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Background Memory Hierarchy Memory type Size Bandwidth
CPU registers few 1 TB/s
e Processor stalls due to discrepancy between memory bandwidth and e Memory hierarchy places CPU caches KBs 100 GB/s
processor speed importance on locality Main memory GBs 10 GB/s
o Efhiciency determined by e Multiple cores needed to saturate Disk storage Bs 100 MB/s
operations '
operational intensity = #op memory bandwidth
byte e Per core memory bandwidth 50 e
e Perform useful computation during otherwise stalled cycles diminiches die to shared on-die % — 40 - .
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Original algorithms Restructured algorithms —~
Each core accesses all data Data is partitioned across cores <= 150 fé Egizzzéllocggises"m cores e _‘:j:‘~®--®-..® ‘Z@ . .
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evaluates the whole Bayesian likelihood
at a proposal

(#chains = #proposals)

Stalled cycles while waiting on data to
move from memory to CPU caches

evaluates part of the Bayesian likelihood
at each proposal

(#proposals # #cores)

Perform useful work during otherwise
stalled cycles

Proposals (#)

Core 1 Core n
core | 1D
e Reducing #chains with the multiple chain sampler and more than twice as many
MMM Y(Y|Y proposal as cores with the multiple proposal sampler gives optimal performance
| e Likelihoods that cannot be factored is part of future work
Core n h e Automatic tuning of #chains and #proposals will be studied

e Applying methodology to other algorithms will be explored next
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