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Abstract In this work, we construct novel discretizations for the unsteady
convection-diffusion equation. Our discretization relies on multiderivative time
integrators together with a novel discretization that reduces the total num-
ber of unkowns for the solver. These type of temporal discretizations come
from an umbrella class of methods that include Lax-Wendroff (Taylor) as well
as Runge-Kutta methods as special cases. We include two-point collocation
methods with multiple time derivatives as well as a sixth-order fully implicit
collocation method that only requires a total of three stages. Numerical re-
sults for a number of sample linear problems indicate the expected order of
accuracy and indicate we can take arbitrarily large time steps.

Keywords discontinuous Galerkin · convection-diffusion · implicit multi-
derivative · Lax-Wendroff · collocation methods

1 Introduction

We consider discretizations of the scalar convection-diffusion equation on a
two-dimensional domain Ω ⊂ R2:

∂tw +∇ · (cw − ε∇w) = g, ∀(x, t) ∈ Ω × (0, Tend], (1)

w(x, 0) = w0(x) ∀x ∈ Ω, (2)
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Hasselt University
Faculty of Sciences, Computational mathematics group
Agoralaan Gebouw D, BE-3590 Diepenbeek, Belgium
E-mail: jochen.schuetz@uhasselt.be, alexander.jaust@uhasselt.be

D.C. Seal
United States Naval Academy
Department of Mathematics
572C Holloway Road, Annapolis, MD 21402, USA
E-mail: seal@usna.edu
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where c ∈ R2, ε ∈ R≥0 and g ∈ L2(Ω × R+) are prescribed parameters. Our
aim is to apply a classical discontinuous Galerkin (DG) method to the spatial
part of (1), and to advance the solution in time with an implicit multiderivative
Runge-Kutta method [24]. The novelty in this work is the combination of these
implicit multiderivative methods with the discontinuous Galerkin method, and
the result is that we are able to take arbitrarily large time steps with high-order
solvers all the while reducing the total number of stages that would normally
be required to obtain the same order of accuracy.

1.1 Background

This work makes use of multistage multiderivative (MSMD) time integra-
tors, which are best described in the context of ordinary differential equations
(ODEs). For an ODE defined by ∂ty = f(y), multiderivative schemes make
use of higher temporal derivatives of the unknown solution y. These time
derivatives can be expressed recursively in terms of f and its derivatives. For
example, the second time derivative can be expressed as ∂tty = f ′(y)∂ty =
f ′(y)f(y), where f ′(y) is the Jacobian of f with respect to y. These higher
derivatives, together with additional stages, form part of the foundation of
all MSMD methods, as well as their even more general multistep-multistage-
multiderivative extensions [23].

Because additional information is fed into the algorithm, MSMD methods
can be constructed to obtain higher order of accuracy than a standard Runge-
Kutta scheme with the same number of stages. For example, with a total
of s stages, Butcher showed that it is possible to construct a Runge-Kutta
method that obtains (2s)th-order accuracy [9]. On the other hand, Stroud and
Stancu [47] have shown that it is possible to obtain a method with a total of
(2(s+M))th-order accuracy, when a total of M (even) derivatives of the right
hand side function are considered. This is because the additional degrees of
freedom required to obtain higher order accuracy can be found by searching
for higher derivatives in place of adding additional stages. Methods from this
class can be constructed as explicit or implicit solvers, and the implicit solvers
can be designed in a way such that they fulfill desirable properties, such as A-
stability [16]. A special case of these solvers include all Taylor methods, where
a total of one stage is considered, and the coefficients of the higher derivatives
are picked from the Taylor series of the solution. These can also be used to
construct implicit or explicit solvers. Note that introducing a time history of
the solution can serve as an alternative approach to increasing the order of a
(multistage) Runge-Kutta method. This defines the class of so-called general
linear methods [8, 10, 50], that can be thought of as a multistage multistep
method.

In the context of PDEs, the special case of a Taylor discretization is typ-
ically called a Lax-Wendroff solver. This is attributed to the original work of
Lax and Wendroff from 1960 where they construct a second-order solver by
incorporating the second derivative of the PDE into their method [32]. More
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recently, higher order (i.e., solvers with order greater than two) versions of
these solvers have been investigated for finite volume [25], finite difference
[12, 14, 30, 40, 46, 53], and discontinuous Galerkin discretizations [22, 35, 39].
A large community centered around Arbitrary DERivative (ADER) discretiza-
tions has been very successful with constructing arbitrary order explicit solvers
for hyperbolic problems in this category [7, 15, 48, 52], and much of their work
relies on symbolic software to generate their code base.

Although seldom used, the multistage multiderivative methods have been
investigated (for ODEs) since as early as the 1960’s for problems in celestial
mechanics [42], and later on for various other differential equations [19, 20].
The multistage multiderivative flavor of these solvers has only recently at-
tracted attention as a mechanism for discretizing partial differential equations
[45, 49]. In [13] it is shown that the multistage multiderivative formulations
can be constructed to contain the so-called strong stability preserving property,
and these solvers are currently being investigated as useful time discretizations
for equations of gas dynamics [33, 37, 38]. An extensive review of these meth-
ods can be found in [45].

