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We perform the thermodynamic analysis of an engine consisting of a Brownian particle in a space-
periodic and time-periodic potential, including the issues of power, efficiency and dissipation. We
derive the explicit expressions for the Onsager coefficients characterizing the linear response regime.

I. INTRODUCTION

By construction, thermodynamic machines operate in
a time-periodic fashion: such a machine actually func-
tions as a catalyst, returning to its initial state after
each cycle. The simplest time-periodic modulation corre-
sponds to a steady state operation, i.e., with a continuous
translational symmetry in time. Nonequilibrium steady
states have in fact been the focus of a large body of re-
search in nonequilibrium statistical mechanics. Famous
results include the symmetry of the Onsager coefficients
and the fluctuation-dissipation relations linking these co-
efficients to equilibrium fluctuations. Much less attention
has been devoted to genuine time-periodic perturbations,
especially from the perspective of a thermodynamic anal-
ysis. In fact, the evaluation of Onsager coefficients for
such a situation is a recent development [1–10]. By av-
eraging over one period of the perturbation one finds,
in the linear response regime, an effective steady state
characterized by expressions for the entropy production,
the fluxes, and the Onsager coefficients that are similar
to those of the traditional nonequilibrium steady states.
An important novelty, however, is that the correspond-
ing Onsager coefficients need not be symmetric, because
the time reversal symmetry can be broken by the modu-
lation. This leads to a number of questions, in particular
concerning the efficiency of such an engine and its rela-
tion to power and dissipation [11, 12]. In this context,
the relations between the regimes of maximum efficiency,
maximum power, and minimum dissipation have recently
been clarified [13].

In this contribution we consider a thermodynamic ma-
chine consisting of an overdamped Brownian particle in
a potential which is periodic both in time and space,
and evaluate how energy and entropy flow through this
device. The effect of modulated space-periodic poten-
tials on Brownian motion has been the object of a great
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deal of research as a prototype model for Brownian mo-
tors. The best known examples are the rectification of
the Brownian motion in flashing and in rocking ratchets.
In this context, the regime of linear response has, how-
ever, received scarce attention [14], probably because the
rectified transport of particles via Brownian ratchets is
a nonlinear effect. Our argument in the present paper
is that a Brownian particle in a modulated potential can
function as an engine when operating in the linear regime.
Furthermore, this operation can, as we will show, be an-
alyzed in full analytic detail. In particular, we derive
explicit expressions for the Onsager coefficients charac-
terizing the linear response regime. In our model, the
energy flow takes place via the Brownian particle. Hence,
the corresponding analysis reveals thermodynamic prop-
erties of an isothermal small scale engine, a subject of
considerable interest in nano and biotechnology.

Our model is isothermal. We are thus not dealing with
a thermal engine, but rather with the transformation of
one form of work into another. In the absence of dissipa-
tion, such a transformation has a 100% efficiency. How-
ever, the power extracted from such a perfectly efficient
machine vanishes. Our explicit results will provide an
illustration of their interrelation. An additional benefit
of our analysis is that it applies to a small scale system,
since the energy flow takes place via the Brownian par-
ticle.

This paper is organized as follows. In the next section,
we discuss in more detail the thermodynamic set-up. In
Sec. III we obtain our main results for the entropy pro-
duction and, in the linear response regime, the Onsager
coefficients. Two simple applications of our theory are
discussed in Sec. IV. Finally, in Sec. V we present some
concluding remarks.

II. STATEMENT OF THE PROBLEM

We assume that a Brownian particle is in contact with
a heat reservoir at temperature T and under the influence
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of a periodic potential energy of the form

U(x, t) = U0(x) + Y1(x)F1(t) + Y2(x)F2(t), (1)

where U0(x) is a background potential. The functions
Yj(x) have spatial period L and the Fj(t) have tem-
poral period τ . The separation into two contributions,
Uj(x, t) = Yj(x)Fj(t) with j = 1, 2 allows the interpreta-
tion of the potential as a thermodynamic machine that
transforms work into work, with j = 1 playing the role of
the load (output work) and j = 2 the role of the driver
(input work). Since total energy is conserved, the differ-
ence between these two must be the heat dissipated by
the particle into the heat bath. It is interesting to ex-
plore how these work and heat contributions depend on
the details of the machine, such as the shapes and the
rates of change of the potentials. On a more technical
note, we point out that the separation into the product
of functions Yj(x) and Fj(t) is somewhat arbitrary, but
the products have the units of energy. For convenience,
which will become clear below, we interpret Yj(x) as a
displacement (units of distance) and Fj(t) as a force.

