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Abstract. In this work, we introduce an IMEX discontinuous Galerkin solver for the
weakly compressible isentropic Euler equations. The splitting needed for the IMEX
temporal integration is based on the recently introduced reference solution splitting [32,
52], which makes use of the incompressible solution. We show that the overall method is
asymptotic preserving. Numerical results show the performance of the algorithm which
is stable under a convective CFL condition and does not show any order degradation.
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1 Introduction

In this work, we consider the (weakly-)compressible isentropic Euler equations [2, 59] in
dimensionless form,

ρt+∇·(ρu)=0,

(ρu)t+∇·(ρu⊗u)+
1

ε2
∇p=0.

(1.1)

The wave speeds in normal direction n of this (assumed two-dimensional) problem are

λ1=u·n and λ2,3=u·n±
c

ε
, (1.2)

which means that there is a convective and two acoustic waves. In what follows, we as-
sume that the reference Mach number ε is small, i.e., ε≪1, and all the other quantities are

∗Corresponding author. Email addresses: kaiser@igpm.rwth-aachen.de (K. Kaiser),
jochen.schuetz@uhasselt.be (J. Schütz)
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O(1), which physically means that the solution is a small disturbance of the incompress-
ible solution. Indeed, it can be shown that under suitable requirements on initial and
boundary data (“well-preparedness”), there is convergence of density and momentum
(ρ,ρu) towards its incompressible counterpart as ε→0, see [35, 51, 61] and the references
therein. Furthermore, it is obvious that this problem constitutes a singularly perturbed
equation in ε, as the equations change type in the limit.

Due to the change of type as ε → 0, the equations get extremely stiff and therefore
it is highly non-trivial to design efficient and stable algorithms. Explicit-in-time solving
techniques have the drawback that they lead to a CFL condition in which the time step
size ∆t must be proportional to ε∆x, where ∆x is a measure for the spatial grid size. If it is
not the goal to accurately resolve all the features, but only to resolve the convective part
of the flow, this condition is extremely restrictive, and a so called convective CFL condition

∆t.
∆x

‖u‖
(1.3)

is preferable. Fully implicit-in-time methods, on the other hand, which are stable under
such a CFL condition, tend to add too much spurious diffusion [37].

In the past few years, so called IMEX (implicit-explicit) splitting schemes got more
and more popular for solving compressible flow problems, especially for low Mach num-
bers, see e.g. [9, 10, 19, 20, 24, 26, 36, 39, 41, 46, 60] and the references therein. Optimally,
such a scheme should be designed in a way that slow waves are handled with an ex-
plicit (thus efficient) and fast waves are handled with an implicit (thus unconditionally
stable) method. Of course such a strict splitting of waves is only possible in the linear
one-dimensional case [53], and therefore, a suitable splitting for the nonlinear multidi-
mensional case has to be defined very carefully.

Over the past few years, many famous splittings for the Euler equations at low Mach
number have been designed, beginning by the ground-breaking work of Klein [36]. For
a non-exhaustive list, we refer to [9, 20, 26] and the references therein. However, many of
those splittings have their shortcomings. It has been reported [63] that Klein’s splitting
seems to be unstable in some instances. (Which does not include Klein’s original algo-
rithm as it is based on a semi discrete decoupling of the pressure.) Furthermore, all of the
mentioned splittings need a physical intuition and are not directly extendable to other
singularly perturbed differential equations.

To partly overcome these shortcomings, we have over the past few years developed
a new type of splitting that is based on the ε=0 (“incompressible”) solution of the prob-
lem. The splitting, termed RS-IMEX (see Section 3), is generic in the sense that it can in
principle be applied to any type of singularly perturbed equation, including singularly
perturbed ODEs [52] and the isentropic Euler equations [32]. Related ideas have already
been published earlier, for the shallow water equations in [9,23] and for kinetic equations
in [22], a stability analysis of the splitting has been done in [63] and [62].

In [52], we have applied the splitting idea to singularly perturbed ordinary differ-
ential equations with high-order IMEX discretizations, namely IMEX linear multistep
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methods [4, 27, 28] and IMEX Runge-Kutta methods [3, 12, 21, 34, 38, 42, 47]. In [32], we
have applied the splitting idea to a low-order finite volume scheme for the isentropic
Euler equations. In both publications, we have seen that the newly developed splitting
can be highly advantageous. This present work is a ’natural’ extension of those previous
works: We combine a high-order-in-time IMEX Runge-Kutta scheme with a high-order-
in-space discontinuous Galerkin (DG) method (see [13–17] for classical DG and [33,44,58]
for IMEX DG) using the newly developed splitting. The difficulty herein lies in the subtle
interplay of the stiffness induced by the singular character of the equation and the stiff-
ness induced by the high-order approximation of both spatial and temporal variables. We
show how to choose the numerical viscosities in such a way that the resulting method is
asymptotically consistent, see e.g. [31], which means that its ε→0 limit is a consistent dis-
cretization of the corresponding incompressible equations. Numerical results show the
convergence of the method. It turns out that the overall scheme is indeed stable under a
convective CFL condition (1.3), order degradation is not observed.

This paper is organized as follows: The governing equations are discussed in Section
2, the splitting and corresponding IMEX time integration are presented in Section 3. The
fully discrete method is introduced in Section 4, with its asymptotic consistency property
being discussed in Section 5. Numerical results are shown in Section 6. As usual, the
paper ultimately gives some conclusion and outlook in the last Section 7. To make the
paper more self-consistent, the Butcher tableaux for the used IMEX Runge-Kutta schemes
are shown in the appendix in Section 7.

