
PHYSICAL REVIEW E 94, 052129 (2016)
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We carry out the thermodynamic analysis of a Markovian stochastic engine, driven by a spatially and temporally
periodic modulation in a d-dimensional space. We derive the analytic expressions for the Onsager coefficients
characterizing the linear response regime for the isothermal transfer of one type of work (a driver) to another
(a load), mediated by a stochastic time-periodic machine. As an illustration, we obtain the explicit results for
a Markovian kangaroo process coupling two orthogonal directions and find extremely good agreement with
numerical simulations. In addition, we obtain and discuss expressions for the entropy production, power, and
efficiency for the kangaroo process.
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I. INTRODUCTION

The evaluation of Onsager coefficients for machines op-
erating under the influence of time-periodic perturbations
is a recent development [1–12]. In a recent paper [13] we
obtained Onsager coefficients for a one-dimensional system
composed of a Brownian particle under the influence of a
background time-independent periodic potential perturbed by
modulated periodic potentials (both in time and in space) and
in contact with a heat bath at temperature T . By separating
the modulating potential into two parts, a driving contribution
which exerts work on the Brownian particle and a load on
which the Brownian particle exerts work, we showed that the
Brownian particle could mediate the work transfer.

Here, we generalize our results on two fronts. First, instead
of only diffusive processes, we allow the underlying dynamics
of the particle to be a general Markov process obeying detailed
balance. Second, we extend the results to higher dimensions.
This is particularly interesting because it allows us to consider
the problem of work transfer between different degrees of
freedom with a coupling mediated by a microscopic machine.
The simplest concrete examples are forces operating on a
Brownian particle in spatially orthogonal directions in the
presence of a substrate potential. Even though we have an
explicit and exact result for the Onsager coefficients, it is
expressed in terms of the eigenfunctions and eigenvalues of
the stochastic motion in the space-periodic substrate potential,
which are typically not known for nontrivial potentials [14].
The fact that our results are valid for any Markov process
allows us to consider coupling via a so-called “kangaroo
process” [15] in which the particles hop rather than diffuse
in the substrate potential. Besides the explicit expression for
the Onsager coefficients, the discovery of this exactly solvable
model is another main contribution of the present paper.
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The outline of the rest of this paper is as follows. In
Sec. II we describe the set-up of the problem of periodic
Markovian dynamics. Section III connects the Markovian
dynamics with the thermodynamics and presents the definition
of several quantities that will be used throughout the paper.
Next, Sec. IV presents our results for the Onsager coefficients.
Sections V and VI present our results for the kangaroo process
as an example of an exactly solvable model for which we
are able to calculate explicit expressions for the Onsager
coefficients (Sec. V) and for several quantities of interest,
namely, entropy production, power, and efficiency (Sec. VI).
Finally, we summarize our results in Sec. VII.

II. PERIODIC MARKOVIAN DYNAMICS

Our starting point is the Markovian evolution equation for
the probability density Pu(x,t) to observe the system (e.g., a
Brownian particle) at “location” x,

∂Pu(x,t)

∂t
= Ŵ (x,t)Pu(x,t). (1)

Although we refer, for conceptual simplicity, to x as “spatial
location,” this vectorial quantity can have a different interpre-
tation with components not referring to degrees of freedom
in translational space (i.e., a chemical coordinate, a rotational
coordinate, a configurational state, etc.) The evolution operator
Ŵ (x,t) is both temporally periodic (with period τ ) and
spatially periodic [with period L = (L1,L2, . . . ,Ld )]. d is the
dimensionality of the system, and Ll is the spatial period of the
construction in direction l. In the absence of time-modulated
driving, the operator reduces to a time-independent spatially
periodic form Ŵ0(x). In view of the spatial periodicity, it will
be convenient to consider, instead of the probability density
Pu in unbounded space, the reduced probability density,

P (x,t) =
∞∑

k1,k2,...,kd=−∞
Pu

(
x +

d∑
l=0

klLl êl ,t

)
, (2)
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where êl is a unit vector in direction l. The probability density
P (x,t) obeys the master equation Eq. (1) in the region [0,L]
with periodic boundary conditions. From here on we drop the
term reduced and simply refer to P (x,t) as the probability
density. Because of the temporal periodicity of the potential
this density function will, at long times, reach a periodic steady
state, following the periodicity of Ŵ (x,t). More precisely, the
probability density at each point x returns to the same value
after every period. The existence, uniqueness, and convergence
to this periodic state derives from the Perron Frobenius
theorem (assuming ergodicity), see, for example, Ref. [16].