In the overdamped limit, the time evolution of a Brow-
nian particle under the influence of such a potential is
described by the Langevin equation:

ẋ = −γ−1 ∂U(x, t)

∂x
+ ξ(t), (2)

where γ is the dissipation parameter and ξ(t) is a Gaus-
sian white noise with zero mean and correlation function

〈ξ(t)ξ(t′)〉 =
kBT

2γ
δ(t− t′). (3)

Here kB is the Boltzmann constant. The Langevin equa-
tion can be converted to a Fokker-Planck equation for
the probability density P(x, t) of finding the particle at
the position x at time t,

∂P
∂t

= ŴP, (4)

where the operator Ŵ is defined as

Ŵ (x, t) = γ−1
∂

∂x
Ux(x, t) +D

∂2

∂x2
. (5)

Here Ux(x, t) is the derivative of the potential U(x, t)
with respect to x and the diffusion coefficient is given by
the Einstein relation as

D =
kBT

γ
. (6)

After an initial transient, the system will reach a “time-
periodic and space-periodic steady state” in the sense
that, at any given time, the probability of finding the
Brownian particle will acquire the symmetry of the po-
tential and be L-periodic in space (and τ -periodic in

time). Hence, we can define the reduced probability den-
sity

P (x, t) =

∞∑
k=−∞

P(x+ kL, t), (7)

which obeys the Fokker-Planck equation Eq. (4) in the
interval [0, L] with periodic boundary conditions. From
here on, we will drop the description “reduced” and refer
to P (x, t) simply as the probability density.

III. ENTROPY PRODUCTION AND ONSAGER
COEFFICIENTS

Because in the steady state the Brownian particle will
acquire the periodicity of the potential, the expected
value of the energy of the Brownian particle after a com-
plete cycle will return to its value at the start of the cycle.
Consequently, the net work done on the particle as a re-
sult of the interplay of the two potentials U1(x, t) and
U2(x, t) is completely transformed into heat. The total
rate of entropy production over one cycle, which is asso-
ciated with the rate of the production of heat averaged
over one cycle, can here be equally well expressed as the
average of the rate of production of work,

Ṡ =
1

T

1

τ

∫ τ

0

∫ L

0

∂U(x, t)

∂t
P (x, t)dxdt. (8)

The time periodicity of the forces suggests that a natural
way to proceed is to expand Fj(t) in a Fourier series,

Fj(t) =
∑
µ

F (j)
µ gµ(t), (9)

where we have introduced the compact notation µ =
(n, ζ), n = 1, 2, . . . , representing the Fourier modes (the
term n = 0 can be absorbed into the background poten-
tial), and ζ = c or s such that

gn,c(t) = cos

(
2πnt

τ

)
, (10)

gn,s(t) = sin

(
2πnt

τ

)
. (11)

Using the Fourier expansion, Eq. (8) yields

Ṡ =
∑
µ

1

T

1

τ

∫ τ

0

∫ L

0

Y1(x)F (1)
µ ġµ(t)P (x, t)dxdt

+
∑
µ

1

T

1

τ

∫ τ

0

∫ L

0

Y2(x)F (2)
µ ġµ(t)P (x, t)dxdt

=
∑
µ

(
X(1)
µ J (1)

µ +X(2)
µ J (2)

µ

)
,

(12)

where we have defined

X(j)
µ =

F
(j)
µ

T
, (13)
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and the flux associated with Xµ,

J (j)
µ =

1

τ

∫ τ

0

∫ L

0

Yj(x)ġµ(t)P (x, t)dxdt. (14)

Here we can see that our convention that Fj(t) is a force
and Yj(x) is a displacement implies that the flux has the
convenient units of speed.

Our results so far are valid regardless of the values of
the forces, from weak to strong. To proceed to the linear
response regime, which we can handle analytically, we
first consider the case of weak forces. We will return to
the question of what happens beyond this regime in our
examples (Sec. IV). In the linear response regime, the
responses (fluxes) are assumed to be proportional to the

forces, that is,

J (j)
µ =

∑
ν,k

Lj,kµ,νX
(k)
ν . (15)

The Onsager coefficients Lj,kµ,ν are then given by

Lj,kµ,ν =
∂J

(j)
µ

∂X
(k)
ν

∣∣∣∣∣
F=0

, (16)

where F = 0 indicates that all F
(j)
µ are zero.

Next we note that the only dependence of J
(j)
µ on X

(k)
ν

is via the probability density P (x, t) [cf. Eq.(14)],

∂J
(j)
µ

∂X
(k)
ν

=
1

τ

∫ τ

0

∫ L

0

Yj(x)ġµ(t)
∂P (x, t)

∂X
(k)
ν

dxdt. (17)

In the Appendix we obtain an expression for ∂P/∂X
(k)
ν

and perform the integrals over time. With these steps we
finally obtain

Lj,k(m,ζ),(n,ζ′) = −(−1)δζ,ck−1B
πn

τ

[
Yj − Yj

] [
Yk − Yk

]
(1− δζ,ζ′)δm,n

+ k−1B
∑
p

1

2

(
2πn

τ

)2 [
−λpδζ,ζ′ + (−1)δζ,c

(
2πn

τ

)
(1− δζ,ζ′)

]
(

2πn

τ

)2

+ λ2p

{∫ L

0

[
Yj(x)− Yj

]
ψp(x)dx

∫ L

0

[
Yk(x)− Yk

]
ψp(x)dx

}
δm,n.

