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THE OCTONIONS FORM AN AZUMAYA ALGEBRA IN CERTAIN

BRAIDED LINEAR GR-CATEGORIES†

TAO CHENG, HUA-LIN HUANG*, YUPING YANG, AND YINHUO ZHANG

Abstract. By applying the idea of viewing the octonions as an associative algebra in certain tensor

categories, or more precisely as a twisted group algebra by a 2-cochain, we show that the octonions form

an Azumaya algebra in some suitable braided linear Gr-categories.

1. Introduction

As the largest of the four normed division algebras, the octonion algebra is closely related to the

quaternion algebra and its natural generalization, Clifford algebras. It is well known that the quaternions

form a real Azumaya algebra, while Clifford algebras are Z2-graded Azumaya algebras [10]. So a natural

question is whether the octonions form an Azumaya algebra in some suitable sense. The fact that the

octonions are nonassociative makes this question fairly awkward.

In [1], Albuquerque and Majid made a remarkable observation that the octonion algebra is associative

if it is seen as an algebra in a suitable tensor category. Such viewpoint may even suggest novel methods

for the investigation of associative algebras, see Albuquerque and Majid’s subsequent study of Clifford

algebras [2]. It turns out their idea helps to provide a solution to the aforementioned question. We observe

an explicit relation between the octonions and the real Clifford algebra Cl0,3 via a tensor equivalence

between their background tensor categories. This enables us to transfer the structural information, in

particular those obtained in [3, 8, 10], of the familiar algebra Cl0,3 to the octonions.

To state our main results, first we need to fix some notations. Throughout, let R denote the reals

and O the octonions. By VecΦ
G we mean the linear graded category (or Gr-category) by a group G, with

associativity constraint given by a 3-cocycle Φ on G. The linear Gr-category VecΦ
G is said to be braided

if there exists a braiding given by a quasi-bicharacter R of G with respect to Φ.

Let Z3
2 be the triple direct product of the cyclic group Z2 = {0, 1} and F : Z3

2×Z3
2 −→ R

∗ be the map

defined by

(1.1) F (x, y) = (−1)x1x2y3+x1y2x3+y1x2x3+
∑

1≤i≤j≤3 xiyj , ∀x = (x1, x2, x3), y = (y1, y2, y3) ∈ Z3
2.

Then one may define a twisted group algebra RF [Z3
2]. The important observation of Albuquerque and

Majid [1] is that O ∼= RF [Z3
2], and through the latter the octonions may be naturally viewed as an

associative algebra in the R-linear Gr-category Vec∂FZ3
2
, where ∂F is the differential of the 2-cochain F. On

the other hand, the real Clifford algebra Cl0,3 can also be realized as the twisted group algebra RF ′ [Z3
2]
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with

(1.2) F ′(x, y) = (−1)
∑

1≤i≤j≤3 xiyj , ∀x = (x1, x2, x3), y = (y1, y2, y3) ∈ Z3
2

and be seen as an associative algebra in Vec∂F
′

Z3
2
, see [2]. Note that the Clifford algebra Cl0,3 is associative

in the usual sense as F ′ is a 2-cocycle (hence ∂F ′ = 0), while the octonions O are nonassociative as F

is not a 2-cocycle. However, we may identify these two seemingly quite different algebras as one in a

suitable sense due to the following immediate fact.

Proposition 1.1. The tensor functor (F , ϕ0, ϕ2) : Vec∂FZ3
2
−→ Vec0

Z3
2

with

F(U) = U, ϕ0 = IdR, ϕ2 : U ⊗ V −→ U ⊗ V, u⊗ v 7→ (−1)x1x2y3+x1y2x3+y1x2x3u⊗ v

for all U, V and u ∈ Ux, v ∈ Vy is a tensor equivalence and F maps the algebra O in Vec∂FZ3
2

to the algebra

Cl0,3 in Vec0
Z3
2
.

The reader is referred to [7] for unexplained notations. The proof of the preceding proposition is simple.