III. HEAT POWER AND ENTROPY PRODUCTION

To make the connection with thermodynamics, we in-
troduce the adiabatic probability density Pad(x,t). Loosely
speaking, it is the “instantaneous” steady state distribution,
achieved when the time perturbation is infinitely slow. As
we will see below, it naturally appears in the linear response
analysis, even though we will be making no assumptions on the
time scale. It is defined as the (normalized) zero eigenvector
of the instantaneous Markov operator,

Ŵ (x,t)Pad(x,t) = 0. (3)

In the absence of the temporal modulation, Pad(x,t) reduces
to the equilibrium probability density Peq(x), defined by the
condition,

Ŵ0(x)Peq(x) = 0. (4)

We now specify that the Markov process describes a modulated
system in contact with a single heat bath. The adiabatic
distribution Pad(x,t) has to be identified with the canonical
distribution, featuring the system’s energy U (x,t),

Pad(x,t) = e−βU (x,t)

Zt

. (5)

Here β = (kBT )−1, kB is the Boltzmann constant, T is the
temperature of the heat bath, and

Zt =
∫ L

0
e−βU (x,t)dx (6)

is the “partition function” at time t . The modulation is
produced by two work sources 1 and 2 that shift the energy
levels of the system according to the following prescription:

U (x,t) = U0(x) + Y1(x)F1(t) + Y2(x)F2(t). (7)

U0(x) is a time-independent background potential, and the
functions Yj (x) are L periodic, whereas theFj (t)’s have period
τ . Henceforth the indices j and k (that will appear later) can
take on the value 1 or 2. We consider a separate contribution
of two periodic potentials Uj (x,t) = Yj (x)Fj (t) because this
allows us to interpret the setup as a thermodynamic machine
that transforms work into work: the indices 1 and 2 refer to
two work contributions with 1 playing the role of the load, i.e.,
the output work, and 2 playing the role of the driver, i.e., the
input work. Such work to work transformations are frequently
encountered in biological systems, one example being the role
of adenosine phosphate as an energy converter in the cell [17].
It is convenient to suppose that the amplitudes Fj (t) have the
units of force and hence Yj (x) the units of length.

Due to conservation of total energy, the difference between
the work performed on the particle and the work performed
by the particle as a result of the interplay of the two potentials
U1(x1,t) and U2(x2,t) is completely transformed into heat.
More precisely, the first law can be written as follows [18]:

dU (x,t)

dt
= ∂U (x,t)

∂t
+ ∇U (x,t) · v, (8)

where v is the velocity of the particle. −∇U (x,t) · v is the
heat per unit time dissipated in the heat bath, and ∂tU (x,t) is
the power driving the particle.

To formulate a steady state thermodynamic analysis, we
obviously focus on the long time regime in which the stochastic
dynamics of the systems becomes periodic and consider
quantities averaged over one period. Due to the periodicity, the
average energy of the system is unchanged after each period,
hence power is equal to heat when averaged over one period.
For the same reason, the entropy of the system returns to the
same value after each period, and hence the entropy change per
period in the entire construction is the average heat divided by
the temperature. Combining both observations, we can write
the entropy production rate averaged over one cycle as follows:

Ṡ = 1

T

1

τ

∫ τ

0

∫ L

0

∂U (x,t)

∂t
P (x,t)dx dt. (9)

The time periodicity of the forces suggests that a natural way
to proceed is to expand Fj (t) in a Fourier series,

Fj (t) =
∑

μ

F (j )
μ gμ(t), (10)

where we have introduced the compact notation μ =
(n,ζ ), n = 1,2, . . . , representing the Fourier modes and ζ = c

or s such that

gn,c(t) = cos ωnt, gn,s(t) = sin ωnt, ωn ≡ 2πn

τ
. (11)

The n = 0 term can be absorbed into the background potential,
so we need not consider it here. Using the Fourier expansion
Eq. (10) in Eq. (9), we can write the entropy production in the
standard form of irreversible thermodynamics [19],

Ṡ =
∑

μ

1

T

1

τ

∫ τ

0

∫ L

0
Y1(x)F (1)

μ ġμ(t)P (x,t)dx dt

+
∑

μ

1

T

1

τ

∫ τ

0

∫ L

0
Y2(x)F (2)

μ ġμ(t)P (x,t)dx dt

=
∑

μ

(
X(1)

μ J (1)
μ + X(2)

μ J (2)
μ

)
, (12)

where we have introduced the thermodynamic forces (with the
usual units of force over temperature) [11–13],

X(j )
μ = F

(j )
μ

T
, (13)

and the corresponding fluxes (with the appropriate units of
speed),

J (j )
μ = 1

τ

∫ τ

0

∫ L

0
Yj (x)ġμ(t)P (x,t)dx dt. (14)
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IV. LINEAR IRREVERSIBLE THERMODYNAMICS AND
ONSAGER COEFFICIENTS

So far, our results are valid for forces of any magnitude. To
make further analytic progress, we turn to the regime of linear
irreversible thermodynamics. We thus assume that the applied
forces are sufficiently small so that the fluxes (which vanish in
the absence of forces) depend linearly on the forces,

J (j )
μ =

∑
ν,k

Lj,k
μ,νX

(k)
ν . (15)

The proportionality constants L
j,k
μ,ν are the celebrated Onsager

coefficients but introduced here in the novel context of a
Markov process periodically perturbed in space and time. They
can obviously be calculated as follows:

