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Abstract

Affective instability, the tendency to experience emotions that fluctuate frequently and

intensively over time, is a core feature of several mental disorders including borderline

personality disorder. Currently, affect is often measured with Ecological Momentary

Assessment protocols, which yield the possibility to quantify the instability of affect

over time. A number of Linear Mixed Models are proposed to examine (diagnostic)

group differences in affective instability. The models contribute to the existing literature

by estimating simultaneously both the variance and serial dependency component of

affective instability when observations are unequally spaced in time with the serial

autocorrelation (or emotional inertia) declining as a function of the time interval

between observations. In addition, the models can eliminate systematic trends, take

between subject differences into account and test for (diagnostic) group differences in

serial autocorrelation, short-term as well as long-term affective variability. The

usefulness of the models is illustrated in a study on diagnostic group differences in

affective instability in the domain of eating disorders. Limitations of the model are that

they pertain to group (and not individual) differences and do not focus explicitly on

circadian rhythms or cycles in affect.

Keywords: affective instability; serial dependency; autocorrelation; variance;

Ecological Momentary Assessment (EMA);Linear Mixed Model (LMM)
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A Mixed Model to Disentangle Variance and Serial Autocorrelation in Affective

Instability using Ecological Momentary Assessment Data

Introduction

Affective instability in humans is the tendency to experience emotions that

fluctuate frequently and intensively over time. Measurement of the temporal instability

of affect is important in psychology as it is a defining characteristic of several mental

disorders including, amongst others, mood cycling disorders and borderline personality

disorder (American Psychiatric Association, 2013; Linehan, 1993). For example, in

comparison with healthy controls, subjects with a unipolar mood disorder are supposed

to show less affective instability whereas subjects with a borderline personality disorder

are supposed to show more affective instability. In psychology, affective instability is

often quantified using data obtained by Ecological Momentary Assessment (EMA)

protocols. EMA has many names (e.g., diary studies, experience sampling, ambulant

monitoring) and exists in many shapes (e.g., time contingent, event contingent, and so

forth) but essentially consists of the intensive repeated measurements of individuals in

their natural circumstances at specific moments in time. For an overview of diary

methods, designs, and intensive longitudinal methods, see Bolger and Laurenceau

(2013), and Mehl and Conner (2012). An example of a typical data set in EMA

research consists of a number of subjects who reported on their momentary affect (e.g.,

I feel sad) at random occasions during the day for several days contingent to a signal

generated by a smartphone. Originally, the probably by far most used measure to

quantify affective instability in psychological research is the within person variance

(WPV) (Eid & Diener, 1999; Farmer, Nash, & Dance, 2004; Hoffman, 2007; Zeigler-Hill

& Abraham, 2006). This measure simply is the variance of an affective variable of a

subject i (1 . . . i . . . I) over Oi (1 . . . o . . . Oi) repeated occasions in time. However, there

are a number of problems associated with the WPV as a quantification of affective

instability as argued by several authors (Ebner-Priemer et al., 2007; Jahng, Wood, &

Trull, 2008; Wang, Hamaker, & Bergeman, 2012).

In the next sections, we first discuss these problems and other model requirements
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that are important in the study of affective instability together with the existing

statistical models in literature. In addition, we will also highlight the novel contributions

and limitations of the Linear Mixed Models (LMM) we will propose. Next, we describe

a data set on affective instability in eating disorders. Finally, we will propose a LMM

that deals with the problems and issues discussed in the first section and illustrate it in

an application in the domain of eating disorders. In the discussion, the merits and

limitations of our proposed model in relation to existing models will be discussed.

Model Requirements in the Study of Affective Instability

Problems associated with the within person variance

A first problem with the WPV as an index of affective instability (Ebner-Priemer

et al., 2007; Jahng et al., 2008; Larsen, 1987; Wang et al., 2012) relates to the fact that

affective instability actually comprises two components: variability on the one hand and

serial dependency on the other hand. Failing to distinguish between both components

of affective instability may lead to confusion of two characteristics of the time series

process (the repeated measurements of affect over time). To demonstrate both

components of affective instability –variability and serial autocorrelation– Jahng et al.

(2008) generated a time series of 100 values from an autoregressive process of order 1

with a WPV of 1 and an autocorrelation of .50. Next, these authors generated a second

time series simply by rearranging randomly the 100 values of the first series resulting in

the absence of any serial autocorrelation. It is obvious that both series have the same

WPV but a different serial autocorrelation. When we assume that both series are affect

scores from two different subjects, the WPV fails to distinguish both series and fails to

detect the differences in affective instability. Next, Jahng et al. (2008) generated a third

time series by multiplying each value of the first time series by 2 resulting in two time

series with the same serial autocorrelation but a different WPV. In this case, the serial

autocorrelation fails to distinguish both series but the WPV can detect the differences

in affective instability between subjects. These three time series clearly illustrate that

both variability and serial dependency (or autocorrelation) are distinctive components
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of affective instability and we aim for a model that allows one to examine group

differences in affective instability by the estimation of both components. Moreover,

research has proved that it is useful to consider both components separately as they

have different predictability for health outcomes (Wang et al., 2012). In this context,

Suls, Green, and Hillis (1998) translated serial autocorrelation into the concept of

affective inertia –the extent to which affect at one particular moment is carried over to

subsequent moments– and several studies have shown that higher levels of emotional

inertia are associated with more neuroticism, more depression and lower psychological

adjustment (Brose, Schmiedek, Kova, & Kuppens, 2015; Koval & Kuppens, 2012; Koval,

Kuppens, Allen, & Sheeber, 2012; Kuppens, Allen, & Sheeber, 2010; Suls et al., 1998).

Note, however, that the model we will propose is developed to examine (diagnostic)

group differences in affective instability with the latter being the dependent variable. As

a result, the model is not developed to predict outcome variables (e.g. health outcomes)

as have been done in these studies.

Models for affective instability, variability and serial correlation

The last decade, availability of EMA data has stimulated the development of new

modeling approaches for EMA data and affect in general (see Bolger & Laurenceau,

2013; Mehl & Conner, 2012) and affective instability in particular. For example, Jahng

et al. (2008) have proposed to calculate Mean Squared Successive Difference (MSSD) of

successive affective states as an index to quantify affective instability. Using this index,

diagnostic group differences in MSSDs are modeled using a non-linear mixed model

with gamma error distribution and log link (For more details, see Jahng et al., 2008).

These authors have argued that this index is sensitive for both the variability and serial

autocorrelation of affective instability. However, the MSSD measure is only an index

that is sensitive for variability and serial autocorrelation but does not allow for the

estimation of both components separately. Moreover, Wang et al. (2012) have pointed

to serious limitations of the MSSD showing that subjects with exactly the same MSSD
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can be characterized by obviously different first-order autoregressive processes. These

authors themselves have proposed an alternative method using a Bayesian estimation

approach that models interindividual differences in intra individual variation of affect

by separately considering the variability and temporal dependency component (Wang et

al., 2012). In this model, the stationary time series for different subjects, after

detrending, is modeled using an autoregressive model of lag k (AR(K)), in which the

AR parameters as well as the error/innovation variances may be subject-specific. These

subject-specific parameters can be predicted on the basis of covariates using a model

with log link function and gamma distribution. Moreover, this model makes it possible

to predict outcome variables using both the variability and serial dependency

component of affective instability.

In addition, other models have been proposed that focus on one of the two

components of affective instability. Heterogeneous mixed models, for example, focus on

the variability component to examine the effect of covariates on between and within

subject variance (Hedeker, Berbaum, & Mermelstein, 2006; Hedeker, Demirtas, &

Mermelstein, 2009; Hedeker, Mermelstein, & Demirtas, 2008, 2012; Hoffman, 2007). In

these models, the between subject and within subject variance on the natural logarithm

scale can be predicted on the basis of a linear combination of covariates. Moreover,

Hedeker and colleagues recently extended their approach by allowing the inclusion of

random subject effects permitting the within subject variance to vary at the subject

level, above and beyond the influence of covariates on this variance (Hedeker et al.,

2008, 2012). Next, research on emotional inertia has focused on the serial correlation

component of affective instability (Brose et al., 2015; Koval & Kuppens, 2012; Koval et

al., 2012; Kuppens et al., 2010; Suls et al., 1998) and related emotional inertia to

outcome variables. In this research, the serial autocorrelation is examined using

autoregressive multilevel models by regressing affect at one moment in time by affect at

the previous moment in time and relating the autocorrelation parameters to covariates.

