those porous media applications where the deformations of the porous matrix
are large and cannot be ignored, the model can be extended using concepts of poro-
elasticity or poro-plasticity. Some examples can be found in [Bause et al., 2017; Both
et al., 2017; Gupta et al., 2015].



2.2 Governing equations

Under the assumptions stated above, the mathematical model [Helmig, 1997; Nordbotten and
Celia, 2011] includes the mass conservation laws for each phase (the wetting and non-wetting,
denoted by o = w and n, respectively):

at(sa¢pa) +V- (paua) ={a - 2.1

Here, ¢ denotes the porosity of the medium, p,, the fluid phase densities, s, the saturation of
phase a, and g, the volumetric sources or sinks. It is assumed that the densities are constant
and that system (2.1) can be divided by the densities. Further, u,, is the Darcy velocity of the
phase a, given by

Uy = _Aa(sw)Kv(pa - gzpoz) . (2.2)

Here, p,, is the pressure of the phase o, K the intrinsic permeability tensor, g the gravitational

o

constant with the gravitational potential z, and A, = is the mobility function for phase

[
o, with relative permeability £, , and dynamic viscosity ftn.

Remark 1 Note that in general the intrinsic permeability tensor K can be non-symmetric.
In this thesis, however, we assume K as a symmetric positive definite tensor.

2.3 Closure relationships

The four governing equations presented above contain six unknown quantities, viz. phase
saturations, pressures and velocities of both phases. To close the system we consider two
more conditions:

1. We assume that at any given point only two phases are present in the system, such that,
Sw+ S, =1. 2.3)

2. We parameterize the phase pressure difference as a function of saturation similar to the
standard models [Helmig, 1997], and extend this relationship with a term involving the
time derivative of the saturation [Hassanizadeh and Gray, 1993] to include the non-
standard dynamic capillarity effects,

Pec ‘= DPn — Pw = pc(swaatsw) . (24)

2.4 Primary variables

We chose three primary unknowns, viz. wetting phase saturation s,,, non-wetting phase
pressure p,,, and phase pressure difference p., and rewrite the above model as a system of
three equations:

- atSwa -V ()\n(Sw)Kv(pn - gzpn)) = Qn,
Orswd =V - (Aw(50) KV (P — Pe — 92Pw)) = qu,
DPec = Pc(Sw, atSw)- 2.5)

Note: For readability of the proofs in the subsequent sections, we use p,, = p,, — P, although
Py 18 a secondary variable.



2.5 Constitutive relationships

The constitutive models for the properties of the fluid-matrix interaction, viz. phase pressure
difference (or capillary pressure) p. and relative permeabilities k,. ., are described below.

2.5.1 Dynamic effects in the phase pressure difference

The pressure difference across the wetting and non-wetting phase interface is called the
capillary pressure. This pressure difference arises due to balancing of cohesive forces be-
tween the fluids and the adhesive forces between the fluid-matrix interfaces. On a pore scale,
the capillary pressure is inversely related to the radius of the pore-throat. A common as-
sumption in the modelling of two phase flow in porous media is that the distribution of the
two phases inside the pores of the medium is static, and the phase pressure difference de-
pends only on the properties of the medium and the volumetric distribution of the phases.
The models which are built on this assumption are called the standard, equilibrium-based
models. These models relate the phase pressure difference p. and saturation (commonly, the
wetting phase saturation s,,) through nonlinear, algebraic functions which are uniquely in-
vertible. Several parameterizations relating p. and s,, using medium specific parameters have
been proposed in the literature. Most prominent examples of such parameterizations include
the Brooks-Corey model [Brooks, 1964], and the van Genuchten model [Mualem, 1976; van
Genuchten, 1980]. These standard models are valid whenever the processes are slow enough,
so that the dynamics of the flow, and in particular the redistribution of the phases inside the
pores before achieving equilibrium, can be ignored.

In the recent years, experiments have brought forth some limitations of the equilibrium-
based models. For example, the experiments in [Di Carlo, 2004] showed that non-monotonic
saturation profiles (over-shoots) can be obtained during infiltration processes in a dry porous
medium, and that the amplitude of such over-shoots depends on the flow velocity. Such
results lie beyond the scope of the equilibrium-based models, which would predict monotonic
profiles regardless of the chosen parameterization. Therefore, alternative modelling theories
were required.

To model non-monotonic profiles, several approaches were proposed where the assumption
of a uniquely invertible representation of the capillary pressure relationship was dropped,
and non-equilibrium or dynamic models were introduced to capture the additional effects
observed in the experiments. These models are called the non-standard models. Many non-
standard models have been proposed, amongst others [Barenblatt et al., 2003; Bourgeat and
Panfilov, 1998; Hassanizadeh and Gray, 1993]. An extensive review of these and some other
models can be found in [Manthey, 2006], where also a more detailed explanation of each
model is included.

In this thesis, we focus on the model developed by Hassanizadeh and Gray in [Has-
sanizadeh and Gray, 1979a,b, 1993], which was analyzed from a thermodynamical perspec-
tive in [Hassanizadeh and Beliaev, 2001]. In this model, the equilibrium-based p.-s,, re-
lationship was extended by introducing a dynamic damping parameter 7(s,,) > 0, which
can depend on the wetting phase saturation, but is often assumed constant. This parame-
ter accounts for the dynamic change of the capillary pressure, leading the a non-equilibrium
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(non-standard) model. The capillary pressure is then defined as:

Pc = pc,eq(sw) — 705y , 2.6)

involving the time derivative of the saturation. Here, p. 4 is the capillary pressure at equi-
librium, and 7 accounts for the dynamic effects. We assume 7 to be a positive constant. The
additional dynamic term, i.e. 70;s,,, delays the flow of the wetting phase and forces it first to
build up before the capillary pressure can be overcome. This leads to a non-monotonic flow
behaviour and a droplet formation (over-shoot) at the tip of an infiltration finger.

Other non-standard effects in the capillary pressure relationship, like terms of even higher
order or hysteresis effects, are not accounted for in this thesis, but can be found in e.g. [Cao
and Pop, 2015; Jha et al., 2011; Rétz and Schweizer, 2014].

2.5.2 Relative permeabilities

In this work, we study the dynamic effects only in the phase pressure difference. For relative
permeabilities, we assume that the dynamic effects are negligible, and use the equilibrium-
based models like Brooks-Corey [Brooks, 1964] or van Genuchten [van Genuchten, 1980]
in conjunction with the Mualem and Burdine relations [Burdine, 1953; Mualem, 1976] to
parameterize relative permeabilities as functions of wetting phase saturation.

2.6 Initial and boundary conditions
To complete the system, we use the following initial and boundary conditions:

Forallxz € Qand att = 0,

sw(x,0) = s%(2) with, s% € H'(Q). 2.7
Forallz e T"and all ¢t € [0, T,
pe(a,t) = p2 (), palz,t) = py (2) (2.8)

with p? € H2(T), pP € H3(T)

where, 5%, p2, and pP are given functions. H'(Q) and H 3 (T") are Sobolev spaces, on €2 or
I' respectively. A definition and introduction to Sobolev spaces can be found in [Adams and
Fournier, 2003] or [Evans, 1998]. Note that the boundary value of s,, is defined implicitly by
the Dirichlet conditions for p..

Remark 2 For simplicity, here only Dirichlet boundary conditions are considered. Also, the
boundary values are assumed constant in time.

2.7 Interface Conditions

The model presented above is valid only in homogeneous domains. To extend this model
to heterogeneous domains, consider a very simple heterogeneous porous media consisting
of two distinct homogeneous domains €25, and €;, separated by a material interface I'. The
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subscript [ and h refer to a lower and a higher equilibrium capillary pressure, i.e. for each
Sw € (0,1] holds pe.eqi(Sw) < De,eq.h(Sw), respectively. (See figure 2.1.) The lower and
higher capillary pressures correspond to higher and lower absolute intrinsic permeability re-
spectively. At the material interface, due to the different properties, additional conditions
need to be considered.

800

600

Pressure [Pa]
B
8
5

200

0 0.2 0.4 0.6 0.8 1
Saturation [-]

Figure 2.1: Equilibrium capillary pressure, with Brooks Correy parameterization. In red
De,eq,h(+) and blue pe cq1(-)

For the standard models, the interface conditions have been studied extensively in e.g.
[Bertsch et al., 2003; Buzzi et al., 2009; Cances, 2008; van Duijn and de Neef, 1998] as well
as [Kueper and Frind, 1991a,b]. In [van Duijn and de Neef, 1998], an analytical solution
was derived and analyzed. (Note that in [van Duijn and de Neef, 1998] lower and higher
refers to the absolute permeability.) An important aspect of flow in heterogeneous media
is that, the flow from the high capillary pressure domain €2} to the low capillary pressure
domain €2; is possible only if the capillary pressure on 2; exceeds the entry pressure on §2y,.
This behaviour is commonly known as a capillary barrier. Numerical methods for modelling
capillary barriers/standard models have been studied by [Arzanfudi et al., 2014; Cances et al.,
2009; Enchéry et al., 2006; Hoteit and Firoozabadi, 2008]

For the non-standard models, the interface conditions were first studied and extended in
[Helmig et al., 2007, 2009] and [Peszynska and Yi, 2008]. Recently, these interface con-
ditions were analyzed rigorously in [van Duijn et al., 2016]. It was shown that if 7 > 0,
under certain conditions, flow of the non-wetting phase from €; to €2}, is possible even if the
capillary pressure on €2; has not exceeded the capillary barrier.

To connect the models on each homogeneous subdomain, the following two conditions
must be satisfied for any flow across the interface:

- continuity of the normal component of the fluxes across the interface, and
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- continuity of the pressures across the interface.

The first condition ensures the conservation of mass flux over the interface and leads to the
following condition:

)\a,h(sw,h)Khv(pa,h - gzpa) S = )‘a,l(sw,l)Klv(pa,l - gzpa) . ﬁa (29)

where, 7 is the unit-normal vector pointing into €2;. The second condition assumes continuity
of the pressures over the interfaces and implies a continuity of the capillary pressure. This
may lead to a discontinuity in the saturations across the interface.

Two distinct values of saturation and capillary pressure may exist at each side of the inter-
face. We denote the values at the interface associated with the domain Qy, as s, ,, and p. p.,
and the values at the interface associated with the domain §2; as s,,; and p. ;. We define the
pressures

DPc,e,l ‘= pc,eq,l(l) and DPc,e,h i = pc,eq,h(1)7 (210)

which will denote the entry pressures. Further, we define the capillary pressure difference
Op.,r over the interface I by:

Ope.T = Pe,n(Sw) = Pei(Sw) (2.11)

This definition translates directly to the capillary pressure potential p:

De,h — Ped = Op,.T - (2.12)

Depending on the chosen parameterization of the capillary pressure, the condition of pressure
continuity is not always valid.

In the case of van Genuchten like parameterization, the pressure continuity has to be always
fulfilled.

In the case of Brooks Correy like parameterization, the pressure continuity holds true only
if both phases are present on both sides of the interface. Otherwise, a capillary barrier exists
across the interface, preventing flow from the domain with low capillary pressure to that
with high capillary pressure. The discontinuity in capillary pressure leads to a discontinuity
in the non-wetting phase pressure, whereas the wetting phase pressure remains continuous
across the interface. Physically this can be attributed to the fact, that a phase pressure has
no meaning when the phase is not present. Therefore the phase pressure differences, i.e. the
capillary pressure becomes meaningless. In the standard model an extension of the capillary
pressure from (0, 1) to [0, 1] is possible due to a continuous extension. In the non standard
model this is not possible, as no unique extension can be chosen due to the dynamic capillary
effect as presented in [van Duijn et al., 2013].

Following [van Duijn et al., 2016], whenever s,,, < 1 and s,,; < 1, the non-wetting
phase is present on both sides of the interface and the following holds on I':

pc,eq,l(sw) - Tl(sw)atsw = pc,eq,h(sw) - Th(sw)atsw . (213)
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If instead no non-wetting phase is present on €, and p.; < pc.,n, i.€. not enough non-
wetting fluid is present to overcome the capillary barrier, (2.13) is replaced by

Sw,hn=1. (2.14)
Combining (2.13) and (2.14) this leads to:

(1 = 8wn) - (Pesp —Pe) = 0. (2.15)

Note that, the dynamic capillary pressure effect results in an ordinary differential equation
over the interface.

We elaborate on the behaviour of the pressures in the following three cases:
A. non-wetting phase is absent on the {2, side of T,
B. non-wetting phase is absent on the {; side of T,
C. non-wetting phase is present on both sides of I'.

The behaviour is described only from the perspective of the non-wetting phase.

Case A: In this case, s,,, = 1 and 0;s,,,, = 0, which implies p.p = pce,n. As long
as Pei(Sw,i) < De,e,h, N0 flow is possible across the interface. This means that the non-
wetting phase has to accumulate until the capillary pressures are balanced, i.e. pe(Sw,) =
De,h(Sw,p). Only after this, the non-wetting fluid can flow into €. This is the capillary
barrier in the standard case, which leads to a jump in the capillary potential p. denoted by
Op,,r in (2.12).

In the standard case s,,,; decreases towards the threshold value s for which the condition
De,eqi(S5) = Dee,n holds. In the non-standard case however the entry pressure may be
reached at values s,,; > sy, due to the dynamic effects of 7 > 0. This leads to scenarios,
where flow is possible which can not be observed in the standard case. This is also described
in detail in [van Duijn et al., 2016].

In this case, the wetting phase is always present on both sides of the interface. This implies
continuity of the wetting pressure potential and leads to the following additional condition on
the non-wetting pressure potential :

Dr,h — Pnl = De,h — Pel = Opo.T - (2.16)

This condition will be used in Section 3.4 when constructing the discontinuous Galerkin
scheme.

Case B: Analogously to case A, here s,,; = 1 and 0;s,,; = 1, leading to p.; = pc,c;. In
this case, pe,n(Sw,h) > Pee,i always holds. Therefore, no capillary barrier occurs and flow
across the interface is directly possible. The pressures are always continuous.

Case C: In this case, the pressure continuity and capillary pressure continuity always hold,
and flow across the interface is always possible.
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Summarizing Cases A, B and C, as well as (2.15) and (2.9), we obtain the following rela-
tions over the interface I':

)\a,h(sw,h)Khv(pa,h - gzpa) = )\a,l(sw,l)Klv(pa,l - gzpa) ! (217)
(1= 8w,n) - (Pep — Pe) =0 (2.18)

where, 77 defines the vector normal to the interface. Note that, the condition p. p(Sw.p) =
De,e,n corresponds to sy, p = 1.