It is enough to notice that the category Vec∂FZ3
2

is the comodule category of the dual quasi-Hopf algebra

(R[Z3
2], ∂F ) and Vec0

Z3
2

is that of (R[Z3
2 ], ∂F ′), and (R[Z3

2], ∂F ) is gauge equivalent to (R[Z3
2], ∂F ′) via

the twisting F−1F ′. This gauge equivalence induces the prescribed tensor equivalence F , see [1, 7] for

more details. Under this tensor equivalence, the algebra O (with multiplication denoted by mO) in Vec∂FZ3
2

is mapped to the algebra F(O) in Vec0
Z3
2

whose multiplication is given by the composition

F(O)⊗F(O)
ϕ2−→ F(O⊗O)

F(mO)−→ F(O).

More explicitly, for any two elements ux ∈ F(O)x, uy ∈ F(O)y, x, y ∈ Z3
2, the multiplication is

uxuy = (−1)
∑

1≤i≤j≤3 xiyjux+y.

This is exactly the multiplication of the algebra Cl0,3 in Vec0
Z3
2
.

Remark 1.2. The tensor equivalence F also induces a one-to-one correspondence between the set of

braidings of Vec∂FZ3
2

and that of Vec0
Z3
2
. Given a braiding R of Vec∂FZ3

2
, define F(R) by

F(R)(x, y) = (−1)x1x2y3+x1y2x3+y1x2x3+y1y2x3+y1x2y3+x1y2y3R(x, y), ∀x, y ∈ Z3
2.

Then F(R) is a braiding of Vec0
Z3
2

and

(F , ϕ0, ϕ2) :
(

Vec∂FZ3
2
,R

)
−→

(
Vec0

Z3
2
,F(R)

)
is a braided tensor equivalence, see ibid.

Now O is an algebra in the braided tensor category
(

Vec∂FZ3
2
,R

)
. Hence, we are in a position to ask:

is there a braiding R such that O is Azumaya in
(

Vec∂FZ3
2
,R

)
? It is well known that a braided tensor

equivalence preserves Azumaya objects, hence by Remark 1.2 our question can be translated to a more

familiar situation: find a suitable braiding R so that the algebra Cl0,3 is Azumaya in
(

Vec0
Z3
2
,F(R)

)
.

Clearly, the latter question lies in the well developed theory of group graded Azumaya algebras and

Brauer groups, see, e.g., [3, 8, 10]. It is not surprising that these pioneering works may help to solve

our question. In particular, a well known result of Wall [10] indicates that Cl0,3 is an Azumaya algebra

in (Vec0
Z2
,P) where P(x, y) = (−1)xy, ∀x, y ∈ Z2. Then via a pull-back of the group homomorphism

f : Z3
2 −→ Z2, x 7→ x1 + x2 + x3 mod 2, it seems possible to obtain similar property of Cl0,3 in
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Vec0

Z3
2
,F(R)

)
, and eventually to obtain that of O in

(
Vec∂FZ3

2
,R

)
via the braided tensor equivalence F .

This naturally leads to our first result.

Theorem 1.3. O is an Azumaya algebra in the braided Gr-category (Vec∂FZ3
2
,R) with

(1.3) R(x, y) = (−1)x1x2y3+x1y2x3+y1x2x3+y1y2x3+y1x2y3+x1y2y3+
∑3

i,j=1 xiyj , ∀x, y ∈ Z3
2.

The next natural question is that, to what extent the braiding R is defined by the octonions? Again,

this question can be translated to that for Cl0,3 and we may consult [3, 8]. It turns out that there are

various braidings R which make O Azumaya in (Vec∂FZ3
2
,R) and they can be completely classified. This

is our second main result.

Theorem 1.4. There are exactly 168 braidings R such that O is an Azumaya algebra in (V ec∂FZ3
2
,R),

where

R(x, y) = (−1)x1x2y3+x1y2x3+y1x2x3+y1y2x3+y1x2y3+x1y2y3+
∑3

i,j=1 aijxiyj , ∀x, y ∈ Z3
2

with (a11, a12, a13, a21, a22, a23, a31, a32, a33) listed in the following table.