2 Governing equations

Let Ω⊂R
2 be a two-dimensional domain, and consider the isentropic Euler equations as

in (1.1), with ρ∈R density and u=(u,v)T ∈R
2 velocity in x− and y−direction, respec-

tively. p denotes pressure given for polytropic fluids as p(ρ) := κργ with a κ > 0 and a
γ≥1. Note that the (scaled) characteristic Mach number ε is given by

ε :=
u∗

√
p(ρ∗)/ρ∗

,

where u∗ and ρ∗ are the corresponding characteristic values for velocity and density,
respectively, used to nondimensionalize the equation. The isentropic Euler equations can
directly be rewritten as a conservation law in divergence form

wt+∇· f (w)=0, ∀x∈Ω, t∈ (0,T), (2.1)

w(x,t=0)=w0(x), ∀x∈Ω, (2.2)

with

w :=

(
ρ

ρu

)
and f (w) :=

(
ρu

ρu⊗u+ 1
ε2 p·Id

)
,
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where Id denotes the two dimensional identity matrix. w0 are given initial data. Com-
puting the eigenvalues of ∂w f (w)·n gives the characteristic wave speeds

λ1=u·n and λ2,3=u·n±
c

ε
, (1.2)

where c=
√

γp
ρ denotes the speed of sound of the system. Obviously, these eigenvalues

are on different scales w.r.t. ε. Scales can be best understood by considering an asymptotic
expansion of every quantity, namely

w=w(0)+εw(1)+ε2w(2)+O(ε3). (2.3)

Inserting this expansion into the isentropic Euler equations (1.1), collecting terms with
equal power of ε and taking the limit ε→0 leads to the incompressible Euler equations [35]

ρ(0)≡const>0, ∇·u(0)=0,

(u(0))t+∇·(u(0)⊗u(0))+
∇p(2)

ρ(0)
=0.

(2.4)

The existence of a limit necessitates the use of specially designed initial data, see e.g.
[35, 51, 61] and the references therein, which we introduce in the sequel for the isentropic
Euler equations:

Definition 2.1 (Well prepared initial conditions). We call initial data w0 =(ρ0,ρ0u0)T for
the compressible equation well prepared if they can be represented by an asymptotic ex-
pansion as in (2.3) and fulfill

ρ0=const+O(ε2), ∇·u0=O(ε).

Well prepared initial data, together with sufficient smoothness, guarantee the conver-
gence of the solution as ε→0 [35].

3 RS-IMEX time integration

The core idea of IMEX schemes is to separate stiff and non-stiff parts, and then to treat
the former ones implicitly, and the latter ones explicitly. For the ease of presentation, we
start by considering the simplest setting of all IMEX frameworks, the IMEX-Euler semi
discretization to define the splitting. Then, we extend the proceeding to IMEX Runge-
Kutta methods.

The temporal domain is given by [0,T] with T∈R
+. To define our methods, we have

to split this domain into N+1 time instances tn :=n∆t,

0= t0
< ···< tn

< ···< tN =T.

Uniform time slabs are not a necessity, but are used for notational convenience.
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3.1 RS-IMEX splitting

We assume for the moment that a splitting of the convective flux into

f (w)= f̃ (w)+ f̂ (w) (3.1)

is already given. Then, applied to (2.1), the time-discrete IMEX-Euler scheme is defined
by

wn+1−wn+∆t∇·
(

f̃ (wn+1)+ f̂ (wn)
)
=0. (3.2)

Note that f̃ is the part that is treated implicitly, while f̂ is the part that is treated explicitly.
In the following the upper index n of wn corresponds to the numerical solution — with
respect to time — at time instance tn.

As already pointed out in the introduction, the choice of a splitting of the convective
flux function f is a core ingredient to obtain a stable and efficient numerical method
in the low-Mach range. This work relies on the recently introduced RS-IMEX splitting
[32, 52, 63], where RS stands for reference solution and denotes the limit-solution w(0) =

(ρ(0),ρ(0)u(0))
T, see (2.4). The splitting relies on a linearization of the flux function f

around w(0) being used in the stiff part. For a more detailed derivation of the RS-IMEX
splitting we refer to [32,52], but also to [9,22,23] for earlier applications of a similar idea.
More formally the RS-IMEX splitting is given in the following definition.

Definition 3.1 (RS-IMEX). The RS-IMEX splitting is defined by

f̃ (w)= f (w(0))+∂w f (w(0))·(w−w(0)),

f̂ (w)= f (w)− f̃ (w),

where w(0) denotes the asymptotic solution w(0)=(ρ(0),ρ(0)u(0))
T from (2.4), ∂w f denotes

the Jacobian of f .

Due to its definition, f̃ is linear in w and, as this part is treated implicitly, the resulting
system can be solved efficiently by a linear solution technique. Note that, although the
idea stems from a linearization, there is no second-order linearization error of the flux,
because remaining terms are collected in f̂ . Applying the definition of f given in (2.1)

to the RS-IMEX splitting, one can directly compute the flux functions f̂ and f̃ for the
isentropic Euler equations:

Definition 3.2 (RS-IMEX splitting for the isentropic Euler equations). The RS-IMEX split-
ting for the isentropic Euler equations is given by

f̃ (w)=

(
ρu

−ρu(0)⊗u(0)+ρu⊗u(0)+ρu(0)⊗u+ 1
ε2

(
p(ρ(0))+p′(ρ(0))(ρ−ρ(0))

)
·Id

)
,

f̂ (w)=

(
0

ρ(u−u(0))⊗(u−u(0))+
1
ε2

(
p(ρ)−p(ρ(0))−p′(ρ(0))(ρ−ρ(0))

)
·Id

)
.



K. Kaiser and J. Schütz / Commun. Comput. Phys., 22 (2017), pp. 1150-1174 1155

Remark 3.1. Note that the RS-IMEX splitting idea as given in Definition 3.1 can directly
be extended to a wide range of different singularly perturbed equations.