2.8 Notation

The notations below are common in functional analysis [Adams and Fournier, 2003] and
will be used throughout this thesis. Whenever values on I' are involved, these should be
understood in the sense of traces, recalling the definitions of the traces in [Evans, 1998, p.
270]. The following notation will be used in this thesis:

- LP(Q) (1 < p < o0) is the usual space of functions that are p-Lebesgue integrable and
L>(Q) is the space of functions that are essentially bounded in €. The elements of
WFP(Q) are the functions admitting weak derivatives up to order k that are again in
LP. For simplicity, we use the notation H* () for W*2(Q).

-For1l < p < oo, | - |lzr(e) and | - |lwrr(q) are the standard norms in LP(€2),
respectively W*P(Q). A simplified notation will be used for the norm in W*:2(Q),
namely || - ||q,x-

- HE(Q) denotes the subspace of H*(£2) taking the value 0 on the boundary (in the sense
of traces).

- L0, T; WkP(Q)) denotes the Bochner space of vector spaced valued functions f :
[0,T] — WkP(Q) that are g-Bochner integrable on [0, 7).

- H(0,T; L?(2)) denotes the Bochner space of L?(£2) valued functions admitting a
weak time-derivative in L2(0,T; L?(€2)).

As for the domain (2, the traces on I" will lie in spaces like LP(T"), H*(T'), etc. In particular,
by Hz(T') we mean the traces on I of H*(€2) functions.

2.9 Weak formulation

We now state the weak formulation for our model (2.5) together with the constitutive re-
lationship (2.6) and the initial and boundary conditions (2.7) and (2.8). We multiply the
equations with test-functions in H}(€2)) and partially integrate to obtain:

Problem 1 [Weak formulation] Find the triple (8., pn,pe) s.t. s, € HY(0,T; HY()),
s =8%att =0,p, —pP € L2(0,T; H} (), pe — pP € L?(0,T; H}()), and for all
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¥y, € HY(SY), vs € HY(2), and almost every ¢ € [0, 7] it holds
*/ 8t3w¢¢p Jr/ )\n(sw)Kv (pn - gzpn) : va = / qnwpa
Q Q Q
/Qatswd)wp + /Q )\w(sw)Kv (pn — DPc — gzpw) : Vi/)p = /Q(Iwwp» (2.19)

/Q Pethe = /Q Pesca(50)ts — /Q 05wt

Existence and uniqueness results for Problem 1 are obtained in [Cao and Pop, 2015, 2016;
Fan and Pop, 2011; Koch et al., 2013; Mikelic, 2010].
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Chapter

Numerical scheme

In this chapter, we develop a numerical discretization scheme for our mathematical model
given by Problem 1. The discretization in space is based on an interior penalty discontinuous
Galerkin method, while the discretization in time is based on an implicit Euler method. A par-
ticular focus is laid on the numerical treatment of the interface conditions for heterogeneous
domains.

Preliminaries
Let 7 be a decomposition of the domain €2 into /V non-degenerate elements 7;. We assume

that T is admissible in the sense of the Definition 2.1 in [Di Pietro and Ern, 2010]. Let &
denote the union of all faces F};, and let h be the maximal diameter of the elements.

Given T; € T and F; € F, we define a set F(T;) of all the faces associated with the
element T}, s.t.,

F(T;) = UFj:chT;- ,
F;eT

and, a set T'(F;) of all the elements sharing the face F}, s.t.,
T(F)=1{ |J T;: K CT
T;,eT

In the conforming case, T'(F;) consists of exactly two elements.

With each face ' € J connecting element T; and 7}, we associate a normal-vector 7
directed from T; to T} (j > 4).
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Following Sec. 1.2.4 in [Di Pietro and Ern, 2012], let IT*(T") denote the space of polyno-
mials on 7" with degree < k. For the approximation of saturation S,,, we consider the broken
polynomial space with polynomials of order k; as,

ViE(Q) :={v e L*(Q) : v|, € T*(T) forall T € T}, (3.1

and, for the approximation of the pressures p,, and p., we consider the broken polynomial
space with polynomials of order &, as,

VP(Q) == {v e L*(Q): v|p € T*(T) forall T € T} . (3.2)

Note that we represent a general broken polynomial space with V}, (€2) without specifying the
polynomial order.

For ¢, 17 € Vj,(Q), where, ' = (¢]}.) = is the trace of F' on the side of the element
T;, and similarly, ¥/ = (¢|;)| is the trace of F' on the side of the element T}, we define
the jump [[-] and the average {-} over the face F as,

when F is an interior face : [¢] = (W — ql)j) and {¢} = (wi + 1Z1j) , (33

when F is a boundary face : [¢] =¢° and {¢} =", 3.4

N | =

where, the interior face connects elements 7% and 77 with i < j, and the boundary face has
no element adjacent to T;.

Next, we define the following norm on the broken polynomial space,

1
lolt.pe = D IVolld o+ D Wllﬂvﬂllﬁ,o 3.5)

T;€T F;eF

and use the following lemma [Di Pietro and Ern, 2010]:

Lemma 1 Given a broken polynomial space V},(€2), for any ¢ such that,

1<g< -
<es o,

1<g< o0, ifd=2,

ifd>3

there exists a constant C depending on the polynomial degree, mesh-parameters
and |Q)|, but independent of the mesh size h, such that, for all v € V}, (), the
following inequality holds:

0]l ey < Cllvlla.pe - (3.6)
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Additionally, we use the following trace inequalities, which can be found in [Warburton
and Hesthaven, 2003], [Riviere et al., 2001], or [Di Pietro and Ern, 2012]:

Lemma 2 Let 7, denote the trace operator. There exists a constant C; inde-
pendent of the mesh size h, such that, for any 7' € T with F' € F(T') and for
allv € H*(T), the following holds:

1
rovllo,r < Ciy [ == (llv
|F|

o1 + [F|[[Vvlor) 3.7

For v € II*(T) and a positive function f(k) depending on the polynomial
degree k, the following holds:

k
lhovllo.r < Ci ﬁ;fww (3.8)

We also use the following elementary lemma [Epshteyn and Riviere, 2009]:

Lemma 3 Let C be the maximal number of elements sharing one face, and let
A T — [0,00) be a function defined on the triangularization J. Then, the
following inequality holds:

>3 A <EYAm)
T;

F; T(F;)

Finally, we state the following well known (in-)equalities for a,b € R and € € R, which
are used throughout the paper:

1 1
(a—b).azi(a—b)2+§(a2—b2) (3.9)
€ 5 1.,

3.1 Discretization in space

The weak form (2.19) of the mathematical model governed by system (2.5) is discretized
in space using an interior penalty discontinuous Galerkin numerical scheme.

Problem 2 [Spatial discretization] Given the penalty parameters o, o, € R™, the param-
eter § € {—1,0,1} and the function f(-) introduced in Lemma 2 depending on the polyno-
mial order ky, find s, € V;3(Q), p, € VP(Q) and p. € VP (Q), s.t., for all 5 € V7(Q),
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¥y, € V() and ¢, € VP(Q) the following holds:

PoE-L: 3 [ “disuon + Y / A(50) KV (n — 92p0) Vb

T,€T T:,€T
= [ K =gz )]
F,eF
03 / [l (50) KV -8} + 0 3 / GNP
F,eF F,edF
=0 PRI (sP) KV, - T} + 0 D1 [n] 3.11)
=, FEQ/ G
PDE2 / Dsutn + 3 / (50 KV (o — P — 9200) Vb
T;eT T, €T
= / Do (50) KV (P — pe — g2pu) - i} ]
F,eF
+0 Z / {)\ Sw KV(ﬁwn}ﬂpn pc]]+0w Z/ Fl pc]][[ww]]
F,eF F,eF
—ozf{A waﬂ}ﬂpn—pcﬂwwzf T ) o b2l
F;el F,el’
(3.12)

ODE-Pc: Z/ PeWs = Z / pceq Sw s Z/ 7-at"swws (3.13)

T €T T;€T ;€T

The parameters o,, and o,, penalize discontinuities in the solutions (i.e., jumps) over the
faces. The choice of § = 1 gives the non-symmetric-interior-penalty (NIP) dG-scheme, § = 0
gives the incomplete-interior-penalty (IIP) dG-scheme, and § = —1 gives the symmetric-
interior-penalty (SIP) dG-scheme.

3.2 Discretization in time
For the discretization in time, we use an implicit Euler scheme. We subdivide the time

domain [0, T into N intervals of size At > 0 with T' = N - At. The i-th discrete time-step
is denoted by t;, s.t., t; = i - At.

Given a sufficiently smooth function g(z, t), the time derivative of g is approximated by:

- n+1l . __ g(thrlvx) — g(tn,x)
07 g = 7

(3.14)
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3.3 Discrete system

Using Problem 2 and (3.14), the fully-discrete scheme can be written as:

Problem 3 [Discrete problem at t"*'] Let P € VP(2), P** € VP(Q2) and S € V#(Q),
find PP € VP(Q), P € VP(Q) and S;T! € ViE(Q), s.t., for all ¢, € VE(Q), ¥, €
VP (Q) and ¥, € VP (), the following holds:

PDE-1: ) / —07 S g+ Y / W(SEYEY (PRt — g2p,) Vb,

T,€T T;€T

Y [ OnSEIK (PE — gzpe) ) v
F,eF

DY N A [NEA T PSS / L T
F,edF F,eF

=03 [ BRI G ) a 3 [ AE M) oy, 615)
Fel F;el

PDE-2: > / O~ Si b + Y / (STTHY KV (PP — P g2p0) Viby,

T;€T T;€T

- 3 [ SR - P = gzp) ]

fer
+9F§€:?/{)\ (SETYK VY, - @ [Pott — PP

o S [ TERm )

ZGFZGF/E“ (" YKV - ) o2~ pP]

+owg€;/ﬂ J]Sfi’])[[ A (3.16)

ODE-Pc: Z/ Pty = Z/ De.eq(STH)p Z/ 7078y, (3.17)

T:eT T;€T T;€T

3.4 Numerical treatment of the heterogeneities

In Section 2.7, we discussed the additional conditions that must be considered at the ma-
terial interfaces separating homogeneous blocks in a heterogeneous porous medium, which
include flux continuity (2.17) and pressure continuity (2.18) across the interface. In this sec-
tion, we present the numerical realization of these conditions in our solution scheme. We
use the ideas proposed by [Ern et al., 2010] and used further in [Bastian, 2014] for a fully
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implicit coupled scheme. In both, [Ern et al., 2010] and [Bastian, 2014], stationary capil-
lary pressure conditions were assumed. We extend the ideas and incorporate non-standard
capillary pressure effects.

3.4.1 Pressure condition

We exploit the structure of the dG-scheme and extend the penalty terms to realize the pressure-
continuity condition at the interface. This is possible because each element is an independent
entity by itself; the communication between the elements occurs only through the interfacial
terms, i.e., average terms and penalty terms. When the mesh-interfaces and the material-
interfaces are aligned, the penalty terms can be naturally extended to incorporate the physical
behaviour at the material interfaces. This gives us the possibility to deal with edge aligned
heterogeneities without additional numerical constructs.

The dynamic capillary pressure effects for flow in heterogeneous porous media were first
rigorously addressed by Weiss et al. in [Helmig et al., 2009] and [Helmig et al., 2007]. They
used finite volume scheme for spatial discretization, and described the interface conditions
using variational inequalities, which were incorporated in the numerical scheme through a
mortar technique. In addition, they used an active-set strategy together with an inexact New-
ton strategy to solve the non-linear system.

To describe the numerical approximation, we use the same notation as in Section 2.7.
To incorporate the jumps in the saturation, we introduce an additional penalty parameter to
(3.17), which penalizes jumps over the interface, such that the pressure continuity is fulfilled.
For a face F' € JF with F' C I', we use the capillary pressure condition (2.18) and define the
the modified jump term:

[ (ST = De,e,h — pc’h(SZ,ﬁfhl) ifpc,l(Sgﬁl) < Pe,e,h, and nghl =1
e Pc,h(SZ,ﬁLl) — pc’l(SZﬁl) otherwise :
(3.18)

Whether case A, B, or C from Section 2.7 is applicable, is decided by the condition:

pc,l(SZjl_l) < Pe,e,h and 53:21 =1,

which guarantees that if case A applies, non-wetting fluid accumulates until p.; reaches the
entry pressure pc. . As long as the capillary pressure is less than the entry pressure and
no non-wetting phase is present on {2; , case A is active and saturation will accumulate.
Additionally, the capillary pressure potential and non-wetting pressure potential are discon-
tinuous. To ensure that in case B no capillary barrier inhibits the flow, the condition S:ﬁll =1
is checked. In all other cases we ensure continuity of the pressure potentials, i.e. case C is
active.

In the present context for edges over the interface I' one obtains

pe(Sz) =0,
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which ensures the condition

_ +1 +1\ _ +1
Pec,e,h = pc,h(Sun},h ) or pcyh(Sg;,h ) - pC,l(Sg),l )
Depending on the currently active case, this leads to continuous or discontinuous capillar
p g y pillary
pressure respectively. On the other edges we obtain pressure continuity.

The additional condition (2.16) in case A will lead to a discontinuity in the non-wetting
pressure potential. In the spirit of (3.18) we extend the continuity condition, i.e. the jump
terms, in the non-wetting phase mass balance equation (3.15). Using (2.16) we define:

Pitt =Pt —on p i pea(SiTY) < peenand SpEN =1

, 3.19
P, :Zl - P, :ﬁrl otherwise (3.19)

[P = {

where, we use 0, as defined in (2.12) with the additional superscript denoting the timestep
at which the evaluation takes place. Also in this case, we have either pressure continuity or
[P7*1] matches the jump in the capillary pressure.