Lj,k
μ,ν = ∂J

(j )
μ

∂X
(k)
ν

∣∣∣∣
F=0

, (16)

where F = 0 means that all the F
(j )
μ ’s are zero. The only

dependence of J
(j )
μ on X(k)

ν is through the probability density
P (x,t) [cf. Eq. (14)],

∂J
(j )
μ

∂X
(k)
ν

= 1

τ

∫ τ

0

∫ L

0
Yj (x)ġμ(t)

∂P (x,t)

∂X
(k)
ν

dx dt. (17)

For the long time regime, the derivative of the master equation
Eq. (1) with respect to X(k)

ν at F = 0 in the linear regime can

be written as

∂P (ν,k)(x,t)

∂t
= Ŵ (ν,k)(x,t)Peq(x) + Ŵ0(x)P (ν,k)(x,t), (18)

where

P (ν,k)(x,t) = ∂P (x,t)

∂X
(k)
ν

∣∣∣∣
F=0

, (19)

Ŵ (ν,k)(x,t) = ∂Ŵ (x,t)

∂X
(k)
ν

∣∣∣∣
F=0

. (20)

The solution of Eq. (18) is

P (ν,k)(x,t) = eŴ0(x)tP (ν,k)(x,0)

+
∫ t

0
dt ′eŴ0(x)(t−t ′)Ŵ (ν,k)(x,t ′)Peq(x). (21)

The first term on the right hand side vanishes because, in the
long time regime, all information about the initial state is lost.
Now, defining t ′′ = t − t ′ and changing variables from t ′ to t ′′
in the remaining term of Eq. (21), we have

P (ν,k)(x,t) =
∫ t

0
dt ′′eŴ0(x)t ′′Ŵ (ν,k)(x,t − t ′′)Peq(x). (22)

We have thus introduced and defined all the quantities
needed to calculate the Onsager coefficients. The calculation is
somewhat lengthy and would distract from the results we wish
to display, so we have placed the calculation in the Appendix
and here just quote what is in fact the principal result of our
paper,

L
j,k

(m,ζ ),(n,ζ ′) = −(−1)δζ,c k−1
B

ωn

2
[Yj − Yj ][Yk − Yk](1 − δζ,ζ ′ )δm,n + k−1

B

∑
p

1

2

ω2
n[−λpδζ,ζ ′ + (−1)δζ,cωn(1 − δζ,ζ ′ )]

ω2
n + λ2

p

×
[∫ L

0
[Yj (x) − Yj ]ψp(x)dx

∫ L

0
[Yk(x′) − Yk]ψp(x′)dx′

]
δm,n, (23)

where δζ,ζ ′ is the Kronecker delta, |ψp〉 is an eigenvector of Ŵ0(x) with eigenvalue λp,

Ŵ0|ψp〉 = λp|ψp〉, (24)

and we have defined the average of a function f (x) over the
equilibrium distribution function as

f =
∫ L

0
Peq(x)f (x)dx. (25)

On the way to obtaining Eq. (23), we also used the following
inner product of two (real) functions for (periodic) stochastic
systems:

〈f |g〉 =
∫ L

0

f (x)g(x)

Peq(x)
dx. (26)

As the system returns to thermodynamic equilibrium in the
absence of driving, the operator Ŵ0 must obey detailed
balance. It is thus symmetric with respect to the above
defined inner product. Hence the eigenvalues λp are real,
and one can choose corresponding real eigenfunctions ψp(x).

Furthermore, we assume that the latter form a complete set so
that

∑
p�0 |ψp〉〈ψp| is the unit operator.

We conclude this section by pointing out some general
features and properties of our principal result Eq. (23). The
Onsager matrix is positive, in agreement with the positivity
of the entropy production. In particular all the diagonal
Onsager coefficients are positive. The Onsager coefficients
satisfy a frequency Curie principle since perturbations of
different frequencies do no couple, cf. the overall factor
in δm,n. The Curie principle states that Onsager coefficient
coupling processes of different symmetry characters (for
example, scalar and vector) must be zero [20]. Here it
refers to processes of different frequencies that do not
couple. We identify a symmetric contribution, proportional
to δζ,ζ ′ , and an antisymmetric one in 1 − δζ,ζ ′ . The latter
does not contribute to the entropy production. Finally, for
one-dimensional systems, Eq. (23) for the Onsager coefficients
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becomes

L
j,k

(m,ζ ),(n,ζ ′) = −(−1)δζ,c k−1
B

ωn

2
[Yj − Yj ][Yk − Yk](1 − δζ,ζ ′ )δm,n + k−1

B

∑
p

1

2

ω2
n[−λpδζ,ζ ′ + (−1)δζ,cωn(1 − δζ,ζ ′)]

ω2
n + λ2

p

×
[∫ L

0
[Yj (x) − Yj ]ψp(x)dx

∫ L

0
[Yk(x ′) − Yk]ψp(x)dx ′

]
δm,n. (27)

This expression was first obtained in Ref. [13] for a Brownian
particle in contact with a heat bath and under the influence of a
spatially and temporally periodic potential in the overdamped
limit. Here we have shown that this result is still valid for more
general Markov processes. Obviously, the eigenfunctions of
Ŵ0 and the specific functional dependence of the displacement
functions Yj (x), which determine the eigenvalues and spatial
averages, do depend on the particular Markov process and
so do the values of the Onsager coefficients. Nevertheless,
formally the expression is the same.