In our previous work [28], we began an attempt to couple DG and two-
point two-derivative methods. This earlier work was based on the Cauchy-
Kovalevskaya procedure [41], which means that one takes the original PDE,
and expresses the temporal derivatives of the unknown w in terms of the spatial
derivatives. Based on this ansatz, we introduced additional variables modeling
the spatial derivatives of w to model wtt. This term is used to express the
spatial derivatives of w up to order four. This procedure has led to a method
that, although having quite large linear systems of equations to solve, is in
runtime comparable to classical time integration schemes. Note that because
the scheme was based on the Cauchy-Kovalevskaya procedure together with
similar tricks used to define Lax-Wendroff discontinuous Galerkin solvers, our
previous scheme is not identical to applying a two-derivative scheme to the
ordinary differential equation that results from the method-of-lines formulation
stemming from the DG spatial discretization of (1). This led to unwanted
features such as a sometimes quite severe loss of stability reducing an implicit
solver to finite time steps on the same order as an explicit method. The present
work is directed at mending this undesirable feature.

1.2 Summary of work

In this work, we redirect our efforts away from discretizing each higher deriva-
tive term separately, and instead construct a discretization that ends up being
equivalent to the method-of-lines (MOL) formulation of the partial differen-
tial equation (PDE). That is, in place of attempting to do anything special to
define higher derivatives, which is commonplace with Taylor type discretiza-
tions, we construct a solver that is equivalent to applying the multiderivative
methods directly to the MOL discretization of the PDE. That is to say, instead
of following the common practice of defining higher derivatives by differenti-
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ating basis functions (or using reduced order stencils), we instead take great
care to construct these higher derivatives in such a way that they end up be-
ing identical to differentiating the large system of ODEs defined by the MOL
discretization of the PDE. We make this important modification in order to
construct and prove the stability of our solver. In doing so, one obvious com-
plaint is that this has the potential to increase the size of the effective stencil of
the method. We address this issue by introducing only one additional variable
that is used to define all of the mixed derivatives of the solution.

In this work, we consider a total of two different types of implicit collocation
methods, and we couple each of these with the classical discontinuous Galerkin
discretization of the PDE. The methods we consider can be classified into a
total of two separate categories:

– Two-point multiderivative collocation methods. These methods use
a total of two quadrature points (one at a known time value t = tn, and
another at the next time value t = tn+1). They reach high order accuracy
by increasing the number of derivatives (we consider methods with a total
of three derivatives of the unknown) that are evaluated at each time point.

– Fully implicit multiderivative collocation methods. These methods
increase the order of accuracy by increasing the number of stages, and they
too can increase order by including higher derivatives. These methods can
be constructed by first defining a set of collocation (quadrature) points,
fitting a Hermite-Birkhoff interpolant, and then integrating the result. Be-
cause a two-derivative method with three quadrature points can obtain a
total of sixth-order accuracy, we only include a single method from this
category. Because sixth-order accuracy is very high order, in this work we
do not pursue adding additional stages and point to this solver as a proof
of concept.

Both of these classes of methods fall under the umbrella category of multi-
derivative Runge-Kutta methods. This broader category also encompasses all
classical Runge-Kutta solvers, as well as Taylor (or Lax-Wendroff) methods,
but not all of them are A-stable. Here, we only consider A-stable solvers, which
we show is an important property that we leverage to define stable numerical
discretizations for the PDE.

The paper is structured as follows: in Section 2, we provide a brief review of
the discontinuous Galerkin discretization. This section serves to the notation
that is used throughout the remainder of this work. In Section 3, we review
classical multiderivative time discretizations in the context of ordinary differ-
ential equations, and in Section 4, we couple the two discretizations to define
the new fully discrete solver. Finally, in Section 5 we present numerical results,
and in Section 6 we wrap up with conclusions and point to future work.
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2 Discontinuous Galerkin discretizations in space

We begin by introducing the DG discretization that we use in this sequel. In
principle, one can substitute the scheme by one’s favorite scheme, as long as
it is coercive (and therefore stable) and in primal form.

Before introducing the scheme in detail, we shortly define the (rather stan-
dard) notation needed. Based on a triangulation of the domain Ω ⊂ R2 into

Ω =

Ne⋃
k=1

Ωk, (3)

we define the standard space of broken polynomials,

Vh := {ϕh ∈ L2(Ω) | ϕh|Ωk
∈ Πp(Ωk)},

where the set Πp(Ωk) is the space of all polynomials on Ωk having total degree
p. Other choices are possible, in particular, an adaptive polynomial degree does
not pose any particular problems.