3.4.2 Discrete scheme with interface conditions
Using (3.19) and (3.18) we get the following scheme:

Problem 4 [Discrete problem at ¢" ! with interface conditions] Let P € V/F(Q), P? €

VE(Q), and ST € V(). Find P2 € VE(Q), PP € VP(Q), and SIH € ViE (), s.t,
for all ¢ € V#(Q), ¥, € VP(Q), and ¢, € VP(€2), the following holds:

PDE-1: > [ -0 Sitlgvn+ > / A (STANYKV (PP — g2p,) Vb,
T, i

T,eT Ve T;€T
- / D (SETH KV (P — g2py) - T [4n]
F,eF Fi
/ — f(k ) 17/
0 PP AL (ST KV, - " 1P ] [0m
DI R e W e [

S IPPHA )RV, i} 00 Y / i@“j)[{pﬂ[{wnﬂ (3.20)

F;el'p F;el'p

PDE-2: > /T 0~ Sp  pthw + Y /T Ao (STFOYKV (P — PP — 9200, ) Vb,

T;€T T; €T

=3 [ DSR2 = gz Dl
Feg /i

203 [ Ouls RV, A - ]
F,eF F

f(kp) Pn+1 o Pn+1
+o—wFi€i}"/Fi |F1| [[ " ¢ H[[,l/}w]]
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=0 > / Mo (sP) KV, - i} [PP — PP]

FEFD

tow Y / ) 1po _ poyy,] (3.21)

F,el'p

ODE-Pc: Z/ Pt = Z/pwq (Sut s — /a T(Sut )y

T,eT T;eT T;eT
o Y / i Peeq(Sith) — 0~ T(Sp )] [vow] (3.22)
F,eF

3.4.3 Flux continuity

The flux continuity is implicitly enforced by the proposed scheme 4. To show this we proceed
the same way as in [Ern et al., 2010]. For a solution of the scheme the following condition
holds due to (3.20):

/ —07 S g, + Z/ W(SUTHEV (P = g2p,) Vi,

T;€T T; €T

3 [ OSERTER — gzp) - ]
F,eF

#0 Y [ IO R i)+ Y [ SRy
F,eT F,eT

=0
By partial integration and using the relationship,
[ue] = {w} o] + {v}[u] ,
for the interior edges we obtain:

> / —07 S e — V- (A(SETKV(PEH = g2pn))) tn

T;€T

+3 / D} (STHYET (P — g2p,) - 1]

Fed

+0 ) / [P A (ST KV ap, - i1}

Fed

nz/f

FeF

=0

The first term is the weak residual of the conservation law for the non-wetting phase. The
second term enforces the normal flux continuity across the interface, and the third and the
fourth terms ensure the continuity of the pressure. Note that we are using the extended jump
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definition (3.19), leading to either a continuous or discontinuous pressure across the interface
respectively. In either cases, due to the construction of the jump terms, for a convergent
solution
[[ Pn+1ﬂ/ =0
n

holds true.

In a similar way, we partially integrate the wetting phase equation (3.21) and get:

> /T (0785 — V- (A(SETHEV(PIF = P — g2py))) w

T; €T

£ 3 [ bSO RV - P~ gzp) -

F;edF

403 [ I - RS K )

F,eF

k
Tow / f( p)[[P:LLJrl_Panrl]][[wqu:O'
Feg /T |F’|

Again, the first term represents the weak residual of the conservation law for the wetting
phase. The second term gives the normal flux continuity across the interface, and the third
and the fourth terms ensure the continuity of the pressure.
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Chapter

Convergence Analysis of the
Numerical Scheme

In this chapter, we prove that the numerical scheme is well-posed and convergent. We
first show the existence of a discrete solution using a fixed-point argument, followed by the
energy estimates for the discrete solutions. Finally, we show the convergence of the scheme
by proving some error estimates.

Preliminaries = We make the following assumptions to prove existence and convergence of
the numerical scheme:

(A4.1) The initial and boundary conditions in (2.7) and (2.8) are sufficiently smooth. Addi-
tionally, the initial condition is compatible with the boundary condition, i.e. the initial
condition fulfills the boundary condition at ¢t = 0.

(A4.2) The permeability matrix K € R?*¢ is symmetric and positive definite, i.e. there exist
two constants x and &, s.t., for any vector x € R?, the following holds:

sllz)?* < o7 Ko < w|z|®

(A4.3) The equilibrium capillary pressure function p. ¢,(-) is in C?(IR), and is assumed to be
positive, bounded and decreasing. Let P, .,(-) define the primitive, i.e.:

P () e {0 Pect©dE =I5 Pecald6 = Jy peca@d fors <1
G 0 otherwise =

It can be inferred that P, .4(.S) is concave and non-positive.

(A4.4) The functions A (-) and A, (+) are Lipschitz-continuous and bounded from above and

below by the constants 0 < A\, < Ay < 00.

27
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For the error analysis, let s, (¢, x), p, (¢, z), and p.(t, z) be the exact solutions of the prob-
lem. For simplicity, we will use s, = s,,(t;, ), pi, = pn(ti,x), and p’ = p.(t;,x). For all
t € [0, T] we denote the projection of p,, (t), p.(t), and s,,(t) onto the space V;’(€2) or V;?(Q2)
with, p,, () € VF(Q), pe(t) € VF(Q), and 5,,(t) € V;¥(Q), respectively. Further, we assume
forall ¢ € [0, 7] that p,,(t) € WH(Q), p(t) € WH>(Q) and 5,,(t) € WH>(Q). We also
assume that the solutions possess enough regularity such that the the following approximation
properties are fulfilled:

Forallt € [0,7],1,, € R*, 1, € RT,l; € R, and T € T, for p,(t) € Wh, p.(t) €
W1 and §,,(t) € W there exists a constant C' independent of A, ks, kp, and At s.t.,

hmin(kp+1,lp7L)—q

for0 <q<lp,, llpn(t) = pn(t)llrg <C 1pn (Dll7,1,, “.2)

k}ljpn —q
~ hmin(karl,lpc)fq
for0 < g <ty let) = (Ol < O — IOl @
P
~ hmin(ks+1,ls)fq
for0<q<ls, |sn(t)=3n(t)llrg < C———F——lsn(@)ll7, (4.4)

kés*q

The proof for the results (4.2), (4.3) and (4.4) can be found in [Babuska and Suri, 1987].

Recall that the norm || - |74 is defined as || - || a.2(7), see also Section 2.8.
Further, we write the numerical errors fori = 1,..., N as,
i _ i _ i i _ i i i _ pi_ i i i
es)h—S -8, e, =38, -5, epmh—Pa—pa, €p. = Do — Do -

4.1 Existence of a discrete solution

We now prove the existence of a discrete solution for the Problem 3.

For given real numbers P, ; € R, P.; € Rand S,, ;. € R, we define ]5”, P.e V}f(ﬂ) and

U

s

dp dp
]511 = an,l%) Pc = Z Pc,l@f Sw = Sng(PZ ) (4’5)
=0 =0 0

>
Il

where ¢! and ¢ are elements of a basis for V/”(2) and V,?(Q2) and d, € Nand d, € N
denote the dimension. We define the coefficient vectors Pn, PC € R and S’w € R by:

Pn:(P’n,lv Pn,27 "'aPn,dp)T
pc: (Pc,la Pc,27 "’vPc,dp)T

Sw = (Sw1, Swar s Swa) (4.6)
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Furthermore, for given real numbers SLL;, . € R, we define P,; € Rforl =0,...,d, and
dSy, € Rfork=0,...,ds, with,
Pw,l ::Pn,l_Pc,la

and dS, = Sw,k — Sg7k) , 4.7

Al
which gives us P, € V7(Q), S? € V2(Q) and dS,, € V;3(Q), s.t.,

dp
Pw = Pn —PC = pr’i(pf s
=0
~ 1
and dS, := K Sw — Z dS.y k(pk (4.8)

The coefficient vectors Pw € R% and dASw € R% are defined analogous to (4.6).

Next, we define (-, )2 as the £2-scalar product on R24»*4s and || - ||;> as the induced
¢2-norm on R2d»+ds,

Note that for a coefficient vector X € R2%*% and the induced vector X € V(Q) x
VP(Q2) x V() there exists constants ¢ > 0,¢ € Rand C > 0,C € R, such that the
following inequality holds:

| Xlao < 1X]I7: = (X, X)e2 < C X0 - (4.9)

Note that the constants ¢ and C' may depend on the mesh size h.

Using the definitions (4.5), (4.7) and (4.8) in (3.15)-(3.17), we define FiP” , FiPC, F,f eR
fori =0,1,...,dpand k = 0,1,...,d,,s.t,

B /T | At( —shedt + 3 / WKV P,V

T;€T

-y /F DnlSu) KV P, - 7} [1]

FeF/Hi

+HZ/[[P]]{)\ W) KVl - n}+o—n2/ f(k Al
F,ed F,eF

—92 D]]{A PYKV i} —on > i |(Fp|)[[p£]][[go§’}] (4.10)
F;el’ F;el i T

Z/Atw S"WﬂrZ/A PV

T;€T T, €T

Z WEV(P, — B.) -} [¢!]

Fed
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+92/{)\ W) KVeP - i}[P, — P.]

F,eF
f(k p
+ 0oy ' /1
F%/
0y / Da(sP)KVGE - TP — pP]
F;el’
- wFXGIF/ |F| D — pPllelT 4.11)
F : QSPCSO ¢pce
P X o X e
1 mn S
_ %A 077 (S0 — S8)ek 4.12)

As before, we define analogous to (4.6) the coefficient vectors FPn , FPe ¢ R¥% and F'S €
R%. Observe that, if F;* = F"* = F¥ = 0foralli = 0,1,...,d, and k = 0,1,...,ds,
then P,, P. and S,, are a solution to the Problem 3.

The definitions (4.5)-(4.12) define a continuous mapping P : R24»+ds — R2dp+ds by,

P(P,, P,,dS,) = (E FFe FS)

Existence To prove existence of a solution to our system, we use Lemma 1.4 in [Temam,
2001, p. 164]:

Lemma 4 Let X be a finite dimensional Hilbert space with scalar product (-, -)
and norm || - || and let P be a continuous mapping from X into itself such that,

(P(€),€) >0for[[¢]| =k >0.

Then, there existsa § € X, ||£]| < k s.t.,

PE)=0.

Another version of this lemma can be found in Chapter IV of [Girault and Raviart, 1986].

To apply Lemma 4 we chose R2%»+4: as the Hilbert space X and we use the scalar product
(-,)¢2 and the norm [| - ||;2. Further, let (P, P. S,,) € R?*¥ T4 and define R > 0 as

R:=((P, P. Su).(P. P. 8,))=(Pn,P)+ (Py,Py)+ (dSy,dS.).



31

Specifically, we show that whenever

n An 9202
o 5 [ o (5 E590)

Z | | || Pn Fl,O
T;€T F;el i
Ow 0202
+<2+ )2:w| 0
F;el’
then one gets
<an Py + <FPc Pu) + (F5, dS,)
ds
—ZPnZFP +Z n,g cz ipc'i_zdsw,kF]f
k=0
> 0 , (4.13)

which gives the following existence result:

Lemma 5 For sufficiently large o,,, 0., , the Problem 3 has a solution.

Proof 1 We estimate the terms (I) := S>% P, . F™ | (II) := S.% P, ,;F/* , and
(II1) := Y% dSy 1 FS separately.

Estimate for (I) We start with:

n=3Y [ ws

REWAT

T;eT FeT
(1—6 _ n
)Y [ DnlSKTE, A Z/ (B = ST,
F,eF T;€T
f(k
—GE:/[mMA YKVP, m—anzj/ DIIR]
F;el’ F;el
=P, +P,—P;—P,—P;—Ps.
Using the assumption (A4.4) for P, + P», we get:
P+ P >m&z§:‘P{2sz 7l§: I Bz, @14

Using Cauchy-Schwarz inequality together with the assumption (A4.4), we get:

Py <\,

F,eF
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For a fixed face F;, let 7L be the adjacent elements. By the trace inequality (3.8), the
following holds:

X1 =0) > IHE 2V P e ol [Pall 2.0

Fed

<1 0)C, f(lfp); (\

+ )mmmw

Ty ,0 T_,0

Further, with Lemma 3 and Cauchy-Schwarz inequality we obtain:

n HK%

o) Pl

(- 0)C, f(kp)l <‘

[Eil 2 £

T, ,0

1

(ZH“ )(A (-opcie i S nﬂnﬂ,o) ,
) il FieT

which, on using the scaled Young’s inequality, leads to:

2 flk
+£A 0)°CZC Y l”V”m 4.15)
T, €T F,eF

P; < <7

The term Ps is estimated in a similar way as Ps leading to:

€2
Rz 3|
T;€T
and, the term P is estimated as:

(k ik
S PR : Z !

F;el

T . *0202¢ Z W‘ = (4.16)

T, 262

4.17)

Ps <

Choosing ¢ = ¢ = %, and €3 = 0, in (4.14), (4.15), (4.16) and (4.17), we get the
following estimate for the term (I):

=Y [ g ser 3 FIKIVRE

T,eT TieT
on ( )2\, CEC
+(z‘2> > AEE
FeF

(4.18)

W e 0202C
‘(Ufﬁ )Z 7
Fer 171

Estimate for (II) To estimate term (1), we follow the same steps as for term (I). We use
the assumption (A4.4), trace inequalities from Lemma 2, Lemma 3, Cauchy-Schwarz and
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, . . . A .
scaled Young’s inequality, in that order, and with ¢, = €5 = 5= and €5 = 0, We arrive at

the following estimate:

(1) Z/ ~7 (Sw = Su)oPu +Z—IIK VP70

T; €T T;€T

ow (1=0)2\, C*C
+<2->z
Ow A 9202
(rEm

F;el

Estimate for (III) We start with:

(=3 / ¢P CHEDY / BPe,eq(S (w Si)

F1,0

| oll%0 - (4.19)

T:eT T;€T
+ Z/ mAtQ —Sn)?.
T €T

Using the primitive defined in (4.1), we get the following estimate:

(I11) TE{I/ ¢P w— ST Z/ qut |Pe.cq(Su)l = | ceq(S")l)

T;€T

+ > / Ot m At2 - S (4.20)

;€T

Combined estimate For sufficiently large o,, and o, using (3.6) from Lemma 1 with
q = 2, and summing the estimates (4.18), (4.19) and (4.20), we obtain:

dp,, dp, ds

S P F Y Py FR 4> dSy i FY
i=0 Jj=0 k=0

> C||Pyllt,0 + ClI P II?zo+CIIdS 8.0

SO RTLCRED S v LC ]

T, €T T;€T
Tn A 02C2C f o
_<2+ An >ZF| I.0
— F;el’
Ow A 9202
_ <2+ ) Z |F| 20 4.21)
F,el’

Observe that the positivity of the last but one terms in (4.18) and (4.19) is only guaranteed
under restrictions on o, and o,,. However, these restrictions do not depend on the time step
or the argument in the mapping P. Now, one can choose the radius R as announced above to
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guarantee that the right hand side in (4.21) is positive, and using (4.9) leads to the estimate
(4.13), and the existence of a zero for P and hence of a solution to Problem 3 follows directly
by Lemma 4.