A somewhat different approach, with focus on within person affective dynamics

rather than instability, are the differential equation models (Deboeck, 2012; Oravecz &
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Tuerlinckx, 2011; Oravecz, Tuerlinckx, & Vandekerckhove, 2011; Oud & Jansen, 2000;

Voelkle & Oud, 2013), which model variability in affect around a static or dynamic

(changing) equilibrium state. In this context, Oravecz et al. (2011) have proposed a

continuous-time state-space stochastic model with following key parameters: (a) a home

base, an ideal latent position in the two dimensional (valence versus arousal) core affect

space subjects are assumed to be drawn to, (b) variances and covariances representing

fluctuations of subjects around the home base, and (c) a regulatory process that governs

the strength and direction with which subjects return to their home base.

When the research interest is specifically on cycles like circadian rhythms in affect

(e.g., affect associated with menstrual cycles), seasonal changes in mood or more

complex time series (than basic AR(1) processes) specific models (rather than the LMM

with random effects we will propose) can be considered including frequency-domain

time series methods, spectral densitry, Fourier analysis, parametric sinusoidal curve

fitting, or ARMA time series models (Baehr, Revelle, & Eastman, 2000; Browne &

Nesselroade, 2005; Ram et al., 2005). Finally, in mixture latent Markov models (Crayen,

Eid, Lischetzke, Courvoisier, & Vermunt, 2012; Rijmen, Vansteelandt, & De Boeck,

2008), affective variability measured with categorical variables is modeled within and

between days with stability and change being represented by transition probabilities

between latent affective states that are measured with multiple observed indicators.

Contribution of the proposed model

In this paper, we want to further contribute to these existing models by proposing

a LMM to examine diagnostic group (not individual) differences in the variability and

serial autocorrelation of affective instability when the data consist of observations that

are not equally spaced in time. Indeed, in EMA data, signals are often generated at

random occasions during the day to avoid anticipation or actor-observer phenomena.

The latter means that subjects’ reports on their affect may change because they know

in advance (or can predict) the moment that they will have to report on their affect.

Consequently, in EMA data, time intervals between reports are often unequally spaced.
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As a result, to estimate the serial autocorrelation for such data, it is sensible to consider

some kind of time-series covariance structure, where the correlation of the repeated

measurements are assumed to be smaller for observations that are further apart in time

(Littell, Miliken, Stroup, Wolfinger, & Schabenberger, 2006). Moreover, it has been

shown that the autoregressive parameter (and error term) in autoregressive models of

order one depend on the length of the time interval (Voelkle & Oud, 2013; Voelkle,

Oud, Davidov, & Schmidt, 2012) and simulation studies (Oravecz & Tuerlinckx, 2011)

show that the true serial correlation is inaccurately estimated when the length of the

time interval is ignored. As a result, many of the time-series covariance structures

available are inappropriate because they assume equal spacing (Littell et al., 2006). In

this context, it may be noted that most of the models discussed above are only

applicable for equally spaced data. Note that Jahng et al. (2008) were aware that equal

MSSD values based on a different time interval do not have the same meaning and these

authors have proposed a heuristic adaptation procedure to deal with the unequally

spaced observations over time. However, as mentioned above, the MSSD is an index

that is sensitive for both components of affective instability but does not allow for the

estimation of both components. Further, also the continuous-time state-space stochastic

model of Oravecz et al. (2011) can deal adequately with unequally spaced measures in

time but this model is developed to model intraperson affective dynamics and does not

focus explicitly on the concept of affective instability as, for example, used in the

Diagnostic and Statistical Manual of Mental Disorders-V (DSM-V) (American

Psychiatric Association, 2013).

In addition, the LMM we propose takes a number of other issues into account that

are important in the study of affective instability. First, it is well-known that the

variance of a time series that systematically decreases or increases over time will

overestimate the actual dispersion of scores around the general trend line (Shumway &

Stoffer, 2006). For example, when a linear trend is added to a stationary time series,

the variance of the obtained times series is substantially larger than the original

stationary time series. As a result, the estimation of the serial autocorrelation requires
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a stationary time series without trends. Failing to remove trends may result in the

estimation of spurious high autocorrelations (Shumway & Stoffer, 2006). As a result,

systematic trends should be eliminated before estimating the serial autcorrelation as

recognized by many authors (Jahng et al., 2008; Tennen, Affleck, & Armeli, 2005; Wang

et al., 2012; West & Hepworth, 1991).

Second, another consideration in the quantification of affective instability has to

do with the general time frame (Jahng et al., 2008). Some individuals may be

characterized by very short-term instability reflected by hourly fluctuations within days

whereas other subjects may show a fairly stable affect for several days. For example, a

diagnostic criterion for borderline personality disorder is affective instability that is due

to a marked reactivity of mood like intense episodic dysphoria, irritability, or anxiety

usually lasting a few hours and only rarely more than a few days (American Psychiatric

Association, 2013). On the other hand, in patients with mood disorders, a major

depressive episode is described as a depressed mood that persists for most of the day,

nearly every day, for at least two consecutive weeks (American Psychiatric Association,

2013). In general, we want to point to the fact that it is useful to make a distinction

between short-term within day and long-term between day variability and that both

sources of variability may occur in all kinds of combinations.

For example, in Figures 1a-b-c-d, we see the affective instability of several

hypothetical subjects with measurements on a pleasure-displeasure valence dimension

on 10 occasions during 7 days (each vertical dashed line indicates a new day). In

Figure 1a, we generated two time series of two hypothetical subjects with the same

variability and the same serial autocorrelation within days but added a day effect for

the subjects with full line. In Figure 1a, it can be seen that both subjects show a

different between day variability. In Figure 1b, however, after removal of the between

day effect, it is clear that both subjects show the same within day variability. In

Figures 1c-d, we did something similar but with two hypothetical subjects who differ

from one another in both between day and within day variability. After removal of the

between day effect, it can be seen that the subject with dashed line shows more within
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day variability. The LMM we propose wants to further contribute to the existing

literature by taking short-term within day and long-term between day variability into

account as this in not the case in most of the models discussed above (for an exception,

see Jahng et al., 2008; Rijmen et al., 2008).

Finally, beside within day and between day variability, it is also important to take

the between subject variance into account. When comparing different diagnostic groups,

variability in subjects’ mean affect may also differ between diagnostic groups. For

example, between subject variability may be larger in samples of subjects with

borderline personality disorders than in healthy controls. Such between subject

differences may be related to all kinds of known and unknown subject characteristics

(e.g., gender, age, biological factors) that are related to affect scores and such variability

should be taken into account when quantifying affective instability.

Summarizing, we want to propose a LMM to examine diagnostic group differences

in affective instability (a) that allows for the explicit estimation of both the variability

and serial autocorrelation component of affective instability, (b) that explicitly models

the serial autocorrelation as a function of the length of the time interval between

successive observations, and (c) that deals with all remaining issues mentioned above.

Affective Instability in Eating Disorders: Design and Data

To illustrate our models, we will use a dataset in the domain of eating disorders.

For reasons that go beyond the scope of this article (For literature on this topic, see

Corstorphine, Waller, Ohanian, & Baker, 2006; Mayer, Waller, & Walters, 1998;

Vansteelandt et al., 2012; Waller, Kennerley, & Ohanian, 2007), we will examine

whether three groups of eating disorders differ from one another in terms of affective

instability. The dataset consists of 21 patients with Anorexia Nervosa-Restrictive Type

(AN-RT), 17 patients with Anorexia Nervosa-Binge Purging Type (AN-BPT), and 20

patients with Bulimia Nervosa-Binge Purging Type (BN-BPT). The study design is an

Ecological Momentary Assessment (EMA) design with patients receiving a hand held

computer that generated signals at 9 random times a day (one random signal in nine

blocks of 90 minutes with each minute in the block having the same probability of being
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selected) during a one week period (9 signals/day x 7 days= 63 repeated measurements).