Cell-wise integration over Ω is denoted by the scalar product (·, ·), while
〈·, ·〉 denotes edge-wise integration over the skeleton of the triangulation. To
consider functions on an edge ek,l := Ωk ∩Ωl, k 6= l, we need to define ‘inner’
and ‘outer’ values. Let ek,l be equipped with a normal vector n, and let x ∈ ek,l,
then we define for a function ϕh ∈ Vh,

ϕ±h := lim
δ→0

ϕh(x± δn).

Furthermore, we define average and jump, respectively, as

{ϕh} :=
ϕ−h + ϕ+

h

2
, JϕhK :=

(
ϕ−h − ϕ

+
h

)
n.

Note that, while ϕ±h depends on the orientation of the normal, jumps and
average do not.

To discretize the convective terms, we employ a standard upwinding tech-
nique. To this end, we define

wuph :=

{
w−h , c · n > 0,

w+
h , otherwise.

Note that this definition is independent of the orientation of n. We discretize
the viscous term with a symmetric interior penalty method [3].

With these definitions in place, the discretization of (1) in space yields the
task of seeking wh ∈ C0([0, Tend], Vh), such that

(∂twh, ϕh)− (R(wh),∇ϕh) + 〈Re(wh;ϕh)〉 = (g, ϕh), ∀ϕh ∈ Vh, (4)
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where R(wh) ≡ R(wh,∇wh) and Re(wh;ϕh) ≡ Re(wh,∇wh; n;ϕh,∇ϕh) are
the cell and edge discretizations of DG-type given by

R(wh) := cwh − ε∇wh, (5)

Re(wh;ϕh) := −{cwuph } · JϕhK + ε

(
{∇wh} −

η

he
JwhK

)
· JϕhK

+ εJwhK · {∇ϕh}. (6)

Note that these operators are linear in wh and ϕh. The value he is the length
of an edge, and η is a user-defined parameter that must be positive and larger
than a certain threshold (see [3] for details). Upon inserting a basis for Vh into
(4), we rewrite this as a large linear system of differential equations,

∂twDG = ADGwDG + bDG, (7)

where wDG is a vector of unknowns, ADG is a matrix representing the differ-
ence operators, and bDG is a vector representing the source terms.

Remark 1 Note that for ε > 0 and polynomial order p = 0, the method pre-
sented above is not meaningful. For the case where diffusion appears, we will
therefore not show any results produced with piecewise constant ansatz func-
tions. However, the methodology we present does not rely on the particular
choice of the DG discretization, it is therefore possible to substitute R and
Re by other stable discretization types which can handle the p = 0 case for
diffusion.

The proof of stability of our solver relies on the following lemma (whose
proof can be found in [3, 26, 27]):

Lemma 1 Let the triangulation be conforming and shape-regular; and let p >
0. Then, there exist an η∗ > 0, such that for all η > η∗ and ϕh ∈ Vh, we have

−(R(ϕh),∇ϕh) + 〈Re(ϕh;ϕh)〉 ≥ 0. (8)

The inequality is strict for ε > 0 and ϕh 6≡ 0.

The above statement means that under the conditions mentioned in the
lemma, the matrix ADG is negative semi-definite (for ε > 0, it is negative
definite). This means that the real part of each eigenvalues of the matrix is
negative:

Corollary 1 Let λ be an eigenvalue of ADG under the conditions of Lemma
1. Then, the real part of λ is negative. That is, if λ is an eigenvalue of ADG,
then <(λ) ≤ 0. Furthermore, if ε > 0, then <(λ) < 0.

When c 6= 0, the matrix is not symmetric, and therefore the statement of
this corollary is not directly clear. Here, we prove the case where ε > 0. The
case where ε = 0 is nominally different.
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Proof Thanks to Eqn. (8), we have that mTADGm < 0 for all non-zero vectors
m. Furthermore, because ADGv = λv, we have ADGv = λv since ADG has
real coefficients. Therefore, we can write

ADG<(v) = <(λ)<(v)−=(λ)=(v),

ADG=(v) = =(λ)<(v) + <(λ)=(v).

(Note that < and = denote real and imaginary part, respectively.) We multiply
the first line from the left with <(v)T , and the second line with =(v)T , and
further exploit the negative semi-definiteness of the operators to observe

0 > <(λ)‖<(v)‖2 −=(λ)<(v)T=(v),

0 > =(λ)=(v)T<(v) + <(λ)‖=(v)‖2.

Upon adding terms, we observe

0 > <(λ)
(
‖<(v)‖2 + ‖=(v)‖2

)
,

which proves the claim.

Remark 2 Corollary 1 is the reason we favor A-stable schemes.

With these preliminaries out of the way, we are now prepared to discuss the
various temporal discretizations that we use in this work. We begin with a
description of how these solvers operate on ordinary differential equations.

3 Multiderivative discretization in time

In this section, we briefly review multiderivative Runge-Kutta methods. In
the subsequent section, we apply the temporal discretization of (4) to these
solvers.