(18)

Here δζ,ζ′ is the Kronecker delta. We use the overbar
to indicate an average of any function of f(x) over the
stationary state Peq(x),

f̄ =

∫ L

0

Peq(x
′)f(x′)dx′. (19)

λp is the p-th eigenvalue associated with the corre-
sponding eigenfunction ψp(x) of the unperturbed Fokker
Planck equation:

Ŵ0ψp(x) = λpψp(x). (20)

with

Ŵ0 = Ŵ
∣∣∣
F=0

= γ−1
∂

∂x
U0,x(x) +D

∂2

∂x2
. (21)

U0,x(x) stands for the derivative of the background po-
tential U0(x) in Eq. (1). The eigenfunctions ψp(x) are
supposed to be orthonormalized with respect to the fol-
lowing inner product:

〈f |g〉 =

∫ L

0

f(x)g(x)

Peq(x)
dx, (22)

while the operator Ŵ0 is symmetric with respect to this
product due to detailed balance. The index p runs over
all the eigenfunctions with the corresponding eigenvalues
ordered in a decreasing way. Hence, p = 0 corresponds to
the equilibrium distribution ψ0(x) = Peq(x) with eigen-
value λ0 = 0 and we have 0 > λ1 ≥ λ2 ≥ λ3 . . . . We
finally note that the contribution of the ground state in
the sum over p, i.e. the p = 0 term in Eq. (18), in fact
vanishes.

In the next section we evaluate the Onsager coefficients
and the resultant fluxes, entropy production rates, and
efficiency for two particular examples and compare some
of our results with those of numerical simulations. We
choose simple examples that can illustrate the results
without adding unnecessary complexity.

IV. PARTICULAR CASES

A. Single modulated potential

To explicitly calculate the Onsager coefficients for the
case of a single modulated potential, in Eq. (1) we need to
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specify a background potential U0(x), the portion Y1(x)
of the potential to be modulated, and the modulation
F1(t). We have set the other modulated contribution,
Y2(x)F2(t), equal to zero. This example simplifies further
if we choose the modulated potential Y1(x) to be the ratio
of one of the eigenfunctions ψp(x) of the secular equation

Eq. (20) to the equilibrium distribution, that is,

Y1(x) = L
ψp(x)

Peq(x)
, (23)

and the time modulation

F1(t) = Fc cos

(
2nπt

τ

)
+ Fs sin

(
2nπt

τ

)
. (24)

The prefactor L in Eq. (23) is included in order to pre-
serve our convention that Yj(x) has units of distance.
With these definitions, the surviving Onsager coefficients
then reduce to the much simpler expressions

L1,1
c,c = L1,1

s,s = −
k−1B L2

2τ

n2(L2λp/D)α

n2 + (2π)−2(L2λp/D)2α2
,

L1,1
c,s = −L1,1

s,c =
πnk−1B L2

τ

[
1− n2

n2 + (2π)−2(L2λp/D)2α2

]
,

(25)

where the dimensionless variable α = τD/L2 quantifies
the importance of diffusion over one spatial period dur-
ing one period of oscillation. The simplest choice for
the background potential is a constant potential U0(x) =
U0 = 0, which can be chosen to be zero. The eigenvalues
of Ŵ0 are

λp = −
(

2πp

L

)2

D, (26)

with p = 0, 1, 2, . . . The spectrum is however degenerate,
so that there are two corresponding orthonormal eigen-
functions for each value of p, which we indicate, for ob-
vious reasons, with the supplementary index c and s:

ψ0(x) = Peq(x) =
1

L
(27)

ψ(p,c)(x) =

√
2

L
cos

(
2πκx

L

)
(28)

ψ(p,s)(x) =

√
2

L
sin

(
2πκx

L

)
. (29)

Note that in this case, the sum over p in Eq. (18) is a
sum over all eigenfunctions, hence including the c and s
indices.

We performed the numerical integration of Eq. (2) for
105 particles (samples) with Y1(x) and F1(t) given re-
spectively by Eqs. (23) and (24), with n = 1, p =
(1, c), L = 1 and τ = 1. After a transient of 1000 time
steps ∆t = 10−4, we recorded the position of each parti-
cle with a precision of 10−4 every 10 time steps. Hence,
we were able to calculate P (x, t) with 104 bins both in
space and time. Then we used this numerically calculated

probability distribution density to evaluate the flux J
(j)
µ

from Eq. (14). A technical note: in order to get better
statistics, the simulations were run over three periods of
time and the probability distribution density was aver-
aged over them. The results of our simulations are shown
in Fig. 1.