0, 0, 0, 0, 0, 0, 0, 0, 1 0, 0, 0, 0, 0, 0, 0, 1, 0 0, 0, 0, 0, 0, 0, 1, 0, 0 0, 0, 0, 0, 0, 0, 1, 1, 1 0, 0, 0, 0, 0, 1, 0, 0, 0

0, 0, 0, 0, 0, 1, 0, 1, 1 0, 0, 0, 0, 0, 1, 1, 0, 0 0, 0, 0, 0, 0, 1, 1, 1, 1 0, 0, 0, 0, 1, 0, 0, 0, 0 0, 0, 0, 0, 1, 0, 0, 1, 1

0, 0, 0, 0, 1, 0, 1, 0, 0 0, 0, 0, 0, 1, 0, 1, 1, 1 0, 0, 0, 0, 1, 1, 0, 0, 1 0, 0, 0, 0, 1, 1, 0, 1, 0 0, 0, 0, 0, 1, 1, 1, 0, 0

0, 0, 0, 0, 1, 1, 1, 1, 1 0, 0, 0, 1, 0, 0, 0, 0, 0 0, 0, 0, 1, 0, 0, 0, 0, 1 0, 0, 0, 1, 0, 0, 0, 1, 0 0, 0, 0, 1, 0, 0, 0, 1, 1

0, 0, 0, 1, 1, 1, 0, 0, 0 0, 0, 0, 1, 1, 1, 0, 0, 1 0, 0, 0, 1, 1, 1, 0, 1, 0 0, 0, 0, 1, 1, 1, 0, 1, 1 0, 0, 1, 0, 0, 0, 0, 0, 0

0, 0, 1, 0, 0, 0, 0, 1, 0 0, 0, 1, 0, 0, 0, 1, 0, 1 0, 0, 1, 0, 0, 0, 1, 1, 1 0, 0, 1, 0, 0, 1, 0, 0, 1 0, 0, 1, 0, 0, 1, 0, 1, 1

0, 0, 1, 0, 0, 1, 1, 0, 1 0, 0, 1, 0, 0, 1, 1, 1, 1 0, 0, 1, 0, 1, 0, 0, 0, 0 0, 0, 1, 0, 1, 0, 0, 1, 0 0, 0, 1, 0, 1, 0, 1, 0, 1

0, 0, 1, 0, 1, 0, 1, 1, 1 0, 0, 1, 0, 1, 1, 0, 0, 1 0, 0, 1, 0, 1, 1, 0, 1, 1 0, 0, 1, 0, 1, 1, 1, 0, 1 0, 0, 1, 0, 1, 1, 1, 1, 1

0, 0, 1, 1, 0, 0, 0, 0, 0 0, 0, 1, 1, 0, 0, 0, 0, 1 0, 0, 1, 1, 0, 0, 0, 1, 0 0, 0, 1, 1, 0, 0, 0, 1, 1 0, 0, 1, 1, 1, 0, 0, 0, 0

0, 0, 1, 1, 1, 0, 0, 0, 1 0, 0, 1, 1, 1, 0, 0, 1, 0 0, 0, 1, 1, 1, 0, 0, 1, 1 0, 1, 0, 0, 0, 0, 0, 0, 0 0, 1, 0, 0, 0, 0, 0, 0, 1

0, 1, 0, 0, 0, 0, 1, 0, 0 0, 1, 0, 0, 0, 0, 1, 0, 1 0, 1, 0, 0, 0, 1, 0, 0, 0 0, 1, 0, 0, 0, 1, 0, 0, 1 0, 1, 0, 0, 0, 1, 1, 0, 0

0, 1, 0, 0, 0, 1, 1, 0, 1 0, 1, 0, 0, 1, 0, 0, 1, 0 0, 1, 0, 0, 1, 0, 0, 1, 1 0, 1, 0, 0, 1, 0, 1, 0, 0 0, 1, 0, 0, 1, 0, 1, 0, 1

0, 1, 0, 0, 1, 1, 0, 1, 0 0, 1, 0, 0, 1, 1, 0, 1, 1 0, 1, 0, 0, 1, 1, 1, 0, 0 0, 1, 0, 0, 1, 1, 1, 0, 1 0, 1, 0, 1, 1, 0, 0, 0, 0

0, 1, 0, 1, 1, 0, 0, 0, 1 0, 1, 0, 1, 1, 0, 0, 1, 0 0, 1, 0, 1, 1, 0, 0, 1, 1 0, 1, 0, 1, 1, 1, 0, 0, 0 0, 1, 0, 1, 1, 1, 0, 0, 1