V. KANGAROO PROCESS: AN EXACTLY SOLVABLE
TWO-DIMENSIONAL MODEL

We are particularly interested in the Onsager coefficients
linking orthogonal forces. By orthogonality we mean that the
forces act in different subspaces, i.e., one has Yj (x) = Yj (xj )
meaning that the perturbation j only acts along the coordinate
xj . The Onsager coefficients are then given by

L
j,k

(m,ζ ),(n,ζ ′)

= −(−1)δζ,c k−1
B

ωn

2
[Yj − Yj ][Yk − Yk](1 − δζ,ζ ′ )δm,n

+ k−1
B

∑
p

1

2

ω2
n[−λpδζ,ζ ′ + (−1)δζ,cωn(1 − δζ,ζ ′ )]

ω2
n + λ2

p

×
[ ∫ L2

0

∫ L1

0
[Yj (xj ) − Yj ]ψp(x)dx1dx2

×
∫ L2

0

∫ L1

0
[Yk(x ′

k) − Yk]ψp(x′)dx ′
1dx ′

2

]
δm,n.

(28)

The transfer of energy between the two directions is now
only possible due to the coupling induced via the stochastic
substrate dynamics encapsulated in Ŵ0. A most natural
candidate would be a two-dimensional diffusion process in a
periodic potential. We are however faced with the problem
that very few results are known about eigenfunctions and

eigenvalues when the potential is nontrivial, see, e.g., Ref. [14].
A way out would be to consider that the coordinate states xj

of the system are not a continuous but a discrete variable
with a discrete periodicity �,� being a positive integer. In this
case, one needs to find the eigenfunctions and eigenvalues of
the corresponding � by � transition matrix. There is however
a much more elegant and interesting model for which the
calculation proceeds without undue effort and for which the
assumption of continuous space does not have to be dropped.
We consider the so-called kangaroo process [15], which is a
stochastic process where the particle jumps at random times
from its current location to a new location. Between jumps,
the particle stays put. The distribution of time intervals during
which the particles reside in a position before the next jump is
Poissonian, in agreement with the Markovian nature,

P (
t) = 1

τr

e−
t/τr , (29)

where τr is the characteristic time between jumps. The
kangaroo process has been used in modeling a variety of
physical systems, including the well known Bhatnagar-Gross-
Krook [21,22] and Kubo Anderson [15,23] processes. For a
general kangaroo process, τr may depend on the position of
the particle before the jump. However, in our case detailed
balance requires τr to be a constant. The new position of the
particle after a jump is given by the equilibrium probability
distribution,

Peq(x) = 〈x|ψ0〉, (30)

independently of the position of the particle before the jump.
For this process, the operator Ŵ0 can be written as

Ŵ0 = −1 − |ψ0〉〈ψ0|
τr

, (31)

where |ψ0〉 is the (normalized) ground state of Ŵ0 with
eigenvalue 0 [since Ŵ0|ψ0〉 = −(|ψ0〉 − |ψ0〉)/τr = 0|ψ0〉]
and all other eigenstates |ψn〉 have eigenvalue λn = −1/τr .

We note that the ground state contribution to the sum in
Eq. (28) vanishes and that all other eigenvalues are equal.
Hence using the identity,

∑
p>1

[∫ L2

0

∫ L1

0
f (x)ψp(x)dx1dx2

∫ L2

0

∫ L1

0
g(x)ψp(x)dx ′

1dx ′
2

]

=
∑
p>1

〈Peqf |ψp〉〈ψp|Peqg〉
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= 〈Peqf |
⎛
⎝∑

p>1

|ψp〉〈ψp|
⎞
⎠|Peqg〉

= 〈Peqf |(1 − |ψ0〉〈ψ0|)|Peqg〉

=
∫ L2

0

∫ L1

0
f (x)g(x)Peq(x)dx1dx2 −

∫ L2

0

∫ L1

0
f (x)Peq(x)dx1dx2

∫ L2

0

∫ L1

0
g(x′)Peq(x′)dx ′

1dx ′
2

= fg − f g

= (f − f )(g − g), (32)

with f (x) = Yj (xj ) − Yj and g(x) = Yk(xk) − Yk , we obtain

L
j,k

(m,ζ ),(n,ζ ′) = k−1
B

ωn

2
[Yj − Yj ][Yk − Yk]

×
[
ωnτ

−1
r δζ,ζ ′ + (−1)δζ,c τ−2

r (1 − δζ,ζ ′ )
]

