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Introduction

Background

• Processor stalls due to discrepancy between memory bandwidth and
processor speed

• Efficiency determined by

operational intensity =
#operations

byte

• Perform useful computation during otherwise stalled cycles

• Demonstrated with two Markov chain Monte Carlo samplers on Bayesian
Logistic Regression target in big data and machine learning context

P (X|θ) =
∏
i

1

1 + eyixi·θ

Memory Hierarchy

• Memory hierarchy places
importance on locality

• Multiple cores needed to saturate
memory bandwidth

• Per core memory bandwidth
diminishes due to shared on-die
memory controller

• Operational intensity tends to drop
if #cores increases

Memory type Size Bandwidth
CPU registers few 1 TB/s
CPU caches KBs 100 GB/s
Main memory GBs 10 GB/s
Disk storage TBs 100 MB/s
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Sampler Algorithms

Multiple Chain

• Evolve multiple independent
chains in parallel

• Discard some fraction, ρ, of
samples from each chain as
burn-in

• Speedup from parallelism is
limited by 1/ρ

Multiple Proposal

• Evolve a single chain

• Sample from set of proposals
around current proposal

• Discard ρ fraction of samples
from chain as burn-in

Original vs Restructured Algorithms

Original algorithms Restructured algorithms
Each core accesses all data Data is partitioned across cores
Multiple Chain: Each core runs an
independent chain

Multiple Chain: Each core works on
part of a each chain

(#chains = #cores) (#chains 6= #cores)
Multiple Proposal: Each core
evaluates the whole Bayesian likelihood
at a proposal

Multiple Proposal: Each core
evaluates part of the Bayesian likelihood
at each proposal

(#chains = #proposals) (#proposals 6= #cores)
Stalled cycles while waiting on data to
move from memory to CPU caches

Perform useful work during otherwise
stalled cycles
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Results

Multiple Chain (higher is better)
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Multiple Proposal
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Conclusion and Future Work

• Reducing #chains with the multiple chain sampler and more than twice as many
proposal as cores with the multiple proposal sampler gives optimal performance

• Likelihoods that cannot be factored is part of future work

• Automatic tuning of #chains and #proposals will be studied

• Applying methodology to other algorithms will be explored next
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