4.2 Discrete energy estimate

Lemma 6 For sufficiently large o,, and o, there exists a constant C' independent of At,
h and the polynomial degrees k,, and kg, s.t., the following energy estimate holds:

N N
D DI LAl NS ob wi e ees

n=0T;€T n=0T;€T
LAy > SEie:
n=0F;€¢TF n=0T;€T
JrAtZZf eq SN+1|
n=0 F;eF Eil ;€T
SCZ/|PMQSO‘+CALLZZJC =0
T;€T n=0 F;el’ Eil
+CAtZ Z Ik 20 (4.22)
n=0 F;el’

Proof 2 Starting with the discrete system at t"! (i.e. Problem 3), we test in (3.15) with
P+ in (3.16) with P+l = prtl — prntland in (3.17) with 9~ SnH1.

w

Note that we define a generic constant C = C(7, 04, Aas Aa, 0, Ct, C) for v = w,n. We
proceed with the same steps as in the proof of Lemma 5 and obtain:

> orlo- 33 [xrom : S IxivE;

T,€T T, €T T, €T
1 22
(- gm0 CC)Z ke
— F,eF
. LfQ 2 A2 f ) n+1
+ (Uu; 2)\111)\“) ( ) C C ) Z ‘F‘ ”[[P ]]”F ,0
== F,eTF
Z/ A (Peea(S5T) = FPeea(S3))
T:€T

On | A 02C2C?
+<2+ %, >Z|F 2.0

F;el’
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9 ~
Ow A 02CEC? f(kp) b2
. <2+Aw > L IR

F;el’

The final estimate (4.22) is obtained by multiplying the above inequality by At and sum-
ming overalln =0...N.

4.3 Error Estimates

After showing the existence of a discrete solution and deriving the general energy esti-
mates, we now show a convergence result for the scheme.

4.3.1 Estimate for the non-wetting phase

Lemma 7 For a sufficiently large o, there exists a constant C' independent of h, At, k,
and & such that the following estimate holds:

3 / —07 S 4 Oys] pel L+ > |KEVEZ

T;€T T; €T
n+1

+ Z ‘F| an

FeF

5 3f(ks) -
<C || E Fvpett et
(3 + gy ) ™ B D el
T;€T

+0A;WHK2V~”“||QWH ’;“nmw% |3 Ver I,
e f(k 2075 OB o (e Ve ,0)

30,C2C 50N, C2C . .
+c< e )( et B + VR R 0)

Pn

4o CEC (HK ve”ﬂH

+h2’K2V2 n+1H )
20, Q,0

Q,0

Proof 3 We subtract (3.11) and (3.15) and test with e”*}L to get:
> [, lomsutt o) og
T,eT

+ ) / n(SETHKVEIT — A (50) K Vpn| Verty
T;eT
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o, Z / f Pn-‘rl]] _ [[Pnﬂ] [[ n+1]]

F,edF
n+1

Z/ {>\n Sn+1)Kvpn+1 ﬂ} {A (SU’)KVpn TL}] Pn;h

F,eF
0y / [P A(STH) KV - i} — [pa] {An(50) KV, - 7}
F,eF
We rewrite this equation termwise as:

Pi+P+P=PF,,

and estimate each term individually.

We expand each term P; to P, by adding and subtracting p,,.

Estimate for P,

P2 Z / )\ Sn+1)Kveg+}Lven+l

T;€T

+ Z/ Sn+1 — A\ ( )) Kvpn+lven+1

T;€T

+ Z/ An(8w) KVe”HVe"+1

T,€T
=P+ P+ Py

where, we estimate P 1, P, o and P, 3 as:

7.0

Pyy > > A[IEEVErT)
T; €T
P22<Z/ )\/ Sn+1 n—i-l)Kvﬁn-‘rl Ve ;L:r}L
T;,€T
<Z/ A (entt + et ™ KVpntt - vert]
T;€T
€2,2 Z HK2ven+1

= 9 Pn,h
T, €T

PR KR Y (He"“||n,o+||e”+1un o)
TE‘J’

T;,0

VBZ:FIH%;,O

€23 1 n+1
Py < 9 E HKQV%,“ ‘T ot
;€T 23 rer

(4.23)

(4.24)

(4.25)
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Estimate for P;

Py U”Z/ Tk n+1]]+[[62:1}[[n+1]]_P31+P32

F;eTF
where,
3,1 =0n Z |F| Z:i]]”QFi,m (4.26)
F,eF
and,
€3,2 ot
P327 2 FEG:SF |F| pn7
1
+ %JZCEC( 2” n+1||QO + Hven—H”Qo) @.27)

Estimate for P,

Pi=1-0) S [ [t Ve an] g
F,eF
5 [ A0 - M KT )
F,edF

+ Z {)\ Sw) KVe”+1 n}[e”“]]

Fed

0} / [ {An(5.0) Ve -7}
F,eF
S / 5 O (S5) = An(s.) Ve[t - 7}
F,eF
=Py1+-+ FPys

where, we estimate P, ; to Py 4 separately, in the same way as (4.15) in Lemma 5:

€
Py <=t Y Hsz ;}“H
T;eT

+(1-10)2 2, /\n CQCZf ntl

o h Il 0 (4.28)

Pia <N OIKEVE o0 Y /{ A N U C|
FeF

642

Tep.f 1% 0 + 72 N OV R Z lesh 17, 0
T;€T

X “CIK VBB o (e R0 + B2 Vet [,0) (4.29)

26
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N

P < 72026 Z K%V n+1 2 F 2 K2V2 n+l
4,3 = n Uy €p 0 + | z|
(J, 13

(%

)

i

%
Zf,i]]ll%,o>

sowere (HK?Ve”“H +h2HK AVl ”HH )
643 Q,0 m oo
7+1 2
Z |F| an,hH”Fi,o (4.30)
2
Pyy <6474 ‘K?VeZ*}IH
U NT; 0
T;€T
72 n
0 CEC( e o + V€5 o) 231)

If p”+1 is continuous, the jump term in P 5 vanishes making P, 5 = 0. Otherwise, we
proceed with the same steps as for P, 4. We use the continuity of p,, to replace [p7 '] by
[ep 1] and get the following estimate for Py 5

645
Pis < 3 Jachoeii,
T1€‘J’ P

N2 N — n n
0°X, CZC (R |lep B0 + IVeR T I30) (4.32)

26475 Pn Pn

Combined estimate Putting the estimates (4.23) to (4.32) together, we get:

Z /T [—07 St + O] pent)

T; €TV i
€ € € € €
+()\J_£_£_ﬂ_ﬂ_ 425> SRV,

2 2 2 2 P
T;€T
f(kp) (11— 9)2)‘7nct6v f(k8)6472 1 n+1
+ (Un I €32+ €13+ ) - D) Z 5| ez, w117, 0
’ F,eF
< (5 * oy ) WAV e 3 e M
262,2 26472 Tcy 00
)\—2
A 7|IK2 P B colles ™ IR0 + FVert2,
22,3 T,eT

72 A4 1
+ 27/\21 CIE VB[ oo (s G0 + P2 Ve I3 o)

+

2 2 2
2632 2CEC > (IR ey

’ T, €T

+0)
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+EQCEC HK2V6"+1H + B2 HK2V2 "+1H
643 Pr g0 €p,, 0,0
1 1 .
+ + 67X, C2O(h™2|ent Ao + Vet [3,0) (4.33)
26474 264,5 ’

Choosing €550 = €93 = €41 = €44 = €45 = — ,and €35 = 2ler0 = €43 = —
g €22 2,3 4,1 4,4 4,5 5 3,2 70 4,2 4,3 3

we arrive at the desired estimate for the non-wetting phase.

4.3.2 Estimate for the wetting phase

Lemma 8 For a sufficiently large o, there exists a constant C' independent of h, At, k,,
and &, such that the following estimate holds:

Z/ 978+ Oysy] penth + Y || KEVert

T;€T T; €T
Fkp) o n
2 TR MR
FeT z
5 3f(ks) i
<C v /\/ K n+1 n+1
< (%w e IR LA N DI EeA
— T,€T
+C)‘L;K”KQV~n+1”QooHen-H”QO+C2)\ ||K Ve n+1||QO
1 3E) e s (len B o + B2 IVER o)
20, f(kyp) " ool e, s,
30,C2C 50h, C2C\ ., .
+C< 3 L 4+ " ! (W 2lep 30 + I Vet 13.0)
o ‘c2e (HK WHHH +h2HK2V2 n+1‘ )
20, Q,0 Pv lao

Proof 4 The proof is the same as for the non-wetting phase (Section 4.3.1) and is therefore
left out.
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4.3.3 Estimate for the capillary pressure

Lemma 9 There exists a constant C' independent of h, At, k, and k, such that the
following estimate holds:

¢ Z/ n+187 n+1 |pc eq Z 87“ Z—}‘:l

7‘,

T; €T ;€T
|p°ﬁ|¢ Z ” n+1 _en Z ||a— n+1
2 ) ’Ly
TiEiT T;€T
(;5 ceq|¢
Z || pe 0 + > ettt » D e iz
Te‘I T, €T Ceq T, €T
3T
At > / [t ¢ > l0er (4.34)
T;€T T:€eT

Proof 5 We subtract (3.17) in Problem 3 from (3.13) in Problem 2, and use ¢,, = ¢0~ e, "H
to get

¢ Z / n+187€n+1 + ¢ Z / n+1876n+1

T;€T T;€T

—¢ Z / (Pe,eq (St +1 — De,eq(8i )+pc eq(8 +1) _pc,eq(sw))a_e;ﬁl

;€T

+¢Z/ (0 el + (07 — 05 + el tho el !

S!
T;€T

=¢ Z / ”“c?*eg”,gl + Pcy + Pcoy + Pcs
T;€T

=0. (4.35)

Estimate for Pc;  We use Holder’s and Young’s inequality to obtain

PCl ¢ Z/ ||€ €pcl Z/ ||6_€Z-};1||Ti70 (436)

T;€T

Estimate for Pcy

Pe==6 3 [ (e S57) = peaalit o ely!

T:eT

—sY / (ereaFY) = Peea(s0))0™en %)

;€T
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:PCQJ + PCQ’Q. (437)
Here Pcy ; is estimated as

Peor =0 32 [ @Iz el 2 ol Y- [ eiioner?

T;eT ;€T

/
Z 8_” n+1 T o+ M Z H n+1 e,
i 9

T;€T TinT

|pc eq‘d) 2

TL',O'

For Pc; 2, using Young’s Inequality and the Lipschitz continuity one has

€
P622 <¢ Z/ che?Jrl :L—’i;l < P622 Z | 7L+1||T“0+ Pc Z ||6n+1||T,,O

T;€T T;€T TG‘J’

Estimate for Pcs

0+¢TZ/ T —oEpttoert!

Pc3 =¢1 Z |07 €7,

T; €T T; €T
+or Yy / Orer ol !
;€T
:P6371 + P6372 + PCg,g (438)

We approximate the consistency error in Pcs 2 using a Taylor expansion

1

tn
~n+1 ~n 6 ~n+1 1 + t—t a ~n—+1 dt
At( ) S ( n) ttSw
tn

At

which leads to the following estimate for Pc; 2

~ €pc32 —
Z 10~ — 83t 17, 0 + pc Z |0 n+1||T 0

T: €T T, €T

EC - n T ~n
IS et g st Y [ st

;€T T;eT

Pcz o <
2 €pc32

To estimate Pcg 3, we use Young’s inequality:

T;,0

Paa S22 S 0l o + g Y 10

T €T T €T

Combined estimate  We substitute the estimates (4.36), (4.37) and (4.38) into (4.35) to get

¢ Z / n+1 2721 Z 37” n+1

T;€T T;€T

|pc eq|¢

T;,0
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Dt eql®
; +1 —entl|
SZ? o L S lo-ert|

Ti
TE‘T T;eT
€pcl _
oy / e+ o + 22 S / 0-et R, o
pel ey T;eT
+EE S el Z e}
T,e€T 2 TeT
€pc32 _ T (725 ~
IS 10 o + gAY / 1001 3,
T,eT T;€T
€pc33 _ T ¢
+% > N0 e o t oo - Z 18se2* 17, 0
T,€T €pe33 poy
. ¢7' ‘p/c,eq|¢ . .
Setting €,c1 = €pc32 = €pe33 = 3 and, €pc00 = 77 , we get the desired estimate.