Affect is measured in terms of core affective states (Russell, 2003), which are

simple affective states like ’I feel angry’, or ’I feel excited’, and so forth that are

consciously accessible for a subject at any time of the day (without further reflections

on the reasons why you are in that state). There is a vast amount of empirical (factor

analytical) research on core affect (e.g., Feldman Barrett & Russell, 1998; Kring,

Feldman Barrett, & Gard, 2003) that revealed that a large part of the information

conveyed in people’s daily affective experiences can be captured by two dimensions:

First, the valence or pleasure-displeasure dimension which varies from one extreme

positive pole (e.g., ecstasy) over a neutral midpoint to the opposite negative extreme

pole (e.g., agony). Second, the activation-deactivation dimension that varies from the

extreme deactive pole (e.g., sleep) over a neutral midpoint to the opposite extreme

active pole (e.g., excitement). At each quadrant of the core affect space, an emotion

word (’stressed’,’sad’,’elated’, and ’relaxed) was selected inspired by the factor analytic

research on core affect (Diener & Emmons, 1984; Russell, 2003; Russell & Barrett,

1999). These emotion words were translated into Dutch and synonyms with a very

similar meaning (e.g., nervous and stressed) were sought for. At each signal,

participants had to report on their momentary affect using these emotion words (using

a 0–4 scale). For reasons of parsimony, we will restrict the analysis to the valence

dimension. At each signal, two valence scores were calculated by adding and

subtracting affect words with respectively positive and negative valence. As a result, all

scores have a natural neutral midpoint of 0 and vary from extreme negative valence

(−8) to extreme positive valence (+8). In this dataset, patients had on average 112 (out

of 2 x 9 x 7 = 126) valid reports (sd= 18.13, min= 54, max= 126) on valence. As a

result, as is typical for EMA studies, many repeated measurements per subject are

obtained yielding the possibility to model variances (see Hedeker et al., 2008, 2012).
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Model

In the next section, we will first discuss a LMM to estimate affective instability in

one group. Subsequently, we will discuss how the model can be adapted for different

types of datasets (e.g., data with only one measurement per signal nested within days,

data with end-of -the-day measurements, and so forth) and what the implications are

for the estimation of affective instability. Finally, in a third section, we explain how

diagnostic group differences in affective instability can be examined. First and foremost,

however, we want to mention that we have used the word variability rather loosely until

now referring to its general meaning as well as to its specific meaning of variance as

mathematically defined. When presenting the models below, it may be clear that

variability refers to variance as mathematically defined.

Model to Estimate Affective Instability in One Group

We propose a LMM (Verbeke & Molenberghs, 2000) to model affective instability

using EMA data, which allows for the estimation of both the variance and serial

autocorrelation component of affective instability and which deals with the other issues

mentioned above. In this model, Ymsdi is Measurement m (m = 1 . . .m . . .Msdi) of affect

variable Y , for example valence, at Signal s (s = 1 . . . s . . . Sdi) nested in Day d

(d = 1 . . . d . . . Di) of Subject i (i = 1 . . . i . . . I). The measurements m are considered to

be exchangeable items measuring the same construct at a particular signal. For

example, in the dataset described above, 58 subjects (I = 58 = (21 + 17 + 20)) have two

valence measures (Msdi = 2) at 9 random signals (Sdi = 9) during 7 days (Di = 7). Note

that, due to missing data, the number of measurements may vary over signals, days,

and subjects; the number of signals may vary over days and subjects, and the number of

days may vary over subjects. The model is a four-level LMM with measurements nested

within signals, which are nested within days, which in turn are nested within subjects.

The model can be written as follows:

Ymsdi = β0000 + r000i + r00di + r0sdi + ε(1)msdi + ε(2)msdi (1)
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with β0000 an overall intercept. A representation of Model (1) with separate equations

for each level is available in Appendix A. At this point, we want to emphasize that

Diggle, Heagerty, Liang, and Zeger (2002) have clarified that, theoretically, the total

covariance structure of a LMM like Model (1) can be decomposed in at least three

sources of random variation:(a) random effects, (b) serial correlation, and (c)

measurement error. In the next sections, we will explain the model by discussing these

three sources of random variation.

Random effects: Between subject, between day, and within day

variance. First, when units –subjects, days, and signals– are randomly sampled from

a population, various aspects of their behavior may show stochastic variation between

these units (e.g., there may be high and low responders and/or high and low response

days). In Model (1) these random effects are denoted by r000i, r00di, and r0sdi being

respectively subject specific, day by subject specific, and signal by day by subject

specific random effects. These random effect are all assumed to be normally distributed

with mean zero and variances σ2
r000i

, σ2
r00di

, and σ2
r0sdi

respectively. Note that these

variances are the parameters of interest in the study of affective instability: σ2
r000i

reflects between-subject differences in mean affect, σ2
r00di

reflects the long-term between

day variance, and σ2
r0sdi

reflects the short-term within-day variance. To make this model

more comprehensible, a graphical representation of Model (1) is shown in Figure 2. In

this figure, the small black points represent the data of a hypothetical subject with 2

measurements of valence at 10 signals/day for one week. The vertical dashed lines

indicate the start of a new day. The thickest line represents the overall intercept β0000 of

the model; this is the overall population average valence. The two long horizontal lines

indicate subject-specific mean valence scores (averaged over measurements, signals and

days) for two subjects, which are obtained by adding/subtracting random subject

effects r0001 and r0002 to the overall intercept (indicated by arrows starting from the

overall intercept). The variance of all these random subject effects r000i is the between

subject variance (σ2
r000i

). The short straight horizontal lines indicate the day-specific,

subject-specific effects (r00di) which vary over days. They are obtained by adding
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random day by subject effects (r00di) to the subject-specific long horizontal lines (as

indicated by arrows). The variance of all these random day by subject effects is the

long-term between day variance (σ2
r00di

). Further, a signal by day by subject random

effect r0sdi is added to predict a subject’s valence score at a particular signal on a

particular day. These random signal by day by subject specific effects (r0sdi) are the

distances from the small fluctuating line to the (short) horizontal day-specific lines (at

each separate signal); note that these distances may be larger or smaller at different

signals (indicated by the arrows for Subject 1 on Day 6). Or stated in words, these

signal by day by subject random effects are the distances from affect at a particular

signal (averaged over measurements) within a day to the mean affect (averaged over all

measurements and signals) of that day. The variance of all these random signal by day

by subject effects is the short-term within-day variance (σ2
r0sdi

). This component models

the variance of affect (averaged over measurements) within a day.

Note at this point that, conditionally on all these random effects, there are three

theoretical possibilities to model the remaining residual (or error) variation (Diggle et

al., 2002): First, measurements at the same signal are perfectly correlated and

measurements at different signals are less correlated with the correlation declining as a

function of the time interval. This is a model with serial correlation but no

measurement error (ε(1)msdi but not ε(2)msdi in Model (1)). Second, all measurements

within a day of a subject (at the same signal or not) are uncorrelated. This is a model

with only measurement error but no serial autocorrelation (ε(2)msdi but not ε(1)msdi in

Model (1)). Third, measurements at the same signal are not perfectly correlated and

measurements at different signals are correlated with the correlation declining as a

function of the time lag. This is a model with both serial correlation and measurement

error (ε(1)msdi and ε(2)msdi in Model (1)). Note that it is common in statistical literature

on LMMs (Diggle et al., 2002; Verbeke & Molenberghs, 2000) to represent the

decomposition of the residual variance –conditionally on the random effects– in residuals

that are correlated on the one hand and residuals that are independent on the other

hand by respectively ε(1)msdi and ε(2)msdi as is done in Model (1). In the next sections,
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we will discuss the last model with both the serial correlation and measurement error.

Serial Autocorrelation. We start with the serial correlation, which is a second

source of random variation that is related to time-varying stochastic processes that are

operating within subjects. This type of stochastic variation results in a correlation

between pairs of affect measured at different signals within the same subject. Typically,

the correlation becomes weaker as the time interval increases and this serial correlation

is represented in Model (1) by ε(1)msdi. The serial correlation involves two parameters, θ,

and τ 2 that will be explained later on.