ω2
n + τ−2

r

δm,n,

(33)

The above explicit expression for the Onsager coefficients still
depends on the prefactor involving the correlation function of
the Y ’s. This prefactor quantifies the strength of the coupling
induced by the kangaroo process. It depends on equilibrium
probability distribution that defines the kangaroo process. As
expected, all the off-diagonal coefficients vanish if Peq(x) can
be written as the product of a function of x1 and a function of
x2, and we do not see work transfer from the driver to the load.
For the purpose of illustration we consider a simple situation
of coupling induced by having Peq(x) peak strongly along the
first diagonal of the x1/L1 and x2/L2 axes,

Peq(x) = 1 + αδ
(

x1
L1

− x2
L2

)
L1L2(1 + α)

. (34)

Here, the height of this peak is quantified by the parameter α.
In view of the previously cited Curie property, we consider for
the displacement functions Yj (xj ),

Y1(x1) = L1 cos

(
2πx1

L1

)
, Y2(x2) = L2 cos

(
2πx2

L2

)
,

(35)
together with

F1(t) = F1 cos (ωmt), F2(t) = F2 cos (ωnt). (36)

The spatial integrals reduce to

Y1 = Y2 = 0, Y 2
1 = L2

1

2
, (37)

Y 2
2 = L2

2

2
, Y1Y2 = L1L2α

2(1 + α)
, (38)

leading to the Onsager coefficients (j = 1,2),

L
j,j

(m,c),(n,c) = k−1
B

(ωnLj )2

4

τ−1
r

ω2
n + τ−2

r

δm,n, (39)

L
1,2
(m,c),(n,c) = L

2,1
(m,c),(n,c)

= k−1
B

ω2
n

4

L1L2α

(1 + α)

τ−1
r

ω2
n + τ−2

r

δm,n. (40)

As expected, the Onsager coefficients are the same for both
Y1(x1) and Y2(x2) sines or cosines (since the coefficients cannot
depend on the chosen origin of time). However, if one of
them is a sine and the other a cosine, we have L

1,2
(m,c),(n,c) =

L
2,1
(m,c),(n,c) = 0. This is a consequence of the strong coupling

introduced by the δ-function. That is, the kangaroo process
defined by the probability density function Eq. (34) does not
allow antisymmetric Onsager coefficients. If α → 0 there is
no coupling, and the off-diagonal elements again vanish.

We performed simulations of the kangaroo process defined
by Eq. (34), modulated by the displacements Yj (xj ) given in
Eq. (35) and the forces Fj (t) given in Eq. (36). With such a
choice, the operator Ŵ (x,t) becomes

Ŵ (x,t) = 1 − |ψ0,ad〉〈ψ0,ad|
τr

, (41)

where |ψ0,ad〉 is the ground state for the modulated kangaroo
process for a fixed long time, and

Pad(x,t) = 〈x|ψ0,ad〉

=
[
1 + αδ

(
x1
L1

− x2
L2

)]
e−β[F1(t)Y1(x1)+F2(t)Y2(x2)]

L1L2{I0[βF1 cos(ωmt)]I0[βF2 cos(ωnt)] + αI0[βF1 cos(ωmt) + βF2 cos(ωnt)]} . (42)

In our simulations, we set m = n = 1 in Eq. (42). In
addition, we set L1 = L2 = 1 and ωn = ωm = 2π (i.e., τ =
1). The fluxes where then calculated according to the following
algorithm:

(1) Choose a random initial point (x,y) where x and y are
both uniformly distributed in the range [0,1].

(2) Choose the time interval between jumps according to
the exponential distribution P (
t) = τre


t/τr .

052129-5



ROSAS, VAN DEN BROECK, AND LINDENBERG PHYSICAL REVIEW E 94, 052129 (2016)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

1

2

0 2 4 6 8J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
βF1

FIG. 1. Flux as a function of βF1. In the simulations we set F2 =
0 and τr = 1

2π
. The lines represent the theoretical results for the linear

response regime J (j )
c = F1

T
L

1,j

(1,c),(1,c) with the Onsager coefficients
given by Eqs. (39) and (40), and the symbols represent the results
of the numerical simulations for both fluxes: J (1)

c (squares) and J (2)
c

for α = 10.0 (plus signs), 1.0 (triangles), and 0.1 (circles). In the
inset, we show the saturation of the fluxes for strong forces.

(3) Calculate the fluxes between t and t + 
t and add to
the total flux J

(j )
tot = J

(j )
tot + Yj (xj )[g(t + 
t) − g(t)].

(4) Choose a new position according to the probability
distribution Eq. (42).

(5) Repeat steps 2–4 until the time tmax is reached. In our
simulations, tmax = 5000.

(6) Calculate the average flux J
(j )
tot /tmax.

(7) Repeat steps 1–6 Nsamples times, and calculate the
average flux. In our simulations, Nsamples = 100.

