
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Concatenation, Embedding and Sharding : Do HTTP/1 Performance

Best Practices Make Sense in HTTP/2?

Peer-reviewed author version

MARX, Robin; QUAX, Peter; Faes, Axel & LAMOTTE, Wim (2017) Concatenation,

Embedding and Sharding : Do HTTP/1 Performance Best Practices Make Sense in

HTTP/2?. In: Krempels, Karl-Heinz; Traverso, Paolo; Majchrzak, Tim A.; Monfort,

Valérie (Ed.). Proceedings of the 13th International Conference on Web Information

Systems and Technologies - Volume 1: WEBIST, Scitepress,p. 160-173.

DOI: 10.5220/0006364101600173

Handle: http://hdl.handle.net/1942/23909



Concatenation, Embedding and Sharding:
Do HTTP/1 Performance Best Practices Make Sense in HTTP/2?

Robin Marx, Peter Quax, Axel Faes and Wim Lamotte
UHasselt-tUL-imec, EDM, Hasselt, Belgium

{first.last}@uhasselt.be

Keywords: Web Performance, Best Practices, HTTP, Server Push, SpeedIndex, Networking, Measurements.

Abstract: Web page performance is becoming increasingly important for end users but also more difficult to provide by web
developers, in part because of the limitations of the legacy HTTP/1 protocol. The new HTTP/2 protocol was designed
with performance in mind, but existing work comparing its improvements to HTTP/1 often shows contradictory
results. It is unclear for developers how to profit from HTTP/2 and whether current HTTP/1 best practices such as
resource concatenation, resource embedding, and hostname sharding should still be used. In this work we introduce
the Speeder framework, which uses established tools and software to easily and reproducibly test various setup
permutations. We compare and discuss results over many parameters (e.g., network conditions, browsers, metrics),
both from synthetic and realistic test cases. We find that in most non-extreme cases HTTP/2 is on a par with HTTP/1
and that most HTTP/1 best practices are applicable to HTTP/2. We show that situations in which HTTP/2 currently
underperforms are mainly caused by inefficiencies in implementations, not due to shortcomings in the protocol itself.

1 INTRODUCTION

For a long time, version 1 of the HyperText Transfer Pro-
tocol (HTTP/1, h1) has been the only way to request and
transfer websites from servers to clients. Under the pres-
sure of ever more complex websites and the need for bet-
ter website load performance, h1 and its practical usage
have evolved significantly over the last two decades. Most
of the changes help to combat the fundamental concept of
h1 to only request a single resource per underlying TCP
connection at the same time (where slow resources can
delay others, called “head-of-line (HOL) blocking”), by
better (re-)use of these connections or by making use of
parallel connections. The protocol specification now in-
cludes techniques such as request pipelining and persistent
connections. In practice, further workarounds and tricks
have become commonplace to help speed up h1: modern
browsers will open several parallel connections (up to six
per hostname and 30 in total in most browser implementa-
tions) and web developers apply techniques like resource
concatenation, resource embedding and hostname shard-
ing as best practices (Grigorik, 2013). However, these
heavily parallelized setups induce large additional over-
heads while not providing extensive performance benefits
in the face of ever more complex websites.

A redesign of the protocol was needed and starting
with SPDY, Google led a movement back towards using
just a single TCP connection, this time allowing multiple

resources to be multiplexed at the same time, alleviating
the HOL blocking of h1 and making better use of the
TCP protocol. This effort culminated in the standard-
ization of HTTP/2 (h2) (Belshe et al., 2015). Advanced
prioritization schemes are provided to help make optimal
use of this multiplexing and the novel h2 Push mecha-
nism allows servers to send resources to a client without
receiving a request for them first.

In theory, h2 should solve most of the problems of
h1 and as such make its best practices and optimiza-
tions obsolete or replaceable (Grigorik, 2013). However,
in practice the gains from h2 are limited by other fac-
tors and implementation details. Firstly, h2 eliminates
application-layer HOL blocking but it could be much
more sensitive to transport-layer HOL blocking (induced
by TCP’s guarantee of in-order delivery combined with re-
transmits when packet loss is present) due to the individ-
ual underlying connection (Goel et al., 2016). Secondly,
the multiplexing is highly dependent on correct resource
prioritization and might introduce its own implementa-
tion overhead as chunks need to be aggregated. Finally,
complex inter-dependencies between resources and late
resource discovery might also lessen the gains from h2
(Netravali et al., 2016). That h2 is not a simple drop-in
replacement with consistently better performance than
h1 is also clear from previous studies, which often find
cases where h2 is significantly slower than h1. Many
of these studies also show contradictory results, poten-



tially because they use different experimental setups. We
discuss related work in Section 2.

This leaves web developers and hosting companies
with an unclear path forwards: they cannot just enable h2
because it could deteriorate performance, but they also do
not know which concrete changes their websites need in
order to make optimal use of the new protocol.

In this paper, we look at the most common h1 opti-
mizations: resource concatenation, resource embedding
and hostname sharding. We evaluate their performance
over three versions of the HTTP protocol: the secure
HTTPS/2 (h2s) and HTTPS/1.1 (h1s) and also the un-
encrypted HTTP/1.1 (h1c), because many websites still
use this “cleartext” version. We do not include h2c, as
modern browsers choose to only support h2s for secu-
rity reasons. Note additionally that switching from h1c
to a secure setup (either h1s or h2s) could have its own
performance impact as TLS connections typically require
additional network round-trips to setup. The next sec-
tions use h2 to refer to h2s and h1 to refer to both
h1s and h1c at the same time.
Our main contributions are as follows:

• We introduce the Speeder framework for web per-
formance measurement, which combines a large
number of off-the-shelf software packages to provide
various test setup permutations, leading to a broad ba-
sis for comparison and interpretation of experimental
results.

• We show that resource concatenation and host-
name sharding are still best practices when using
h2 and that HTTP/2 Push is a good replacement for
resource embedding.

• We compare h2 to both h1s and h1c to find that
h2 rarely significantly improves performance
over h1 (both secure and cleartext) and can
severely slow down sites currently on h1c. How-
ever, in most cases bad network conditions do not
seem to impact h2 much more than they impact h1.

