
Improving Operational Intensity in
Data Bound Markov Chain Monte Carlo

1Balazs Nemeth, 1,2Tom Haber, 2Thomas J. Ashby, and 1Wim Lamotte
1EDM, Hasselt University, Belgium 2Exascience Lab, imec, Belgium

Improving Operational Intensity in
Data Bound Markov Chain Monte Carlo

1Balazs Nemeth, 1,2Tom Haber, 2Thomas J. Ashby, and 1Wim Lamotte
1EDM, Hasselt University, Belgium 2Exascience Lab, imec, Belgium

Introduction

Background

• Processor stalls due to discrepancy between memory bandwidth and
processor speed

• Efficiency determined by

operational intensity =
#operations

byte

• Perform useful computation during otherwise stalled cycles

• Demonstrated with two Markov chain Monte Carlo samplers on Bayesian
Logistic Regression target in big data and machine learning context

P (X|θ) =
∏
i

1

1 + eyixi·θ

Memory Hierarchy

• Memory hierarchy places
importance on locality

• Multiple cores needed to saturate
memory bandwidth

• Per core memory bandwidth
diminishes due to shared on-die
memory controller

• Operational intensity tends to drop
if #cores increases

Memory type Size Bandwidth
CPU registers few 1 TB/s
CPU caches KBs 100 GB/s
Main memory GBs 10 GB/s
Disk storage TBs 100 MB/s

1 2 3 4 5 6 7 8 9
0
10
20
30
40
50

Cores (#)

B
an

dw
id

th
(G

B
/s

)

Per socket
Per core

Sampler Algorithms

Multiple Chain

• Evolve multiple independent
chains in parallel

• Discard some fraction, ρ, of
samples from each chain as
burn-in

• Speedup from parallelism is
limited by 1/ρ

Multiple Proposal

• Evolve a single chain

• Sample from set of proposals
around current proposal

• Discard ρ fraction of samples
from chain as burn-in

Original vs Restructured Algorithms

Original algorithms Restructured algorithms
Each core accesses all data Data is partitioned across cores
Multiple Chain: Each core runs an
independent chain

Multiple Chain: Each core works on
part of a each chain

(#chains = #cores) (#chains 6= #cores)
Multiple Proposal: Each core
evaluates the whole Bayesian likelihood
at a proposal

Multiple Proposal: Each core
evaluates part of the Bayesian likelihood
at each proposal

(#chains = #proposals) (#proposals 6= #cores)
Stalled cycles while waiting on data to
move from memory to CPU caches

Perform useful work during otherwise
stalled cycles

Core 1

Core 2

. . .

Core n

Core 1 Core 2 . . . Core n

Results

Multiple Chain (higher is better)

1 2 3 4 5 6 7 8 9
0
20
40
60

Cores (#)

S
am

pl
es

(#
/s

)

Basic # chains = # cores
optimal

1 2 3 4 5 6 7 8 9
1.1

3

5

Cores (#)

S
p

ee
du

p # chains = # cores
optimal

1 2 3 4 5 6 7 8 9 10 11 12 14 15
0

20

40

60

Chains (#)

S
am

pl
es

(#
/s

)

2 cores 4 cores 6 cores
8 cores 10 cores

Multiple Proposal

1 2 3 4 5 6 7 8 9
0

50

100

150

Cores (#)

S
am

pl
es

(#
/s

)

Basic (no SMT) Basic (SMT)
Restr. (no SMT)
Restr. (SMT)

1 2 3 4 5 6 7 8 9
2

3

4

Cores (#)

S
p

ee
du

p

no SMT
SMT

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

50

100

150

Proposals (#)

S
am

pl
es

(#
/s

)

2 cores 4 cores 6 cores
8 cores 10 cores

Conclusion and Future Work

• Reducing #chains with the multiple chain sampler and more than twice as many
proposal as cores with the multiple proposal sampler gives optimal performance

• Likelihoods that cannot be factored is part of future work

• Automatic tuning of #chains and #proposals will be studied

• Applying methodology to other algorithms will be explored next

Acknowledgments
Part of the work presented in this paper was funded by Johnson & Johnson. This project has
received funding from the European Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement no. 671555.


