

Novel design for the thermal based biosensor using the transient plane source(TPS) technique

<u>Frederik Vreys^{1,2}</u>, Gilles Oudebrouckx^{1,2}, Thijs Vandenryt^{1,2}, Ronald Thoelen^{1,2}

1)Institute for Materials Research(IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium 2) IMEC vzw – Division IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium frederik.vreys@uhasselt.be

Introduction

In an urge to fulfill the increasing demand for reliable economical biosensor readout techniques, researchers at IMO-IMOMEC developed the Heat-Transfer Method. With this method it is possible to perform bioanalytical tasks by closely monitoring heat transfer trough a detection layer. The original sensor design uses thermocouples and a separate resistive heater. In order to miniaturize and optimize the HTM setup, a new sensor design based on the transient plane source(TPS) technique was proposed. The transient plane source technique has been accepted as an ISO standard (ISO/DIS 220072.2). The TPS technique allows in plane sensing and heating. The heat transfer method is a label free method and the samples do not require pretreatment or extra reagents.

Transient plane source technique Diagram from Lin et al. (2014)

Materials & Methods

Developed TPS designs

Surface area of the sensor has decreased by 24 times relative to the old sensor design. The transient plane source has been developed on a printed circuit board (PCB), but also by patterning aluminium on a glass substrate. The receptor is applied on to the transient plane source. The receptor's R_{th} will change on the presence of the analyte.

The control algorithm keeps the sensor at a fixed elevated temperature. It does this by maintaining a constant resistance. Indeed, the electrical resistance is linearly

Molecularly imprinted polymers(MIPs) for small molecule detection

Van Grinsven et al., ACS applied materials & interfaces. 2014;6(16):13309-18

correlated to the temperature. To heat up the TPS a certain amount of current is needed. That amount is a measure for the heat transfer resistivity of the receptor.

Characterization

The transient plane sources are calibrated within a climate chamber. The temperature coefficient of resistance (TCR) is derived from the slope. A higher TCR results in a higher sensitivity of the sensor.

The heat distribution of the TPS can be seen in the IR image. The center of the transient plane source shows an equal heat

Results

Chloramphenicol molecules were detected with MIP detection layer. The measurement is performed in 4 steps. During step B buffer solution is reapplied, the current however does not return to the same level. This proves that molecules have indeed been detected.

distribution.

Resistance in function of time during measurement 2.1205 ——TARGET 1 — BUFFER 2 — TARGET 2 — R setpoint 2.1203 2.1201 R (Ω) 2.1199 2.1197 2.1195 100 800 Time (s)

During a measurement the resistance has a maximum deviation of $\pm 0.0001\Omega$ on the 2.120 Ω setpoint. This relates to a maximum error of 0.01°C

Conclusion & Future potential

By functionalizing the transient plane source with different receptors different bioanalytical tasks can be performed. From this point of view the transient plane source can be utilized as a platform. The TPS design has been fully characterized in order to prove the reliability of the biosensor.

Future potential:

- Diamond transient plane sources
- Multichannel functionality
- Nano MIPs, grafting MIPs directly onto transient plane source

Author: frederik.vreys@uhasselt.be Co-author: gilles.oudebrouckx@uhasselt.be