4.3.4 Convergence result

We are now in a position to deduce the following theorem about the convergence of the
scheme:

Theorem 1 For sufficiently large o,, and o, there exists a constant C' independent of h
and At, s.t., the following estimate holds:

)DICTUCIED 3) By e

Ty,

0+At2 > lomelttiE

T;€T n=0T;€T n=0T;€T
N
+atY 3 (IVepihlE o+ I9en 4l o)
n=0T;€T
+At2 Z (II[[ et o+ gt Al o)
n=0 F;eF Fi]
o 12 p2min(ks+1,05) 1 N ) )
<O S bl + Oy (14 73 ) At Y Iu(olfss, + O
T; €T S n=0
h2mm(k +1,0s)
+C 52 *Atz [0 (t ”Ql

h2 min(kp+1,lp,, )—2

kzzp"—2 <1 t=t k2> At Z llon(t)
P

h2 min(kp+1,lp.)—2 )
kzz)lpcfz < +13 + k > At Z [[pe(t ”Q pe

+C

+C




43

Proof 6 We add the results of Lemma 7, 8, and 9, and rearrange them to get:

Z/ —07 ST + Opsu) del ] + Z/ (0780t — Oysw ] gent,

T;eT T;eT
Ip [2
w3 e e s g,
T; €T T;€T
|M|¢ 1 n+1 n 2 — n+1
2% 5 Lerpi-en, S 0merB

T:eT T:eT

> (IKQWH B0+ IEEVERTLIE, o)

T, €T
S |F‘ (e S %))
F,ed
n+1 |pceq|¢ n+1
_2TZ 5 o+ ST llen iz, -3 Nl
T;€T T;€T Ceq T;,€T
T n 3T "
+ary / 10153, e + ¢Z||at QR
T, €T T, €T
) 3f( ) ~n-+1 n+1
£ ¥ |0 (o o ) T | S i
a=w,n T; €T
i n+1 n+1 5)‘ 1o, nt+1y2
0 O IE AR el o+ Oy X IK Ve I g
a=w,n 7T6‘J’
SIEDNGC peb gntt g (e R0 + RV )
200 f(ky)

30,02C 502X, C2C ., .,
+C< 2 T )( “llep R0 + 1V o)

‘Q,O)] (4.39)

26
—1—03/\ C’ (

Hsze"“H +h? HK2V2 nt1
20, Q,0

)

We combine the first three summation terms of (4.39) to get:

Z/ —0~ St + Oisw] den T + Z/ (075" = desu] de T

T;€T ;€T

+ ¢ Z / n+187€n+1

T:eT

Z / ({976?;1 + (07 —9y)5 + 8)56;”1} (entl —entl _entl)

Pnsh Pe,h Pn,h
T;eT
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ro X [ oy

;€T

==X [ oo —apmnani= X [ enerien
T; €T T;€T

=: Psy + Pso

Estimate for Ps;

Ps; < 6”71 > ller i, — > / [ (4.40)
T;€T T:eT
Estimate for Ps»
€ps ¢ n
Ps2 S 252 3 a0 + 50— D 19 0 (441)

T,eT 2 1eT

To absorb the error ||e”Jrl 13, (0» We use the triangle inequality together with Lemma 1 to
get the following estimate:

D Il < X IVeTh

1
Tl,0+ Z \F\ Zj,h]”%a,o
TieT TieT FieF
+ > Ivertilz, | F | ITept (4.42)
TieT FeF

After substituting the estimates (4.40) and (4.41) together with the estimate (4.42) into the
1

estimate (4.39), and choosing €,51 = €ps2 = 5 we get:

2

|pceq |pée‘¢
— n+1 €4 n+l
S 0 o+ = 3 o lleri — el

hIIT;,0
T, €T TGT
G o e+ 5 Z(HK verthlh o)
T, €T TGT
it
PR ZMH%NII[[e;fI}l]]II%i,o)
Fe?
5 3f( ) N/ 1 ~n+1|2 chJ¢ n+1
<y (+2aaf( ) RALSA AL > et
a=w,n T,€T
2
319
L et g + 52l o + (252 + ) 10t o
cw

- 2 tni1 i
(T ) s st o
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s [ SRR sl o + 232 ||K b2

a=w,n

31 (ke)N,C
T oathy)

30,C2C 50°%, C2C . .
+C< 5 TC——— )( lep g0 + IVep g0

pRu—
1K= V55 oo (led ™ If,0 + B2 Vel ™ 8,0)

_— .3 2 2
FON 202 HK%ve"“H + R HK%VQe"“H (4.43)
20, Pe g0 Pe g0
Using a generic constant C, we rewrite (4.43) as:
1P, eql®

Z a—H n+1 Ti,O ’2 Z H n+1

T;€T TE‘J'

Z ||(:)— n+1 1,O+ Z (|K venirl

T;€T TE‘J'
o)

n+1
S (Hﬂpw,hm
n+1\|90+0||€n+1\|9,0

|pc eq|¢

o0+ ||K2wz:z||%,0)

Foo + lepth

Feff

. (C P, eq|<b> S Cler

T;€T

tn 1
+OAL / 10053, o dt +Cl0em B o + OVl 3,
t

n

£ Y [CIvet g + On2lep o + OFF [ 926 2]

a=w,n

Multiplying the above inequality by At, summing over n = 0,..., /N, and absorbing
legi 17, 0 we get:

(IpceqlﬂécAt) T e ZZ' L n

T;€T n=0T;€T
Z Z (m et )
n=0 F;eTF

AU (KEve g,

n=0T;€T

+¢TAtZ 3 Jlomert?

n=0T;,€T

Ipce |
N

;€T

T;,0

Pn,

2 n+1
Vepn 5

2

T;,0

( Poal )A Z > Clleri i,

n=0 T; T
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N
+CAt Z lez 16,0 + CAL Z lep B0 + CAL Y [[Beel ™17

n=0 n=0 n=0

N
LOAR / 10530 di+CR2AES [ Vel + 2,

n=0

N
<7§jnV%;jwmo—%0h 22:|w”+wmp—%0h2§jutﬂeafwﬁp

n=0 n=0 n=0

+ > At

a=w,n

For a sufficiently small At¢, we use Gronwall’s inequality, and postulate that there exists a
constant independent of At, h, kyor ks, s.t.:

<|pc eq|¢ —CAt) Z | N+1 T“O |pc eq|¢ Z Z ||en+1 _

T;€T n=0T;€T

+A2tZN: > (153 Ve, o)

n=0T;€T

n+1

f(k
ZZ 2 (e 30 o + Mg A1 o)
n=0F;eF
ot _
LAY S 10
n=0T;€T
DL cql®

N N
<= Dol nlF o+ CALY ller ™ G0+ CALY  llept g0
T;€T n=0 n=0

+HOAP? / 1030 |2 o di +CA Z 103, o + CH2AE Z Ve i3,

n=0

+CAtZ Ve g o+ Ch™ wz lep i id,0 + ChQAtZ R [

n=0 n=0 n=0

N N N 9
ALY Ve o+ Ch 20 Y. g I + ALY [,

n=0 n=0 n=0

Using the error estimates (4.2), (4.3) and (4.4), and the triangle inequality for the error
terms in p,, = pp — P, WE Can write:

‘pc eq|¢ N

Ipceq|
<—CAt SN et — el
T;€T n=0T;€T

N
At
7zzommﬁOHWWTi)
A N
722 (Hﬂe;f:} )
n=0F;eF
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N
¢T o
+7Atz Z 0 es—}tlHTi,o

n=0T;€T

<C Z Heb h

T;€T

h2m1n (ks+1,15) ) )
———lsw®llg,, + CAL

thm(k +1,05) ) h2m1n(k +1,05)— )
+0Afz O [0 (t)|[3,0, + Ch Atz W\\Sw(t)ﬂg,zs

h2 min(k,+1,0p,)—2 h2 min(k,+1,0p,,)

+0At2 Tz IOl +O0 V) LT
n=0 I)
h2 min(kp,+1,0p, )—4 h2 min(kp+1,l,.)—2
+Ch2At Z kglpn —4 Hpn( )HQ lpn + CAt Z k2lp“ ||pc(t) H?Ll,,c
n=0 n=0
h? min(kp+1,l.) h2 min(kp+1,l,.)—4
conary IOl + ORAES (O,
n=0 n=0 P

from where, the stated estimate follows.

From the Theorem we can directly deduce the following Corollary:

Corollary 1 For sufficiently smooth solutions p, € L2(0,T;H**1(Q)), p. €
L2(0,T; H*»*1(Q)) and s,, € H?(0,T; H**1(Q)) and sufficiently large o,, and o,
there exists a constant C' independent of h and At, s.t., the following estimate holds:

N
N —
e +1||Qo+AtZHa e+ At (leptilid ne + llep 31 p6)
n=0

) h2Fks h2ko
<CAt -I-C -+ C——

2k -2

4.4 Numerical Experiments

In this section, we verify the convergence rates derived in Theorem 1 through numerical
experiments. We consider an analytical solution to compute the L?- and H!-errors. We show
the h and At dependence through successive refinement of the spatial mesh, respectively of
the time step.

Problem definition We consider the domain 2 = (0,1) x (0,1) C R? and ¢ € [0, 1]. The
properties of the phases and the porous medium are listed in Table 4.1.
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Table 4.1: Properties for Test problem 1

Phase Properties

wetting phase dynamic viscosity Hw |ms 1
non-wetting phase dynamic viscosity ., % 1
wetting phase density Pw % 1
non-wetting phase density Pn % 1
Hydraulic Properties

absolute permeability K [m? 1
residual wetting phase saturation Srw 0
residual non-wetting phase saturation Sy, 0
porosity ") 0.4
damping coefficient T [Pa-s] 1
Brooks-Correy Parameters

entry pressure pa [Pal 1
pore size distribution index A 2

The right hand side in the equations are chosen such that the exact solution for ¢ > 0
equals:

1
pn(t,z,y) = 1 cos((z +y)m —t) +

il R

1
sw(t,x,y) = Z SiH((iL’ +y)7'(‘ - t) + 5

pc(t, z, y) = pc,eq(*sw(tv z, y)) - Tatsw(ta z, y)

Implementation We chose § = 1, which gives a NIP dG-scheme, and the penalty param-
eters as 0, = 0, = 10. We implement the numerical scheme in the C++ based DUNE-
PDELab framework [Bastian et al., 2007, 2010, 2011]. For linearization, we use the Newton-
Raphson scheme with a line-search strategy [Deuflhard, 2004]. We solve the resulting linear
system with SuperL.U solver [Demmel et al., September 1999].

Simulation To show the spatial convergence rates, we consider two cases: Case 1 with
polynomials of order 1, and Case 2 with polynomials of order 2. We make five simulations
each with the following mesh and time step refinements:

p-order=1 p-order=2
no. of elements time step size time step size

Run-1: 2x2 At= 1 At= 1,
Run-2: 4 x4 At = 1/2 At= 1/4,
Run-3: 8x 8 At=1/4 At= 1/16,
Run-4: 16 x 16 At=1/8 At=1/64,

Run-5: 32 x 32 At=1/16 At=1/256.
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In Case 1, a linear convergence rate is expected. In Case 2, we use quadratic polynomials,
and let the time step size At depend quadratically on the size of the elements h. This prevents
the errors due to the time discretization from becoming dominating and thus affecting the
convergence rates. Here, we expect a quadratic convergence rate.

In case 3, to show the time convergence rates, we make five simulations with polynomial
order 2 and the following mesh and time step refinements:

p-order=2
no. of elements time step size

Run-1: 2 x 2 At= 1,
Run-2: 4x4 At=1/2,
Run-3: 8x8 At=1/4,
Run-4: 16 x 16 At = 1/8,
Run-5: 32 x 32 At=1/16.

In this case, the time steps are chosen such that the error due to time discretization is ulti-
mately dominating.

Results  The solution of the problem at time ¢ = 1 and with a refinement of 32 x 32 is
shown in Figures 4.1a, 4.1b and 4.1c.

In Figure 4.2, we show the spatial convergence rates for the test problem. Figures 4.2a and
4.2b show the calculated error for piecewise linear polynomials for the non-wetting pressure
Pn, capillary pressure p., and wetting saturation s,,. Figures 4.2c and 4.2d show the calcu-
lated error for piecewise quadratic polynomials for p,,, p., and s,,. In Figure 4.3, we show
the temporal convergence rates for the test problem, with piecewise quadratic polynomials
for p,,, pe, and sy,.

Observe the agreement with the theoretical convergence rates obtained in Theorem 1. For
Case 1, we observe a linear convergence order, and for Case 2 a quadratic convergence order.
In Case 3 we see a linear convergence order due to the time discretization. The expected
convergence rates for each of the cases are plotted in green for reference in Figures 4.2 and
4.3.
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Figure 4.1: Simulation results at ¢ = 1.
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Figure 4.2: hp-convergence rates.
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Figure 4.3: Temporal convergence rates

L? error for piecewise quadratic polynomials.
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Chapter

Linearization scheme

The non-linearities in Problem 4 can be resolved in different ways. The basic idea is to
approximate the nonlinearities such, that a linear problem remains to solve. The L-scheme is
an alternative linearization method similar to a fixed point iteration.

The main trait of the scheme is, that an additional term involving the scaling parameter
“L” is used, to enhance the convergence properties. The parameter L represents a generalized
approximation of the first derivative with respect to the unknown nonlinear variables, which
is used in a Newton method. The choice of this parameter is restricted with respect to the
non-linearity, which come from the convergence analysis of the scheme [Karpinski et al.,
2017]:

L, > sup M, 3.1
s ds
dT
Loy > sup L) (5.2)
’ s ds

The main benefit of the scheme is, that contrary to the Newton method, only a mild restriction
on the timestep-size independent of the spatial discretization is imposed [Karpinski et al.,
2017; Radu et al., 2015b].

Assumptions We base the linearization scheme on the following assumptions:

(A5.1) For the initial and boundary data one has s° € H*(2), p?(z) € Hz (I') and a function
sP(x) € H2(T) exists s.t. p2(z) = pe.eq(sP (). Further, the initial and boundary
conditions are compatible.