The linear growth of the fluxes for small forces (linear
response regime) is clearly very well described by our
analytic results, as shown in the expansion of this regime
(middle of Fig. 1a) shown in Fig. 1b. We stress that
there are no fitting parameters in our analytic results.
In Fig. 1a, we see that beyond the linear regime, as |F |
increases the diagonal fluxes go through a maximum and
then decay, eventually saturating, while the off-diagonal
fluxes grow monotonically until they saturate.

With the Onsager coefficients result of Eq. (25) we can
also calculate the entropy production rate in the linear
response regime:

Ṡ =
∑
µ,ν

X(1)
µ Lµ,νX

(1)
ν = −kB

(
F 2
c + F 2

s

)
β2L2

2τ

n2(αL2λp/D)

n2 + (2π)−2(α2L2λp/D)2
. (30)

In Fig. 2 we show the dependence of the entropy pro- duction rate on the amplitude F in the absence of the
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FIG. 1. Flow Jµ as a function of the Fν . The symbols repre-
sent the numerical results: circles Jc vs Fs, crosses −Js vs Fc,
squares Jc vs Fc and plus signs Js vs Fs. In the simulations,
we set: L = 1, τ = 1, D = 0.1 and γ = 0.1.

background potential, U0(x) = 0, and with the same
parameters as in the previous figure. For small F , we
see that the quadratic increase of the entropy produc-
tion predicted by Eq. (30) (linear response regime, see
inset) agrees very well with the results of the simulation.
For large forces (beyond the linear response regime), as
a consequence of the saturation of the diagonal flux, we
see that the entropy production rate increases linearly
with F . We can understand this behavior using a simple
argument. When applying a very strong force for a given
spatial periodicity L, the system is quickly transported
during each period from the previous potential minimum
(which becomes a maximum) to the new minimum, a dis-
tance L/2 away, and that is basically all the dissipation
that takes place. Increasing the force will make the drop
somewhat larger, Ṡ ' F ∗ L/2. This predicts that the
dissipation should become linear in F , as observed.

Another striking feature of the entropy production rate
in the linear response regime is its dependence on the
adimensional parameter α, which measures the interplay
among the diffusion and the time and space periods of

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.1  0.2  0.3  0.4  0.5

S. /k
B

F

 0

 2

 4

 6

 0  0.01  0.02

FIG. 2. Entropy production rate as a function of F . The
line in the main panel represents a linear fit of Ṡ for large
F , while in the inset it represents the theoretical prediction
Eq (30). The symbols represent the results of the numerical
simulations using the same convention of the previous figure.
The parameters are L = 1, τ = 1, D = 0.1, Fs = 0, and
γ = 0.1.

the potential. For isothermal processes, for both large
and small values of α the entropy production vanishes,
but for intermediate values it reaches a maximum (see
Fig. 3),

Ṡmax = kB
(
F 2
c + F 2

s

) nπβ2L2

2τ
, (31)

at α =
2nπD

L2|λp|
. Remarkably, the maximum dissipated

power (for a single mode) is independent of the spatial
mode that defines U1(x). Only the location of the maxi-
mum depends on U0(x) and U1(x).

It is interesting to compare the maximum dissipated
power T Ṡ obtained here with the power dissipated by
a particle dragged through a fluid of viscosity γ by a
constant force F . The dragged particle will travel with
a constant speed v = F/γ and dissipate energy per unit
time at a rate vF = F 2/γ. Using the Einstein relation
Eq. (6), we find that the dissipated power is F 2D/kBT .
In our case, we have a temporally and spatially periodic
potential, and consequently a temporally and spatially
periodic force. For the sake of comparison, let us consider
the simpler case with Fs = 0 in Eq. (24) and calculate
the temporal and spatial averages of the square of the
force over a uniform probability distribution. In fact,
this average should be made using the probability density
P (x, t) but for simplicity we use a uniform distribution.
Indicating such an average by a bracket, we have that

〈F 2〉 = 〈
(
∂U

∂x

)2

〉

= 2 (2pπFc)
2 〈cos2

(
2nπt

τ

)
〉〈sin2

(
2pπx

L

)
〉

= 2 (pπFc)
2
.

(32)
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Using this result in Eq. (31), we find that

T Ṡmax =
L2n〈F 2〉

4p2πτkBT
=
〈F 2〉D
2kBT

. (33)

Therefore, the power dissipated by the Brownian particle
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FIG. 3. Entropy production rate for constant temperature.
The line represents the theoretical prediction, Eq. (30), while
the symbols represent the results of the numerical simulations.
The parameters are L = 1, τ = 1, Fc = 0.05, Fs = 0, and
Dγ = 0.18.

subjected to the modulated potential is similar to the
power dissipated by a dragged particle.