0, 1, 0, 1, 1, 1, 0, 1, 0 0, 1, 0, 1, 1, 1, 0, 1, 1 1, 0, 0, 0, 0, 0, 0, 0, 0 1, 0, 0, 0, 0, 0, 0, 1, 0 1, 0, 0, 0, 0, 0, 1, 0, 1

1, 0, 0, 0, 0, 0, 1, 1, 1 1, 0, 0, 0, 0, 1, 0, 0, 0 1, 0, 0, 0, 0, 1, 0, 1, 1 1, 0, 0, 0, 0, 1, 1, 0, 0 1, 0, 0, 0, 0, 1, 1, 1, 1

1, 0, 0, 0, 1, 1, 0, 1, 0 1, 0, 0, 0, 1, 1, 0, 1, 1 1, 0, 0, 0, 1, 1, 1, 0, 0 1, 0, 0, 0, 1, 1, 1, 0, 1 1, 0, 0, 1, 0, 0, 0, 1, 0

1, 0, 0, 1, 0, 0, 0, 1, 1 1, 0, 0, 1, 0, 0, 1, 0, 0 1, 0, 0, 1, 0, 0, 1, 0, 1 1, 0, 0, 1, 1, 0, 0, 0, 0 1, 0, 0, 1, 1, 0, 0, 1, 1

1, 0, 0, 1, 1, 0, 1, 0, 0 1, 0, 0, 1, 1, 0, 1, 1, 1 1, 0, 0, 1, 1, 1, 0, 0, 0 1, 0, 0, 1, 1, 1, 0, 1, 0 1, 0, 0, 1, 1, 1, 1, 0, 1

1, 0, 0, 1, 1, 1, 1, 1, 1 1, 0, 1, 0, 0, 0, 0, 0, 1 1, 0, 1, 0, 0, 0, 0, 1, 0 1, 0, 1, 0, 0, 0, 1, 0, 0 1, 0, 1, 0, 0, 0, 1, 1, 1

1, 0, 1, 0, 0, 1, 0, 0, 1 1, 0, 1, 0, 0, 1, 0, 1, 1 1, 0, 1, 0, 0, 1, 1, 0, 1 1, 0, 1, 0, 0, 1, 1, 1, 1 1, 0, 1, 0, 1, 0, 0, 1, 0

1, 0, 1, 0, 1, 0, 0, 1, 1 1, 0, 1, 0, 1, 0, 1, 0, 0 1, 0, 1, 0, 1, 0, 1, 0, 1 1, 0, 1, 1, 0, 0, 0, 1, 0 1, 0, 1, 1, 0, 0, 0, 1, 1

1, 0, 1, 1, 0, 0, 1, 0, 0 1, 0, 1, 1, 0, 0, 1, 0, 1 1, 0, 1, 1, 1, 0, 0, 0, 1 1, 0, 1, 1, 1, 0, 0, 1, 0 1, 0, 1, 1, 1, 0, 1, 0, 0

1, 0, 1, 1, 1, 0, 1, 1, 1 1, 0, 1, 1, 1, 1, 0, 0, 1 1, 0, 1, 1, 1, 1, 0, 1, 1 1, 0, 1, 1, 1, 1, 1, 0, 1 1, 0, 1, 1, 1, 1, 1, 1, 1

1, 1, 0, 0, 0, 1, 0, 0, 0 1, 1, 0, 0, 0, 1, 0, 0, 1 1, 1, 0, 0, 0, 1, 1, 0, 0 1, 1, 0, 0, 0, 1, 1, 0, 1 1, 1, 0, 0, 1, 0, 0, 0, 0

1, 1, 0, 0, 1, 0, 0, 1, 0 1, 1, 0, 0, 1, 0, 1, 0, 1 1, 1, 0, 0, 1, 0, 1, 1, 1 1, 1, 0, 0, 1, 1, 0, 0, 1 1, 1, 0, 0, 1, 1, 0, 1, 0

1, 1, 0, 0, 1, 1, 1, 0, 0 1, 1, 0, 0, 1, 1, 1, 1, 1 1, 1, 0, 1, 0, 0, 0, 0, 0 1, 1, 0, 1, 0, 0, 0, 0, 1 1, 1, 0, 1, 0, 0, 1, 0, 0