An M -derivative Runge-Kutta solver is defined by a total of M Butcher
tableaux

{
a(1), a(2), . . . , a(M)

}
, each of size s × s, where s refers to the total

number of stages of the solver, and M is the total number of derivatives under
consideration. The internal stages of an M -derivative Runge-Kutta scheme are
defined as

yn(i) = yn +

M∑
m=1

∆tm
s∑
j=1

a
(m)
ij ∂mt y

n
(j), i = 1, . . . , s, (9a)

and the final update is given by

yn+1 = yn +

M∑
m=1

∆tm
s∑
i=1

b
(m)
i ∂mt y

n
(i). (9b)

The two-point collocation schemes we consider have a total of s = 2 stages, and
up to M = 3 time derivatives of the unknown. The fully implicit collocation
method we consider has a total of s = 3 stages, and M = 2 derivatives of the
unknown.
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3.1 Two-point multiderivative collocation methods

The first class of solvers we consider are two-point multiderivative collocation
methods. These methods have a total of s = 2 stages, and the abscissa are
sampled at times t = tn and t = tn+1 only. These methods can be derived from
the rational that one ‘prescribes’ k derivatives at time tn and l derivatives at
time tn+1. That is, we first fit a Hermite-Birkhoff interpolant [36, 44] to the
unknown function y(t), and then integrate the result to define the solver. This
results in the following explicit expression for the numerical solver:

l+k∑
j=0

∆tj(∂jt y)n+1P (l+k−j)(0) =

l+k∑
j=0

∆tj(∂jt y)nP (l+k−j)(1), (10)

where P (t) = tk(t−1)l
(k+l)! and ∂jt y is the j-th temporal derivative of the solution y

to the ODE [24]. In this work, we employ two-point schemes for two and three
derivatives, respectively. Each of these schemes can be written in the form

yn+1 − yn

∆t
=

(
α1∂ty

n − β1∂tyn+1
)

+∆t
(
α2∂

2
t y
n − β2∂2t yn+1

)
+∆t2

(
α3∂

3
t y
n − β3∂3t yn+1

)
, (11)

for some values of α = (α1, α2, . . . ) and β = (β1, β2, . . . ). The values that we
use in this work are summarized in Tbl. 1, where we categorize the solvers
based on the order of the method.

Table 1 Two-point multiderivative schemes. Those with α3 = β3 = 0 only need two
derivatives.

Order (k, l) α1 α2 α3 β1 β2 β3
3 (1, 2) 1/3 0 0 −2/3 1/6 0
4 (2, 2) 1/2 1/12 0 −1/2 1/12 0
5 (2, 3) 2/5 1/20 0 −3/5 3/20 −1/60
6 (3, 3) 1/2 1/10 1/120 −1/2 1/10 −1/120

Remark 3 The values in Tbl. 1 are very much related to Padé approximations
for the exponential function. As an example, the Padé approximation of the
exponential function of order (2, 3) is given by

P2,3(z) =
1 + 2/5z + 1/20z2

1− 3/5z + 3/20z2 − 1/60z3
.

These coefficients are identical to those found in the fifth-order scheme defined
in Tbl. 1.

The following very important lemma comments on the stability of these schemes,
and is critical for us to define a stable numerical solver:
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Lemma 2 All of the methods shown in Tbl. 1 are A-stable.

Proof Thanks to Remark 3, all of these methods are on the first or second
subdiagonal in the set of Padé approximations to ez. In [17], it is shown that
each these entries are A-stable. Moreover, the methods on the sub-diagonal
exhibit stiff decay, and therefore those methods are L-stable.

3.2 Fully implicit multiderivative collocation methods

Extensions of two-point collocation methods can proceed in several directions.
For example, it is possible to add more stages, more derivatives, or more steps
to the solver to increase the order of accuracy [23]. As a case in point, the
so-called multistep multiderivative methods [18, 21, 29] increase the order of
accuracy by adding a time history of the solution. In this work, we prefer to
restrict our attention to self-starting single-step methods, and therefore we
only consider additional stages in order to improve the order of accuracy of
the method. Again, a fully implicit multiderivative collocation method can be
easily derived by first fitting a Hermite-Birkhoff interpolant to the unknown
right hand side function and then integrating the result. The resulting scheme
takes the form of a multiderivative Runge-Kutta method [31].

One nice property is that by deriving fully implicit multiderivative solvers
in this manner we automatically know that they satisfy the correct order
conditions [31, 51]. This is a result of Obreshkov’s formula [34], which can
be thought of as a generalization of Taylor’s theorem to Hermite-Birkhoff
interpolation. For general Runge-Kutta methods, this is normally a non-trivial
task to accomplish, and more to the point, finding A-stable methods is already
a difficult enough task to accomplish, let alone trying to find one that is high-
order.

As a proof of concept, we restrict our attention to a single method that
is constructed in this manner. More specifically, the method we consider is a
fully implicit two-derivative collocation method that we find to be A-stable.
The development of higher order A-stable multistage multiderivative methods
is reserved for future work.

