Improving Operational Intensity in

Data Bound Markov Chain Monte Carlo
IBalazs Nemeth. 1?Tom Haber. ?Thomas J. Ashby, and IWim Lamotte

1ED|\/I, Hasselt University, Belgium 2Exascience Lab, imec, Belgium

Background Memory Hierarchy Memory type Size Bandwidth
CPU registers few 1 TB/s
e Processor stalls due to discrepancy between memory bandwidth and e Memory hierarchy places CPU caches KBs 100 GB/s
processor speed importance on locality Main memory GBs 10 GB/s
o Efhiciency determined by e Multiple cores needed to saturate Disk storage Bs 100 MB/s
operations '
operational intensity = #op memory bandwidth
byte e Per core memory bandwidth 50 e
e Perform useful computation during otherwise stalled cycles diminiches die to shared on-die % — 40 - .
e Demonstrated with two Markov chain Monte Carlo samplers on Bayesian memory controller 2 m 90 :P:; ic();eet
_ogistic Regression target in big data and machine learning context e Operational intensity tends to drop o§ 2 ?8
| if #cores increases ol TTTeee e
PXx|0)=1]] 1 2 3 4 5 6 7 8 9

1 + eviwid

(

(higher is better)

Multiple Chain Multiple Chain

e Evolve multiple independent 0 | | |
] _ ST 60 | * Basic -m # chains = # cores o 5 | - # chains = # cores
chains in parallel N s optimal = s optimal
, , o 40 e
e Discard some fraction, p, of Qe o O -m
. a 20 Q T
samples from each chain as = 0 N R i
burn-in 0 1 2 3 4 5 6 7 8 9 1 234567289
e Speedup from parallelism is Cores () Cores (#)
limited by 1/p
o E 60 [P & &2 cores-e-4 cores -a 6 cores
Multlple PI‘OpOSEIl H= ‘__._-_-_-_::2'.'_'_'_':':?& """"" o...___:Q ------ ® -¢- 8 cores-® 10 cores
©
e Evolve a single chain 3
Q)
e Sample from set of proposals 2

around current proposal

e Discard p fraction of samples

from chain as burn-in Multiple Proposal

E 150 | 4 Basic (no SMT) # Basic (SMT) 4 | »%no SMT
S~ -%-Restr. (no SMT) X Q- o SMT ot
N— 100 o Restr. (SMT) =
R R e 5
R e 2
3 L
1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
Cores (#) Cores (#)
Original algorithms Restructured algorithms —~
Each core accesses all data Data is partitioned across cores <= 150 fé Egizzzéllocggises"m cores e _‘:j:‘~®--®-..® ‘Z@ . .
Multiple Chain: Each core runs an Multiple Chain: Each core works on \5 100 ..'Z_'_'.f;f_': Z:A:’:
independent chain part of a each chain a5
: : &
(#chains = #cores) (#chains # F£cores) S0
Multiple Proposal: Each core Multiple Proposal: Each core 12 4 6 & 10 12 14 16 18 20 22 24 26 28 30

evaluates the whole Bayesian likelihood
at a proposal

(#chains = #proposals)

Stalled cycles while waiting on data to
move from memory to CPU caches

evaluates part of the Bayesian likelihood
at each proposal

(#proposals # #cores)

Perform useful work during otherwise
stalled cycles

Proposals (#)

Core 1 Core n
core | 1D
e Reducing #chains with the multiple chain sampler and more than twice as many
MMM Y(Y|Y proposal as cores with the multiple proposal sampler gives optimal performance
| e Likelihoods that cannot be factored is part of future work
Core n h e Automatic tuning of #chains and #proposals will be studied

e Applying methodology to other algorithms will be explored next

Acknowledgments

Part of the work presented in this paper was funded by Johnson & Johnson. This project has
received funding from the European Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement no. 671555.

»»|UHASSELT[EDM [LIeC