In Fig. 1 we successfully compare the predictions of linear
response theory for the fluxes with the simulations for three
different values of α for weak forces. For strong forces (see
the inset), the fluxes saturate as expected. Also, the prediction
of linear response theory that the flux J (1)

c (as a function of
F1) does not depend on α holds for strong forces. In Fig. 2,
we compare the result of the numerical simulations with the
theoretical prediction for the entropy production.

Finally, in Fig. 3 we compare the Onsager coefficients
obtained from the numerical simulations with the theoretical
predictions as a function of τr . The numerical simulation
results were obtained by linear regression of the fluxes as
functions of the force F1 (for weak forces) for each value of
τr . Once again, the agreement between the numerical results
and the theoretical predictions is notable.

We end this section by stressing that no fitting parameter
was required in any of our results.

VI. KANGAROO PROCESS: EFFICIENCY, POWER, AND
ENTROPY PRODUCTION

It is straightforward to evaluate various quantities of interest
from the Onsager coefficients obtained in the previous section.
Using the displacement functions Eq. (38) and forces Eq. (36)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
βF1

FIG. 2. Entropy production as a function of βF1. The parameters
are the same as in the previous figure, but only a single value of
α (0.1) was used because the result is independent of α.

with m = n, one finds for the entropy production per cycle,

Ṡ = X(1)
c J (1)

c + X(2)
c J (2)

c

= 1 + α(1 − σ )2 + σ 2

1 + α
ṠMD. (43)

For the power P extracted by the load per cycle,

P
T

= −X(1)
c J (1)

c = α − σ (1 + α)

1 + α
σ ṠMD, (44)

and for the efficiency of the machine,

η = −X(1)
c J (1)

c

X
(2)
c J

(2)
c

= α − σ (1 + α)

1 + α(1 − σ )
σ, (45)

where

σ = −F1L1

F2L2
, (46)
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FIG. 3. Onsager coefficients as a function of τr . The parameters
are the same as in the previous figure. The squares represent the
results of the numerical simulations for L

1,1
(1,c),(1,c) and the circles for

L
2,1
(1,c),(1,c). The lines are the plots of Eqs. (39) and (40).
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and

ṠMD/kB = ω2
nτ

−1
r F 2

2 L2
2

4(kBT )2
(
ω2

n + τ−2
r

) . (47)

To give an idea of the order of magnitude of these quantities,
we consider the cases of F2 = 2.0, F1 = −1.0 pN, τr =
1/2π ms, ωn = 2π kHz, L1 = L2 = 1.0 μm, T = 300.0 K,
and α = 10.0. The power extracted per cycle is P = 0.16 pW,
and the entropy production per cycle is 8.6 × 10−4 pW/K.

It is clear from the expression for the power Eq. (44) and
efficiency Eq. (45) that σ must be positive since otherwise
P and η would be negative—the power would be injected
instead of extracted by the load. Hence, the signs of F1 and F2

must be different. What is more, there is a minimum driving
force necessary to make the machine work σ < α/(1 + α).
In the range of 0 � σ � α/(1 + α), the entropy production
is a monotonically decaying function of σ . Therefore, the
maximum entropy production occurs for σ = 0 (F1 = 0),
which gives Ṡ = ṠMD defined in Eq. (47). At σ = α/(1 + α),
the entropy production is a minimum,

ṠmD = 1 + 2α

(1 + α)2
ṠMD. (48)

In both cases (maximum and minimum entropy production),
the power extracted from the machine and the efficiency
vanish.

The maximum power that can be extracted from the
machine can be straightforwardly calculated from Eq. (44)
to occur at σMP = α/[2(1 + α)] and to be

PMP

T
= α2

4(1 + α)2
ṠMD. (49)

At maximum power, the entropy production is

ṠMP = 4 + 8α + α2

4(1 + α)2
ṠMD, (50)

and the efficiency becomes

ηMP = α2

4 + 8α + 2α2
. (51)

In Fig. 4 we show the efficiency as a function of the parameter
σ for three values of α. For small α, the predilection of
the kangaroo process for the diagonal is weak and so is the
coupling between the forces. Consequently, the machine is
extremely inefficient. As we increase α, the coupling between
the forces becomes stronger, and the machine becomes
progressively more efficient. It is also clear from the figure
that for any given α there is an optimum value of σ for
which the efficiency is maximum, which can readily be shown
to be

σME = 1 + α − √
1 + 2α

α
, (52)

which leads to the maximum efficiency,

ηME = α(4 + α − 2
√

2α + 1) + 2 − 2
√

2α + 1

α2
, (53)
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FIG. 4. Efficiency as a function of the parameter σ for α = 0.1
(dotted line), 1.0 (dashed line), and 10.0 (continuous line).

the power,

PME

T
= 1 + α − √

2α + 1

α2(α + 1)

× [α(
√

2α + 1 − 2) + √
2α + 1 − 1]ṠMD, (54)

and the entropy production,

ṠME = 2(2α + 1)(1 + α − √
2α + 1)

α2(α + 1)
ṠMD. (55)