Remark 3.2. In contrast to f , both f̂ and f̃ depend — through the use of the reference
quantity w(0) — explicitly on t. We do not add t as an additional variable to the fluxes to
keep the notation short. It will become important in the definition of the IMEX-Runge-
Kutta scheme, because technically, we do not treat an autonomous differential equation
any more.

That f̂ is indeed ’non-stiff’ is indicated by the following lemma:

Lemma 3.1. 1. The eigenvalues of ∂w f̂ (w)·n of are given by

λ̂=




0
(u−u(0))·n

2(u−u(0))·n


.

2. The in magnitude largest eigenvalues of the Jacobian of the implicit part are in O
(

1
ε

)
.

We can conclude two different things from Lemma 3.1. First, the stiffness of the equa-
tion is completely hidden in the implicit part. Second, if we take the limit ε → 0, the
influence of the explicit part vanishes.

Remark 3.3. Due to the definition of the RS-IMEX splitting, the solution of the incom-
pressible equation is needed as reference solution w(0). Both the analysis (see Section 5)
and most of the numerical experiments (see Section 6) are based on an exact reference so-
lution, which in practice is of course rarely available. Therefore, numerical results have
been added that use a discrete reference solution computed by a fully implicit discontin-
uous Galerkin method, see Section 6.3.

3.2 IMEX Runge-Kutta method

We have discussed the RS-IMEX splitting in the context of a straightforward IMEX-Euler
discretization, see (3.2). The extension to higher-order methods is evident, methods of
choice are, e.g., high-order IMEX Runge-Kutta methods [3, 12, 21, 34, 38, 42, 47] or high-
order IMEX linear multistep methods [4, 27, 28]. In this work, we consider IMEX Runge-
Kutta methods, where we restrict ourselves to a (relatively large) subclass which we iden-
tified as important in our previous work [52]:

• We only consider IMEX Runge-Kutta methods which are globally stiffly accurate
(GSA), see e.g. [12]. In short this is fulfilled if the update step is equal to the last
internal stage of the Runge-Kutta method. This corresponds to the first same as last
property for an explicit and the stiffly accurate property for an implicit Runge-Kutta
method. The IMEX Runge-Kutta methods are fully defined by the two Butcher
tableaux Ã and Â and the corresponding temporal coefficients c̃ and ĉ.
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• We only consider IMEX Runge-Kutta methods where the implicit matrix Ã is a
lower triangular one, such that in every internal stage only one implicit variable
occurs. This is mostly due to efficiency reasons.

• We only consider IMEX Runge-Kutta methods of type A or type CK. This is given
if the implicit matrix Ã is invertible (type A) or the first entry of the implicit matrix
equals 0 and the remaining submatrix is invertible (type CK). See Definition 3.3 for
more details. For a more detailed classification of IMEX Runge-Kutta methods we
refer to [11].

In the following, we first introduce such a Runge-Kutta scheme for the semi-discrete-in-
time discretization of the Euler equations (2.1).

Definition 3.3 (GSA IMEX Runge-Kutta scheme for (2.1)). For every tn+1= tn+∆t do the
following:

1. For i=1,··· ,s solve

wn,i−wn+∆t

(
i

∑
j=1

Ãi,j∇· f̃ (wn,j)+
i−1

∑
j=1

Âi,j∇· f̂ (wn,j)

)
=0, (3.3)

where wn,i denotes the solution of the ith internal stage. Note that f̃ is evaluated at

time t̃n,j, and f̂ at t̂n,j, with

t̃n,j := tn+ c̃j∆t, t̂n,j := tn+ ĉj∆t,

see also Remark 3.2.

2. Set wn+1 :=wn,s.

The coefficients of the IMEX RK method are given by two Butcher tableaux, the one with
overhats referring to the explicit, the other to the implicit part. Because of our restrictions
on the Runge-Kutta method, the implicit coefficient matrix has to fulfill Ãii 6= 0 for i =
2,··· ,s. For a type A method, there even holds Ã11 6=0 in addition.

Based on our work in [52], we use the IMEX Runge-Kutta methods presented in Tables
2, 3, 4 and 5; also given in [3,21,38]. A classification of these methods can be seen in Table
1.

4 IMEX DG method

High-order temporal integration has to be coupled to a high-order spatial discretization.
The method of choice of the latter in this work is a combination of a high-order IMEX
Runge-Kutta method with a high-order discontinuous Galerkin (DG) discretization [13–
17], yielding an IMEX DG method [33, 44, 58].
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4.1 Preliminary definitions

We assume that the periodic domain Ω⊂R
2 is divided into ne∈N non-overlapping cells

Ωk as

ne⋃

k=1

Ωk =Ω and Ωk∩Ωi=∅ ∀k 6= i.

The boundary of the cell Ωk is denoted by ∂Ωk and nk denotes the corresponding outward
normal vector. On this triangulation {Ωk} we define a broken polynomial space by

Vq :={v∈L2(Ω) : v|Ωk
∈Pq(Ωk) ∀ k=1,··· ,ne},

where Pq(Ωk) denotes the space of all polynomial functions with maximum degree q on
cell Ωk. For system-valued functions (there are three components in the Euler equations)
we define the corresponding space

V3
q :=Vq×Vq×Vq.

Of course an adaptive choice of q is possible. For a value x∈ ∂Ωk, we define the interior
(−) and exterior (+) value, respectively, of a function σ∈Vq by

σ∓(x) := lim
0<δ→0

σ(x∓δnk). (4.1)

If a boundary is considered independently of a specific cell, we can in a similar way
define a value of σ∓ based on an arbitrary, but fixed direction of edge normal vectors.