In Figure 2, the serial autocorrelation between valence scores within days is

visualized by the fact that the small black lines do not fluctuate completely randomly

around the short, straight horizontal day-specific lines but remain some time below or

above these lines (indicating serial correlation between successive signals). For this

serial autocorrelation, all elements ε(1)msdi are normally distributed with mean zero and

variance τ 2, and elements corresponding to measurements taken on the same Day d in

Subject i, e.g., at signals with time points Tsdi and Ts′di, are allowed to be correlated

where the correlation is modeled as a function g(|Tsdi − Ts′di|) of the time-lag between

the measurements. The variance parameter τ 2 is the variance of the serial

autocorrelation (or time series) and can be interpreted in Figure 2 as the distance that

the small black lines go away from the straight horizontal day-specific lines with larger

(smaller) values of τ 2 implying larger (smaller) deviations from the horizontal

day-specific lines. Further, Tsdi and Ts′di denote the time passed since the start of the

day (e.g., hours passed since 7 : 30 a.m.) at Signal s and s′ nested in Day d in Subject i.

Meaningful options for g(.) are an exponential or Gaussian serial autocorrelation (Littell

et al., 2006; Verbeke & Molenberghs, 2000), respectively:

hss′di = exp
(
− |Tsdi − Ts′di|

θ

)
(2)
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hss′di = exp
(
− (Tsdi − Ts′di)2

θ

)
(3)

with hss′di being the (s, s′)-element of a (Sdi x Sdi)-correlation matrix.

These expressions clearly show that the within day serial autocorrelation is a

function of the length of the time interval between successive signals. Consequently, the

unequally spaced observations in time are explicitly taken into account. In Figure 3,

both types of serial autocorrelations are depicted as a function of the time lag between

signals for different values of θ. In this figure, it can be seen that θ models the strength

of the decrease in autocorrelation as a function of the time lag between signals. This

parameter may be related to the concept of emotional inertia (Brose et al., 2015; Koval

& Kuppens, 2012; Koval et al., 2012; Kuppens et al., 2010; Suls et al., 1998), which

indicates the extent to which affect at one particular moment is carried over to

subsequent moments. As a result, higher values of θ imply higher emotional inertia.

Note that the values of θ corresponding to (2) and (3) may be quite different when

estimated using the same dataset; as a result, it is only meaningful to compare both

fitted functions using the same data-set.

Further, note that for measurements taken at the same signal, the time interval is

zero, and expressions (2) and (3) are all one (simply indicating that the serial

autocorrelation of lag zero is one). This implies that in a model without measurement

error (Model (1) without ε(2)msdi), measurements at the same signal are assumed to be

perfectly correlated. This also shows that the serial correlation operates between

successive signals within days. The serial correlation does not operate between

measurements as measurements occur at the same signal (and one cannot have a serial

correlation as there is no variation in time). Further, the serial covariance –the

covariance between observations– equals τ 2 multiplied by expression (2) and (3).

Consequently, the serial covariance for measurements at the same signal (with time

interval 0) reduces to τ 2, which represents the variance of the within-day serial

autocorrelation. As a result, the within day instability can be decomposed into the

short-term within day variance, σ2
r0sdi

on the one hand, and the within day serial
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autocorrelation τ 2 on the other hand. By comparing both, it can be concluded whether

the within day instability is dominated by within day variance or within day serial

autocorrelation. In other words, the within day instability is the amount by which

valence at a particular signal deviates from the average valence of that specific day. It

can be instantaneous or serially correlated. Instantaneous within day variance (also

called short-term within day variance) occurs when the deviation at a particular signal

is not related to the deviation at some other signal on the same day. Serially correlated

within day variance is present when the deviation at two signals on the same day are

correlated with a correlation that decreases with the time lag between both signals. Our

model incorporates both components. As such, the short-term within day variance

(σ2
r0sdi

) –the variance of the signal by day by subject random effects (r0sdi’s)– is the

within day variance that does not involve any serial correlation. Conditionally on this

signal by day by subject random effect (and the other random effects in the model)

–when the short-term within day variance is removed–, part of the residuals may still

show a serial correlation between successive signals. This is within day variance that

shows a serial correlation and this serial correlation is based on a time series of

successive signals that also has a variance, which is denoted by τ 2. Consequently, both

sources of variation within days –short-term within day variance and serial

autocorrelation –may coexist with their own particular variance, respectively σ2
r0sdi

and

τ 2. For more information on this decomposition, we refer the interested reader to Diggle

et al. (2002).

Further, the exponential serial autocorrelation (2) provides a direct generalization

of the first-order Autoregressive (AR(1)) structure for unequally spaced data (Littell et

al., 2006) and is equivalent to the power spatial structure for unequally spaced

observations (Bolger & Laurenceau, 2013; Littell et al., 2006) written below:

hss′di = ρ|Tsdi−Ts′di| (4)

where ρ is a scale dependent parameter with |ρ| < 1. In terms of (2), ρ = exp
(
−1
θ

)
(τ 2

remains the same) and corresponds to the serial autocorrelation between two signals
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with one hour time interval. Finally, it is worth mentioning that alternative forms for

the serial correlation are possible. For an overview and extended discussion on possible

forms, see Littell et al. (2006) and Verbeke and Molenberghs (2000).

Measurement Error. Until now, Model (1) with only random effects and the

serial autocorrelation (ε(1)msdi) assumes that measurements taken at the same signal are

perfectly correlated as indicated by Equations (2) and(3). This is not realistic for real

data and therefore, a last source of variation, the so-called measurement error, is

included as the measurement process itself may add variation to the data. For example,

when the same construct is measured twice at the same signal, one would expect

identical values but some variability may occur by the measurement process itself,

leading to different measured values. This error ε(2)msdi of Model (1) models the

variation between measurements at the same signal and is represented In Figure 2, by

the distances from the data points at the same signal to the small fluctuating line. All

these error terms ε(2)msdi are independent and identically normally distributed with

mean zero and variance σ2
ε(2)msdi

. This error is assumed independent of all other sources

of variance (between subjects, between days, short-term within day) and the serial

autocorrelation. Further, note that the total variation (in the broad sense of the word)

in affect within days consists of the short-term within day variance, the serial

correlation between successive signals, and the measurement error variance.

Finally, it is worth mentioning that in LMMs, the emphasis is on modeling

random effects and their variances first, with the remaining residual variability in the

data being modeled in terms of serial correlation and measurement error. Moreover, in

the statistical literature on LMMs, is has been demonstrated that there is often strong

competition between different stochastic sources like random effects, serial correlation

and measurement error. Consequently, variability in one part of the model may

disappear in another part of the model and vice versa. In addition, research on LMMs

(For an overview, see Chapter 10 in Verbeke & Molenberghs, 2000) has shown that data

are often not capable of making a distinction between different serial autocorrelation

functions except when many measurements are available in a very short time interval,
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which is rarely the case. As a result, conditionally on the random effects, the remaining

serial correlation can often be modeled by a rather simple serial autocorrelation (see

also Discussion).

As a final note, it is important to realize that when Model (1) is estimated, not all

stochastic individual elements (r000i, r00di, r0sdi, and ε(2)msdi) but only the fixed

regression coefficients and the total variance-covariance matrix with all variances

parameters (including τ 2 and θ) mentioned above are estimated. Individual predictions

for single subjects (conditionally or not on their history at previous signals) can only be

performed posthoc making use of the total variance-covariance matrix. For example,

individual estimates of the random effects r000i, r00di, r0sdi are obtained posthoc using

Empirical Bayes estimates (Verbeke & Molenberghs, 2000).

To facilitate the presentation of the model, we did not include systematic trends

in the model. However, when such trends are present, the model can be extended in a

straightforward way. For example, when systematic trends over time within days are

present, linear (or higher order) effects for time (e.g., a variable indicating the time

passed since the start of the day) can be added. These effects can be fixed if the time

trends within days are uniformly present in all subjects or can even be made

day-specific and subject-specific by including day by subject and subject specific

random effects. In a similar way, linear (or higher order terms) for days (e.g., a variable

indicating the number of days passed since the start of the study) may be added to deal

with systematic trends over days (see also the application later on). When these

systematic effects are added to the model, the between subject variance, the long-term

between days variance, the short-term within day variance, the serial autocorrelation,

and measurement error variance can be quantified after elimination of these trends.