It is also worth noting that, for α → ∞, the efficiency becomes
η∞ = σ . In this case, the machine may become a perfect
machine (η = 1) for σ = 1. The power extracted by the
load and the entropy production both vanish, that is, the
machine becomes reversible. In Fig. 5 we show the maximum
efficiency and the efficiency at maximum power (main panel).
As α increases and the machine becomes more efficient, the
difference between the maximum efficiency and the efficiency
at maximum power also increases. For α → ∞, the efficiency
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FIG. 5. Maximum efficiency (solid line) and efficiency at max-
imum power (dashed line) as a function of α (main panel), σ at
maximum efficiency (solid line), and maximum power (dashed line)
as a function of α (the inset).
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FIG. 6. Power at maximum efficiency (solid line) and maximum
power (dashed line) as a function of α.

at maximum power becomes equal to half of the maximum
efficiency. In the inset, we see that the maximum efficiency
is reached with smaller values of σ than the ones required to
have maximum power.

In Fig. 6, we show the maximum power and the power
at maximum efficiency as a function of α. Although the
maximum power increases monotonically, eventually saturat-
ing to T ṠMD/4, at maximum efficiency the power reaches a
maximum and slowly decays to zero (as α → ∞).

In Fig. 7, we show the entropy production at maximum
efficiency, at maximum power, and the minimum entropy pro-
duction. Both the minimum entropy production and the entropy
production at maximum efficiency vanish proportionally to
1/α as α → ∞. At maximum power, however, the entropy
production saturates to 1/4 of its maximum value.

We finally note that the expressions obtained in this section
for the entropy production at minimum dissipation Eq. (48),
power at maximum power Eq. (49), maximum efficiency
Eq. (54), minimum dissipation (which vanishes), efficiency at
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Ṡ
/Ṡ
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FIG. 7. Entropy production at maximum efficiency (solid line),
at maximum power (large dashed line), and minimum entropy
production (small dashed line) as a function of α.

maximum power Eq. (51), and maximum efficiency Eq. (53)
are compatible with the general relations obtained in Ref. [12].

VII. SUMMARY

In this paper we have discussed the problem of a particle
in a heat bath whose dynamics follows a Markov process,
governed by a temporally and spatially periodic transition
matrix obeying detailed balance. We obtained expressions for
the Onsager coefficients in terms of the eigenvalues of Ŵ0

and averages over the equilibrium probability density Peq(x)
in any dimension. For one-dimensional systems, we recovered
the previous results for the Onsager coefficients for a Brownian
particle in contact with a heat bath subjected to periodic
potentials [13]. We also provided an interesting example
of a simple two-dimensional system (the kangaroo process)
for which explicit expressions for the Onsager coefficients,
entropy production, power, and efficiency were obtained. Our
results are in very good agreement with numerical simulations
and obey exact general relations obtained earlier in Ref. [12]
for the entropy production, power, and efficiency under
different physical circumstances.
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APPENDIX: ONSAGER COEFFICIENTS

In order to calculate the Onsager coefficients, we first take
the derivative of Eq. (3) with respect to X(k)

ν in the limit of
vanishing modulation,

Ŵ (ν,k)(x,t)Peq(x) + Ŵ0(x)P (ν,k)
ad (x,t) = 0, (A1)

and use this result to eliminate the dependence of Eq. (22) on
Ŵ (ν,k),

P (ν,k)(x,t) = −
∫ t

0
dt ′′eŴ0(x)t ′′Ŵ0(x)P (ν,k)

ad (x,t − t ′′)

= −
∫ t

0
dt ′′

deŴ0(x)t ′′

dt ′′
P

(ν,k)
ad (x,t − t ′′). (A2)

Next, we integrate Eq. (A2) by parts so that

P (ν,k)(x,t) = −eŴ0(x)t ′′P
(ν,k)
ad (x,t − t ′′)|t0

−
∫ t

0
eŴ0(x)t ′′ Ṗ

(ν,k)
ad (x,t − t ′′)dt ′′. (A3)

Due to the exponential decay of eŴ0(x)t (the eigenvalues of Ŵ0

cannot be positive and are zero only in equilibrium [24]), the
first term of the integration by parts vanishes at long times so
that

P (ν,k)(x,t) = P
(ν,k)
ad (x,t) −

∫ t

0
eŴ0(x)t ′′ Ṗ

(ν,k)
ad (x,t − t ′′)dt ′′.