4.2 IMEX Runge-Kutta Discontinuous Galerkin method

Following the common steps [17], we can define the DG residual of both ∇· f̃ (w) and

∇· f̂ (w) by the quantities

R̃(w∆x;ϕ) := −
∫

Ω
f̃ (w∆x)·∇ϕdx+

ne

∑
k=1

∫

∂Ωk

h̃(w−
∆x,w+

∆x)ϕ·nkds, and

R̂(w∆x;ϕ) := −
∫

Ω
f̂ (w∆x)·∇ϕdx+

ne

∑
k=1

∫

∂Ωk

ĥ(w−
∆x,w+

∆x)ϕ·nkds,

respectively. Note that integration over Ω is to be understood in the cell-wise sense. h̃

and ĥ are stiff and non-stiff numerical flux function, respectively, given by

h̃(w−,w+) :=
1

2

(
f̃ (w−)+ f̃ (w+)

)
+

1

2
Diag

(
1

ε2
,1,1

)(
w−−w+

)
·n, (4.2)

ĥ(w−,w+) :=
1

2

(
f̂ (w−)+ f̂ (w+)

)
+ε
(
w−−w+

)
·n. (4.3)
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Remark 4.1. The numerical flux is of Rusanov-type.

• Let us note that a somewhat similar choice of the stiff stabilization, for the equations
in primitive variables, has been made in [25], motivated by the fundamental work
of Turkel [56], who introduced preconditioning of the time derivative to enhance
steady-state computations for low-Mach flows.

• The choice of the non-stiff stabilization is motivated by Lemma 3.1, as the eigenval-

ues of ∂w f̂ (w)·n are in O(ε) if one assumes that u=u(0)+O(ε).

• As observed in [9] and [32], the choice of the numerical flux function affects asymp-
totic consistency. The choice here guarantees the latter important property.

Remark 4.2. Both numerical flux functions h̃ and ĥ depend on the reference solution
because of the RS-IMEX splitting, see Definition 3.2. The reference solution only occurs

through the fluxes f̃ and f̂ , respectively, it does not occur in the numerical viscosity.

The extension of Definition 3.3 to the fully discrete DG scheme can be done in a
straightforward way by replacing fluxes f by discrete fluxes R. To get the notation right,
we shortly review this discretization here:

Definition 4.1 (High-order method for weakly compressible flows). For every tn+1 =
tn+∆t do the following:

1. For i=1,··· ,s solve

∫

Ω

(
wn,i

∆x−wn
∆x

)
ϕdx+∆t

(
i

∑
j=1

Ãi,jR̃(w
n,j
∆x;ϕ)+

i−1

∑
j=1

Âi,jR̂(w
n,j
∆x;ϕ)

)
=0 ∀ϕ∈V3

q ,

(4.4)

where wn,i
∆x denotes the solution of the ith internal stage. Also R̃ and R̂ depend on

time t and are evaluated at

t̃n,j := tn+ c̃j∆t, and t̂n,j := tn+ ĉj∆t,

respectively.

2. Set wn+1
∆x :=wn,s

∆x.

In Definition 4.1, we have summarized the final algorithm to be used in this work.
With this, we are now ready to prove asymptotic consistency.
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5 Asymptotic consistency

As mentioned in Section 1, our aim is to develop a method whose ε→0 limit is a consis-
tent discretization of the limit equation (2.4), which means that it preserves the asymp-
totic behavior of the corresponding equation. We prove that our method is asymptotically
consistent, for the ease of presentation in two steps:

1. First, we consider the semi discrete (discrete in time) setting (3.3).

2. Then, we consider the fully discrete setting (4.4).

Unfortunately, the methods we have introduced require a lot of notation. The follow-
ing list gives an overview of the terms we use.

Remark 5.1 (Notation). 1. An upper index n, e.g., un, indicates that the quantity is
given at time level t= tn.

2. An additional upper index i, e.g., un,i, denotes the ith internal stage of an IMEX
Runge-Kutta method.

3. A lower index ∆x, e.g., u∆x, denotes a variable which belongs to a discontinuous
Galerkin discretization.

4. An additional upper index − or +, e.g., u∓
∆x, denotes the interior or exterior value

corresponding to an edge, see (4.1).

5. A lower index in brackets (i), e.g., u(i), denotes a variable which belongs to the ith

component of an asymptotic expansion, see (2.3)

5.1 Semi discrete setting

We start by considering the RS-IMEX splitting for the isentropic Euler equation (1.1) cou-
pled to an IMEX Runge-Kutta temporal discretization as in (3.3).

Theorem 5.1. The RS-IMEX splitting, given in Definition 3.2, coupled to an IMEX Runge-
Kutta temporal discretization as given in Definition 3.3 is asymptotically consistent if well pre-
pared initial data at time t=0 and periodic boundary conditions are used.

Proof. We first show that, given wn is well-prepared, also wn+1 is well-prepared. Because
w0 is well-prepared, one can then inductively prove that all wn are well-prepared.

We assume that all the (discrete) quantities can be represented with an asymptotic
expansion as in (2.3), e.g.,

(ρu)n,j=(ρu)
n,j

(0)
+ε(ρu)

n,j

(1)
+··· .
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If Ã1,1=0, which happens for type CK methods, then the first internal stage is equal to the
previous time instance wn

∆x. It is therefore directly well prepared. Therefore, we consider

the ith internal stage with Ãii 6=0.

Because the numerical density is constant up to O(ε2), we know that its zeroth-order
expansion is equal to the reference density ρ(0). Therefore, considering the O(ε−2) terms
of the momentum equation, we obtain

0=∇
Ãi,i

ε2

(
p(ρ(0))+p′(ρ(0))(ρ

n,i
(0)

−ρ(0))
)

⇔ 0=∇
Ãi,i

ε2

(
p′(ρ(0))ρ

n,i
(0)

)
)

⇔ 0=∇ρn,i
(0)

.