(A5.2) The permeability matrix K € R?*¢ is symmetric and positive definite, i.e. there exist
two constants x and &, s.t., for any vector x € RY, the following holds:

slzl* < 2" Ko < |z

53
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(A5.3) The equilibrium capillary pressure function pc¢4(-) is in C?(R), and is assumed pos-

itive, bounded and decreasing. Further we assume that there exist L, ,lp. ., > 0
such that for all S € R it holds
0 <lpecy < [Plq()] < Lpeoy <00 (5.3)

(A5.4) The functions A, (-) and A, (-) are Lipschitz-continuous and two constants ), Aa >0
exist such that for all S € R,

0 < Ao < Aa(S) < Ao < 00, (o € {w,n}). 5.4)

(A5.5) The dynamic capillary pressure function 7(-) is in C?(R), positive, bounded, and de-
creasing. Letting T'(-) denote its primitive, we assume that there exist Ly, I > 0 such
that for all S' € R one has

0<lT§T(S)§LT<OO. (5.5

To develop the linearization scheme for the nonlinear Problem 3, we start with the dis-
cretization in time (3.14) to obtain a sequence of time-discrete problems (n = 0,..., N —1):

Problem 5 [Time discrete problem] Given s”, p and p”, find s, p*1 and p2*1, s.t,
the following holds:

STuL;+1 B S’Z) n+1 n+1
At ¢ + % ()\n(sw )Kv(pn - gan)) =0
SZ;+1 B SZLU n+1 n+1 n+1

A
pn—‘rl T(Sﬁ;—i_l) B T(SZ))

1
= Pecalsit) = =

Observe that, at each time step, this results into a nonlinear problem. For solving it we
propose an iteration scheme that builds on the ideas in [List and Radu, 2016; Pop et al.,
2004; Radu et al., 2015a,b; Slodicka, 2002, 2005a,b; Yong and Pop, 1996] (the "L”-scheme).
The idea is to construct a sequence of triplets (s7t1i=1 prtli=l pntli=1) converging as
i — oo to the solution (s71, pnt1 pntl) of Problem 5. Recalling Assumptions (A5.3) and

(A5.5), welet Ly, Ly 7 > 0 be two positive constants satisfying

Ls > L and LS,T > LT (56)

Pc,eq

and define the following linearization scheme:

Problem 6 [Linearization scheme] Let i > 0 and s7t1i—1 prtli=l pntli=l e ojyen,
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Find s7t1%, prtli and pn+li such that

sgﬂ’i — S n+1,i—1 n+1,i
=BGV (s TRV (Y = gzpn)) = 0
— 8

At

Pngl *— Pe,eq(sy, spthis 1) +

n+1,7
w

n

Lo+ V- (Mu(sy VTRV (R = pith — gzpy)) =0
T(sz+17i71) _ T(S")

w

S

At
n+1,i n+l,i—1 snAli _ gnali-l
+ LS(Su) = Sw ’ ) + LS,T At — 0

Remark 3 Observe that the first two equations are nothing but the semi-implicit discretiza-
tion of the corresponding in Problem 5, whereas the third equation includes two additional
terms involving the parameters L, and L, 7. Formally one can see that if the scheme is con-
vergent, these terms are vanishing and the limit solves the nonlinear time discrete problem.
In [Karpinski et al., 2017] it is proven that the scheme converges indeed, and that this con-
vergence holds for any initial guess. However, since this is an evolution problem, it is natural

to use the solution at the previous time step at starting point, i.e. s = gn prtl.0 = pn
and p 10 = pn,

5.1 Discrete system

Starting from Problem 6 and with the parameters L, L 7 satisfying (5.6), the fully dis-
crete linearized scheme becomes

Problem 7 [Fully discrete linearization scheme] Let P € VP (2), P! € VP (), and S’

ViE(Q). Given PPTLITL € VP(Q), Prthitl € VP(Q), and SETLTL € VE(Q) w1th
PpH0 = pr, Pt — pr and S7HL0 = g7 find PP e VP(Q), Prthi e VP (Q),
and ST L € Vs (Q) s.t., forall ¢, € Vh( ), ¥, € VP(Q), and ¢, € VF(£2), the following
holds:

PDE-1: Z/ DS g, + Z/ (SEFHTHY KV (PR — g2p,) Vi,

T.€T T,.€T

_ Z / {/\ Sn+1,i71)Kv (P':Z+17i _ gzpn) ﬁ}[[¢n]]

F.eF

+6 Z / [[Pn-klz]]{)\ (Sn-ﬁ-lz 1)KV1/Jn n}

F.eJ

o 3 [ SRR

F.eF

DI N AT PR Dl A S 1 T Y

F,.el’ F.el

PDE-2: Z/ 9~ Sn+1 Z@W + Z/ SnJrlz I)Kv (PnJrlz_gzpw) Vi

T.€T T.€T
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-2 / A (STYTNKEY (Pt — g2py) - i} [Yw]

F.eF
0 / Do (ST K, - AP+
F.eF
vou 3 [ T prae,)
Freg/Er
=0 {/\ (SD)Kvwwﬁ}[[ n c]]
>, oo
) flh) .
vou 3 [ R R Pl 68)

Sn+1,i _ Sn+1,i—1
ODE-Pc: Z/ (ST gntisTyy Z/ ST( " Atw )%
T,

T,.€T T,.€T
+ Z/ PnJrl zw Z/ pceq SnJrlz 1)1/)
T,.€T T,.€T
S7z+1z 1 qn
+ > / o w)ws =0 (5.9)
T.€T

In line with Remark 3, the solution at the previous time step is chosen as initial guess for
the fully discrete the iteration scheme. However, the convergence result proved in [Karpinski
et al., 2017] does not require this starting point.

5.2 Linearization of the interface condition

To linearize the interface condition, we evaluate which of the cases in Section 2.7, i.e.
which case of (3.18), has to be considered. This detection is for both linearization schemes
evaluated explicitly, i.e. we use the values of the previous time step. In the same way the
calculation of the jump for the non-wetting pressure (2.12) is evaluated at the previous time-
step. It is possible to also linearize those conditions, as it was done by Weiss et al. in [Helmig
et al., 2009]. There, an active and non-active set strategy was proposed and implemented.

A first order Taylor expansion is used to linearize the nonlinear jump condition in (5.9)
over the interface, leading to the following scheme:

Problem 8 [Fully discrete linearization scheme] Let P,; € V;7(Q), P € V;’(Q), and S}, €
V(). Given PptLiL e VP(Q), Prlizl € VP(Q), and ST € VE(Q) with
PO = pr prtl0 = pnand S0 = gn find Pl e VP(Q), PR e VP(Q),

and S2HM € VS(Q) s.t., for all s € VE(Q), ¥, € VP(Q), and ¢, € VI(£2), the following
holds:

PDE-1: Z/ 0= SiHLign, + Z/ (SEHYYKY (PR~ gzp,) Vi,

T;€T T;€T
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-2 / P (SETHTHKY (P — g2p,) - i} [1ha]

FeF

0y / [P+ A (ST KV, - i1}

FeT

o Y [ LR

FeF

=0 ) /[[PD]]{)\ DYV i} + 0n Y / f(k

F;el'p F;el'p

(5.10)

PDE-2: /a S i, +Z/ Aw(SEFETN KV (PR — g2p,) Vb
T: €T T:€T

-y / D (STHYEY (PIH — g2p,) - it} [l

F,eF
+0y / {Au(SpTH KV, - i [Pt
F,ed
n+1,¢
‘o U,P;/ TEPE )
=0 / (M (sP) KV, - 7Y[PP — PP]
F,eT'p
Tw Z/ i D [P~ PP][pu] (5.11)
F;el'p

n+1,c _ Qn+1l,i—1
ODE-Pc¢: Z/ Sn+1z Sn+11 1 w + Z/ ST(Sw A‘jw )ws

T, €T T;€T
+Z/ Pn+127/13 Z/ pceq Sn+1z 1)1)[}
T, €T T,€T
Sn—i—lz 1 Qqn
n Z/ T( w)%
T;€T
70 32 [T ) st (575 = 2] T
F,eF
f P Sn+1z+1 Sn
+0s Z/ HT (S )Atﬂ [4s] =0 (5.12)

Fed
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5.3 Convergence Analysis of the Linearization Scheme

In this section, we present a rigorous proof for the convergence of the linear iterative
scheme introduced in Section 5.1.

We use the following notations for the errors at the ¢-th iteration:

el = gnte _ gntt e, =prtht—prtt (5.13)

a

where o = n, w, c. To simplify the presentation, we also use the following notation for the
errors in A, (+), Ay (+), T(+), and pe eq(+), respectively:

e, = A (SpTH) = A (Spt) eh = A (SETHY) — Ay (ST
€y = Deeq(STH) = peeg(SHTY)  ep =T(STH) =T(SpH) . (5.14)

The following theorem states the convergence of the linear iterative scheme. It is proved
under a mild restriction on the time step which is uniform w.r.t. the spatial mesh.

Theorem 2 Convergence L-scheme
Under assumptions (A5.1)-(AS5.5) and with a sufficiently small At, the iterative
scheme (5.7)-(5.9) converges linearly.

To prove the convergence of the scheme, we subtract (5.7), (5.8) and (5.9) from (3.15),
(3.16) and (3.17) respectively to get the following system of equations:

PDE-1: Z/ (0~ 8nHLE _ 9= 8n Y gup,

T,€T

+ Z / Sn+1 Ji— l)Kvpn-‘rl i An(53+1)KVP£+1)VL/Jn

T,.€T

=Y [ AOWSE KR (SRR i ]

F.eF
+9 Z / HPnJrl 1]]{)\ (Sn+1 ,i— I)KVQZJTL Tl} [[Pn+1]]{/\ (Sn+1)Kv1/J }
F.eF
n+1 — .
o 3 / Pz - P =0 (5.15)

PDE-2: Z / (0 SnHht — 9= 8 Y g,

T.€T

+ Z / SnJrlz l)Kv(PnJrl ) Pcn+1,i)vqu

T,.€T
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_ Z/ SnJrl Kv(PnJrl Pg+1)vww

T,.€T

=Y [ AOuSE KT R R ]

F.eF

+Z/ {Ou(SEEV P = P - it [l

F.eF

+0 Z / {)\ Sn—i—lz 1)Kv¢w —»}[[Pn—Hz Pn—H zﬂ

F.eF

-0 / P (SET KV, - d}[Pott — Pt

F.eF

+0wZ/ el = Pty - (1 - PPl =0 G.16)
F.eF

Sn+1,i _ Sn+1,i—1
ODE-Pc¢: Z/ Sn+11 Sn+1z 11/)4_2/ sT( w Atw )ws

T,.€T T,€T

+ Z/ Pn+lz Pn+1 Z/ pceq SnJrlz 1) pceq(S +1)),¢)
T,€T T,.€T

+ Z/ (O~ T(SPH=Y) — =T (8™ ) )by = 0 (5.17)
T,.€T

We proceed by first obtaining error estimates separately for the phase pressures in Sections
5.3.1 and 5.3.2 and for the capillary pressure in Section 5.3.3. These estimates are then
combined to prove the convergence of the linearization scheme in Section 5.3.4.

5.3.1 Estimate for the non-wetting phase
Taking ¢, = ej,n in (5.15), we get,

L g st [ A
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:2P1+P2+P3+P4

We start with the term Py:

P < [P+ 0 Z/ (ST LA (ST KV 1))
F.eF

Using the trace inequality (3.8), Lemma 3, Cauchy-Schwarz inequality and Young’s in-
equality (3.10), we get,

n 1 S f
|Pa| < 127 o D (MCC T e Iz,

T,.eT
L
F|xtve, ||
|Fr| | | epn T,»70>
nt1y2 paiaad ivei |

< Z ”Pn ”Q,ooe C C ‘F |2 >\77, T,,0 Z HK2V€ 7.0

T.€T TreT b

1 (k) = € bye |
< — | P2 00920404 e 4+ = HK?Vel
= 264“ ||Q, |F, |2 Z{IH An 2 T7.Z€‘I Pl

for any €4 > 0.

For the terms P;, P, and Ps, after carrying out steps similar to Section 4.3.1, we obtain
for any €1, €2, €3 > 0,

€1 1 ;
1Pl < 5 > 1K= Ve, 17,0+ 5 CIIVP"“IIQOO > llei o
T.€T T.€T

€2 1 n 2 n
AES=DY HszepjluT -y —/\ CQOQZ |F‘ 1e o 1|
T,.€T "
‘PS Z |F | pn ||KVP”+1HQ 000202 Z H
F.eF T,€T

Observe that the estimate for Ps involves the essential boundedness for the gradient of the
pressure P+, Assumptions (A5.2)-(A5.5) ensure that the problem remains non-degenerate
and therefore, the pressures have essential bounded gradients (see e.g. [Cao and Pop, 2015]).
These estimates can be extended to the time discrete problems, with the time derivative of
the saturation being replaced by the finite difference approximation, noting that these divided
differences satisfy the same bounds as 0;s (see [Cao and Pop, 2016]). The extension to the
finite element approximation follows from [Nitsche and Wheeler, 1981/82] (also see [Li,
2015]).
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An
Combining the estimates for | P;| to | Py|, and choosing €3 = o, and €; = €3 = €4 = 5

we get the following estimate for the non-wetting phase:

- Y [ @ e, + 3 S 1e, I

T,.€T T.€T
o 3\ C2C2 f(k
n 1702
" ( (0 )sz e, D
_(Cn1+0n2|F |2> > e Mo (5.18)
T.€T

for some C), 1, Cy, 2 not depending on the discretization parameters.

5.3.2 Estimate for the wetting phase

We choose ¥, = e;w in (5.16), and proceed in a similar way as for the non-wetting phase,
to get the following estimate for the wetting phase:

i Aw PRvX
Z/ (0 ci)oel, + 52 S IKEVe, I3

T,.€T T,.eT
Ow B 53w 0202 kp)
(G - op e 5 L, i
— FredF
< <Cw,1 +Cw2‘F |2) > et o (5.19)
T,eT

for some (1, Cyy,2 not depending on the discretization parameters.

5.3.3 Estimate for the capillary pressure

With ¢, = e in (5.17), we obtain,

1 +1i 1 Sn+1,i _ Sn+1,i—l .
Z/ S S € + Z / sT( At )es

T,.€T T,.€T

+ Z/ 6 6 o Z/ pceq Sn+1z 1) pceq(SnJrl))
T.€T T,.€T

+ Z/ (O~ TSP — 9~ T (87 ))el = 0 (5.20)
T,.€T

Note that, from (5.13)-(5.14), we can write

L r(smriity - T(snty)

37T(S£+1’i71) o 87T(SLL}+1) _ A
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Using (3.9) in (5.20), we get,

Ls i Ls,T — 4 i
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Following Assumption (AS5.3), pc7eq(~) is monotonous and we have,

—(Pe,eq(T) = Pereq(¥)) (@ = Y) = [Pe,eq(T) — Pereq()] - |2 =yl

Similar argument holds for T'(-). Using the above equalities for p. .q(-) and T'(+), (5.21)
becomes,
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Using the Lipschitz continuity of p. ,(-) and T'(-), and the Young’s inequality, we get,
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Finally, using (5.6), we get the following estimate for the capillary pressure:
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5.3.4 Combined estimates
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(5.22)

Multiplying (5.22) with i, and adding the resulting equation to the sum of (5.18) and

] At
(5.19), and observing that,
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After multiplying with At and rearranging the terms, we get,
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Using the Lipschitz continuity of A\, Ay, T —1 and p;;q, we can rewrite this as,
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From this we obtain,
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which can be reformulated as,
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For At smgll enough, this leads to a contraction for the terms ) ;. . HeiH?TmO and
> o1 eq 107 €kll7, o which concludes the proof for the convergence of the proposed lin-
earization scheme.

Remark 4 To obtain the contraction, it is required that the time-step is chosen s.t.,

l2
At < peca?

92
2L,C <2 n |me|2>

(5.23)
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where, | Finin| is the measure of the smallest face. This restriction is milder when compared to
the typical stability conditions imposed for explicit methods (like IMPES), or for the Newton
method (see e.g. [Radu et al., 2006] for the analysis for a simplified two-phase model).
Moreover, for the IIP dG-scheme, in which § = 0, the constraint on the time-step does
not depend on the mesh size at all and is similar to the one for the L-method for standard,
equilibrium two-phase flows with 7 = 0 (see [Radu et al., 2015a]).