• We use the SpeedIndex metric (Meenan, 2012) to
show that h2 is often later than h1 to start ren-
dering the web page and discover various browser
quirks. Additionally, we show that implementation
details can have a significant impact on observed per-
formance.

We will first look at hand-crafted experiments on
synthetic data (Section 4). These test cases are intended
to make the underlying behavior of the protocols and their
implementations clearer, and so are often not entirely
realistic or involve extreme circumstances. Secondly, we
look at more realistic data based on existing websites
(Section 5). We expect that, compared to the experiments
on synthetic pages, these test cases will show similar but
more nuanced results and trends.

2 RELATED WORK

Various authors have published works comparing the per-
formance of h2 and its predecessor SPDY to h1. Some
also discuss h1 best practices and h2 Push. We high-
light some of their findings and methods.

In “how speedy is SPDY?” (Wang et al., 2014) the
authors employ isolated test cases to better assess the
impact of various parameters (latency, bandwidth, loss
rate, initial TCP window, number of objects and object
sizes). They observe that “object size and packet loss
rate are the most important factors in predicting SPDY
performance”, in other words SPDY hurts when packet
loss is high (mainly due to the single underlying TCP
connection) but helps for many small objects. They also
find it “helps for many large objects when the network
is fast”. For real pages, they find that SPDY helps up to
80% of pages under low bandwidths, but only 55% of
pages under high bandwidth.

“Towards a SPDY’ier Mobile Web?” (Erman et al.,
2013) performs an analysis of SPDY over a variety of
real networks and finds that underlying cellular protocols
can have a profound impact on its performance. For 3G,
SPDY performed on a par with h1, with LTE showing
only some improvements over h1. A faster 802.11g
network did yield improvements of 4% to 56%. They
further conclude that using multiple TCP connections
(∼sharding) does not help SPDY.

“Is The Web HTTP/2 Yet?” (Varvello et al., 2016)
periodically measures page load performance by loading
real websites over real networks from their own origin
servers. They observe that most websites using h2 also
still use h1 best practices like embedding and sharding.
They find that “these practices make h2 more resilient to
packet loss and jitter” and that 80% of the observed pages
perform better over h2 than over h1 and that h2’s ad-
vantage grows in mobile networks. On the other hand
they also find that the remaining 20% of the pages suffer
a loss of performance.

“Rethinking Sharding for Faster HTTP/2” (Goel et al.,
2016) introduces a novel network emulation technique
based on measurements from real cellular networks. They
use this technique to assess the performance of hostname
sharding optimization over h2. They find that h2 per-
forms well for pages with large amounts of small and
medium sized objects, but suffers from higher packet loss
and larger file sizes. They demonstrate that h2 perfor-
mance can be improved by sharding, though it will not
always reach parity with h1.

“HTTP/1.1 pipelining vs HTTP2 in-the-clear: perfor-
mance comparison” (Corbel et al., 2016) compares h1c
to h2c (a mode of the protocol not currently supported
by any of the main browsers). They disregard browser
computational overhead while running experiments over



a network emulated by TC NETEM, and find that on av-
erage h2c is 15% faster than h1c and “h2c is more
resilient to packet loss than h1c”.

Additional academic work found that for a packet
loss of 2%, “h2s is completely defeated by h1s” and
that even naive server push schemes can yield up to 26%
improvements (Liu et al., 2016). Others conclude that h2
is mostly interesting for complex websites, showing up to
a 48% decrease in page load time, 10% when using h2
Push, and that h2 is resilient to higher latencies but not
to packet loss (de Saxcé et al., 2015). Further experiments
indicate that h2 Push seems to improve page load times
under almost all circumstances (de Oliveira et al., 2016).
Finally, Carlucci et al. find that packet loss has a very
high impact on SPDY, up to a 120% increase of page load
time on a high bandwidth network (Carlucci et al., 2015).

Our review of related work clearly shows that the cur-
rent state of the art is often contradictory in its conclusions
regarding h2 performance. It is not clear if sharding still
provides significant benefits, if h2 is resilient to poor net-
work conditions or not and what degrees of improvement
developers might expect when moving to h2.

We believe that one of the reasons for these contradic-
tions is the way in which researchers construct, execute
and measure their experiments. Additionally, most au-
thors only use a single software tool for most parts of the
process, e.g., just a single server package, one browser or
client, one network setup and one metric. Without com-
paring different tools and metrics, some results could be
attributed as being inherent to the tested protocol, while
they are actually caused by implementation details in
the tool being used. Moreover, developers often use
alternative tools that provide more complex metrics to
assess their site performance (e.g., Google Chrome dev-
tools, webpagetest.org and “Real User Monitoring” tools)
(Gooding and Garza, 2016).

Finally, in this fast moving field, even the protocols
evolve very rapidly. Experiments run two years or even
a couple of months ago might yield different results on
newer versions of the used software.

All this makes that results and conclusions are often
difficult to compare and reproduce. We aspire to help re-
solve this problem by introducing the Speeder framework
for web performance measurements.

3 THE SPEEDER FRAMEWORK

Recognizing the fact that different implementations can
influence experiment results and conclusions and that
these are often difficult to compare, we introduce the
Speeder framework for web performance measurement.
Speeder allows users to run and compare experiments on

Table 1: Speeder software and metrics.

Protocols HTTP/1.1 (cleartext), HTTPS/1.1, HTTPS/2

Browsers Chrome (51 - 54), Firefox (45 - 49)

Test drivers Sitespeed.io (3), Webpagetest (2.19)

Servers Apache (2.4.20), NGINX (1.10), NodeJS (6.2.1)

Network - DUMMYNET (cable and cellular) (Webpagetest)
- fixed TC NETEM (cable and cellular)
- dynamic TC NETEM (cellular) (Goel et al., 2016)

Metrics All Navigation Timing values (Wang, 2012), SpeedIn-
dex, firstPaint, visualComplete, other Webpagetest
metrics (Meenan, 2016)

a variety of test setups using various software packages.
It automates setting up and driving the various tools
to make the overhead of maintaining multiple setups
manageable. Users simply need to select the desired
setup permutations and the framework collects and
aggregates a multitude of key metrics. Users can then
utilize various visualization tools to compare the results.