Thus the limit density is constant in space. Next we consider the O(1) terms of the first
equation and integrate over the whole domain. Using the periodic boundary conditions
we get

∫

Ω
ρn,i
(0)

−ρn
(0)dx=0.

Since both values are constant in space, we can conclude that ρn,i
(0)

is constant in i, and

therefore it is equal to ρ(0). Considering again the O(1) terms of the mass equation we
now obtain

∑
j

Ãij∇·(ρu)
n,j

(0)
=0.

Since wn is well-prepared, one can then inductively show that all stage values (ρu)n,i
(0)

are

solenoidal, and one can directly obtain ∇·(ρu)n,i
(0)

=0 if Ãii 6=0. This means that all stage

values are well-prepared. Because the underlying IMEX RK method is globally stiffly
accurate, the update step is equal to the last stage. This automatically proves that the
values wn+1 are well-prepared.

The proof is finalized by the remark that the discrete limit momentum equation is a
consistent discretization of the limit momentum equation.

A question which arises from the use of the RS-IMEX splitting is how to compute the
limit solution. In an ideal case this solution is given, but generally we need a numerical
method for its computation. It is useful to compute the limit solution in such a way that
it corresponds to the solution of the limit method.

Theorem 5.2. The limit of the semi discrete method (3.3) is a discretization that is fully implicit-
in-time.
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Proof. We consider the ith internal stage and add a zero as

ρ(0)u
n,j

(0)
⊗u

n,j

(0)
−ρ(0)u

n,j

(0)
⊗u

n,j

(0)
,

then the limit numerical method reads (see also Definition 3.2)

(
0

ρ(0)u
n,i
(0)

)
=

(
0

ρ(0)u
n
(0)

)

−∆t∑
j

Ãij∇·

(
u

n,j

(0)

−ρ(0)(u
n,j

(0)
−u(0)(t̃

n,j))⊗(u
n,j

(0)
−u(0)(t̃

n,j))+ρ(0)u
n,j

(0)
⊗u

n,j

(0)
+p′(ρ(0))ρ

n,j

(2)
·Id

)

−∆t∑
j

Âij∇·

(
0

ρ(0)(u
n,j

(0)
−u(0)(t̂

n,j))⊗(u
n,j

(0)
−u(0)(t̂

n,j))+
(

p
n,j

(2)
−p′(ρ(0))ρ

n,j

(2)

)
·Id

)
.

We show that the limit method corresponds to a fully implicit method with the help
of mathematical induction. Therefore we assume that the reference solution equals to
the limit numerical solution for the i−1 previous stages (which should be given for the
first instance due to the initial data). Additionally, from the asymptotic expansion one
concludes

pn,i
(2)

= p′(ρ(0))ρ
n,i
(2)

.

Finally, this all together simplifies to

(
0

ρ(0)u
n,i
(0)

)
=

(
0

ρ(0)u
n
(0)

)

+∆t∑
j

Ãij∇·

(
un,i
(0)

−ρ(0)(u
n,i
(0)

−u(0)(t̃
n,i))⊗(un,i

(0)
−u(0)(t̃

n,i))+ρ(0)u
n,i
(0)

⊗un,i
(0)

+pn,i
(2)

·Id

)
,

which is a fully implicit discretization of the incompressible equation with additional

terms in (un,i
(0)

−u(0)(t̃
n,i)). If u(0)(t̃

n,i) has been computed by a fully implicit method

(which takes only the implicit part of the used IMEX Runge-Kutta method), the two so-
lutions correspond to each other. This concludes the proof.

5.2 Fully discrete setting

Here, we consider the fully discrete setting, i.e., temporal discretization with an IMEX
Runge-Kutta method and spatial discretization with a DG method, see (4.4). To clarify
the choice of the numerical diffusion coefficients in (4.2), we start with the following
lemma:
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Lemma 5.1. Let the function σ∆x ∈Vq be such that

∫

∂Ωk

(σ−
∆x−σ+

∆x)ϕ−ds=0, ∀ϕ∈Vq, ∀k=1,··· ,ne. (5.1)

Then, σ∆x is continuous.

Proof. We can choose ϕ=σ∆x in (5.1) and obtain

∫

∂Ωk

(σ−
∆x−σ+

∆x)σ
−
∆xds=0

on every cell Ωk. Summing up over the whole domain and rearranging terms leads to

0=∑
k

∫

∂Ωk

(σ−
∆x−σ+

∆x)σ
−
∆xds=∑

e

∫

e
(σ−

∆x−σ+
∆x)

2ds.

This means that σ−
∆x = σ+

∆x and therefore the quantity σ∆x is continuous over every cell
boundary.

This lemma has a direct consequence for the numerical solution, namely, if we can
show that the numerical stabilization of one quantity lives on a different scale (with re-
spect to ε) than the rest of the corresponding equation, the ε= 0 limit of this quantity is
continuous. We will apply this to the momentum equation and show that the discrete
approximation to ρ(0) is continuous, and one can then easily prove that it is constant.

Theorem 5.3. The RS-IMEX splitting, given in Definition 3.2, coupled to an IMEX Runge-
Kutta temporal discretization as given in Definition 4.1 is asymptotically consistent if periodic
boundary conditions and discretely well prepared initial data, see (5.2), at time t=0 are used.

Proof. The proof is similar as before. We show inductively, starting from n=0, that given
well-prepared values wn

∆x, the algorithm preserves the well-preparedness. More pre-

cisely, we show that the internal stage wn,i
∆x of the RS-IMEX DG method fulfills ρn,i

∆x =
ρ(0)+O(ε2), and ∇·u∆x,(0)= 0 in a discrete sense, see (5.2) (i.e., it is well prepared in a
discrete sense) if all the previous internal stages and the previous time instances are also
discretely well prepared, and there holds that ρn

∆x =ρ(0)+O(ε2). Together with the well-
preparedness at time t=0 and the GSA property, this yields the well-preparedness of all
discrete quantities.