Remark 5 To guarantee the convergence, the parameters L, and L, 7 must satisfy (5.6). For
degenerate problems, if e.g. the equilibrium capillary pressure function is not Lipschitz, one
needs to first regularize the problem in order to ensure the convergence of the scheme.

Remark 6 The convergence result can be extended to conforming discretizations, like finite
elements, when the approximation lies in W2(£). On can carry out the similar steps as
above, but now jumps and averages over faces do not appear anymore. As with the IIP dG-
method, for the conforming discretizations the restriction on the time step does not depend
on the mesh size, leading to results similar to [Radu et al., 2015a].

5.4 Numerical Example

In this section, we present a numerical example to show the effectiveness of the proposed
L-scheme. The numerical scheme is implemented in C++ based DUNE-PDELab framework
[Bastian et al., 2008a,b, 2010, 2011]. We chose a test problem with a known analytical
solution. The test setting is described in Section 5.4.1. In Section 5.4.2, we make a parameter
study to compare the behaviour of the L-scheme with the Newton-method.

5.4.1 Test-setting

We consider the domain 2 = (0,2) x (0,2) C R? and the time interval [0, 3]. The
other parameters are listed in Table 5.1. The right hand sides (i.e. sources) in the governing
equations, and the boundary and initial conditions are chosen such, that the following are the
exact solutions of the model

pn(t,z,y) = icos((x +y)m —t)

)

1
27
1 . 1
Sw(t7 €z, y) = Z Sln((‘r + y)ﬂ - t) + 5
pc(ta xz, y) = pc,eq(Sw (t; z, y)) - atT(Sw (t, &€, y))
We chose 6 = 0 and the penalty parameters as o,, = o, = 10. We set
T(Sw(tv z, y)) = TSw(t7 T, y) ’

which corresponds to a constant damping factor 7. h — p convergence for this example is
shown in [Karpinski and Pop, 2017].

5.4.2 Parameter study

For each combination of no. of elements N = {8 x 8,16 x 16,32 x 32} and timestep-

size At[s] = {1 L

=, —, == ¢» and polynomial order k;, = 1 and k, = 1, we simulate the
816" 32
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Table 5.1: Example 1 - Properties

Phase Properties

wetting phase dynamic viscosity Hw |ms 1
non-wetting phase dynamic viscosity ., % 1
wetting phase density Pw % 1
non-wetting phase density Pn % 1
Hydraulic Properties

absolute permeability K [m? 1
residual wetting phase saturation Srw 0
residual non-wetting phase saturation Sy, 0
porosity ") 0.4
damping coefficient T [Pa-s] 1
Brooks-Correy Parameters

entry pressure pa [Pal 1
pore size distribution index A 2

test problem with Newton method and the L-scheme with different choices of L-parameter
L = {4,8,16}. The L-parameters are chosen with respect to the theory, i.e. (5.6). In this
example holds 0.7 < |p], ., (sw)| < 4, so we choose Ly > 4. We also consider polynomial
order ki, = 2 and k, = 2, and simulate the test problem with Newton method and the
L-scheme with Ly = 4 for each combination of N and At as above. As an initial guess
for the non-linear solvers, we chose the solution of the previous timestep. The comparative
performance of the Newton method and the L-scheme with different L-parameters is shown
in Tables 5.2-5.5 in terms of average number of iterations per timestep, average computation
time per timestep, and total computation time. As expected, the Newton scheme, which has a
quadratic order of convergence, solves twice as fast as the L-scheme, which has a linear order
of convergence.

In Figures 5.1-5.4, we compare the convergence at time 7" = 1s. Figure 5.1 shows the
convergence of the Newton method compared with the L-Scheme in terms of the L?-error of
the residual, which we use as a convergence criterion for both the Newton and the L-scheme.
Figures 5.2-5.4 compare the L?-error of the pressures P,, P, and the saturation S, and also
show the expected convergence rates. To obtain the expected convergence rates, we chose %
and i of the rate obtained for L = 16 for L = 8 and L = 4, respectively. In our results we
observe that the real convergence rate is at least as good as the expected convergence rate, and
the convergence rates for pressures and saturation coincide. We also observe that with half the
parameter L we get double the convergence rate. It is interesting to see that for the pressures
in Figure 5.3 and 5.4 the first step does not fit the expected trend, but for the saturation the
expected convergence rates are obtained within the first step. In each Figure 5.2-5.4 the
convergence rate in horizontal direction, i.e. with timestep refinement, increases with the
decreasing timestep size. Half the time step leads to double the convergence rate. In vertical
direction, i.e. with spatial refinement, a similar trend is not observed. The convergence
rates are constant with respect to change of the refinement level h. This result reflects the
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Table 5.2: Comparison between Newton method and L-scheme with L, = 4
Polynomial orders k; = 1 and k, = 1

L-Scheme Newton method
N At=1 At=5 At=4 | At=Lf At=5% At=4
Number of iterations per timestep [—]

8 x 8 6 4 3 2 2 1.5
16 x 16 5 4 3 2 2 1
32 x 32 5 3 2 2 2 1

Computation time per step [s]

8 x 8 1.79 1.45 0.85 0.51 0.71 0.55
16 x 16 5.81 4.61 3.56 2.84 2.05 1.44
32 x32 | 28.28 17.65 11.61 13.58345 13.44 7.88

Total computation time [s]

8§ x 8 42.96 69.78 81.67 12.52 29.26 39.62
16 x 16 | 139.53 22136  342.13 69.28 120.70 140.45
32 x32 | 678.66 847.39 1114.45 293.39 612.21 722.29

independence of the convergence on the spatial discretization and shows the dependence only
with respect to the timestep At. This is in accordance with our theoretical findings.

We repeat the above simulations for polynomial order k, = ks = 1 starting with a bad
initial guess of s,, = 0.5 for the non-linear solver. In this case, we observe that the Newton
method does not converge at all. The L-scheme still shows convergence due to its property

1
of global convergence, however, only for At = —. For larger timesteps the L-scheme does

not converge due to the restriction on the timestep size (5.23). The performance of the L-
scheme in terms of average number of iterations per timestep, average computation time per
timestep, and total computation time is tabulated in Table 5.6. In Figures 5.5 and 5.6, we
show the convergence behaviour at 7' = 1s. It is interesting to observe that the scheme takes
a few steps to find a close enough solution, after which it converges as expected. Here we
see a clear advantage of the proposed L-scheme over the Newton method for solving realistic
problems where the solution from last timestep may not always be a good initial guess. This
also presents a possibility to combine the L-scheme with the Newton scheme, where the L-
scheme can be used to find a good initial guess for the Newton scheme. This approach is also
discussed in [List and Radu, 2016].



Table 5.3: Comparison between Newton method and L-scheme with L, = 8
Polynomial orders ks = 1 and k, = 1

Newton method

L-Scheme
N At=1 At=1 At=g | At=f At=5 At=4
Number of iterations per timestep [—]

8% 8 8 5 4 2 2 1.5
16 x 16 8 5 3 2 2 1
32 x 32 7 4 3 2 2 1

Computation time per step [s]

8% 8 2.57 1.52 1.08 0.51 0.71 0.55
16 x 16 9.59 5.86 3.45 2.84 2.05 1.44
32x32 | 38.93 22.92 17.21 13.58345 13.44 7.88

Total computation time [s]

8 x 8 61.75 72.89 104.05 12.52 29.26 39.62
16 x 16 | 230.19  281.31 330.81 69.28 120.70 140.45
32 %32 | 93429 109997 1652.56 | 293.39 612.21 722.29

Table 5.4: Comparison between Newton method and L-scheme with L; = 16
Polynomial orders k; = 1 and k), = 1

L-Scheme Newton method
N | At=} At=% At=L | At=1 At=% At=1
Number of iterations per timestep [—]

8 x 8 14 8 5 2 2 1.5
16 x 16 13 7 4 2 2 1
32 x 32 12 7 4 2 2 1

Computation time per step [s]

8 x8 4.30 2.64 1.69 0.51 0.71 0.55
16 x 16 17.08 9.33 5.26 2.84 2.05 1.44
32 x 32 72.93 45.56 25.14 13.58345 13.44 7.88

Total computation time [s]

8 x8 103.17 126.58 162.28 12.52 29.26 39.62
16 x 16 | 409.96  447.62 504.65 69.28 120.70 140.45
32 x 32 | 1750.22 2187.12 2413.52 293.39 612.21 722.29

69
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Table 5.5: Comparison between Newton method and L-scheme with L, = 4
Polynomial orders k; = 2 and k,, = 2

L-Scheme Newton method
N At=1 At=4& At=4 | At=F At=4% At=4
Number of iterations per timestep [—]

8 x8 6 4 3 2 2 1.5
16 x 16 5 4 3 2 2 1
32 x 32 5 3 2 2 2 1

Computation time per step [s]

8 x8 3.59 2.26 1.81 0.51 0.71 0.55
16 x 16 14.81 11.56 8.66 2.84 2.05 1.44
32 x32 | 11473 67.74 45.64 13.58345 13.44 7.88

Total computation time [s]

8§ x8 86.04 108.40 173.76 12.52 29.26 39.62
16 x 16 | 35538  554.69 831.02 69.28 120.70 140.45
32 x 32 | 2753.48 3251.66 4381.63 293.39 612.21 722.29

Table 5.6: L-scheme with bad initial guess
Polynomial orders k; = 1 and k, = 1

N L; =16 L,=8 L, =4

Number of iterations per timestep [—]

8 x 8 9 7 6
16 x 16 8 7 6
32 x 32 8 6 5

Computation time per step [s]

8§ x 8 2.56 2.04 1.73
16 x 16 9.36 8.14 6.90
32 x32 | 4597 35.63 28.04

Total computation time [s]

8 x 8 245.66 195.45 165.71
16 x 16 | 898.24  781.01 662.81
32 x 32 | 6261.64 3420.12 2691.76
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Figure 5.1: Residual at 7' = 1s and polynomial order ks = &k, = 1
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Figure 5.2: L2-Error for S, at T = 1s and polynomial order k, = 1
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Chapter

Numerical Examples in
Heterogeneous Media

In this chapter, we show the capabilities of our scheme through different numerical exam-
ples in heterogeneous media.

In Example 1, Section 6.1, we consider a 2D problem with homogeneous and heteroge-
neous permeability fields, and continuous capillary pressure. In Example 2, Section 6.2, we
verify our numerical scheme for heterogeneous porous media with discontinuous capillary
pressure. For this, we consider a 1D problem from the text book by Rainer Helmig [Helmig,
1997]. Next, in Example 3, Section 6.3, we simulate a 1D inflow problem and compare the
performance of the L-scheme and the Newton scheme. Finally, in Example 4, Section 6.4, we
simulate a 2D lens problem with heterogeneous permeability field, discontinuous capillary
pressure and capillary barrier effects, and gravitational effects to show the capabilities of our
schemes.

6.1 Example 1: Inflow problem with homogeneous and het-
erogeneous permeability fields

We consider an inflow problem in a domain = (0m,1m) x (0Om,1m), over a time
interval [0s, 2500s]. The material properties and model parameters are listed in Table 6.1.
We consider two cases: a homogeneous medium (case A) and a non-homogeneous (case B)
one. The initial and the boundary conditions are listed in Table 6.2.

We discretize the domain into 50 x 50 = 2500 elements and chose a time-step of dt =
10s. For the L-scheme we take L; = 0.1. Since the dynamic term is linear, no additional
linearization is needed. We again chose # = 0 and o, = 0, = 10.

The result for case A at ¢ = 1500s is shown in Figure 6.1a, and for case B at t = 2500s is
shown in Figure 6.1b. In case A, a straight finger is formed, propagating with the flow (from
left to right). In case B, given the choice of the absolute permeability field K, a preferential
flow path is formed along the medium with higher permeability, i.e. from the lower left to
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Table 6.1: Example 1 - Properties

case A case B
Phase Properties
water dynamic viscosity Lo % 1073 1073
oil dynamic viscosity n % 1073 1073
water density Puw % 103 103
oil density pn |24 1.623-10° 1.623- 103

Hydraulic Properties

1071 ifz < 0.5,y < 0.5
absolute permeability K [m?] 101 107 ifx > 0.5,y > 0.5
10712 elsewhere

residual water saturation Srw 0 0
residual oil saturation Srn 0 0
porosity %) 0.2 0.2
damping coefficient 7 [Pa-s] 10° 10°
Brooks-Corey Parameters

entry pressure pa [Pa] 2.5 103 2.5 103
pore size distribution index A 2 2

Table 6.2: Example 1 - Boundary and initial conditions

case A case B
Boundary values
xz=0m
) 06 if02<y<04 06 if04d<y<0.6
water saturation Sw
0.2 else 0.2 else
oil pressure pn [Pal 1.5-105 1.5-10°
z=1m
water saturation Sw 0.2 0.2
oil pressure pn [Pa] 1.0-10° 1.0-10°
y=0mandy = 1m
flow rate of water Qu "'ffs 0.0 0.0
flow rate of oil qn 75*2‘75 0.0 0.0

Initial values

water saturation Sw 0.2 0.2
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Sw
m\ \(l)ﬁ\ RN \(\)]6” \“0'8
0,153 0818
(a) Sw att = 1500s for case A. (b) Sy at t = 2500s for case B.

Figure 6.1: Example 1 - Saturation profiles at time t = 2500s for a homogeneous medium
(left) and a heterogeneous one (right).

the upper right quadrant. The saturation overshoots in both cases are a manifestation of the
dynamic capillarity. For both cases, the L-scheme performs as expected.

6.2 Example 2: Benchmark problem for verification of the
numerical scheme with discontinuous capillary pressure

We consider the benchmark problem described in [Helmig, 1997], p. 275, section 5.5.
The problem considers infiltration of non-aqueous phase liquid (NAPL) into a fully water
saturated domain. A schematic of the problem is shown in Figure 6.2. The domain is 0.5m
in length, and is divided into three parts with interfaces at x = 0.15m and x = 0.35m.
Sub-domain 1 (0 < z < 0.15) and sub-domain 3 (0.35m < = < 0.5m) are made of a porous
material with lower entry pressure P,, while the subdomain 2 (0.15 < z < 0.35) is made of a
porous material with a higher entry pressure P,. The properties of the fluids and the materials
in each sub-domain are listed in Table 6.3.