Speeder mainly aims to accomplish two different
goals in the following ways:

• Make it easier to differentiate between protocol-
and implementation related behavior: Speeder in-
cludes a number of different software packages for
each setup component (see Table 1). Through mutual
combination, these provide a large number of permu-
tations for possible experiment setups, which leads to
a large comparison basis for the results.

• Make it easier to create reproducible results for
both researchers and developers: Speeder uses
freely available off-the-shelf and open source tools
and software. We deploy our setups using Docker
containers, which can easily be updated with new
software and older configurations can be re-used if
needed. Docker images can also be distributed and
shared with others.

Speeder focuses on the concept of a “full emulated
setup” (both client and server), though it can conceivably
also measure real web pages over real networks (only
client) or serve experiments for testing with external tools
(only server). This approach should apply to researchers
and also developers during their development process.

Unless indicated otherwise, the results in this work are
from an experimental setup using NGINX on the server,
Google Chrome driven by Webpagetest and the dynamic
network model (Goel et al., 2016).

Readers are encouraged to review our full
dataset (including results not presented in this pa-
per for Apache, sitespeed.io and the Fixed net-
work model) and setup details and sourcecode via
https://speeder.edm.uhasselt.be.



Figure 1: Conceptual schematic of the Speeder Framework.

Setup: As displayed in Figure 1, Speeder is deployed
on eight backend linux Virtual Machines (VMs), eight
sitespeed.io agent linux VMs, five Webpagetest agent
Windows 10 VMs and one linux command-and-control
(C&C) VM that includes an InfluxDB database to store
aggregated test results. These are distributed across two
physical Dell PowerEdge R420 machines with at least
two dedicated logical cores and 2 GB RAM per VM.
They are connected through 1 Gbit ethernet.

All linux software is deployed inside Docker contain-
ers, with at most one container running in each VM at the
same time to prevent test results being influenced by other
tests. As such, no more than 8 individual tests can be run-
ning at the same time. Webpagetest is deployed without
Docker as there are VM-based distributions readily avail-
able and it is more difficult to Dockerize its Windows-only
setup. Network emulation using TC NETEM is done in
the server container.

While this type of highly virtualized setup can
influence the measured load times, we believe it still
allows accurate comparisons since all tests are equally
influenced. Similar setups are used in related work (Goel
et al., 2016; Corbel et al., 2016).

Metrics: Most related work uses loadEventEnd
from the Navigation Timing API (Wang, 2012) as the
main metric for page performance. However, this metric
only indicates the total page load time and not how the
visual rendering progresses over time: a page that stays
empty for 5s and only renders content the last 0.6s (page
A), will have a better observed performance than a page
that only completely finishes loading at 7.5s, but that had
its main content drawn by 2.5s (page B), while the latter
can arguably has the better end-user experience.

Google’s SpeedIndex (Meenan, 2012) aims to
provide a better indication of how progressively a page
renders by recording a video during the page load and
using image analysis to determine how much of a page
was loaded at any given time. As such, it is more a metric
of how early and often a page updates during load and
not purely of how fast a page load completes. Perhaps
counter-intuitively, this means page B would have a
lower SpeedIndex than page A, even though it finishes
loading later. SpeedIndex is expressed in milliseconds
and lower values mean better performance (similar to
loadEventEnd).

We find that the two metrics often show similar be-
havior (especially for synthetic test cases) and so, for
easier comparison with related work, we present mainly
loadEventEnd while comparing it to SpeedIndex in
the case of significant divergence.

Network emulation: Because it is practically diffi-
cult to continuously test a large number of parameter
permutations over real-life (cellular) networks, we aim to
provide a number of different network emulation models
so we can perform our tests in a locally controlled net-
work. We have implemented two models so far: fixed
and dynamic.

Table 2: Fixed network model.

preset throughput (in kbit) latency / jitter (in ms) % loss

wifi 29000 75 / 5 0

wifi loss 29000 75 / 5 0.2

4g 4200 95 / 10 0

4g loss 4200 95 / 10 0.6

3g loss 750 170 / 20 1

2g loss 500 220 / 20 1.2

The fixed traffic model (see Table 2) was inspired by
the Google Chrome devtools throttling settings1, with an
added 75ms round-trip latency to simulate transatlantic
traffic2 and added loss based on Tyler Treat’s setup3.
This model simply sets and keeps the parameters for TC
NETEM constant for the duration of the test. This means
there is a constant random packet loss.

The dynamic model uses previous work (Goel et al.,
2016) which introduced a model based on real-life cellular
network observations. The model has six levels of “user
experience (UX)”: NoLoss, Good, Fair, Passable, Poor
and VeryPoor. Each UX level contains a long list of values
for bandwidth, latency and loss. The model changes these
parameters in intervals of 70ms by picking the next value
from the list to simulate a real network. This means the
packet loss is more bursty than with the fixed model. For
details, please see their paper or the original source code4.

We mainly report results using the dynamic model
because, despite the fact that it only emulates cellular
networks, we feel it is most representative of a realistic
network and makes it easier for others to compare our
results to related work.

1https://goo.gl/IBMtmV
2http://www.verizonenterprise.com/about/network/latency/
3https://github.com/tylertreat/comcast
4https://github.com/akamai/cell-emulation-util



4 HTTPS/2 IMPACT ON HTTP/1
BEST PRACTICES

In this section we study the impact of applying h2 on
three well-known h1 performance best practices: re-
source concatenation, resource embedding and hostname
sharding. We create a number of test cases for each best
practice to assess its performance in isolation of other fac-
tors. To be able to compare our results using the SpeedIn-
dex metric, we make sure our loaded resources have a
strong visual impact on the visible “above the fold” part
of the website. All images are included as <img> and
all CSS and JavaScript (JS) resources use code to style
a <div> element. Inconsistencies between loadEven-
tEnd and SpeedIndex results can indicate that a resource
was fast to load but slow to have visual impact.

Most of our graphs show loadEventEnd on the y-
axis. Individual data points are aggregates of 10 to 100
page loads. Each experiment was run at least five times.
Unexpected datapoints and anomalies across all runs were
further confirmed by manually checking the collected out-
put of individual page loads (e.g., screenshots/videos, .har
files, waterfall charts). The line plots show the median val-
ues under Good network conditions. The box plots show
the median as a horizontal bar and the average as a black
square dot, along with the 25th and 75th percentiles and
min and max values as the whiskers. Some box plots use
a logarithmic scale on the y-axis to allow for large values.