We can also ask what happens to the entropy produc-
tion rate if the viscosity coefficient remains constant but
the temperature varies. In this case, we see the mono-
tonic decay shown in Fig. 4, obtained by numerical simu-
lations and also very accurately predicted by our analytic
result Eq. (30).
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FIG. 4. Entropy production rate as a function of α for con-
stant γ. The line represents the theoretical prediction Eq (30)
while the symbols represent the results of the numerical simu-
lations. The parameters are L = 1, τ = 1, Fc = 0.05, Fs = 0,
and γ = 0.1

B. Two modulated potentials with equal spatial
configurations: Y1(x) = Y2(x)

If the spatial parts of the two modulated potentials are
equal, the Onsager coefficients are related as follows [cf.
Eq. (18)]:

L1,1
(m,ζ),(n,ζ′) = L2,1

(m,ζ),(n,ζ′) = L1,2
(m,ζ),(n,ζ′) = L2,2

(m,ζ),(n,ζ′).

(34)
Moreover, only the same Fourier modes of the modula-
tion functions F1,2 lead to non-vanishing Onsager coeffi-
cients. Therefore it is instructive to see what happens to
a single mode. Here we will discuss the case where

F1(t) = Fc1 cos

(
2πt

τ

)
+ Fs1 sin

(
2πt

τ

)
, (35)

F2(t) = Fc2 cos

(
2πt

τ

)
+ Fs2 sin

(
2πt

τ

)
, (36)

and the same (single Fourier mode) spatial potential con-
sidered in the previous section, Eq. (23). Hence, we

have 16 Onsager coefficients (Lj,kζ,ζ′). Nevertheless, most

of them are related according to Eq. (34). In fact, all
the Onsager coefficients connecting the same modes are

equal, Lj,kζ,ζ = Lc,c, and the Onsager coefficients connect-

ing different modes are Lj,kc,s = −Lj,ks,c = Lc,s. The values
of Lc,c and Lc,s are the same as in the previous section, cf.
Eq. (25). The flux-force relation thus take the following
(matrix) form (J = LX),

J
(1)
c

J
(1)
s

J
(2)
c

J
(2)
s

 =

 Lc,c Lc,s Lc,c Lc,s
−Lc,s Lc,c −Lc,s Lc,c
Lc,c Lc,s Lc,c Lc,s
−Lc,s Lc,c −Lc,s Lc,c



X

(1)
c

X
(1)
s

X
(2)
c

X
(2)
s

 .

(37)
Next we can use this expression to evaluate the entropy
production rate,

Ṡ = XLX, (38)

the power P extracted from the machine,

P
T

= −X(1)
c J (1)

c −X(1)
s J (1)

s , (39)

and the efficiency

η = −X
(1)
c J

(1)
c +X

(1)
s J

(1)
s

X
(2)
c J

(2)
c +X

(2)
s J

(2)
s

. (40)

From these expressions one can notice that the Fourier
components of the forces associated with the potentials
U1(x, t) and U2(x, t) must be related so that the power
extracted from the machine is in fact positive. This does
not necessarily mean that the forces must have opposite
signs because we have cross fluxes between cosine and
sine modes. However, if only a single Fourier mode (ei-
ther a sine or a cosine) is available for both potentials,
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it does indeed imply that the forces must have opposite
signs.

To find the parameters X
(1)
c and X

(1)
s that maximize

the power extracted, we set the derivative of P with re-
spect to those parameters equal to zero and obtain

X(1)
c = −X

(2)
c Lc,c + Lc,sX

(2)
s

2Lc,c
, (41)

X(1)
s =

X
(2)
c Lc,s − Lc,cX(2)

s

2Lc,c
, (42)

which lead to the following expressions at maximum
power:

PMP

T
=

[(
X

(2)
c

)2
+
(
X

(2)
s

)2] (
L2
c,c + L2

c,s

)
4Lc,c

, (43)

ṠMP =

[(
X

(2)
c

)2
+
(
X

(2)
s

)2] (
L2
c,c + L2

c,s

)
4Lc,c

, (44)

ηMP =
1

2
. (45)

That is, at maximum power half of the power injected
is extracted and the other half produces entropy. An in-
teresting observation is apparent concerning the signs of
the forces. If F2(t) has only a single Fourier mode (either
the sine or the cosine), the corresponding Fourier mode
of F1(t) will have the opposite sign. A general statement
about the sign of the cross Fourier modes is not possible
because the flux from a cosine to a sine mode has a sign
opposite to the flux from a sine to a cosine mode (the
Onsager coefficients Lc,s and Ls,c have opposite signs).