Note that if Ã1,1=0 then the first internal stage is equal to the previous time instance
wn

∆x, thus it is directly well prepared. Therefore we now consider a given i such that

Ãi,i 6=0. We assume that every quantity can be expressed by an asymptotic expansion as
in (2.3), e.g.,

ρn
∆x =ρn

∆x,(0)+ερn
∆x,(1)+ε2ρn

∆x,(2)+O(ε3).
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Due to the numerical stabilization the only terms in O(ε−2) in the momentum equation
are the pressure terms, thus

0=Ãi,i

∫

Ωk

(
p(ρ(0))+p′(ρ(0))(ρ

n,i
∆x,(0)

−ρ(0))
)
∇ϕdx

− Ãi,i
1

2

∫

∂Ωk

(
p(ρ(0))+p′(ρ(0))(ρ

n,i,−
∆x,(0)

−ρ(0))+p(ρ(0))+p′(ρ(0))(ρ
n,i,+
∆x,(0)

−ρ(0))
)

ϕnkdx

for every test-function ϕ∈V2
q . Note that we have directly used the fact that the initial

values and all previous stages are well prepared. Therefore, there are no explicit contri-
butions. Using integration by parts and changing signs leads to

0=Ãi,i

∫

Ωk

∇
(

p(ρ(0))+p′(ρ(0))(ρ
n,i
∆x,(0)

−ρ(0))
)

ϕdx

− Ãi,i
1

2

∫

∂Ωk

(
p(ρ(0))+p′(ρ(0))(ρ

n,i,−
∆x,(0)

−ρ(0))−p(ρ(0))−p′(ρ(0))(ρ
n,i,+
∆x,(0)

−ρ(0))
)

ϕnkds

=Ãi,i

∫

Ωk

∇p′(ρ(0))ρ
n,i
∆x,(0)

ϕdx− Ãi,i
1

2

∫

∂Ωk

p′(ρ(0))(ρ
n,i,−
∆x,(0)

−ρn,i,+
∆x,(0)

)ϕnkds.

Due to Lemma 5.1 and the choice of the implicit stabilization, which is in O(ε−2) for the

first equation, we know that ρn,i
∆x,(0)

is continuous over the cell boundary of Ωk. Therefore

we obtain

0=
∫

Ωk

∇ρn,i
∆x,(0)

ϕdx.

This holds true on every cell Ωk and for every test-function ϕ and therefore ρn,i
∆x,(0)

must

be a cell-wise constant. Since it is also continuous it is constant over the whole domain.
Similarly, one can also conclude that ρn,i

∆x,(1)
is constant over the whole domain. Next we

consider the O(1) terms of the conservation of mass equation. Note that, because this
part is purely implicit, the reference solution does not occur, so for all ϕ∈Vq there holds

0=
∫

Ωk

(
ρn,i

∆x,(0)
−ρn

∆x,(0)

)
ϕdx−∆t∑

j

Ãi,j

∫

Ωk

ρ
n,j

∆x,(0)
u

n,j

∆x,(0)
·∇ϕdx

+∆t∑
j

Ãi,j
1

2

∫

∂Ωk

(
ρ

n,j

∆x,(0)
u

n,j,−
∆x,(0)

+ρ
n,j

∆x,(0)
u

n,j,+
∆x,(0)

)
nk ϕds

+∆t∑
j

Ãi,j
1

2

∫

∂Ωk

(
ρ

n,j,−
∆x,(2)

−ρ
n,j,+
∆x,(2)

)
ϕds.

With the help of periodicity we can now choose ϕ≡1 as the test function and summing
over the whole domain. This leads to

0=
(

ρn,i
∆x,(0)

−ρn
∆x,(0)

)
|Ω|.
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Consequently, ρn,i
∆x,(0)

is also constant in time and is equal to ρ(0) because of the require-

ments on the previous stages and initial conditions. Considering again conservation of
mass, this equation can now be written as

0=∑
j

Ãi,j

∫

Ωk

ρ(0)u
n,j

∆x,(0)
·∇ϕdx

−∑
j

Ãi,j
1

2

∫

∂Ωk

(
ρ(0)u

n,j,−
∆x,(0)

+ρ(0)u
n,j,+
∆x,(0)

)
nk ϕds

−∑
j

Ãi,j
1

2

∫

∂Ωk

(
ρ

n,j,−
∆x,(2)

−ρ
n,j,+
∆x,(2)

)
ϕds. (5.2)

This is a consistent discretization of ∇·u=0 with stabilization terms in ρn,i
∆x,(2)

. This cor-

responds to a stabilization with the pressure, since pn,i
∆x,(2)

=γκρ(0)
γ−1ρn,i

∆x,(2)
. Stabilizing

the divergence equation with the pressure is also used in literature for discontinuous
Galerkin methods for incompressible equations, see e.g. [45].

As for the semi discrete case, it is straightforward to see that the limit momentum
equation is a consistent discretization of the corresponding equation. Thus the method is
asymptotically consistent.

This section is finalized with some remarks:

Remark 5.2. 1. The choice of the numerical flux function is essential for the previous
theorem. Taking implicit stabilization coefficients in O(1), periodic boundary con-
ditions and polynomial degree q=0 results in a method which is not guaranteed to
be AC. In [32], this problem has been solved by using a different type of boundary
condition, based on the work of [26]. In [8], this problem is solved by adding im-
plicit diffusion to the mass equation, which is similar to the choice of the numerical
flux functions presented in this work.

2. The proof of the asymptotic consistency does not rely on the fact that the equations
are two-dimensional. In fact, the three-dimensional case is also covered.