4.1 Concatenation

h1 Is slow in loading a large amount of files at the same
time because it can only fetch a single resource at a time
per connection and the browser often limits h1 to six
parallel connections per hostname. This means requests
can be stalled, waiting for the completion of previously
issued requests. The best practice of concatenation
helps by merging multiple sub-resources together into
a single, larger file. This lowers the number of individual
requests but at the expense of reduced cacheability: if
a single sub-resource is updated, the whole concatenated
file needs to be re-fetched as well. Note that image
concatenation requires additional CSS code as well, to
display only one specific area of the bigger image at
every smaller image location. Because h2 can multiplex
many requests per connection, this optimization should
not be needed, and we can request many small files and
keep fine-grained cacheability.

4.1.1 Concatenation for Images (Spriting)

We observe three experiments: (a) a large number (i.e.,
380) of small files, (b) a medium number (i.e., 42) of
medium sized files and (c) a medium number (i.e., 30) of

large files. In Figure 2 we compare the concatenated ver-
sions of the images (left) to loading individual files (right).
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Figure 2: Synthetic test cases for image concatenation. h2
performs well for many small files but deteriorates for less or
larger files.

For Figure 2(a) we observe that h2 significantly out-
performs h1 when there is no concatenation, but that a
single spritesheet largely reduces h2’s benefit and brings
it somewhat on a par with h1. This is expected as h1
is limited to requesting six images in parallel and keep
the others waiting, while the single h2 connection can
efficiently multiplex the many small files. It is of note
that the concatenated version is two to five times faster,
even though (in a rare compression fluke) its file size is
much higher than the sum of the individual file sizes.

Figure 2(b) shows relatively little differences and no
clear consistent winners between the concatenated and
separate files. This is expected for h2, as in both cases it
sends the same amount of data over the same connection,
but not for h1. We would expect the six parallel connec-
tions to have more impact, but it seems they can actually
hinder on good network conditions. This is probably be-
cause of the limited bandwidth in our emulated network,



where the six connections contend with each other, while
a single connection can consume the full bandwidth by
itself. Comparing this to (a), we see that here h2 does
not get significantly faster for the concatenated version.
This indicates that the higher measurements in (a)(right)
are in large part due to the overhead of handling the many
individual requests.

Lastly, in Figure 2(c) we see that h2 struggles to
keep up with h1 for the larger files and performs sig-
nificantly worse under bad network conditions (note the
y-axis’ log scale). Due to the much larger amount of
data, the six parallel connections do help here, packet loss
impacts the single h2 connection more.

The SpeedIndex measurements (not included here)
show very similar trends.

4.1.2 Concatenation for CSS and JavaScript

We observe two experiments: 500 <div>-elements are
styled using simple CSS files (single CSS rule per <div>)
(left) and complex JS files (multiple statements per
<div>) (right). We split the code over multiple files,
from one file (full concatenation) to 500 files (no concate-
nation). Figure 3 shows full results in (a) and shows more
detail for one to 30 files in (b).
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Figure 3: Synthetic test cases for CSS/JS concatenation. h2
performs well for many files but there is no clear winner for the
more concatenated cases.

The big-picture trends in (a) look very similar to Fig-
ure 2(a): h2 again clearly outperforms h1 as the num-
ber of files rises and shows a much better progression
towards larger file quantities than the quasi linear growth
of h1. Interesting is also the performance of Firefox:

while its h1 results (not shown in Figure 3) look almost
identical to Chrome, the h2 values are much lower, in-
dicating that it has a more efficient implementation that
scales better to numerous files.

Looking at the zoomed-in data in (b), we do see some-
what different patterns. For the simple CSS files the
trends are relatively stable, with h1c outperforming h2
and h2 beating h1s. This changes at about 30-40 files,
where h2 finally takes the lead. For the more complex
JS files (right), this tipping point comes much later around
100 files. The measurements for one to ten JS files are also
much more irregular when compared to CSS. Because h1
shows the same incongruous data as h2, we can assume
this is due to how the browser handles the computation of
the larger incoming files. A multithreaded or otherwise
optimized handling of multiple files can depend on how
many files are being handled at the same time. This would
also explain the very high measurements of a single JS
file in Firefox (consistent over multiple runs of the experi-
ment). In additional tests, smaller JS files and larger CSS
files also showed much more stable trends, indicating that
especially large JS files incur a large computational over-
head. Note as well that the timings for a smaller amount
of JS files are sometimes higher than those for the larger
amounts, indicating that concatenation might not always
be optimal here (for none of the protocols).

Poor network conditions (not shown here) indicate
similar trends to Good networks, but the h2 tipping
points are later: 40-50 files for simple CSS, 150 for com-
plex JS.

4.1.3 Concatenation for CSS and JavaScript With
SpeedIndex
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Figure 4: Synthetic test cases for CSS/JS concatenation
(SpeedIndex). h2 SpeedIndex for JavaScript indicates that it is
much slower to start rendering than h1.

For the tests in the previous section, the SpeedIndex re-
sults were significantly different and merit separate dis-
cussion. Figure 4 shows the same experiment but depicts
SpeedIndex for Google Chrome. We notice that the data
for the simple CSS files (left) looks very similar to Figure
3, but the results for the complex JS files (right) do not.
Since the SpeedIndex metric gives an indication of how



Table 3: Observed browser render-blocking behavior. Chrome
blocks on too much, while Firefox doesn’t seem to block on
anything.

Expected <head> Chrome <head> Firefox <head>

CSS blocking blocking progressive

JavaScript blocking progressive progressive

Expected bottom Chrome bottom Firefox bottom

CSS progressive blocking progressive

JavaScript progressive progressive progressive

progressively a page renders (Section 3) and because we
know from Figure 3 that h1 takes much longer than h2
to load large amounts of files, we can only conclude that
under h2 the JS files take much longer to have an effect
on the page rendering, to skew the SpeedIndex in this way.