Based on the work in [47], we compute the coefficients for a sixth-order
scheme involving s = 3 stages. The collocation points are at the (normalized)
time instances t = (0, 1/2, 1)T , which is important to know when considering
non-autonomous differential equations. The Butcher tableaux a(1) (for first
derivative) and a(2) (for second derivative) read as follows:

a(1) =

 0 0 0

101
480

8
30

55
2400

7
30

16
30

7
30

 , a(2) =

 0 0 0

65
4800 −

25
600 −

25
8000

5
300 0 − 5

300

 . (12)

Because there are a total of six pieces of information used to define the
Hermite-Birkhoff fit for the right hand side function (two each at times tn,
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tn+1/2, and tn+1), this method achieves a total of sixth-order accuracy. More
specifically, the error in this approximation can be found from Obreshkov’s
formula [34]. We stop to point out that one advantage of this solver is that it
does not require extra derivatives of the unknown function, but this comes at
the expense of adding an additional stage.

Lemma 3 The method defined by Butcher tableaux (12) is A-stable.

The proof of this lemma is straightforward and is omitted for brevity.

4 The fully discrete solver

With these preliminaries out of the way, we are now prepared to describe the
fully discrete solver proposed in this work. In a straightforward way, one can of
course differentiate (7) and obtain an explicit expression for ∂ttwDG. Together
with Lemma 1 and the A-stability of the methods involved, this yields a stable
algorithm.

Lemma 4 With the A-stability of the involved time discretization schemes,
and the coercivity of ADG, see Lemma 1 and Corollary 1, the application of
those time integration schemes to the DG semi-discretization (7) yields a stable
scheme.

As the matrix A2
DG occurs in the explicit representation of ∂ttwDG, this in-

volves an increase of the stencil of the method. To keep the compact stencil
of the DG method - which is one of its many advantages - we introduce the
additional variable σh (which is assumed to have the same dimensionality as
wh, thus is a scalar) that fulfills

(σh, ϕh)− (R(wh),∇ϕh) + 〈Re(wh;ϕh)〉 = (g, ϕh) ∀ϕh ∈ Vh. (13)

Note that this definition is very similar to (4), in fact, only the first term
differs.

With the help of this variable, we can express ∂ttwh as follows:

Lemma 5 Let σh be defined as in (13). Then, for wh as defined in (4), there
holds

(∂ttwh, ϕh) = (R(σh),∇ϕh)− 〈Re(σh;ϕh)〉+ (∂tg, ϕh). (14)

Proof As both R and Re are linear functions, the vector wDG containing the
basis coefficients of wh for a certain set of basis functions fulfills

∂twDG = ADGwDG + bDG, (7)

and its second derivative can be easily computed as

∂ttwDG = ADG (ADGwDG + bDG) + ∂tbDG.

By the construction of σh, we know that its associated vector σDG of basis
coefficients fulfills σDG = ADGwDG + bDG. Applying ADG once more, done
in (14) on the right-hand side, completes the proof.
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Remark 4 Note that, as said earlier, A2
DG is an operator that has a larger

stencil than ADG has. In fact, one has to incorporate neighbor-neighbors.
If one defines σh ≈ ∂twh as auxiliary variable instead and expresses ∂ttwh
as in (14), the stencil is not enlarged. Furthermore, the assembly process is
quite simple, as the terms used for σh are the same as those for wh, so most
computations must be done only once.

Remark 5 Note that the proof of Lemma 5 already gives a glimpse on how to
obtain a scheme in the case of a nonlinear operator ADG(wDG). This is the
case if one considers, e.g., the compressible Navier-Stokes equations. Lemma
5 does not change substantially, one still defines σh as in (13). Considering
∂ttwDG, one has to account for an additional term, because

∂ttwDG = ADG(wDG) (ADG(wDG)wDG + bDG) + ∂tbDG

+ A′DG(wDG)∂twDGwDG.

The first row can be treated as in (14), the second row (which contains the
additional term) is not problematic because it does not involve a squaring of
the operator, and so it does not increase the stencil of the method. It can in
the same way be implemented as, e.g., a Newton method is implemented to
solve the nonlinear system of equations, so this part is usually already present
in the code. Note that ∂twDG can be replaced by σDG. Of course all this will
include some tedious differentiation operations that can, however, be simpli-
fied by using automatic differentiation. Also, tricks similar to those recently
performed in [53], where higher derivatives of the flux function are approxi-
mated using high-order finite differences, can most certainly be applied here.
The performance, analysis, and implementation of such a type of algorithm
will be left for future work.

Remark 6 Of course with the same reasoning, one can introduce higher deriva-
tives. In this work, we consider algorithms with up to three (temporal) deriva-
tives. This means that beyond σh, there must be a third variable which we
call τh. It is defined in close analogy to (13) as

(τh, ϕh)− (R(σh),∇ϕh) + 〈Re(σh;ϕh)〉 = (∂tg, ϕh) ∀ϕh ∈ Vh. (15)

Lemma 5 holds with obvious modifications.