On the boundary I';, we prescribe an inflow condition, and on the boundary I', we pre-
scribe Dirichlet conditions for p,, and S,,. The initial condition for the S, corresponds to
a fully saturated porous media. An overview of the initial and boundary conditions can be
found in Table 6.4.

We solve the problem in 1D, discretize the domain into 320 elements of size h = 0.003125
with polynomial degrees of k, = k; = 1, and chose a timestep of At = 1s.
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(LOW P,) (HIGH P)) (LOW P,)

1—‘L II IH I'_‘R
X=0.0m X=0.15m X=0.35m X=0.5m

Figure 6.2: Example 2 - Test schematic.

Here, I';, and I'r are the left and the right boundary, respectively, and I; and I;; are the

material interfaces.
1.7
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0.1 \
0.0

~0.00 0.05 0.10 0.15

020 025 0.30 0.35 0.40 0.5 050
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Figure 6.3: Example 2 - .S,, profile at t = 2150 s.

The result of the simulation is given in Figure 6.3. The comparison to the results of Helmig
[Helmig, 1997, p. 286, fig 5.39] shows a good match, which verifies the correctness of our
implementation.

6.3 Example 3: Comparison of Newton scheme and L-scheme
with discontinuous capillary pressure

We consider a 1D infiltration problem similar to Example 2, and compare the performance
of the Newton scheme and the L-scheme with additional dynamic capillary pressure effects.
The schematic for the problem is shown in Figure 6.4. We again divide the domain into three
sub-domains to cover both transitions: from low to high entry pressure, and from high to
low entry pressure. The domain has a length of 2m and has material interfaces at z = 0.5m
and x = 1m. The phase and the material properties are listed in Table 6.5. The problem is
simulated without additional gravitational effects.



81

Table 6.3: Example 2 - Material properties.

Fluid Phase Properties

dyn. viscosity wetting phase
dyn. viscosity non-wetting phase
density wetting phase

density non-wetting phase

,LLﬂ) %
fin | 2L
pu |25
pn |24

0.001
0.001
1000
1400

Hydraulic Properties

Material 1 Material 2

abs. permeability

res. wetting phase saturation

res. non-wetting phase saturation
porosity

Brooks-Correy Parameters

entry pressure
pore size distr. index

K [mﬂ 5.04-10719 526-10"11

Srw 0.08 0.1

Srn 0 0

® 0.4 0.39
Material 1 Material 2

pa [Pal 370 1324

A 3.86 2.49

Table 6.4: Example 2 - Boundary and initial conditions.

Boundary values

z=0m

wetting phase flow

non-wetting phase flow

Qw sm 2
kg
Qn sm 2

0.05

z = 0.5m

wetting phase saturation

Suw

non-wetting fluid pressure  p,, [Pal]

1.
1.99630 - 10°

Initial values

wetting phase saturation

Sw
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Figure 6.4: Example 3 - Schematic

The initial and the boundary conditions are given in Table 6.6. At ¢ = 0, the domain is
saturated with the wetting phase for x > 0.25. For z < 0.25, we define a cubic profile for
wetting phase saturation (see Table 6.6). At the boundaries, for ¢ > 0, Dirichlet conditions
are prescribed.

We solve the problem for all combinations of time step sizes At[s] = [0.125, 0.25, 0.5]
and number of elements N = [100, 200 400]. We chose a minimal residual of egps <
106 for convergence. For the L-scheme, we choose L = 0.1.

We compare the performance of the Newton scheme and the L-scheme in terms of the
average computation time, average iteration steps necessary, and the total computation time
for different time and spatial discretizations. Table 6.7 shows the average number of iterations
needed for convergence, Table 6.8 shows the average computation time per time-step, and
Table 6.9 shows the total computation time for each scheme. We can observe that as the
mesh size and the time step size decrease, the performance of the L-scheme approaches that
of the Newton scheme.

In Figure 6.5, we plot the non-wetting phase saturation profiles in the domain at selected
time steps for the simulation run with At = 0.125s and N = 400. Due to the dynamic
capillary effects, we obtain saturation overshoots as the front propagates. The retardation co-
efficient 7 was chosen high enough to allow a plateau to build up. To compare the Newton and
L-schemes, we plot both simulation results over each other. The continuous lines represent
the results of the L-scheme, while the dots represent the results of the Newton scheme.

The accuracy of both schemes is similar, where as the number of iterations necessary for
convergence for the L-scheme are twice as many as those for the Newton scheme which is due
to the linear convergence of the L-scheme against the quadratic convergence of the Newton
scheme.

6.4 Example 4: 2D Lens problem

We consider a two dimensional problem where a non-wetting fluid (e.g. NAPL) is infil-
trating a domain which is initially fully saturated with the wetting fluid (e.g. water). The
schematic of the problem is shown in Figure 6.6. The computational domain contains two
distinct zones, each composed of a different material, signifying the material heterogeneity.



Table 6.5: Example 3 - Material properties

Phase Properties

dyn. viscosity wetting phase Ly % 1073

dyn. viscosity non-wetting phase [ty % 0.9-1073
density wetting phase Pu % 103

density non-wetting phase Pn % 1.460
Hydraulic Properties Material 1 Material 2
abs. permeability K [m?]  6-1071° 1.5-10°10
res. wetting phase saturation Srw 0 0

res. non-wetting phase saturation S, 0 0

porosity ® 0.4 0.4
retardation coefficient 7 [Pa-s] 10% 2 x 10*
Brooks-Correy Parameters Material 1 Material 2
entry pressure pa [Pa) 2500 5000

pore size distr. index A 2 2

Table 6.6: Example 3 - Boundary and initial conditions

83

Boundary values

x = 0m

wetting phase saturation Sw 0.5
non-wetting fluid pressure  p,, [Pa] 1.5-10°
z = 0.5m
wetting phase saturation Sw 1.
non-wetting fluid pressure  p,, [Pa] 1.0-10°
Initial values

) ) 1 ifz > 0.25
wetting phase saturation Sw .

{1 —0.5- (12823 — 4822 + 1) otherwise

Table 6.7: Example 3 - Comparison of average number of iterations

L-Scheme Newton-Scheme
N | At=05 At=025 At=0.125| At=05 At=0.25 At=0.125
100 6 4.4 3.5 2.6 2 1.7
200 5.8 4.1 3.2 3 2.3 1.8
400 5.7 3.8 3 3.8 2.7 2
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Figure 6.5: Example 3 - Non-wetting saturation profiles for N = 400 and At = 0.125 s



Table 6.8: Example 3 - Comparison of average computation time per step in seconds [s]
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L-Scheme Newton-Scheme
N | At=05 At=025 At=0.125| At=0.5 At=0.25 At=0.125
100 2.19 1.49 1.06 0.86 0.69 0.63
200 3.90 2.64 1.88 1.84 1.57 1.19
400 7.42 4.43 2.68 4.28 3.39 2.57
Table 6.9: Example 3 - Comparison of total computation time in seconds [s]
L-Scheme Newton-Scheme
N | At=05 At=025 At=0.125 | At=05 At=0.25 At=0.125
100 | 451.36 601.066 839.497 171.278 276.7 515.319
200 | 801.253 1098.01 1544.75 369.994 625.383 954.94
400 | 1560.24 1852.81 2161.04 854.712 1334.55 2021.59

The material II has a higher capillary pressure than material I in the sense of the description
in Section 2.7. All relevant properties of both the materials are listed in Table 6.10. The
infiltration of the non-wetting fluid is prescribed as a Dirichlet value at the upper boundary,
while the lower boundary is assumed to be blind. On the left and right boundaries, no-flow

condition is prescribed. Gravitational effects are also included.

We simulate two different scenarios to
demonstrate the effects of the standard
and non-standard capillary pressure rela-
tionships in the presence of a material het-
erogeneity:

Case A: without dynamic capillary pres-
sure effects, i.e. 7 = 0, and

Case B: with dynamic capillary pressure
effects. The values for 7 are listed in Table
6.10.

Case A: 7 = 0 The results are presented
in Figures 6.7a - 6.7e. We use a refine-
ment of A = 0.025 and At = 0.5. As
in the one dimensional examples, the non-
wetting phase front propagates until the in-
terface (Figure 6.7a ). There it first has to
accumulate due to the capillary barrier (Fig-

p,=1x10"Pa
S,=05,if 0.4<x<0.6
5,=1 ,otherwise P (1m,2m)
material I
(0.8m,1.4m)
b
(== (==
I I
I.: I.:
= imaterial =
II
(== (==
I I
I_: I_:
s s
a
(0.2m,0.7m)

(0m0m)A  p=1x10 Pa
5.=1

Figure 6.6: Example 4 - Schematic

ure 6.7b ). While a direct infiltration is not possible, a certain amount of the non-wetting
phase flows around the lense leading to two additional fronts (Figure 6.7¢c ). Those additional
fronts can not infiltrate the lense from the side, as the threshold capillary pressure for infiltra-
tion is not reached. As soon as the entry condition on the upper interface is fulfilled, the main
non-wetting phase front starts flowing through the domain at a lower speed, due to the higher
lower intrinsic permeability. (Figure 6.7d ) At the lower interface, leaving the interface no
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Table 6.10: Example 4 - Material properties

Fluid Phase Properties
dyn. viscosity wetting phase [ | 2L 1073
dyn. viscosity non-wetting phase i, % 0.9-1073
density wetting phase Pw % 103
density non-wetting phase Pn % 1.460
Hydraulic Properties Material 1 Material 2
abs. permeability K [m?  6-107° 15.1071°
res. wetting phase saturation Srw 0 0
res. non-wetting phase saturation .Sy, 0 0
porosity %) 0.4 0.4
retardation coefficient T [Pa - 8]

Case A 0 0

Case B 10° 2-10°
Brooks-Correy Parameters Material 1 Material 2
entry pressure pa [Pal 2500 5000
pore size distr. index A 2 2

barrier occurs and flow is directly possible.(Figure 6.7¢ )

Case B: 7 > 0 With dynamic capillary pressure effects we get similar results as in case A.
The results are presented in Figures 6.7f - 6.7j. We again use a refinement of A~ = 0.025 and
At = 0.5. The additional dynamic term leads to a retardation effect, resulting in a slower
propagation of the front. Mass accumulates at the tip of the resulting inflow-finger (Figure
6.7f ). Like in the standard case, reaching the upper interface an info is not directly possible
and non-wetting phase saturation accumulates (Figure 6.7g ). Again two fingers are formed
flowing around the lense each of them with an overshoot at the tip (Figure 6.7h ). As soon
as an inflow is possible, the main front propagates forward, forming again an overshoot. At
the lower boundary we once again don’t observe a capillary barrier, and the flow is directly
possible (Figure 6.7j ).

Figure 6.8 makes the retardation effect of the dynamic capillary pressure more clearly, we
plotted the results next to each other in and used the same time in each figure, to visualize the
difference in infiltration speed.
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Figure 6.7: Example 4 - Results
bottom: with 7 > 0, top: without 7 = 0
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Figure 6.8: Example 4 - Effect of the retardation coefficient
left: 7 = 0, right: 7 > 0
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Chapter

Outlook

In this thesis, we presented a discontinuous Galerkin (dG) based numerical discretization
for a two phase flow model in heterogeneous porous media with dynamic and discontinuous
capillary pressure. For the mathematical model, we elaborated on the interface conditions to
account for the discontinuities in the capillary pressure due to heterogeneities in the porous
media, and presented an extension for our dG scheme to include these interface conditions.
In the numerical model, the governing mass balance equations were not reformulated and no
un-physical primary variable, like total pressure, was used. We rigorously proved existence,
stability, and convergence of our numerical scheme for the homogeneous case. We were able
to obtain h-p error estimates, which we were able to test and verify numerically. Further, we
developed a linearization scheme for the discrete non-linear system which is based on a fixed
point iteration. The performance of the linearization can be adjusted by a parameter L. Some
advantages of this scheme are that it does not require computation of derivatives, is glob-
ally convergent and converges even for ill conditioned problems. The scheme was rigorously
analysed and we were able to prove convergence. We showed that the scheme converges
linearly under a mild time step restriction independent of the spatial discretization. The per-
formance of the linearization method was also numerically tested in an extensive parameter
study. Finally, we presented several 1D and 2D numerical examples in heterogeneous media
with and without discontinuous capillary pressure to show the capabilities of our numerical
scheme.

The numerical scheme was developed to easily incorporate nonlinearities and non-standard
extensions to the capillary pressure. However, within the scope of this thesis, we restricted
the model to include only linear dynamic capillary pressure effects. We made regularity as-
sumptions on the equilibrium capillary pressure curve and the relative permeability functions,
and restricted the numerical treatment to the non-degenerate case. It will be interesting to ex-
tend the current model towards a degenerate case, i.e., when one phase vanishes, and based
on this, we could directly extend the model to multiphase flows, and possibly also to multi-
component flows. Hysteresis in capillary pressure is also a problem of great interest. Another
natural extension for the mathematical model is to include nonlinear retardation coefficients.
This leads to one very interesting possibility of defining the retardation coefficients as nons-
mooth functions which can implicitly mimic a hysteretic effect without using scanning curves
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from the previous timestep. With these model extensions, of course the regularity assump-
tions on the constitutive relations do not hold anymore and the convergence proof would also
then need to be adapted to account for the nonsmooth, nonlinear capillary pressure curves.

For numerical solution of the problem and to get the correct interface behaviour, we need
very fine meshes. This is computationally quite expensive, particularly also because in our
problem formulation, we have an extra equation to solve for the capillary pressure. To make
the solution less expensive without compromising the quality of the solution at interface,
one option would be to consider h-p adaptivity. Another possibility would be to use domain
decomposition with different refinement levels together with moving meshes.

In this thesis, we use generic linear solvers, which are not optimized for our problem.
We can greatly improve the performance of our numerical scheme by implementing problem
specific pre-conditioners. Also, parallel domain decomposition methods might be a valuable
improvement for the solution of our linear system.

Lastly, we showed that our proposed linearization scheme converges globally for any initial
guess value for the solution, whereas the Newton scheme converges quadratically, but only
locally and can have issues with convergence for ill behaved, realistic problems. It will be in-
teresting to investigate the possibility of combining the linearization scheme with the Newton
scheme to make the Newton scheme more robust for application to realistic problems.
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