We manually checked this assumption using screen-
shots and found that for h1 the JS was indeed progres-
sively executed as soon as a file was downloaded, but
with h2 the JS took effect in “chunks”: in larger groups
of 50 to 300 files at a time and mostly towards the end
of the page load. We first assumed this was because
of erroneous multiplexing: if all the files are given the
same priority and weight, their data will be interleaved,
delaying all files. Captures of h2 frame data however
showed each file i was requested as dependent on file
i - 1, ensuring that files were fully delivered in request
order. We can once more only conclude that the browser
implementation somehow delays the processing of the
files, either because of their JS complexity or because
the handling of many concurrent h2 streams is not opti-
mized yet. This argument is supported by the SpeedIndex
results for Firefox (not shown here), as its h2 values are
much lower than those of h1, indicating that Firefox has
a more efficient implementation.

This does not explain why the h1 SpeedIndex results
for the simple CSS files are so different compared to those
of JavaScript: if they would also be applied individually
as soon as they were downloaded, the h1 SpeedIndex
values would be much lower. Manual investigation re-
vealed that the browser waits for all the CSS files to be
downloaded before applying them all at once for both h1
and h2. While there does exist the concept of “render-
blocking” CSS (and JS), where this behavior is actually
wanted for all files in the <head> of a page, we pur-
posefully hoped to avoid this issue by loading the CSS
and JS files on the bottom of the HTML document. It
seems Chrome always fully blocks rendering on all CSS
files included anywhere in the page, making SpeedIndex
indeed almost completely identical to loadEventEnd.
Comparison with Firefox shows different conventions:
here even CSS files that should be render-blocking (i.e.,
in the <head>) were just applied progressively instead.

Table 3 shows the observed behaviors from our synthetic
tests and highlights where we would expect different im-
plementations. We leave a deeper investigation into the
reasons for this behavior and how well it generalizes to
other cases for future work. Note that progressive for h2
still means the files are applied in larger chunks instead
of individually.

4.2 Embedding and HTTP/2 Push

When loading a web page, the browser first requests
the HTML file and only discovers it needs additional
CSS/JS files when parsing the HTML. It then waits for
any render-blocking files (see Section 4.1.3) to be fully
downloaded before starting to render the HTML. This
means a minimum of two round-trip times (RTTs) be-
tween the initial HTML request and “first paint”. It is
however also possible to embed (or “inline”) CSS and
JS code directly in the HTML document (e.g., through
<style> and <script> tags). That way, the code is
received after one RTT and rendering can start sooner.
The main downside is that the embedded code cannot be
cached separately.

The HTTP/2 specification also recognizes the need
to eliminate this second RTT and includes a mechanism
called h2 (Server) Push (Belshe et al., 2015). The server
can send along additional files with the first HTML re-
sponse (or indeed, any response) without having to em-
bed their contents in the HTML, allowing the files to be
cached. Unlike embedding, Push can also properly han-
dle binary resources (e.g., images, fonts). As such, Push
should be a drop-in replacement for embedding.

However, while this all works well theoretically, in
practice these approaches are hindered by TCP’s “slow
start” congestion control algorithm. TCP sends only a
small amount of data at the start of the connection and
then exponentially ramps up its speed if no packet loss or
delays are present. In practice, the TCP data window at
the start is about 14 KB for modern Linux kernels (used
in our experiments) (Marx, 2016). Thus if the HTML
file (including the embedded CSS/JS) is larger than 14
KB, the remainder has to wait for the second “send burst”,
arriving only after two RTTs. The best practice is thus
to embed only a limited amount of so-called “critical
CSS” that renders a good first impression of the page
(e.g., general layout, building blocks, background colors)
and load the other CSS using <link> references. Push
has a similar problem: if the HTML fills up the initial 14
KB, push will have no benefit (Bergan et al., 2016).

Rather than create our own test case we use the ex-
isting Push demo by Bradley Fazon5. This case uses the
www.eff.org frontpage as the reference point which we
manually adjust to include the discussed optimizations.

5https://github.com/bradleyfalzon/h2push-demo



This page has a single “critical CSS” file and a good mix
of additional CSS, JS and image files without being too
complex. We verify our observations using other syn-
thetic test cases. We show the results from tests using the
Apache webserver because NGINX does not yet support
h2 Push. We show the SpeedIndex results because these
should be most affected.

4.2.1 Embedding

In Figure 5 we observe a single experiment: we embed the
“critical CSS“ file in the <head> and move the other CSS
<link> and JS <script> URLs to the bottom of the
page, so they should not be render-blocking. We compare
this optimization (left) to the original page (right).
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Figure 5: Realistic test case for embedding. The technique has
a low impact and is similar across protocols.

As we can see, embedding seems only to lead to
very limited SpeedIndex gains. This is unexpected, since
manual confirmation of the results clearly shows that the
embedded CSS does take effect early in the page and
that it is not limited by the render-blocking behavior of
Chrome (see Section 4.1.3). This reduced impact on
SpeedIndex has two reasons:

Firstly, the embedded CSS content is larger than the
14 KB TCP first transmission limit. Consequently the
bottom portion of the HTML containing the remaining
CSS/JS files is now only received after the second RTT.
Since the browser needs to parse the HTML to discover
these additional dependencies and issue requests for them,
the fetching of the other files is delayed, which in turn
postpones the total page load and render. This explains
why we often see higher loadEventEnd values for
pages that use embedding, even if the SpeedIndex drops.

Secondly, this optimization will primarily work well
when the network is the bottleneck and not the CPU speed
of the device. As parsing CSS and rendering both cost
CPU resources, fast devices are more likely to have more
CPU idle time available for partial rendering in between
receiving the CSS data, while slow devices will have
no such budget and spend all their time parsing CSS;
the observed end result is similar to the normal render-
blocking behavior. We can somewhat see the higher

impact on slower networks in Figure 5 and a little more
clearly in Figure 6.

We can conclude that embedding is more of a micro-
optimization and that it requires careful fine-tuning to
lead to good results.