6 Numerical results

In this section we consider an example with exact solution to investigate the numerical
method in terms of stability and accuracy. The high-order vortex is given by a pressure
function p(ρ)= 1

2 ρ2 and periodic initial conditions

ρ0(x,y)=2+250,000ε2

{
1
2 e

2
∆r ∆r−Ei

(
2

∆r

)
, r< 1

2 ,

0, otherwise,
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u0(x,y)=

(
1/2

0

)
+500

(
1
2 −y

x− 1
2

)
·

{
e

1
∆r , r< 1

2 ,

0, otherwise,

where r :=
√
(x− 1

2)
2+(y− 1

2 )
2 and ∆r := r2− 1

4 . The solution is a transport of the vortex

in x-direction, i.e.

ρ(x,y,t)=ρ0

(
x−

1

2
t,y

)
, u(x,y,t)=u0

(
x−

1

2
t,y

)
.

The high-order vortex can be seen as a high-order extension to a vortex defined by Bispen
et al. [9]. Note that the vortex is defined with the help of the exponential integral function

Ei(x) :=
∫ x

−∞

et

t
dt.

This exponential integral function is, amongst others, implemented in the boost package
[1, 49], which is used in this implementation. The finite element code is based on the
software Netgen [50]; linear systems are solved through PETSc [5–7].
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Figure 1: Initial values of the high order vortex for ε=1. Left: initial density ρ0. Middle and right: components

of u0.

Remark 6.1. In the following, if not stated otherwise, we use an ”exact” reference solu-
tion. This means that we project the exact reference solution onto¡ the given DG space
and use this projection to compute the splitting.

6.1 Choice of the CFL number

The stable use of IMEX schemes should be possible under a convective CFL number, see
(1.3). In this section, we try to numerically determine a proper ratio of ∆t

∆x that produces
a stable method. The investigation here will be purely numerically. For preliminary
analytical work in this direction, we refer to the work of Zakerzadeh [62] and Zakerzadeh
and Noelle [63].

We choose a fixed grid (ne= 64) and perform 500 steps with the numerical method
for different polynomial degrees, advective CFL numbers (more precisely for ∆t/∆x =
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Figure 2: Numerical stability analysis of the RS-IMEX DG method for q=0 with the IMEX-Euler method (left),
q=1 with the IMEX-DPA-242 method (middle-left), q=2 with the IMEX-ARS-443 method (middle-right) and
q=3 with the IMEX-ARK-4A2 method (right). In all cases a fixed grid was chosen (ne=64), and 500 time-steps

were performed. If the L2-error raises over a specific threshold we call the method unstable (orange) if it keeps
below a specific threshold we call the method stable (white).

CFL/max‖u0‖∞) and values of ε. We compute the L2−error of the numerical approxi-
mation in every step and if this error raises over a threshold (1000) we can say that the
combination of CFL number and ε is instable. Of course such a test can only be a rough
indication of stability, and not replace a proof.

In Fig. 2 we summarized the results of this analysis. Note that in this example

‖u0‖∞ ≈1.43.

For the low order (q = 0) case, one can see that stability is very pronounced. This is a
result of the relatively large numerical diffusion in the numerical flux. For the higher
order case the influence of the numerical flux function is much less pronounced. There
is a threshold in the CFL number below which the method is stable. Fortunately, this
threshold is independent of ε; it gets smaller with q increasing. (This is of course for
standard DG known quite well [18].) Furthermore, we can observe that the method seems
to be less stable for larger ε, which is not surprising since with ε→0, the influence of the
implicit part gets more pronounced.

Overall these results give us an indication on how to choose the advective CFL num-
ber in the following numerical results. To be completely away from the unstable points
we choose

∆t

∆x
=

CFL

max‖u0‖∞

=0.05.

Since ‖u0‖∞ ≈1.43 this corresponds to an advective CFL number of

CFL≈0.05·1.43≈0.0715.

6.2 Convergence study

In this section we compute the convergence order for the previously defined example.
Grids have been generated with quadratic cells and results, presented in the following,
are compared using the L1-norm of the error at the time instance T=0.125.
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Figure 3: Convergence of the RS-IMEX DG method for the high-order vortex with an exact reference solution:
Different values of ε and for q=0 with the IMEX-Euler method (left), q=1 with the IMEX-DPA-242 method
(middle-left), q=2 with the IMEX-ARS-443 method (middle-right) and q=3 with the IMEX-ARK-4A2 method

(right). As an error measure, we chose the L1 error between the numerical solution and the exact solution. The
dashed lines give the different optimal convergence order, from first order up to fourth order.

The computations are summarized in Fig. 3. In the following we discuss the results
for the various polynomial degrees q.

q=0 and q=1. For both low order cases we obtain the desired convergence order. Just
for the first order case (q = 0) the convergence order is not reached before some refine-
ments are done. We believe that this is due to the large numerical diffusion we add in
the conservation of mass equation. Choosing a higher polynomial degree reduces the
influence of the numerical flux and therefore the second order method gives the desired
results.

q=2. The convergence order of this formally third order method is only ≈ 2.7. Since
all other methods deliver the desired results, we believe that this effect is not due to the
low Mach number, but insufficient grid resolution. To justify this assumption we also
computed the convergence of a third order explicit DG method for ε=1, see Fig. 4. Also
this method starts with a convergence order of about 2.7; after several refinements the
convergence order gets close to 3. Such a highly refined grid is unfortunately at this
moment not feasible for our solver and an implicit method.

q=3. This is the most interesting case. For large values of ε the correct convergence
order is given but for ε = 10−3 the order reduces in the last given refinement and for
ε=10−4 the error gets even constant.