(A4)
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Using this result, the Onsager coefficients can be written as

Lj,k
μ,ν = 1

τ

∫ τ

0
dt

∫ L

0
dx Yj (xj )ġμ(t)P (ν,k)

ad (x,t) − 1

τ

∫ τ

0
dt

∫ L

0
dx Yj (x)ġμ(t)

∫ t

0
dt ′eŴ0t

′
Ṗ

(ν,k)
ad (x,t − t ′). (A5)

The derivative P
(ν,k)
ad (x,t) of the adiabatic probability density Pad(x,t) can be expressed as

P
(ν,k)
ad (x,t) = −k−1

B Yk(x)gν(t)Peq(x) + k−1
B Peq(x)gν(t)

∫ L

0
Peq(x′)Yk(x ′

k)dx′

= k−1
B gν(t)Peq(x)[Yk − Yk(x)]. (A6)

Substituting this expression in the first integral of Eq. (A5), we have

1

τ

∫ τ

0
dt

∫ L

0
dx Yj (xj )ġμ(t)P (ν,k)

ad (x,t) = k−1
B

[
1

τ

∫ τ

0
ġμ(t)gν(t)dt

][∫ L

0
Yj (x)[Yk − Yk(x)]Peq(x)dx

]

= k−1
B

[
1

τ

∫ τ

0
ġμ(t)gν(t)dt

]
[Yj Yk − YjYk]. (A7)

The remaining temporal integral vanishes if the frequencies of the Fourier modes μ and ν are different. Even if they are the same,
it still vanishes for μ = ν. Writing μ = (m,ζ ) and ν = (n,ζ ′), we have

1

τ

∫ τ

0
dt

∫ L

0
dx Yj (x)ġμ(t)P (ν,k)

ad (x,t) = (−1)δζ,c k−1
B

ωn

2
[Yj Yk − YjYk](1 − δζ,ζ ′ )δm,n. (A8)

We now turn our attention to the remaining integral in Eq. (A5), which, after substituting the expression for P
(ν,k)
ad given by

Eq. (A6) reads

1

τ

∫ τ

0
dt

∫ L

0
dx Yj (xj )ġμ(t)

∫ ∞

0
dt ′eŴ0t

′
k−1
B ġν(t − t ′)Peq(x)[Yk − Yk(x)]

= k−1
B

1

τ

∫ τ

0
dt ġμ(t)

∫ ∞

0
dt ′ġν(t − t ′)

∫ L

0
dx Yj (x)eŴ0t

′
Peq(x)[Yk − Yk(x)]. (A9)

Next, we note that for any real functions f (x) and g(x) we have that

〈f |eŴ0t |g〉 = 〈f |
(∑

p

|ψp〉〈ψp|
)

eŴ0t |g〉

=
∑

p

〈f |ψp〉〈ψp|eŴ0t |g〉

=
∑

p

〈f |ψp〉〈ψp|eλpt |g〉

=
∑

p

[∫ L

0

f (x)ψp(x)

Peq(x)
dx

∫ L

0

ψp(x′)g(x′)eλpt

Peq(x′)
dx′

]
. (A10)

Identifying the leftmost Yj (x) in the last integral of Eq. (A9) as f (x)/Peq(x) and Peq(x)[Yk − Yk(x)] as g(x), we can write
this last integral as

∑
p

[∫ L

0
Yj (x)ψp(x)dx

∫ L

0
ψp(x′)eλpt ′[Yk − Yk(x ′

k)]dx′
]
. (A11)

Combining the results of Eqs. (A8), (A9), and (A11), the Onsager coefficients of Eq. (A5) with μ = (m,ζ ) and ν = (n,ζ ′)
become

L
j,k

(m,ζ ),(n,ζ ′) = (−1)δζ,c k−1
B

ωn

2
(Yj Yk − YjYk)(1 − δζ,ζ ′)δm,n

−k−1
B

∑
p

1

τ

∫ τ

0
dt ġμ(t)

∫ ∞

0
dt ′eλpt ′ ġν(t − t ′)

×
∫ L

0
Yj (x)ψp(x)dx

∫ L

0
ψp(x′)[Yk − Yk(x ′

k)]dx′. (A12)
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We rewrite this expression in a more symmetrical form noticing that∫ L

0
ψp(x′)Ykdx′ = Yk

∫ L

0

ψp(x′)Peq(x′)
Peq(x′)

dx′

= Yk〈ψp|Peq〉. (A13)

Since |Peq〉 = |ψ0〉, we have that this integral is zero for j > 0. For j = 0, the last integral in Eq. (A12) yields∫ L

0
Peq(x ′)[Yk − Yk(x ′)]dx ′ = Yk − Yk = 0, (A14)

so we can write the Onsager coefficients as

L
j,k

(m,ζ ),(n,ζ ′) = −(−1)δζ,c k−1
B

ωn

2
[Yj − Yj ][Yk − Yk](1 − δζ,ζ ′ )δm,n + k−1

B

∑
p

1

τ

∫ τ

0
dt ġμ(t)

∫ ∞

0
dt ′eλpt ′ ġν(t − t ′)

×
[∫ L

0
[Yj (x) − Yj ]ψp(x)dx

∫ L

0
[Yk(x′) − Yk]ψp(x)dx′

]
. (A15)

To actually perform the integral over t ′ we need to distinguish between cosine and sine Fourier modes. Most of the remaining
integrals involve simply exponentials and sines or cosines. After some tedious steps we finally arrive at Eq. (23) for the Onsager
coefficients.
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