4.2.2 HTTP/2 Push

With h2 Push, the HTML is always fully sent before
the pushed data. As such, we need to make sure the
HTML code is smaller than 14 KB so the window can
also include the pushed CSS (Bergan et al., 2016) (note
that this also means Push does not suffer from the “late
resource discovery” problem seen when embedding). We
manually remove some metadata from the eff.org HTML
and enable gzip compression, reducing the on-network
HTML size from 42 KB to 9 KB.
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Figure 6: Realistic test case for HTTP/2 Push. Pushing is similar
to embedding. Pushing the wrong assets or in the wrong order
can deteriorate performance.

In Figure 6 we observe six different experiments
based on the adjusted eff.org test case: (1) embed a single
CSS file (no push, similar to Section 4.2.1), (2) push the
single CSS file, (3) push all the CSS/JS files (10 files),
(4) push all (images + CSS/JS + one font), (5) push all
images (18 files) and (6) the reference measurement (orig-
inal, similar to Section 4.2.1). We see that pushing the
“critical CSS” file is indeed very similar to embedding
it. It is unexpected however that pushing all CSS/JS per-
forms a little better than just the “critical CSS” in the
Good network condition. We found that in practice the
initial data window is often a bit larger than 14 KB, so
it can accommodate more than just the single CSS file.
However, this is not always the case and other runs of the
same experiment show less optimal results (which can
also be seen in the Poor network condition in Figure 6
(right)). Given a larger data window, the “Push all” test
case should perform similarly, but it is consistently a bit
higher. It turned out that we pushed the single font file at
the very end, after all the images. The font data should
have been given a higher h2 priority than the images, but
due to a recently discovered Apache bug6 this was not the

6https://icing.github.io/mod h2/nimble.html



case and the font data had to wait, delaying the final page
load and render. This also explains why pushing just the
images performs worse than the reference: the much more
important CSS and JS is delayed behind the image data.

These experiments clearly show that, similarly to em-
bedding, Push is hard to fine-tune and limited in the
benefit it can deliver. We had to make several manual
changes to the original website to get any measurable
benefit at all, at least in the context of the initial page load
and pushing along with the first HTML request.

However, the true power of Push might be that it can
also send data along with non-HTML files. In a separate
synthetic experiment we used JavaScript to fetch a .json
file that contains a list of image URLs to then add them
to the page as <img> elements. This emulates how a
REST API can be used in typical modern “Single Page
App” frameworks. We make sure the initial HTML is
large to “warm up” the TCP connection (Bergan et al.,
2016). Along with the .json response, the server then also
Pushes the images that are referenced within. This did
considerably speed up the rendering process, especially
on bad networks. This illustrates that Push can have
many other applications than just as a replacement for
embedding during the initial page load.

4.3 Sharding

Browsers set a maximum of six parallel connections per
hostname but this is not enough for loading large amounts
of files and thus modern, complex websites over h1 (see
Section 4.1). Browsers however also observe a higher
total limit of 17 to 60 open connections7 and so it has
become common practice to distribute files over multiple
hostnames/servers (called sharding), since each can have
its own group of six connections. This can for example be
done using Content Delivery Networks (CDNs) to host
“static” content. The main downside of sharding is the
increased overhead: the setup becomes more complex
and additional connections require extra computational
resources and hardware.

On the other side, h2 wants to make optimal use of
just a single connection and actively discourages parallel
channels. The h2 specification even includes a mecha-
nism for coalescing requested HTTP connections to sepa-
rate hostnames onto a single TCP connection if the hosts
use the same HTTPS certificate and resolve to the same
IP address (Belshe et al., 2015). h2 Push can also only
be used for resources on the same domain.

4.3.1 Sharding for Images

We observe three experiments, identical to the unconcate-
nated setup in Section 4.1.1: (a) 380 small files, (b) 42

7http://www.browserscope.org/

NoLoss Good Fair Poor NoLoss Good Fair Poor

Network Condition

0.5k

1k

2k

5k

10k
15k
20k
30k

lo
a
d
E
v
e
n
tE
n
d
 (
m
s)

380 small icons, 502 KB over 4 hosts 380 small icons, 502 KB over single host

(a)

HTTP/1

HTTPS/1

HTTPS/2

NoLoss Good Fair Poor NoLoss Good Fair Poor

Network Condition

0.5k

1k

2k

5k

10k
15k
20k
30k

lo
a

d
E

v
e

n
tE

n
d

 (
m

s)

42 medium images, 1 MB over 4 hosts 42 medium images, 1 MB over single host

(b)

HTTP/1

HTTPS/1

HTTPS/2

NoLoss Good Fair Poor NoLoss Good Fair Poor

Network Condition

0.5k

1k

2k

5k

10k
15k
20k
30k

lo
a

d
E

v
e

n
tE

n
d

 (
m

s)

30 images, 10.4 MB over 4 hosts 30 images, 10.4 MB over single host

(c)

HTTP/1

HTTPS/1

HTTPS/2

Figure 7: Synthetic test cases for image sharding. h2 bene-
fits for larger files but deteriorates for many smaller files. h1
always improves.

medium sized files and (c) 30 large files. Figure 7 com-
pares a sharded version over four hostnames (left) with
the unsharded version (right). In practice, over h1 the
browser will open the maximum amount of connections
(24, six per hostname) and a single connection per host-
name for h2 (four in our case). The observed trends are
similar for CSS/JS files.

Firstly, in Figure 7 (a) we observe that sharding
deteriorates h2 performance, while only marginally
benefiting h1. Because the files are that small, h2’s
multiplexing was at its best in the single host case
and maximized the single connection’s throughput,
while it now has less data to multiplex per connection.
Conversely, h1 now has more connections but still
suffers from HOL blocking on the small files.

In contrast, (b) shows inconsistent behavior when
sharding: sometimes it helps and sometimes it hurts h2;
it shows good benefits for h1c but less impressive im-
provements for h1s. We posit that the additional over-
head of setting up secured HTTPS connections (both
for h1s and h2s) limits the effectiveness of the higher
parallel throughput.



Lastly, (c) clearly shows why sharding is consid-
ered an h1 best practice: it can improve performance
by over 50%, especially in bad network conditions. h2
also profits significantly from the multi-host setup. For
these larger files, multiple connections provide the much-
needed higher throughput. They also help mitigate HOL
blocking for h1 and lessen the impact of loss when com-
pared to a single h2 connection.