Adaptations of Model (1) for different types of data

Until now, we have assumed that data are available with multiple measurements

nested within signals nested within days nested within subjects. However, we realize

that such data are not always available in EMA studies. In this section, we discuss
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which models are available to analyze 3-level data (e.g., multiple signals nested in

multiple days nested in multiple subjects) or 2-level data (multiple end-of-day reports

nested in multiple subjects) and what the implications are for the estimation of the

different variance components and serial correlation of the model. We start with some

general remarks: First, remind that in Model (1) all concepts are defined as follows:

The variance of random effects are called variance components (e.g., between subject

variance, long-term between day variance, short-term within day variance).

Conditionally on these random effects, the remaining residual variation may consist of

errors that show a a serial correlation (ε(1)msdi with a parameter θ, and a variance τ 2),

and/or independent errors, called measurement error (ε(2)msdi with variance σ2
ε(2)msdi

).

From a mathematical-statistical point of view, the definition of these concepts is

unambiguously. For example, in Model (1) and all the models we will discuss, the notion

of measurement error for ε(2)msdi and its variance (σ2
ε(2)msdi

) is unambiguous as this term

prevents that observations at the same signal/time are perfectly correlated. In other

words, when ε(2)msdi is omitted from a model, this model assumes that observations at

the same signal/time –whether collected or not– are perfectly correlated. As a result,

one assumes no measurement error. However, from a substantive-psychological point of

view, the interpretation of the different parameters of the model may vary depending on

the data set at hand. For example, depending on the data, the serial correlation may

pertain to successive signals for one data set but to successive days in another data set.

Another example pertains to the variance of the measurement error (σ2
ε(2)msdi

); in Model

(1) σ2
ε(2)msdi

reflects pure ’measurement’ error (using its psychometric meaning) but,

depending on the data set at hand, it may also comprise ’true’ within day variation in

affect, measurement error, or both (see later). Therefore, we will label ε(2)msdi in this

section as independent errors (and σ2
ε(2)msdi

as the variance of the independent errors)

rather that measurement error (or the variance of the measurement error). Second, note

that the estimation of σ2
ε(2)msdi

does not necessarily require that multiple measurements

at each signal/time are available. Third, in all the scenarios that will be discussed, the

four-level Model (1) reduces to a three- or two-level model, which results in the inability
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to estimate particular random effects and their variances. Note in this context that the

representation of Model (1) with separate equations for the levels in Appendix A may

be helpful to understand the different scenarios.

A first scenario is when only one measurement per signal is available with multiple

signals nested within days nested within subjects. In this case, Model (1) reduces to the

three-level LMM below:

Ysdi = β000 + r00i + r0di + ε(1)sdi + ε(2)sdi (5)

with all parameters being defined and having distributions as in Model (1). In this

model, the between subject (σ2
r00i

) and long-term between day variance (σ2
r0di

) can still

be estimated but the short-term within day variance cannot be estimated anymore. The

reason is that it is impossible to estimate signal by day by subject specific random

effects in this three-level model because the variation in valence scores from one signal

to another signal within days may be due to ’true’ short-term within day variance (as

defined in Model (1)), measurement error or both. However, conditionally on the

random effects, it is still possible to estimate the serial correlation (ε(1)sdi) and the

variance of the independent errors (σ2
ε(2)sdi

). As there are different signals within the

day, the serial correlation pertains to successive signals within days. Moreover, the

independent errors ε(2)sdi are necessary in this model because a model without this term

would assume that measurements at the same signal (if they would be present) are

perfectly correlated, which is not realistic for real data. However, given the fact that the

signal by day by subject random effects and the independent errors can not be

distinguished anymore, the variance of the independent errors (ε(2)sdi) may comprise

both ’true’ within day variation in affect from signal to signal (that is not serially

correlated), measurement error or both. Therefore, we label σ2
ε(2)sdi

as the variance of

the independent errors rather than the measurement variance. In summary, in this

model, the total within day variation (in the broad sense of the word) contains within

day serial correlation, ’true’ short-term within day variance and measurement error but

the two last two sources of variance can not be distinguished anymore.
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A second scenario is when multiple measurements are available at one signal

nested within days within subjects (e.g., multiple measurements of valence at the

end-of-the day). Note that this data-structure is exactly the same as in the previous

scenario but with multiple measurements at one signal instead of one measurement at

multiple signals. In this case, Model (1) reduces again to the three-level LMM below:

Ymdi = β000 + r00i + r0di + ε(1)mdi + ε(2)mdi (6)

with all parameters being defined and having distributions as in Model (1). Note that

only the subscript for signal is replaced by a subscript for measurements. In this model,

the between subject (σ2
r00i

) and long-term between day variance (σ2
r0di

) can be estimated

but the short-term within day variance cannot be estimated anymore. The reason

simply is that we only have one signal per day; as a result, there is no information on

variation in valence scores between signals within days. Conditionally on these random

effects, it is still possible to estimate the serial correlation (ε(1)mdi) and the independent

errors (ε(2)mdi). However, in this case, the serial autocorrelation pertains to successive

days as there is only one signal per day and successive signals consequently pertain to

successive days; the serial autocorrelation does not pertain to successive measurements

as measurements are nested within the same signal/day and cannot show a serial

autocorrelation (because there is no variation in time for measurements). Finally, note

that in this model, the variance of the independent errors (σ2
ε(2)mdi

) is measurement error.

Finally, the last scenario is when only one measurement/signal per day is available like

in EMA studies with end-of-the-day reports. In this case, Model (1) reduces to the

two-level LMM with days nested within subjects below:

Ydi = β00 + r0i + ε(1)di + ε(2)di (7)

with all parameters being defined and having distributions as in Model (1). In this case,

it is possible to estimate a subject-specific random effect (σ2
r0i
) but no day by subject or

signal by day by subject specific random effects anymore. As a result, it is not possible
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anymore to estimate the long-term between day and the short-term within day

variance. For these data, it is impossible to estimate day by subject random effects in

this two-level model because the variation in valence scores from one day to another day

may be due to ’true’ long-term between day variance (as defined in Model (1)),

measurement error or both. The signal by day by subject random effects cannot be

estimated anymore because there is no data on signals varying within day (as there is

only one signal per day). Conditionally, on these subject-specific random effects, it is

still possible to estimate the serial correlation (σ2
ε(1)di

) and independent errors (σ2
ε(2)di

) of

the model. In this case, the serial correlation pertains to successive days for the same

reason as explained in the previous scenario. Note that, although there is only one

signal and measurement per day, it is still possible to estimate the independent error

variance (ε(2)di). Moreover, the inclusion of the independent errors in the model is

necessary as the serial correlation assumes that observations at the same day (if they

would be present), would be perfectly correlated which would be unrealistic for real

data. However, given the fact that the day by subject random effects and the

independent errors cannot be distinguished anymore, the variance of the independent

errors (ε(2)di) may comprise both ’true’ long-term between day variance in affect from

day to day (that is not serially correlated) and/or measurement error but both cannot

be distinguished anymore. As a result, in this model, the between subject variance, the

serial correlation between successive days and the variance of the independent errors

can be estimated but the ’true’ long-term between day variance and measurement error

cannot be distinguished anymore.

As a final remark, note that, depending on the data at hand, serial correlation

structures for equally or unequally spaced data may be adopted (for more information

on autocorrelation structures, see Littell et al., 2006). From a practical point of view, it

is worth mentioning that Model (1) and all the models mentioned above can be

estimated using SAS PROC MIXED (SAS Institute Inc., 2011); annotated SAS-code for

Model (1) and the different scenarios is available in Appendix B.
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Model to Estimate Affective Instability in Multiple Groups

Up to now, Model (1) allows the estimation of affective instability in one

particular group of subjects. Next, to examine group differences in affective instability,

we are mainly interested in the following three parameters: (1) the short-term within

day variance (σ2
r0sdi

), (2) the serial autocorrelation within days (with parameters τ 2 and

θ), and (3) the long-term between day variance (σ2
r00di

). The between subject variance

(σ2
r000i

) is not of direct interest for the analysis of affective instability but should be

included in the model to deal with variability in affect that is due to differences between

subjects. For example, random subject effects can take systematic differences in affect

between subjects into account that may be due to (unknown) subject characteristics

(e.g., biological factors). Data on available subject characteristics can be included as

predictors in the model in a straightforward way but this does not change the

methodology (See Appendix B to include covariates). Note that the variance and serial

autocorrelation only model variability in the model that is not explained by such

covariates.