We might also maximize the efficiency. In this case,
we have that

X(1)
c = −X(2)

c , X(1)
s = −X(2)

s , (46)

leading to

PMη = 0, ṠMη = 0, ηMη = 1. (47)

Consequently, the perfect efficiency scenario can be
reached: all the energy inserted in the system is ex-
tracted, without entropy production, but this has to be
done without extracting any power, as discussed earlier.
Furthermore, the conditions given in Eq. (46) imply that
U1(x, t) = −U2(x, t) (the forces have opposite signs) so
that the net effect of the two periodic potentials on the
Brownian particle is zero and no dissipation takes place.
The results Eqs.(45)-(47) are in agreement with the gen-
eral predictions from [13].

A final comment about this particular case of equal
spatial modulation functions is that these functions do
not change the qualitative behaviour of the system with
respect to the maximum power transferred or the maxi-
mum efficiency achievable. That is, regardless of the spe-
cific form of U0(x) and of Y1(x) = Y2(x), at maximum
power half of the power is transferred to the output load
and half of it produces entropy, while the maximum effi-
ciency is 1.

V. CONCLUDING REMARKS

We have studied the problem of a Brownian particle
under the influence of a unidimensional periodic (in space
and time) potential. By separating the time dependent
term of the potential into two parts, the Brownian parti-
cle can operate as a machine that transfers energy from
one work source to the other. We expressed the entropy
production in terms of the fluxes and forces acting on
the system and, in the linear response regime, obtained
explicit expressions for the Onsager coefficients. We illus-
trated our results in detail in two particular cases. In the
case of a single modulated potential, we compared our an-
alytic results with simulations and found very good agree-
ment in the linear response regime. For large forces, the
fluxes saturate and the entropy production grows linearly
with the forces, a behavior that is easy to explain. Fur-
thermore, we observed that, for a given temperature, the
entropy production is maximized for a particular value
of the diffusion coefficient. The second example deals
with the engine function, by considering two modulated
potential contributions, playing the role of driving and
load, respectively. We calculated the average power, en-
tropy production and efficiency. In particular, the prop-
erties observed in the regimes of maximum power and
minimum dissipation, respectively, were found to be in
agreement with recent general predictions [13].

Appendix: Onsager coefficients

As a first step in the evaluation of the Onsager co-

efficients, we derive the expressions for ∂P/∂X
(k)
ν , cf.

Eq. (17). In the long time regime, the derivative of the
Fokker-Planck equation Eq. (4) at F = 0 in the linear
response regime, can be written as:

∂P (ν,k)(x, t)

∂t
= Ŵ (ν,k)(x, t)Peq(x) + Ŵ0(x)P (ν,k)(x, t),

(A.1)
where

P (ν,k) =
∂P

∂X
(k)
ν

∣∣∣∣
F=0

, (A.2)

Ŵ (ν,k) =
∂Ŵ

∂X
(k)
ν

∣∣∣∣∣
F=0

, (A.3)

and Ŵ0 is given by Eq. (5) at F=0. The solution of
Eq. (A.1) reads:

P (ν,k)(x, t) = eŴ0(x)tP (ν,k)(x, 0)

+

∫ t

0

eŴ0(x)(t−t′)Ŵ (ν,k)(x, t′)Peq(x)dt′.
(A.4)

The first term on the right hand side is equal to zero
because the initial state does not depend on the mod-
ulation. As for the second term, we make a change of
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variables, introducing t′′ = t − t′. Since the eigenvalues
of Ŵ0 are negative or zero, while Ŵ (x, t)Peq(x) is orthog-
onal to the zero eigenfunction [this follows immediately
from the conservation of probability of Eq. (4)], we can
extend the limit of integration to infinity:

P (ν,k)(x, t) =

∫ ∞
0

eŴ0(x)t
′′
Ŵ (ν,k)(x, t− t′′)Peq(x)dt′′.

(A.5)
Now, we define the adiabatic probability distribution

Pad(x, t) as the solution, at any time t, of

ŴPad(x, t) = 0 ⇒ Pad(x, t) =
e−βU(x,t)

Zt
, (A.6)

where Zt is the instantaneous normalization constant :

Zt =

∫ L

0

e−βU(x,t)dx, (A.7)

and β = 1/(kBT ). By taking the derivative of this equa-

tion with respect to X
(k)
ν , and considering the limit of

vanishing modulation, we find

Ŵ (ν,k)(x, t)Peq(x) + Ŵ0(x)P
(ν,k)
ad (x, t) = 0, (A.8)

which can be used to eliminate the dependence of

Eq. (A.5) on Ŵ (ν,k):

P (ν,k)(x, t) = −
∫ ∞
0

eŴ0(x)t
′′
Ŵ0(x)P

(ν,k)
ad (x, t− t′′)dt′′

= −
∫ ∞
0

deŴ0(x)t
′′

dt′′
P

(ν,k)
ad (x, t− t′′)dt′′.