Overall we observe similar results to those of Goel
et al. (Goel et al., 2016): for many, smaller objects,
sharding can hurt h2 performance, but not considerably.
For medium-sized websites, sharding usually helps but
not always substantially. The optimization has the most
impact on websites with large objects, for both protocols.
We also performed experiments with two and three hosts
and found that if sharding helps for h2, sharding over
more hosts helps more, but there are diminishing returns
with each increase in the amount of hosts.

Additionally, h2 has another important feature that is
impacted heavily by sharding: HPACK header compres-
sion (Belshe et al., 2015). HTTP headers often contain
duplicate information and can be efficiently compressed.
Because HPACK partly uses a shared compression dic-
tionary per connection that is built up at runtime, we
see its effectiveness decrease in the case of sharding, as
the algorithm has less data to learn from/to re-use. Ta-
ble 4 shows how the total bytes sent by Google Chrome
(composed mainly of HTTP headers) is different with
and without sharding. h2s clearly outperforms h1s, but
sharding leads to a decrease of its effectiveness by 25%
to 50%. Note that h1 does not employ any header com-
pression.

Table 4: Total bytes sent by Google Chrome (∼ HTTP headers)
and ratio to total page size. For many small files, the HTTP
header overhead is significant.

File
count Protocol 1 host

BytesOut
4 hosts

BytesOut
Total

page size

4 hosts
% of total
page size

42 files h2s 649 1362 1075000 0.1%

h1s 2786 3346 1075000 0.3%

400 files h2s 29580 38680 610000 6%

h1s 165300 177600 610000 19%

5 INTERPRETING RESULTS
FROM REALISTIC WEBSITES

Synthetic test cases are useful to assess individual tech-
niques in isolation but they are often not very representa-
tive for real websites. We now look at some more realistic
test cases. Our goal here is not to come to definitive con-

clusions about h2 or h1 performance but rather to show
the difficulties involved in interpreting measurements.

We present results for nine different websites (1:
barco.com, 2: bbc.com, 3: demo.cards, 4: deredactie.be,
5: hbvl.be, 6: healthcare.gov, 7: standaard.be, 8: uhas-
selt.be, 9: yappa.be). To make them easier to compare to
the clearest trends in the synthetic experiments (Section
4.1.1), we select image-heavy websites in two categories:
(A) media/news sites with typically large HTML content
and many smaller images (nr. 2, 4, 5 and 7) and (B) com-
pany/product landing pages with “hero image(s)”(large
images taking up most of the “above the fold” space) (nr.
1, 3, 6, 8 and 9). These websites present a good mix:
we have both optimized (using concatenation and em-
bedding) and unoptimized pages, complex and relatively
simple sites. For more details we refer to our website.

We simulate what would happen if a developer would
switch their h1 site to h2 by naively moving all their
own assets over to a single server (disabling sharding) but
still downloading some external assets from third party
servers (e.g., Google analytics, some JS libraries). This
approach is similar to (Wang et al., 2014). We download
the websites to our local webserver using a custom wget
tool that rewrites the main assets to a single hostname,
and serve them using Speeder.

5.1 Results

In figure 8 we show the median loadEventEnd and
SpeedIndex measurements for the nine websites over
Good and Poor networks, loaded in Chrome and Fire-
fox. Globally, we can state that loadEventEnd and
SpeedIndex are often similar for the Good network, in-
dicating that our sites are mostly network-dependent, as
the rendering waits for assets to come in. Poor network
conditions can have a very large impact. In various cases
h2’s SpeedIndex is far above that of h1 even if their
loadEventEnd values are similar, indicating that h2 is
slower to start rendering, consistent with our observations
in Section 4.1.3. h1c is faster than h2 in almost all of
the cases and h2 is almost never much faster than h1s.
Note that this is against our expectations, as h1 has to
make due without the benefits of sharding.

We now highlight how important it is to compare
different metrics and setups by looking more closely at
a few of the individual sites. For example, if we were
developing site 8 and we would only look at Figure 8
(a) and (b), we might conclude that h2 can give a huge
speedup on Good networks, which is then possibly re-
versed on Poor networks. However, comparing this to
Figure 8 (c) and (d) shows that the SpeedIndex values do
not exhibit these anomalies. We indeed found that one
of the externally loaded (non render-blocking) JavaScript
files sometimes took a very long time to download and
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Figure 8: Nine realistic websites on dynamic Good and dynamic
Poor network models. There is very similar performance under
Good network conditions, but h2 clearly suffers from Poor
conditions.

replaced it with a locally hosted version. This completely
removed the anomalies for the Good network, but did not
significantly affect the trends for the Poor network. As it
turned out, the bottleneck was in downloading the site’s
many large assets. As the network experienced more
loss and less bandwidth, the h2 connection suffered and
the limited number of six parallel h1 connections also
could no longer keep up. Not comparing loadEventEnd
to SpeedIndex, or Poor to Good networks might have
led us to miss this issue and possibly draw the wrong
conclusions for this datapoint.

As developers of site 6 we would be quite happy, since
this is one of the faster websites with very little difference
between h1 and h2 for the Good network and incon-
sistent but similar results on the Poor network. Looking
more closely we however noticed that the very large hero
image was taking up more than half of the total load time.
The image URL was included halfway down the HTML
page, behind CSS/JS files and other images. By the time
the browser discovered this resource, the six parallel h1
connections were already taken and because browsers
currently assign the same h2 priority to all images, the
hero image had to wait behind the other images. Simply
concatenating some of the JS files ensured that there was
an h1 connection available by the time the hero image
was discovered and the SpeedIndex value was cut in half
for h1. However h2 was still just naively prioritizing
the hero image behind the other assets. Moving the hero
image URL to before the other images was the solution.
Sharding the hero image to a different hostname would
likely have had a similar impact. This problem was not ev-
ident from the presented graphs, only from looking at the
waterfall charts. Even when comparing many different
test setups, some problems will still remain hidden.

6 DISCUSSION

Conceptually, the ideal h2 setup will use a single TCP
connection to multiplex a large amount of small and indi-
vidually cacheable site resources. This alleviates the h1
application-layer HOL blocking and helps to reduce the
overhead of many parallel connections, while also max-
imizing the efficiency of the underlying TCP protocol.
Together with advanced resource priorities and h2 Push
this can lead to (much) faster load times than are possible
today over h1, with much less overhead.