With these remarks, the algorithm is completely defined. As an example, the
method for a two-point scheme (11) can be written as follows:

wn+1
DG −wn

DG

∆t
= ADG

(
α1w

n
DG − β1wn+1

DG

)
+∆tADG

(
α2σ

n
DG − β2σn+1

DG

)
+∆t2ADG

(
α3τ

n
DG − β3τn+1

DG

)
, (16)

where we assume bDG = 0 for the sake of readability. Here, the definition of
τDG is similar to the ones of wDG and σDG, it denotes the vector with basis
coefficients associated to τh. Integrating the source term is straightforward,
following again the lines of (11).
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5 Numerical results

In this section, we present numerical results, demonstrating the performance
of the scheme. In all the results, we work with periodic boundary conditions
to alleviate influence from the boundary. We note, though, that the algorithm
can be easily adapted to handle non-periodic boundary conditions. In fact,
the treatment of the boundary conditions is usually hidden in ADG and bDG,
and so the multiderivative algorithm does not need to explicitly deal with it.
This is in contrast with Lax-Wendroff schemes, where of course the boundary
conditions influence the representation of ∂ttw.

The meshing tool Netgen [43] serves as a basis for the code. The linear
systems of equations are solved through PETSc [4–6], either using a GMRES
scheme that is converged up to a relative tolerance of 10−10 with ILU(2)
preconditioner; or through a direct solver. The error eh is always defined as
L2-error at time Tend, i.e.,

eh := ‖w(t = Tend)− wh(t = Tend)‖L2 .

5.1 Convection equation

We start with the relatively simple convection test case, characterized by a
constant advection speed c = (1, 1)T , a zero diffusion coefficient ε = 0 and the
initial conditions w0(x1, x2) = sin(2πx1) sin(2πx2). The domain Ω = [0, 1]2 is
the unit cube. The solution is a transport of the initial conditions in direction
c, and we choose a final time of Tend = 1.0.

5.1.1 The convection equation: Two-point schemes

We begin with the third and fourth order two-point schemes defined by (11)
and Tbl. 1. These schemes only need one additional temporal derivative, thus
τh is not computed.

Convergence of the error eh versus time step size ∆t is plotted in Fig. 1
for various polynomials orders; the coarsest mesh consists of two triangular
elements, both spatial and temporal refinement is uniform. On the left-hand
side, the third-order method is plotted, the right-hand side shows the fourth-
order method. It can be seen that optimal convergence orders min{p + 1, 3}
and min{p+ 1, 4}, respectively, are reached. We have performed this exercise
for different values of the CFL number (smaller and larger than one), and the
error plots look quite similar. It is only that for large CFL numbers that it
takes longer until optimal order is reached due to the under-resolution of time.
This, however, is common to all time integration schemes.

In contrast to some of the multiderivative test cases reported on in [28],
we do not observe any stability problems. What seems to be quite relevant is
the choice of the preconditioner. We find that using too simple of a precondi-
tioner (e.g., Jacobi) results in a non-convergence of the linear system for CFL
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numbers above one. We find that using the ILU(2) choice is highly robust for
the convection equation.
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Fig. 1 Numerical results for the convection equation with parameters c = (1, 1)T , Tend =
1.0 and ε = 0. Two temporal derivatives of the DG scheme were needed. Time step size for
the coarsest triangular mesh, consisting of two elements, was chosen to be ∆t = 0.25. Left
plot: results using the third-order two-point scheme, see Tbl. 1; right plot: results using the
fourth-order two-point scheme, see Tbl. 1.
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Fig. 2 Numerical results for the convection equation with parameters c = (1, 1)T , Tend =
1.0 and ε = 0. The polynomial order was chosen to be p = 3, and we compare multiple
time integration schemes against each other. ∆t = 0.25 was chosen on the coarsest mesh,
consisting of two triangular elements.

In Fig. 2, we compare the performance of the third- and fourth-order two-
point schemes to those of the more established schemes of diagonally implicit
Runge-Kutta (DIRK) type. More precisely, we test the schemes for polynomial
order p = 3 against the more or less classical DIRK schemes by Cash [11] (this
scheme is also due to Alexander [2]), Al-Rabeh [1] and Hairer and Wanner [24].
The last two DIRK schemes are of order four, the first one is of order three.
They consist of three, four and five stages, respectively. (Note that a two-
point scheme formally consists of two stages, but the schemes we investigate
also have additional derivatives.) The parameters are the same as those in
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Fig. 1. It is obvious that the two-point schemes behave as good (or sometimes
even slightly better) than the classical DIRK schemes. With regard to stability,
all methods perform equally. Computing equations with ∆t � ∆x is done in
a stable way, and also the error curves behave quite similarly.