(A.9)

Next, we integrate Eq. (A.9) by parts:

P (ν,k)(x, t) = − eŴ0(x)t
′′
P

(ν,k)
ad (x, t− t′′)

∣∣∣∞
0

−
∫ ∞
0

eŴ0(x)t
′′
Ṗ

(ν,k)
ad (x, t− t′′)dt′′. (A.10)

The first term vanishes in the limit t′′ → ∞ (noting

that P
(ν,k)
ad is orthogonal to the zero eigenfunction of Ŵ0),

hence:

P (ν,k)(x, t) = P
(ν,k)
ad (x, t)−

∫ ∞
0

eŴ0(x)t
′′
Ṗ

(ν,k)
ad (x, t−t′′)dt′′.

(A.11)
We thus find for the Onsager coefficients:

Lj,kµ,ν =
1

τ

∫ τ

0

∫ L

0

Yj(x)ġµ(t)P (ν,k)(x, t)dxdt

=
1

τ

∫ τ

0

∫ L

0

Yj(x)ġµ(t)P
(ν,k)
ad (x, t)dxdt− 1

τ

∫ τ

0

∫ L

0

∫ ∞
0

Yj(x)ġµ(t)eŴ0t
′
Ṗ

(ν,k)
ad (x, t− t′)dt′dxdt,

(A.12)

We next explicitly calculate the derivative of the adiabatic probability density distribution, given in Eq. (A.6):

P
(ν,k)
ad (x, t) = −βPad(x, t)

∂U(x, t)

∂X
(k)
ν

∣∣∣∣
F=0

− 1

Zt
Pad(x, t)

∂Zt

∂X
(k)
ν

∣∣∣∣
F=0

= −k−1B Yk(x)gν(t)Peq(x)− 1

Zt
Pad(x, t)

∂Zt

∂X
(k)
ν

∣∣∣∣
F=0

.

(A.13)

Using the definition of Zt, given by Eq. (A.7), we have

∂Z

∂X
(k)
ν

= −k−1B gν(t)

∫ L

0

e−βU(x,t)Yk(x)dx. (A.14)

Hence,

P
(ν,k)
ad (x, t) = −k−1B Yk(x)gν(t)Peq(x)

+ k−1B Peq(x)gν(t)

∫ L

0

Peq(x
′)Yk(x′)dx′.

Defining Yk as the average of the k-th displacement
function over the equilibrium probability distribution, cf.
Eq. (19), in the absence of the modulated potentials, we
have:

P
(ν,k)
ad (x, t) = k−1B gν(t)Peq(x)

[
Yk − Yk(x)

]
. (A.15)

Substituting this expression for P
(ν,k)
ad (x, t) in the first

integral of Eq. (A.12), we find:

1

τ

∫ τ

0

∫ L

0

Yj(x)ġµ(t)P
(ν,k)
ad (x, t)dxdt = k−1B

[
1

τ

∫ τ

0

ġµ(t)gν(t)dt

] [∫ L

0

Yj(x)
[
Yk − Yk(x)

]
Peq(x)dx

]

= k−1B

[
1

τ

∫ τ

0

ġµ(t)gν(t)dt

] [
Yj Yk − YjYk

]
.

(A.16)
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The remaining temporal integral vanishes if the frequen-
cies of the Fourier modes µ and ν are different. For µ = ν,
the only contributions are off-diagonal terms, which are
anti-symmetric. More precisely, writing µ = (m, ζ) and
ν = (n, ζ ′), we have:

1

τ

∫ τ

0

∫ L

0

Uj(x)ġµ(t)P
(ν,k)
ad (x, t)dxdt

= (−1)δζ,ck−1B
πn

τ

[
Yj Yk − YjYk

]
(1− δζ,ζ′)δm,n

= −(−1)δζ,ck−1B
πn

τ

[
Yj − Yj

] [
Yk − Yk

]
(1− δζ,ζ′)δm,n.

(A.17)

We now turn our attention to the remaining integral in
Eq. (A.12), which, after substituting the expression for

P
(ν,k)
ad given by Eq. (A.15), reads

− 1

τ

∫ τ

0

∫ L

0

∫ ∞
0

Yj(x)ġµ(t)eŴ0t
′
k−1B

× ġν(t− t′)Peq(x)
[
Yk − Yk(x)

]
dxdtdt′

= −k−1B
1

τ

∫ τ

0

ġµ(t)

∫ ∞
0

ġν(t− t′)dt′dt

×
∫ L

0

Yj(x)eŴ0t
′
Peq(x)

[
Yk − Yk(x)

]
dx.