To test the research question that different (diagnostic) groups differ from one

another in affective instability, we propose four additional LMMs. These four models

correspond to the fact that each of the variance parameters and the serial correlation

(with its two parameters) mentioned above –short-term within day variance (σ2
r0sdi

),

serial autocorrelation (within days) (τ 2and θ), between day variance (σ2
r00di

), and

between subject variance (σ2
r000i

) – are made group-specific. For example, the model

where the short-term within day variance σ2
r0sdi

is made group-specific, can be written

as follows:

Ymsdi = β0000 + r000i + r00di +
G∑
g=1

rg0sdizgmsdi + ε(1)msdi + ε(2)msdi (8)

with zgmsdi = 1 if Subject i belongs to Group g (g=1...g...G), and zgmsdi = 0 otherwise.

The random effects rg0sdi of each group g are assumed to be normally distributed with

variance parameters σ2
rg0sdi

and zero covariances. All other parameters have the same
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distributions and meaning as in Model (1). The other models can be formalized in a

similar way.

To test whether each of these models applies to a data-set at hand, the model

with one group and the model with more groups are estimated using Restricted

Maximum Likelihood and the model without and with group-specific variance

components and/or serial correlation are compared using likelihood ratio tests (Verbeke

& Molenberghs, 2000). With respect to model selection, it is theoretically possible to

make all variance components and the serial correlation group-specific in one single

model. When such a model would apply to the data, different groups would be

characterized by (a) different short-term within day variance, (b) different serial

autocorrelation within days, (c) different (long-term) between day variance, and (d)

different between subject variance. It may be obvious that this model is very complex

and probably too complex for many datasets. Therefore, we propose to estimate each of

the four additional models separately and to evaluate them in terms of increase in

likelihood in comparison to the model without group-specific component. Then, for the

dataset at hand, the most appropriate model with a combination of group-specific

variances and/or serial correlation can be selected.

From a practical viewpoint, it may be noted that these group-specific models can

be estimated using the PROC MIXED procedure in SAS (SAS Institute Inc., 2011)(See

SAS syntax in Appendix B). With respect to data dimensions, estimation procedures

for LMMs can be considered stable and feasible for moderately sized data sets (in

contrast with generalized LMMs which yield far more computational and/or

convergence problems) (Verbeke & Molenberghs, 2000). However, it is impossible to

give explicit guidelines in terms of data dimensions as so many factors play its role. In

general, one may bear in mind that more data are necessary when the model complexity

increases and when the measurements are unbalanced (no fixed time occasions). The

reason is that by adding more random effects into the model, more parameters in the

variance-covariance matrix have to be estimated. For example, in a two-level model

(using fixed measurement occasions) with random intercepts and slopes, at least three
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repeated measurements per subject are necessary since this model has a

variance-covariance matrix with four parameters (variance for intercepts, variance for

slopes, a covariance between both, and an error variance). Note that numerical

problems are mostly related to the estimation of the variance-covariance structure and

not to the estimation of fixed effects for which a closed form solution exist (weighted

least squares). Finally, as missing data are rather the rule than the exception in EMA

research, note that inference for the proposed models is valid under the assumption of

missingness at random (MAR) (Little & Rubin, 2002; Verbeke & Molenberghs, 2000).

Results

To examine systematic trends within days and over days, Model (1) without serial

autocorrelation was estimated with linear trends for passed hours (since the start of the

day) and passed days (since the start of the study) as predictors. Results revealed

neither a linear effect of passed hours, F (1, 3234) = 0.18, p = 0.67, nor a linear effect of

passed days, F (1, 3234) = 3.0, p = 0.08, and no significant interactions of these variables

with diagnostic group, F (2, 3234) = 0.58, p = 0.56, and, F (2, 3234) = 0.17, p = 0.84,

respectively. However, when days were dummy coded in terms of day of the week

(Monday, Tuesday, etc.), results indicated that subjects have significant higher valence

scores, and feel consequently more positively, on weekend days compared to weekdays,

F (6, 3236) = 8.10, p < 0.0001. More in particular, pairwise posthoc comparisons,

revealed (a) that valence was highest on Saturday, which was significantly different from

all weekdays, (b) that there were no significant differences among weekdays, and (c)

that Sunday was significantly different from all weekdays with the exception of

Thursday and Friday. There was no evidence that this effect was different for the

diagnostic groups, F (12, 3236) = 0.45, p = 0.94. To further check for systematic trends

of valence in the data, an Ordinary Least Squares (OLS) regression model with

diagnosis and the dummy coded variable day of the week as predictors was estimated.

Next, Locally Weighted Scatterplot Smoothing (LOWESS) was used to plot an average

smoothed lowess curve through the scatterplot of time versus the residuals of this OLS
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regression within days. These plots depicted almost similar horizontal lines with only

very small fluctuations in the different diagnostic groups, which may be ignored given

the large amount of variability present in the data. In a similar way, we inspected

systematic effect of residuals over days and found no evidence to include (other)

systematic effects of days in our model. These plots are available as a supplement. As a

result, in all analyzes that follow, we have retained diagnosis and the dummy variables

indicating day of the week and have dropped the other non-significant effects.

For the selection of the serial autocorrelation, we compared Model (1) with the

effects mentioned above without serial autocorrelation to the same model with

respectively an exponential and a Gaussian serial autocorrelation (resp. equations 2 and

3). Doing this, based on likelihood ratio tests, we opted for a model with an exponential

serial autocorrelation (decrease in −2 log likelihood=192.7). Note that a formal test for

the inclusion of the serial autocorrelation is not trivial because the test involves a

0-hypothesis on the boundaries of the parameter space (τ 2 being zero) implying that

standard test procedures are invalid (for more information, see Discussion). In this

particular case, however, the change in deviance in so large that the inclusion of a serial

autocorrelation is justified without doubt.

The results of estimating this model revealed that all three diagnostic groups are,

on average, in a neutral valence state with mean affective states of 0.36 (SE = 0.73) for

AN-BPT, 0.24 (SE = 0.66) for AN-RT, and −0.57 (SE = 0.68) for BN-BPT. These

means are not significantly different from one another, F (2, 3236) = 0.53, p = 0.59.

Moreover, we found a significant effect for day of the week,

F (6, 3236) = 8.29, p < 0.0001, with the same interpretation as mentioned above.

Of more interest for our research question, diagnostic group differences in affective

instability, are the estimated variance components which are shown in Figure 4a. As

can be seen in this figure, a large part of the total variability is related to between

subject differences (52.90%) indicating that there are large differences in mean valence

between subjects. Further, it can be seen that the long-term between day (6.36%) and

short-term within day variance (10.03%) are similar in size but the largest part of the



DISENTANGLE VARIANCE AND SERIAL AUTOCORRELATION 28

affective instability is due to the serial autocorrelation within days (24.02%). As a

result, the contribution of the serial autocorrelation to the within day instability is

about twice the short-term within day variance. Finally, the error component accounts

for 6.69% of the variance. In Figure 5a, it can be seen how the serial autocorrelation

decreases as a function of hours between successive signals

(τ 2
Model(1) = 4.02 and θModel (1) = 2.0069). For example, the serial correlation between

two valence states with one hour time interval is 0.61.

Next, we estimated the four additional models by making (a) the short-term

within day variance, (b) the within day serial autocorrelation, (c) the between day

variance, and (d) the between subject variance components group-specific. In Table 1,

likelihood ratio tests for each of these four models in comparison with Model (1) with

exponential serial autocorrelation are summarized. It can be seen that there is evidence

for group-specific short-term within day variance and group-specific within day serial

autocorrelation and to a lesser extent for group-specific between day variance.