1, 1, 0, 1, 0, 0, 1, 0, 1 1, 1, 0, 1, 1, 0, 0, 0, 1 1, 1, 0, 1, 1, 0, 0, 1, 0 1, 1, 0, 1, 1, 0, 1, 0, 0 1, 1, 0, 1, 1, 0, 1, 1, 1

1, 1, 0, 1, 1, 1, 0, 0, 0 1, 1, 0, 1, 1, 1, 0, 1, 0 1, 1, 0, 1, 1, 1, 1, 0, 1 1, 1, 0, 1, 1, 1, 1, 1, 1 1, 1, 1, 0, 0, 0, 0, 0, 0

1, 1, 1, 0, 0, 0, 0, 0, 1 1, 1, 1, 0, 0, 0, 1, 0, 0 1, 1, 1, 0, 0, 0, 1, 0, 1 1, 1, 1, 0, 1, 0, 0, 0, 0 1, 1, 1, 0, 1, 0, 0, 1, 1

1, 1, 1, 0, 1, 0, 1, 0, 0 1, 1, 1, 0, 1, 0, 1, 1, 1 1, 1, 1, 0, 1, 1, 0, 0, 1 1, 1, 1, 0, 1, 1, 0, 1, 1 1, 1, 1, 0, 1, 1, 1, 0, 1

1, 1, 1, 0, 1, 1, 1, 1, 1 1, 1, 1, 1, 0, 0, 0, 0, 0 1, 1, 1, 1, 0, 0, 0, 0, 1 1, 1, 1, 1, 0, 0, 1, 0, 0 1, 1, 1, 1, 0, 0, 1, 0, 1

1, 1, 1, 1, 1, 0, 0, 0, 0 1, 1, 1, 1, 1, 0, 0, 1, 1 1, 1, 1, 1, 1, 0, 1, 0, 0 1, 1, 1, 1, 1, 0, 1, 1, 1 1, 1, 1, 1, 1, 1, 0, 0, 1

1, 1, 1, 1, 1, 1, 0, 1, 1 1, 1, 1, 1, 1, 1, 1, 0, 1 1, 1, 1, 1, 1, 1, 1, 1, 1

2. Preliminaries

2.1. Braided linear Gr-categories. Let G be a group and k a field. A k-linear Gr-category over

G is a tensor category VecΦ
G which consists of finite-dimensional k-spaces graded by G with the usual

tensor product and with associativity constraint given by a normalized 3-cocycle Φ on G, i.e. a function

Φ : G×G×G→ k
∗ such that for all x, y, z, t ∈ G

Φ(y, z, t)Φ(x, yz, t)Φ(x, y, z) = Φ(x, y, zt)Φ(xy, z, t), and Φ(x, e, y) = 1,
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where e is the unit of G. A Gr-category VecΦ
G is said to be braided, if there exists a braiding given by a

quasi-bicharacter R with respect to Φ, that is a function R : G×G→ k
∗ satisfying

R(xy, z) = R(x, z)R(y, z)
Φ(z, x, y)Φ(x, y, z)

Φ(x, z, y)
,(2.1)

R(x, yz) = R(x, y)R(x, z)
Φ(y, x, z)

Φ(y, z, x)Φ(x, y, z)
(2.2)

for all x, y, z ∈ G. Note that VecΦ
G is braided only if G is abelian.

Given a function F : G×G→ k
∗ with F (e, x) = F (x, e) = 1, i.e. a 2-cochain, define

∂F =
F (x, y)F (xy, z)

F (x, yz)F (y, z)
, R(x, y) =

F (x, y)

F (y, x)

for all x, y, z ∈ G. Then ∂F is a 3-coboundary, i.e. a 3-cocycle cohomologous to 0, on G and R is a

quasi-bicharacter with respect to ∂F.

For more details on braided linear Gr-categories, the reader is referred to [5, 6].