However, as our experiments have shown, this ideal
setup is not yet viable. While h2 is indeed faster than
h1, when loading many files (see Figures 2 and 3), it is
still often slower than loading concatenated versions of
those files (see Section 4.1). Looking at the SpeedIndex
values (see Figures 4 and 8) also shows that h2 is fre-
quently later to start rendering the page than h1. h2 also
struggles when downloading large files (see Figures 2 and
7) and can quickly deteriorate when used in bad network
conditions. In our observations, h2 is in most cases cur-
rently either a little slower than or on a par with h1 and
shows both the most improvement and worst deterioration
in more extreme circumstances.

The good news is that almost all of the encountered
problems limiting h2’s performance are due to inefficient
implementations in the used server and browser software.
Firstly, while loading many smaller files incurs its own
considerable overhead, comparing Chrome and Firefox



in Figure 3 we can see that this overhead can be limited
extensively, lessening the need for concatenation (though
possibly never completely removing it). Secondly, the fact
that h2 is later to start rendering than h1 is also due to
ineffective processing of the h2 data, since we have con-
firmed that resources are received well on-time to enable
faster first paints, see Section 4.1.3. It is also interesting
to note that Firefox seems to have especially optimized
its pipeline for large amounts of files, since it outshines
Chrome for synthetic pages in Figure 3 but falls behind
for more realistic content in Figure 8. Thirdly, cases in
which h2 underperformed while using h2 Push in Sec-
tion 4.2.2 or loading realistic sites in Section 5.1, could be
attributed to the server implementation not correctly (re-
)prioritizing individual assets. As these implementations
mature, we can expect many of these issues to be resolved.

However, h2 still retains some core limitations,
mostly due to its single underlying TCP connection,
which seems to simultaneously be its greatest strength and
weakness. TCP’s congestion control algorithms can lead
it to suffer significantly from packet loss on poor networks
(most obvious when downloading multiple large files, see
Figures 2 and 7) and can heavily impact the effectiveness
of h2 and resource embedding on newly established con-
nections (see Section 4.2). We have to nuance these state-
ments however, as in practice h2 actually performs quite
admirably and usually does not suffer more from bad
networks than h1, despite using fewer connections.

Recognizing that these underlying h2 performance
problems stem primarily from the use of TCP, in the new
QUIC protocol (Carlucci et al., 2015) Google and its
partners implement their own application-layer reliability
and congestion control logic on top of UDP. They remove
the transport-layer HOL blocking by allowing out-of-
order delivery of packets, differently handle re-transmits
in the case of loss, reduce the amount of round-trips
needed to establish a new connection and allow larger
initial data transmissions. Running h2 on top of QUIC
can greatly benefit h2’s multiplexing setup.

Until the h2 implementations mature and/or the
QUIC protocol is finalized however, fully switching to the
ideal h2 approach could severely reduce the observed
performance, especially when looking at the SpeedIndex
measurements for poor networks in Section 5.1. Luckily,
the discussed h1 best practices (resource concatenation,
resource embedding and hostname sharding) have a simi-
lar impact on both h1 and h2 in non-extreme cases (see
Section 4). This means that most sites that are currently
optimized for h1 can quickly and safely transition to h2
(or offer users both protocols in tandem) with a mini-
mum of changes and without suffering large performance
penalties. More work may however be needed for sites
who’s users are mostly on bad networks or sites that are
using the unencrypted h1c, which is almost always faster

than h2. The new h2 Push mechanism looks especially
promising on “warm” TCP connections but seems diffi-
cult to fine-tune when pushing files along with the initial
HTML file (see Section 4.2.2).

Finally, using the Speeder framework to run our ex-
periments on a large number of emulated test setup per-
mutations has shown to be a useful approach. Many
implementation inefficiencies were discovered by com-
paring different metrics, browsers and network conditions
and looking for inconsistencies. Analyzing and compar-
ing both synthetic and realistic test data was also effective,
with the more realistic results indeed somewhat dampen-
ing the more extreme synthetic results but largely showing
similar trends. Furthermore, the two concrete website ex-
amples in Section 5.1 show that individual datapoints can
have subtle underlying reasons for their observed values,
some having little to do with the underlying protocol or
implementations but originating in the HTML structure
itself. They also show that even a deep comparison of
different setups is not always enough to find important
problems and that tools should also support manual con-
firmation of results through a variety of visualizations.
We can conclude that the Speeder framework is a ver-
satile platform usable not only by researchers but also
developers to assess both global trends for comparisons,
and local optimizations for individual websites.

7 CONCLUSION

In this work we have used the Speeder framework to
run experiments for both synthetic and realistic test cases
over a variety of different setups, allowing us to compare
h2s to h1s and h1c, Chrome to Firefox, loadEven-
tEnd to SpeedIndex and good to bad network conditions.

Our results have shown that most of the cases in which
h2 currently underperforms are caused by unoptimized
implementations and that most of the real inherent h2
problems are caused by the use of a single underlying
TCP connection. This can lead h2 performance to de-
teriorate on poor networks with high packet loss, but in
practice we have seen that the difference with h1 under
these conditions is usually not that large. Globally speak-
ing, we find that h2 is often on a par with h1s and a
little slower than h1c.

We have found that all three discussed h1 best prac-
tices of resource concatenation, resource embedding and
hostname sharding perform similarly over h1 and h2
in non-extreme circumstances. Especially concatenation
and sharding can have a large impact on performance,
while embedding and its h2 Push alternative are ob-
served to be micro-optimizations that are difficult to fine-
tune (at least for the initial page load). These findings
lead us to recommend to developers that they often do



not have to significantly alter their current setups when
deciding to migrate from h1 to h2 or to support both
versions in parallel.

We argue that, in time, the envisioned ideal h2
model of using many small, individually cacheable files
over a single, well filled TCP connection will become
viable with improving browser/server implementations
and the QUIC protocol.

We will keep expanding and sharing the Speeder
framework (e.g., with the h2o server, Google Lighthouse,
sitespeed.io v4), using it to follow browser implementa-
tion changes, as well as more deeply investigate the possi-
bilities of h2 Push and h2 priorities in various settings.
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