Next, we estimated a new model for valence with both group-specific short-term

within day variance and group-specific within day serial autocorrelation. As expected,

the three groups of eating disorders differed from one another in terms of the short-term

within day variance and within day serial autocorrelation, χ2(6) = 88.3, p < 0.0001; the

addition of a group-specific between day variance did not improve the model anymore,

χ2(2) = 2.7, p = 0.26. In line with previous results, the three diagnostic groups did not

differ from one another in mean valence, F (2, 2782) = 0.54, p = 0.58. There was also a

significant effect of day of the week, F (6, 3236) = 8.41, p < 0.0001, with the same

interpretation as mentioned above. In Figure 4b, the estimated variance components for

this new model are depicted. When we compare Figures 4a and 4b, it can be seen that

the between subject variance, the between day variance, and the error variance are very

similar in both models. In addition, the mean of the group-specific variance components

for both the short-term within day variance and the serial autocorrelation (τ 2) are very

similar to the corresponding variance components in Model (1) (θModel (1) = 2.0069

versus θAN-BPT = 1.6354, θAN-RT = 3.6865, and θBN-BPT = 2.8269). In addition, in
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Figure 4c, the within day instability for the three diagnostic groups is shown, which

consists of the sum of the short-term within day variance and the part of the within day

variability that is serial in nature (σ2
r0sdi

+ τ 2). From this figure, it is clear that the

group with AN-BPT shows more within day instability in comparison with the other

two groups. Further, in Figure 5b, the exponential serial autocorrelations of the three

groups are depicted. As can be seen in this figure, the serial autocorrelation is clearly

lower for the group with AN-BPT in comparison with the other two groups. As a

result, one could say that the groups with AN-RT and AN-BPT are characterized by

more emotional inertia. The serial correlation between two valence states with one hour

time interval are 0.54, 0.76, 0.70 for the groups with AN-BPT, AN-RT, and BN-BPT

respectively. To test these findings more formally, we performed post-hoc pairwise

comparison tests comparing Model (1) with respectively a model with group-specific

within day variance and a model with group-specific within day serial autocorrelation

for all pairs of groups. The results of these analyzes are depicted in Table 2. We can

conclude that the group with AN-BPT shows indeed more within day affective

instability, both in terms of the short-term within variance and serial dependency, than

the other two groups. The latter two groups themselves are not significantly different

from one another.

Discussion

A number of LMMs were proposed to examine diagnostic group differences in

affective instability. The models we have proposed have several merits in the study of

affective instability. First, a key motivation for developing these models was to have a

tool for estimating both the variance and serial autocorrelation component of affective

instability taking unequally spaced measures in time into account. By doing this, the

serial correlation can be interpreted in terms of emotional inertia, reflecting the

tendency to carry-over affective states from one moment to another (Brose et al., 2015;

Koval & Kuppens, 2012; Koval et al., 2012; Kuppens et al., 2010; Suls et al., 1998).

Moreover, the model yields the opportunity to evaluate whether the within day
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instability is dominated by variance or serial autocorrelation. As a result, this model

contributes to the framework of Jahng et al. (2008) who developed an index that is

sensitive for both components but that does not allow simultaneous estimation of both

components. Also Wang et al. (2012) have proposed a method to model individual

differences in intra-individual variability in affect by separating both variance and

temporal dependency but this model only applies to equally spaced measurements in

time.

Note that we did not pay too much attention to the nature of the serial

autocorrelation. The reason is that the serial correlation models only one aspect of the

total variability present in the data with the largest part of the variability being

captured by random effects at several levels (subjects, days, signals). Indeed, Chi and

Reinsel (1989) and Verbeke and Molenberghs (2000) have argued that there is often

strong competition between different stochastic sources like random effects and serial

autocorrelation. For example, it is often the case in LMMs that the between subject

variability severely dominates the within subject variability (as is also the case in our

application), which implies that the exact parametric form of the serial correlation

function can hardly be identified. Moreover, Chi and Reinsel (1989) have reported that

a sufficient number of random effects in a model with white noise errors may be able to

represent the serial correlations among the measurements taken on each individual

because serial correlation can be replaced by very smooth subject-specific functions.

Finally, Verbeke and Molenberghs (2000) have shown that the precise characterization

of the serial correlation function g(.) is often extremely difficult in the presence of

several random effects. These authors have illustrated (Verbeke & Molenberghs, 2000,

see Section 10.3) that observed longitudinal profiles can often not distinguish between

various serial autocorrelation functions, not even when many repeated measurements

per subject are available. As such, including a serial autocorrelation, if present, is far

more important than correctly specifying the serial autocorrelation function (e.g.,

exponential versus Gaussian). In practical applications in general, and in our

application in particular, there is often a large change in likelihood when comparing a
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model with and without serial autocorrelation but the change in likelihood is often

similar for different types of serial autocorrelations. This can be explained by the fact

that distinguishing exponential from Gaussian serial correlation functions requires

measurements taken very closely in time, a feature that is not present in our data, nor

in many other similar applications. As a consequence, the residual variability –after

taking fixed and random effects into account– is often minimal and can be modeled

with a rather simple serial autocorrelation. This also explains why the proposed serial

correlation in the model may be conceived as rather simple from a time series point of

view (Shumway & Stoffer, 2006). On the contrary, in time series models, no random

effects can be included yielding a situation where almost all variability has to be

modeled by the residual component requiring a serial autocorrelation structure that is

far more complex both in terms of lag and/or nature. In this context, it is worth

mentioning that when the nature of the serial autocorrelation, conditionally on a

prespecified set of random effects, is of primary interest, one may adopt an approach

using so-called fractional polynomials. This approach is flexible enough to allow various

shapes to model the serial autocorrelation function (Lesaffre, Asefa, & Verbeke, 1999).

However, it is not implemented in standard software yet and the optimization of

random effects, serial autocorrelation, as well as a measurement error, is

computationally very demanding and requires many repeated observations per subject.

As a final remark, one may note that future research may further confirm whether the

rather simple autocorrelation structures (e.g. exponential or Gaussian correlation

structures) presented before capture adequately the serial correlations present in EMA

data as more repeated observations are often present in such data compared to more

traditional longitudinal data.

The proposed model may also be helpful to answer questions about the frequency

of sampling data in future EMA protocols on affective instability. For example, in

borderline personality disorders, affect is assumed to change very abrupt and quickly

within hours during the day whereas in bipolar disorders, patients are already

considered rapid cyclers when they show four or more different mood episodes during
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the year (American Psychiatric Association, 2013). Failing to select the adequate time

scale may result in inadequate results; for example, sampling very frequently over a

short period of time may incorrectly lead to the conclusion that subjects with bipolar

disorder do not show cycles in mood because the cycling occurs at a much slower pace

and is not detected in the short time frame that is selected. Although there is general

consensus that research questions should govern the sampling scheme of an EMA design

(for example, weekly measures, end-of-the-day measurement or multiple measurements

in 90 minutes blocks during the day), such decisions are often made on intuitive

grounds. In our application, the total variance is decomposed in the measurement error

variance, the short-term within day variance, serial autocorrelation, between day

variance, and between subject variance. Recently, Shiyko and Ram (2011) have

demonstrated that such a variance decomposition approach using LMMs in EMA-type

data is useful to identify and quantify the relative speed of change processes, which, in

turn may help decisions with respect to sampling frequency in EMA protocols. This is

an important issue that has important implications for both the participants’ burden

and for researchers’ ability to capture and study dynamic processes (in affect). Briefly

stated, when the total variance is dominated by within day variance and/or serial

autocorrelation, one should sample frequently within days, when it is dominated by

between day variance, one should sample less within days but at multiple days, when it

is equally divided one should sample multiple times within days for multiple days (For

more information, see Shiyko & Ram, 2011). In this context, it is noteworthy that

LMMs are very flexible in dealing with different time scales because levels –signals

nested in days nested in weeks nested in months, and so forth– can easily be added or

omitted in modeling the data as discussed in the theoretical section.