2.2. Algebras in Gr-categories. An algebra in the Gr-category VecΦ
G is an object A with a multipli-

cation morphism m : A ⊗ A → A and a unit morphism u : k → A satisfying the associativity and the

unitary conditions of usual associative algebras but expressed in diagrams of the category VecΦ
G . More

precisely, an algebra A in VecΦ
G is a finite-dimensional G-graded space ⊕g∈GAg with a multiplication ·

such that

Ag ·Ah ⊆ Agh,(2.3)

(a · b) · c = Φ(|a|, |b|, |c|)a · (b · c)(2.4)

for all homogeneous elements a, b, c ∈ A, where |a| denotes the degree of a. There is also a unit element

1 in A such that

(2.5) 1 · a = a = a · 1

for all a ∈ A. Further, if the Gr-category VecΦ
G is braided with braiding R, then we say that two

homogeneous elements a, b ∈ A are commutative if a ·b = R(|b|, |a|)b ·a. If any two homogeneous elements

commute, then we say A is a commutative algebra in (VecΦ
G,R).

2.3. Twisted group algebras. Let G be a group and F : G×G→ k
∗ a 2-cochain, then we can define

a new algebra kF [G] which has the same vector space as the group algebra k[G] but a different product,

namely

(2.6) x · y = F (x, y)xy, ∀x, y ∈ G.

Clearly kF [G] is an associative commutative algebra in the braided linear Gr-category (Vec∂FG ,R) with

R(x, y) = F (x,y)
F (y,x) for all x, y ∈ G.

Thanks to the observation of Albuquerque and Majid [1], the octonion algebra O can be realized as a

twisted group algebra RF [Z3
2] with

F (x, y) = (−1)x1x2y3+x1y2x3+y1x2x3+
∑

1≤i≤j≤3 xiyj

where x = (x1, x2, x3), y = (y1, y2, y3) ∈ Z3
2. As a consequence, O is associative in Vec∂FZ3

2
and commutative

in (Vec∂FZ3
2
,R) with R(x, y) = F (x,y)

F (y,x) .
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2.4. Azumaya algebras in
(
Vec0

G,R
)
, or graded Azumaya algebras. The definition of Azumaya

algebras in an arbitrary braided monoidal category can be found in [9]. For our purpose, we only

need to recall the definition of Azumaya algebras in braided linear Gr-categories of form
(
Vec0

G,R
)
, or

equivalently, group graded Azumaya algebras defined and studied in [3, 8, 10].

Let A be an algebra in
(
Vec0

G,R
)
. Call A simple in

(
Vec0

G,R
)

if it has no nontrivial ideals in
(
Vec0

G,R
)
.

In other words, A is a G-graded algebra and it has no proper graded two-sided ideals. The left center

Zl(A) and the right center Zr(A) of A in
(
Vec0

G,R
)

are defined by

(2.7) Zl(A) = span{homogeneous a ∈ A|∀ homogeneous x ∈ A, x · a = R(|x|, |a|)a · x},

(2.8) Zr(A) = span{homogeneous a ∈ A|∀ homogeneous x ∈ A, a · x = R(|a|, |x|)x · a}.

Call A left central (resp. right central) in
(
Vec0

G,R
)

if Zl(A) (resp. Zr(A)) is equal to k, and central

in
(
Vec0

G,R
)

if both Zl(A) and Zr(A) are equal to k. Finally, an algebra A in
(
Vec0

G,R
)

is called an

Azumzya algebra in
(
Vec0

G,R
)

if it is both central and simple in
(
Vec0

G,R
)
.

3. The proofs of Theorems 1.3 and 1.4

From now on, Gr-categories are R-linear, G = Z3
2 and F, F ′ are the functions defined respectively by

(1.1) and (1.2).

Lemma 3.1. The following

(3.1) {R(x, y) = (−1)x1x2y3+x1y2x3+y1x2x3+y1y2x3+y1x2y3+x1y2y3+
∑3

i,j=1 aijxiyj |x, y ∈ G, aij = 0, 1}

is a complete set of braidings of Vec∂FG .

Proof. By Remark 1.2, there is a one-to-one correspondence between the set of braidings in Vec∂FG and

Vec0
G . As for the latter, the braidings R are precisely the usual bicharacter on G, that is,

(3.2) R(x, y) = (−1)
∑3

i,j=1 aijxiyj , ∀x, y ∈ G, aij ∈ {0, 1}.

Then by the pull-back along the functor F , we get the corresponding set (3.1) of braidings of Vec∂FG . �

The proof of Theorem 1.3. Let R be the braiding as given by (1.3). Then the corresponding braiding

F(R) of Vec0
G is given by

F(R)(x, y) = (−1)
∑3

i,j=1 xiyj , ∀x, y ∈ G.