(A.18)

At this point we introduce the set of eigenvectors of the
operator Ŵ0, given by the equation

Ŵ0|ψp〉 = λp|ψp〉. (A.19)

Here, we assume that the operator Ŵ0 obeys detailed
balance as it describes a system at equilibrium in the
absence of the time-periodic modulation. Hence the op-
erator is self-adjoint with respect to the following inner
product:

〈f |g〉 =

∫ L

0

f(x)g(x)

Peq(x)
dx. (A.20)

Its eigenvalues λp are real (and non-positive) and we can
choose the eigenfunctions ψp to be real. p = 0 corre-
sponds to the equilibrium state, λp = 0 and ψ0(x) =
Peq(x). The eigenfunctions form a complete orthonor-
mal set, hence one can write:

〈f |eŴ0t|g〉 = 〈f |

(∑
p

|ψp〉〈ψp|

)
eŴ0t|g〉

=
∑
p

〈f |ψp〉〈ψp|eŴ0t|g〉

=
∑
p

〈f |ψp〉〈ψp|eλpt|g〉

=
∑
p

∫ L

0

f(x)ψp(x)

Peq(x)
dx

∫ L

0

ψp(x
′)g(x′)eλpt

Peq(x′)
dx′.

(A.21)

Applying this to Eq. (A.18), we can write this integral
as:

∑
p

∫ L

0

Yj(x)ψp(x)dx

∫ L

0

ψp(x
′)eλpt

′ [
Yk − Yk(x′)

]
dx′.

(A.22)

Combining the results of Eqs. (A.17), (A.18) and
(A.22), the Onsager coefficients of Eq. (A.12) with µ =
(m, ζ) and ν = (n, ζ ′) become

Lj,k(m,ζ),(n,ζ′) = (−1)δζ,ck−1B
πn

τ

(
Yj Yk − YjYk

)
(1− δζ,ζ′)δm,n

− k−1B
∑
p

1

τ

∫ τ

0

ġµ(t)

∫ ∞
0

eλpt
′
ġν(t− t′)dt′dt

×
∫ L

0

Yj(x)ψp(x)dx

∫ L

0

ψp(x
′)
[
Yk − Yk(x′)

]
dx′.

(A.23)

We can rewrite this expression in a more symmetrical
form noticing that∫ L

0

ψp(x)Yjdx = Yj

∫ L

0

ψp(x)Peq(x)

Peq(x)
dx

= 〈ψp|Peq〉.
(A.24)

Since |Peq〉 = |ψ0〉, we have that this integral is zero for
all excited states. For the ground state, we have that∫ L

0

Peq(x)
[
Yj − Yj(x)

]
dx = Yj − Yj = 0 , (A.25)

so that we can rewrite the Onsager coefficients as

Lj,k(m,ζ),(n,ζ′) = −(−1)δζ,ck−1B
πn

τ

[
Yj − Yj

] [
Yk − Yk

]
(1− δζ,ζ′)δm,n

+ k−1B
∑
p 6=0

1

τ

∫ τ

0

ġµ(t)

∫ ∞
0

eλpt
′
ġν(t− t′)dt′dt

×
∫ L

0

[
Yj(x)− Yj

]
ψp(x)dx

∫ L

0

[
Yk(x′)− Yk

]
ψp(x

′)dx′δm,n.

(A.26)

To actually perform the integral over t′ we need to
know if the Fourier mode we are analysing is a cosine or
a sine. For ν = (n, c), we have

−
(

2πn

τ

)∫ ∞
0

eλpt
′
sin

(
2πn(t− t′)

τ

)
dt′

=

(
2πn

τ

) (2πn

τ

)
cos

(
2πnt

τ

)
+ λp sin

(
2πnt

τ

)
(

2πn

τ

)2

+ λ2p

,

(A.27)
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while for ν = (n, s) we have,

(
2πn

τ

)∫ ∞
0

eλpt
′
cos

(
2πn(t− t′)

τ

)
dt′

=

(
2πn

τ

) −λp cos

(
2πnt

τ

)
+

(
2πn

τ

)
sin

(
2πnt

τ

)
(

2πn

τ

)2

+ λ2p

.

(A.28)

On the other hand, from Eq. (A.12) we see that we
need to multiply Eq. (A.27) and Eq. (A.28) by ġµ(t)/τ
and integrate over one period. Clearly, only the same
frequency mode will give a non-zero result. Moreover, it
is easy to see that if both µ and ν are sines or cosines,

the result of the integral will be

−1

2

(
2πn

τ

)2

λp(
2πn

τ

)2

+ λ2p

, (A.29)

while the off-diagonal terms are equal to [ζ = c if µ =
(n, c) and ζ = s if µ = (n, s)]

(−1)δζ,c
1

2

(
2πn

τ

)3

(
2πn

τ

)2

+ λ2p

. (A.30)

Finally, substituting the result of the time integrals
Eqs. (A.29) and (A.30) in Eq. (A.26), we obtain the ex-
pression for the Onsager coefficients given by Eq. (18).
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