5.1.2 The convection equation: Higher-order derivatives

We continue with the use of the three-derivative two-point schemes presented
in Tbl. 1, being of order five and six, respectively. The reason we are studying
these schemes is to test how well the method can be extended to higher or-
ders, not only using stages but also using additional derivatives. Fig. 3 shows
numerical results for the same test case presented above. As the methods are
of higher order than before, we include polynomial orders up to p = 5. Again,
optimal orders of convergence (here, it is min{p + 1, 5} and min{p + 1, 6},
respectively) are obtained.
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Fig. 3 Numerical results for the convection equation with parameters c = (1, 1)T , Tend =
1.0 and ε = 0. Three temporal derivatives of the DG scheme are needed. Time step size for
the coarsest triangular mesh, consisting of two elements, was chosen to be ∆t = 0.25. Left
plot: results using the fifth-order two-point scheme, see Tbl. 1; right plot: results using the
sixth-order two-point scheme, see Tbl. 1.

5.1.3 The convection equation: A three point scheme

We next test the utility of adding additional stages to the solver. Because a
two-derivative method with a single additional stage can obtain sixth-order
accuracy, we only consider one method of this type in this work. Ultimately,
tests with the multiderivative collocation scheme given in (9) (with Butcher
tableaux in (12)) are performed using the same parameters as above. Results
can be seen in Fig. 4; the optimal order of min{p+1, 6} is achieved in all cases.
Again no stability problems are observed.

We find that this method is competitive against other well-known im-
plicit methods, such as the Gauß-Legendre or Radau methods. For example,
in Fig. 5, we compare the sixth-order Gauß-Legendre Runge-Kutta method
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Fig. 4 Numerical results for the convection equation with parameters c = (1, 1)T , Tend =
1.0 and ε = 0. Two temporal derivatives of the DG scheme are needed. Time step size for the
coarsest triangular mesh, consisting of two elements, was chosen to be ∆t = 0.25. Results
are computed using the multiderivative collocation method (9) with Butcher tableaux (12).

against the multiderivative collocation method used in this work. The polyno-
mial order used is p = 5, so that one can indeed observe sixth order convergence
for all the methods. With the same parameters that we use in the previous
figures, we are unable to discern any difference between the schemes, which
tells us that the spatial error is dominating. In order to elucidate the difference
between the solvers we re-compute the test case with an initial time step of
size ∆t = 1.0 on the coarsest mesh and then refine from there. We observe
that the multiderivative scheme shows a slight advantage in terms of the error.
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Fig. 5 Numerical results for the convection equation with parameters c = (1, 1)T , Tend =
1.0 and ε = 0. The polynomial order was chosen to be p = 5, and we compare the multi-
derivative collocation method against a Gauss-Legendre method. Both methods have formal
order of six. Unlike in the previous figures, ∆t = 1.0 was chosen on the coarsest mesh, con-
sisting of two triangular elements.
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5.2 Convection-diffusion equation

After having discussed the convection equation, we now turn to the convection-
diffusion equation. If not stated otherwise, the interior penalty parameter is
chosen to be η = 20 for a polynomial order of p < 4, and η = 30 for a
polynomial order of p = 5. The numerical results being shown are all made for
the equation characterized by the parameters c = (1, 1)T , ε = 0.1 and a final
time of Tend = 1.

Because it is rather subtle to obtain interesting exact solutions of the
convection-diffusion equation, we make use of the method of manufactured
solutions and define a source term g so that

u(x1, x2, t) = e−t sin(2π(x1 − t)) sin(2π(x2 − t)) (17)

is the exact solution to the equation. This has the added benefit of testing the
ability of our algorithm (as well as our code) to handle source terms. However
one drawback, from a practical point of view, is that ∂tg and ∂ttg also need
to be computed. This can become extremely tedious, but the process can be
simplified via symbolic software tools.

5.2.1 The convection-diffusion equation: Two-point schemes

Beginning again with the two-point schemes of order three and four, respec-
tively, we show numerical results in Fig. 6 (third-order scheme on the left,
fourth-order scheme on the right). Numerical results are computed with time
step of size ∆t = 0.5 on the coarsest mesh that consisted of only two triangular
elements. The time step size is halved in each refinement, and the spatial mesh
is uniformly refined. Our results indicate that the optimal orders are obtained.
The plots look similar to those of the previous section. Note that we do not
compute the p = 0 case, because SIPG is not meaningful for that, see also
Rem. 1.

Also for this test problem, we have computed the cases for other choices of
∆t, and again, we find no stability issues. This is again different to the results
obtained in [28], where we in particular had problems with the stability of the
diffusion terms. In this work we circumvent that issue by defining a method
that is equivalent to directly differentiating the method-of-lines formulation
of the PDE. That, coupled with the fact that all the solvers we consider in
this work are A-stable, leads to a stable numerical method. This is different
than most Lax-Wendroff type of discretizations, where higher derivatives are
typically computed using a different method than what is performed for the
first derivative.