We do not believe that this effect is due to order reduction, as presented in [11] for
IMEX RK methods, because this would happen for a time step ∆t depending on ε and
therefore the effect of order reduction would occur for ε=10−3 first and then for ε=10−4,
not the other way around. Furthermore, it is also not a stability issue, as with decreasing
ε, the method is stable for more values of ∆t. We believe that with this example, we are
hitting the machine accuracy: ε = 10−4, so the term in front of the pressure gradient is
1
ε2 =108. Furthermore, the error level is about 10−6. Multiplying already yields machine
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Figure 4: Convergence of a third order explicit DG method for the high order vortex.

accuracy of around 2·10−14. Similar issues and how to solve them are discussed in the
works [48, 55].

6.3 Convergence study: discrete reference solution

Up to this point we only used a given reference solution, which in more complex ex-
amples is usually not known. Therefore we also computed the same numerical example
as before with an approximate reference solution. Due to Theorem 5.2 we use a fully
implicit discontinuous Galerkin method to solve the incompressible equation. For this
scheme we follow the steps of, e.g., [45, Section 6], where the divergence equation is sta-
bilized with pressure. Furthermore, we use a pressure correction — making the pressure
mean value free — to obtain a unique solution.

In Fig. 5 the results for the same setting as in the previous section are summarized,
showing that they are pretty similar to the ones from the previous section.
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Figure 5: Convergence of the RS-IMEX DG method for the high-order vortex with an implicit method for
computing the reference solution: Different values of ε and for q=0 with the IMEX-Euler method (left), q=1
with the IMEX-DPA-242 method (middle-left), q=2 with the IMEX-ARS-443 method (middle-right) and q=3

with the IMEX-ARK-4A2 method (right). As an error measure, we chose the L1 error between the numerical
solution and the exact solution. The dashed lines give the different optimal convergence order, from first order
up to fourth order.
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7 Conclusion and outlook

In the current paper we have coupled the RS-IMEX splitting with a high-order temporal
and spatial discretization. The resulting method has been shown to be asymptotically
consistent. Furthermore, numerical results give rise to the conjecture that the method is
asymptotically stable and asymptotically accurate.

The next important steps in the development of the RS-IMEX splitting are inherent.
First, a more detailed stability analysis is desirable to prove analytically that the method
is stable under a convective CFL restriction. Second, the identification of more complex
test-cases or equations is useful to test the method in a large range of settings. Further-
more, reducing the computational effort is extremely important, especially compared to
other numerical methods given in literature. Therefore our aim is to figure out in which
way the reference solution can be computed most efficiently, especially if a less accurate
reference solution can also be employed. Another step is the use of more efficient numer-
ical methods for the implicit part, e.g., the hybridized discontinuous Galerkin method for
spatial discretization (see e.g. [29, 30, 40, 43, 54]).

Up to now, we have only considered IMEX Runge-Kutta methods. Unfortunately,
those methods are difficult to construct when going to orders larger than four. A very
interesting class of IMEX schemes are the IMEX general linear methods (GLM), see, e.g.,
[57, 64] and the references therein. They can be more easily constructed to higher order
while preserving properties such as A-stability. An investigation of an IMEX GLM is
therefore of high interest.
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Appendix: IMEX Runge-Kutta methods

For the sake of completeness, we list the employed Runge-Kutta methods in this ap-
pendix section. They are listed in the standard Butcher-tableau form

(
c̃ Ã ĉ Â

b̃ b̂

)
.
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Table 1: Classification of the used IMEX Runge-Kutta methods concerning their order, structure and type.

IMEX-Euler IMEX-DPA-242 IMEX-ARS-443 IMEX-ARK-4A2

Order 1 2 3 4

GSA Yes Yes Yes Yes

Type CK A CK CK

Butcher Tbl. Tbl. 2 Tbl. 3 Tbl. 4 Tbl. 5

Table 2: A first order IMEX RK method called IMEX-Euler [3]. Left: implicit, right: explicit.

0 0 0 0 0 0

1 0 1 1 1 0

0 1 1 0

Table 3: A second order IMEX RK method called IMEX-DPA-242 [21]. Left: implicit, right: explicit.

1/2 1/2 0 0 0 0 0 0 0 0

2/3 1/6 1/2 0 0 1/3 1/3 0 0 0

1/2 -1/2 1/2 1/2 0 1 1 0 0 0

1 3/2 -3/2 1/2 1/2 1 1/2 0 1/2 0

3/2 -3/2 1/2 1/2 1/2 0 1/2 0

Table 4: A third order IMEX RK method called IMEX-ARS-443 [3]. Left: implicit, right: explicit.

0 0 0 0 0 0 0 0 0 0 0 0

1/2 0 1/2 0 0 0 1/2 1/2 0 0 0 0

2/3 0 1/6 1/2 0 0 2/3 11/18 1/18 0 0 0

1/2 0 -1/2 1/2 1/2 0 1/2 5/6 -5/6 1/2 0 0

1 0 3/2 -3/2 1/2 1/2 1 1/4 7/4 3/4 -7/4 0

0 3/2 -3/2 1/2 1/2 1/4 7/4 3/4 -7/4 0

Table 5: A fourth order IMEX RK method called IMEX-ARK-4A2 [38]. Left: implicit, right: explicit.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/3 -1/6 1/2 0 0 0 0 0 1/3 1/3 0 0 0 0 0 0

1/3 1/6 -1/3 1/2 0 0 0 0 1/3 1/6 1/6 0 0 0 0 0

1/2 3/8 -3/8 0 1/2 0 0 0 1/2 1/8 0 3/8 0 0 0 0

1/2 1/8 0 3/8 -1/2 1/2 0 0 1/2 1/8 0 3/8 0 0 0 0

1 -1/2 0 3 -3 1 1/2 0 1 1/2 0 -3/2 0 2 0 0

1 1/6 0 0 0 2/3 -1/2 2/3 1 1/6 0 0 0 2/3 1/6 0

1/6 0 0 0 2/3 -1/2 2/3 1/6 0 0 0 2/3 1/6 0
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