By the comment after Remark 1.2, it suffices to prove that Cl0,3 is Azumaya in
(
Vec0

G,F(R)
)
. We verify

that Cl0,3 is both central and simple in
(
Vec0

G,F(R)
)
.

Note that each non-zero homogeneous element of Cl0,3 is invertible, so clearly Cl0,3 has no proper

graded ideals and hence it is simple in
(
Vec0

G,F(R)
)
. To prove the theorem, it remains to prove that Cl0,3

is central in
(
Vec0

G,F(R)
)
. Note that the braiding F(R) is symmetric, i.e., F(R)(x, y)F(R)(y, x) = 1

for all x, y ∈ G. So we have Zl(Cl0,3) = Zr(Cl0,3). In the following, let Z denote Zl(Cl0,3) = Zr(Cl0,3)

and we prove Z = R by direct verification.

For x = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), we have F(R)(x, x) = −1, so x · x 6= F(R)(x, x)x · x,
hence (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) do not belong to Z. For x = (0, 1, 1), let y = (0, 1, 0) and we

have F(R)(x, y) = 1. But x · y = F ′(x, y)xy = −y · x, hence (0, 1, 1) is not in Z. Similarly, for x =
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(1, 0, 1), (1, 1, 0), we find y = (1, 0, 0) such that x · y 6= F(R)(x, y)y · x, hence (1, 0, 1), (1, 1, 0) are not in

Z. Consequently, Z = R.

The theorem is proved. �

The proof of Theorem 1.4. Again by Remark 1.2 and the comment thereafter, it is enough to deter-

mine all the braidings R of Vec0
G such that Cl0,3 is Azumaya in

(
Vec0

G,R
)
. As Cl0,3 is always simple in(

Vec0
G,R

)
, it suffices to find R of form (3.2) such that for any homogeneous element x ∈ Cl0,3 which is

not a scalar multiple of the identity, there exists at least one homogeneous element y ∈ Cl0,3 such that

x · y 6= R(x, y)y · x or y · x 6= R(y, x)x · y. The set of such R can be completely determined with a help

of a simple program of Matlab, see the appendix. Then by pulling back along F , we get the desired set

of braidings of Vec∂FG as presented in Theorem 1.4. �

Finally, we remark that it is possible to classify all the braided linear Gr-categories in which the

octonion algebra is Azumaya by our method with a help of the result of Elduque [4] which provides all

the gradings on the octonions by finite groups and thus all the possibilities of O as an algebra in braided

linear Gr-categories. As this is only a matter of computations, we do not include further details.

4. Appendix

4.1. The method of the computation of bradings. By (3.2), there are 512 possibilities of braidings

R for Vec0
G . Firstly we can determine the braiding R such that Cl0,3 is not central in

(
Vec0

G,R
)
. Take

the elements of G as a basis of Cl0,3 . Then Cl0,3 is not central in
(
Vec0

G,R
)

if and only if there is an

x ∈ G− (0, 0, 0) which is a left or right central element. Clearly, this condition can be explicitly expressed

by systems of linear equations. Then by subtracting the braidings obtained in the previous step, we get

all of those braidings R such that Cl0,3 is central in
(
Vec0

G,R
)
.

4.2. The program of the computation. The following is a program of Matlab.

AA = [100; 010; 001; 011; 101; 110; 111];

m = 0; A = zeros(9, 1);

Final M = zeros(9, 1);

M = 1 : 512;

N = [];

while size(A, 2) < 512

B = randint(3, 3); A(:, size(A, 2) + 1) = B(:);

C = A′;

D = unique(C,′ rows′);

A = D′;

end

for i = 1 : 7

x = AA(i, :); for k = 1 : 512 A k = A(:, k);

A 3 = reshape(Ak, 3, 3);

R = r fun(x, x,A3);

ifR == 1 R = 0;

forj = 1 : 7 y = AA(j, :);
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index = y = x;

ddd = index(1) + index(2) + index(3); if ddd > 0

R = R + r fun(x, y,A3);

end

end

if R == −6 m = m + 1 Final M(:, size(Final M, 2) + 1) = A(:, k);

N = [Nk];

N = unique(N);

end

end

end

end
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