Fig. 7 shows a comparison of the two-point two-derivative schemes against
the DIRK schemes already mentioned in Sec. 5.1. The picture is the same as
before: the methods behave quite similarly with sometimes a slight advantage
for the two-derivative schemes.
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Fig. 6 Numerical results for the convection-diffusion equation with parameters c = (1, 1)T ,
Tend = 1.0 and ε = 0.1. Two temporal derivatives of the DG scheme were needed. Time step
size for the coarsest triangular mesh, consisting of two elements, was chosen to be ∆t = 0.5.
The SIPG parameter η was chosen to be 20. Left plot: results using the third-order two-point
scheme, see Tbl. 1; right plot: results using the fourth-order two-point scheme, see Tbl. 1.
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Fig. 7 Numerical results for the convection-diffusion equation with parameters c = (1, 1)T ,
Tend = 1.0 and ε = 0.1. The polynomial order was chosen to be p = 3, and we compare
multiple time integration schemes against each other. ∆t = 0.5 was chosen on the coarsest
mesh, consisting of two triangular elements. The SIPG parameter η was chosen to be 20.

5.2.2 The convection-diffusion equation: Higher-order derivatives

We continue with the higher order two-point time integration schemes of order
five and six, respectively, that can be found in Tbl. 1. Numerical results are
presented in Fig. 8, again optimal order is obtained and stability problems
have not been observed. However, for the p = 5 case, we find that GMRES
occasionally fails to converge. This happens also for standard DIRK schemes,
and even for implicit Euler. In some sense, this is to be expected, as the stiffness
matrices become increasingly stiff with higher polynomial degree. We find that
the direct solver included in PETSc solves the issue, however, this needs to be
fixed in the future, as a direct solver is in general not feasible. Ad-hoc solution
ideas include the initialization of the GMRES routine with the outcome of a
lower order method.
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Fig. 8 Numerical results for the convection-diffusion equation with parameters c = (1, 1)T ,
Tend = 1.0 and ε = 0.1. Three temporal derivatives of the DG scheme were needed. Time
step size for the coarsest triangular mesh, consisting of two elements, was chosen to be
∆t = 0.5. The SIPG parameter η was chosen to be 20 (p < 5) and 30 (p = 5), respectively.
Left plot: results using the fifth-order two-point scheme, see Tbl. 1; right plot: results using
the sixth-order two-point scheme, see Tbl. 1.

5.2.3 The convection-diffusion equation: A three point scheme

As in the convective case, we conclude the section by showing results for the
multiderivative collocation method given in (9) with Butcher tableaux as in
(12). Numerical results can be seen in Fig. 9. The optimal order of min{p+1, 6}
is attained. A comparison of the multiderivative collocation scheme against a
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Fig. 9 Numerical results for the convection-diffusion equation with parameters c = (1, 1)T ,
Tend = 1.0 and ε = 0.1. Two temporal derivatives of the DG scheme were needed. Time step
size for the coarsest triangular mesh, consisting of two elements, was chosen to be ∆t = 0.5.
The SIPG parameter η was chosen to be 20 (p < 5) and 30 (p = 5), respectively. Results
were computed using the multiderivative collocation method (9) with Butcher tableaux (12).

sixth-order Gauß-Legendre scheme is made in Fig. 10. Again, we can observe
a slight advantage for the multiderivative collocation scheme.
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Fig. 10 Numerical results for the convection-diffusion equation with parameters c =
(1, 1)T , Tend = 1.0 and ε = 0.1. The polynomial order was chosen to be p = 5, and we
compare the multiderivative collocation method against a Gauss-Legendre method. Both
methods have formal order of six. ∆t = 0.5 was chosen on the coarsest mesh, consisting of
two triangular elements. The SIPG parameter η was chosen to be 30.

6 Conclusion and outlook

In this work, we introduced fully implicit multiderivative time integrators as
a mechanism for discretizing convection-diffusion equations with the discon-
tinuous Galerkin (DG) spatial discretization. Unlike most versions of DG dis-
cretizations that make use of higher derivatives such as Lax-Wendroff DG
solvers, we step back and construct a solver that is equivalent to discretizing
the original method-of-lines formulation of the PDE. In doing so, we sacrifice
favorable properties such as being able to locally define all of our spatial op-
erators, but the benefit of doing so includes being able to define methods that
can take arbitrarily large time steps. In addition, we are able to define a single
(scalar) quantity that is used to define mixed derivatives of the unknown in or-
der to streamline the implementation and reduce the computational footprint
of the solver. Future work in this direction includes considering the utility
of using Gauß-Túran points for constructing higher order implicit solvers,
as well as revisiting the original formulation and performing a fully discrete
stability analysis in order to reduce the size of the computational stencil. In
addition, we would like to implement the existing proposed solver to linear
electromagnetic as well as transport dominated plasma applications such as
the Vlasov-Poisson and Vlasov-Maxwell system of equations. Furthermore, the
optimization of the linear solver is an important issue. First tests show that
the newly developed schemes behave, in terms of CPU time versus error, com-
parably to the well-established DIRK schemes. The stiffness matrix of our
schemes has a very special structure; it should be possible to exploit this in
terms of data structures, linear solvers and preconditioners to obtain an even
faster scheme.
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