However, this research is not without limitations and further model developments

are still necessary. In this paper, we have focused on the concept of affective instability

and the examination of diagnostic group differences herein. A first limitation is that our

models are restricted to the examination of groups (or categorical) differences in

affective instability. As such, the variance and serial correlation components are
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assumed to be the same within groups. However, one may also be interested in

individual differences or within person dynamics in both the variability and serial

autocorrelation component of affective instability. One way to examine individual

differences (e.g., subjects’ score on a dimension, like, for example depression) in the

variability component of affective instability is to include time-invariant variables (e.g.,

a subject’s depression score) as random subject, random day by subject, and/or random

signal by day by subject effects in the model. In such a model, it is possible to adjust

the estimated between subject variance, between day variance and/or within day

variance for the continuous variables of interest. However, testing hypotheses that part

of the between subject, between day and/or within day variance is related to such a

time invariant predictor is not trivial because such hypotheses test for zero-variance

components, which are on the boundary of the parameter space. In this case, classical

Wald and likelihood ratio tests are invalid and specific adapted tests are needed. For

example, it has been shown for some very specific null-hypotheses on the boundaries

that the correct asymptotic null-distributions are often a mixture of chi-square

distributions rather than a single chi-square distribution (See Stram & Lee, 1994, 1995;

Verbeke & Molenberghs, 2000). A full discussion of this issue is beyond the scope of

this article but more information can be obtained in Ke and Wang (2014); Morrell

(1998); Stoel, Garre, Dolan, and van den Wittenboer (2006); Stram and Lee (1994,

1995); Verbeke and Molenberghs (2000).

In addition, as discussed in the introduction, other models have been proposed to

model individual differences (instead of group differences) in affective instability. First,

heterogeneous mixed models have been proposed to examine the effect of categorical

and continuous covariates on between and within subject variance (but not between day

variance) (Hedeker et al., 2008, 2012; Hoffman, 2007). In addition, Wang et al. (2012)

have proposed a Bayesian estimation approach for equally spaced data that models

interindividual differences in both components of affective instability. In this model, the

AR parameters as well as the error/innovation variances may be subject-specific and

predicted by covariates. Finally, the differential equation model for affective dynamics
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(Oravecz et al., 2011) has great appeal as intra-individual variability and autoregression

parameters can be estimated for unequally spaced data. Moreover, all stochastic

parameters of the model –the home base, variance, and regulatory processes including

the serial correlation– can be made subject-specific and related to covariates.

Unfortunately, this model is difficult to implement, can not be estimated using standard

software, and comes at a considerable computational cost (Oravecz & Tuerlinckx, 2011).

For example, these authors mention that the computation time for an EMA dataset

with 80 subjects who report at 63 signals takes about 75 minutes using parallel

computing on a computing node. For a similar dataset, estimation time for the models

we have proposed is a matter of minutes on a standard computer.

Another limitation of the proposed models is that they do not focus on cycles like

circadian rhythms in affect, affect associated with menstrual cycles, and seasonal

changes in mood which may be present in the data (Ram et al., 2005). In theory,

systematic cycles that are uniformly present in all subject may be dealt with in the

fixed part of the model and individual differences may be modeled by the inclusion of

random effects. In our application, we found that subjects experience more pleasant

feelings during the weekend in line with literature (Armeli, Carney, Tennen, G., &

O’Neil, 2000; Vansteelandt, Rijmen, Pieters, Probst, & Vanderlinden, 2007). This effect

was modeled by including day of the week as dummy variables. As further analyzes did

not reveal evidence for cycles, we have opted to model these effects –as far as they were

present– by the serial autocorrelation. However, when the focus of research question is

explicitly on cycles, one may adopt models that are especially developed to model them

such as frequency-domain time series methods including spectral densitry, Fourier

analysis, parametric sinusoidal curve fitting, or ARMA time series models (Baehr et al.,

2000; Browne & Nesselroade, 2005; Ram et al., 2005). However, such cycles may be

hard to model as they are typically not synchronized across persons and may be

characterized by subject-specific frequency, amplitude (minimum and maximum), and

phase. In addition, in their research on weekly cycles in affect, Ram et al. (2005)

concluded that affect is more likely to be an amalgamation of responses to a multitude
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of internal and external factors, and with all of these factors shifting in both systematic

and unsystematic ways over time, underlying cycles (if present) will likely be obscured.

Finally, affective instability is the dependent variable in our model and our model

is not developed to predict outcome on the basis of affective instability in contrast with

other models. For example, Wang et al. (2012) have developed a model in which

variability and temporal dependency are included as random effects and that allows one

to predict outcome variables using both components. The results of this study showed

that both components have differential predictability of health outcomes, and

consequently, should be modeled separately. Also in research on emotional inertia

(Brose et al., 2015; Koval & Kuppens, 2012; Koval et al., 2012; Kuppens et al., 2010), it

has been shown that persons with high neuroticism, low self-esteem and depression are

characterized by higher levels of emotional inertia (or higher serial dependency) in both

positive and negative emotions. However, in some studies (see, for example, Kuppens et

al., 2010), the unequally spaced nature of the EMA data is simply ignored, which may

result in inadequate results as discussed before (see Littell et al., 2006; Oravecz &

Tuerlinckx, 2011; Voelkle & Oud, 2013; Voelkle et al., 2012).

In general, EMA provides large and complex data and there may be a strong

competition between systematic effects and different stochastic sources like random

effects, serial autocorrelation and measurement error. As a result, variability modeled in

one part of the model may disappear in another part of the model and vice versa. It

may be clear that different models focus on different aspects of the data and the

selection of a model will strongly depend on the research question. We hope that the

proposed models are useful to adequately model group differences in affective instability

using EMA data and may further stimulate the development of new intensive

longitudinal models for EMA data in general and for the study of affective instability in

particular.
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Table 1
Model (1) and models with group-specific components: Valence

Model −2 log likelihood statistical test p -value
Model (1) with exponential serial correlation 27022.4
Group-specific between group variance 27019.2 χ2(2) = 3.2 0.2018
Group-specific between day variance 27016.1 χ2(2) = 6.3 0.0428
Group-specific within day variance 26958.4 χ2(2) = 64.0 < 0.0001
Group-specific serial autocorrelation 26937.2 χ2(4) = 85.2 < 0.0001
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Table 2
Post-hoc Pairwise Comparisons for Affective Instability: Valence

Model −2 log likelihood statistical test p-value
AN-RT vs. AN-BPT
Model (1) with exponential serial correlation 18148.2
Group-specific within day variance (WDV) 18102.6 χ2(1) = 45.6 < 0.0001
Group-specific serial autocorrelation (SAC) 18080.3 χ2(2) = 67.9 < 0.0001
Group-specific WDV + SAC 18078.8 χ2(3) = 69.4 < 0.0001
AN-RT vs. BN-BPT
Model (1) with exponential serial correlation 18333.5
Group-specific within day variance (WDV) 18333.5 χ2(1) = 0.0 1
Group-specific serial autocorrelation (SAC) 18330.5 χ2(2) = 3.0 0.22
Group-specific WDV + SAC 18327.7 χ2(3) = 5.8 0.12
AN-BPT vs. BN-BPT
Model (1) with exponential serial correlation 17500.0
Group-specific within day variance (WDV) 17457.1 χ2(1) = 42.9 < 0.0001
Group-specific serial autocorrelation (SAC) 17447.9 χ2(2) = 52.1 < 0.0001
Group-specific WDV + SAC 17447.8 χ2(3) = 52.2 < 0.0001
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Figure 1 . Between day and within day instability.



DISENTANGLE VARIANCE AND SERIAL AUTOCORRELATION 46

Figure 2 . Graphical Representation of Model (1).
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Figure 3 . Exponential and Gaussian Serial Autocorrelation for different values of θ.
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Figure 4 . Valence: (a) Variance components in Model (1) (τ 2 for serial autocorrelation).
(b) Model with group-specific short-term within day variance and serial autocorrelation,
and (c) Group-specific within day affective instability in three groups of eating disorders.
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Figure 5 . Exponential serial autocorrelation in (a) Model (1), and (b) the model with
group-specific short-term within day variance and group-specific serial autocorrelation
for valence.



DISENTANGLE VARIANCE AND SERIAL AUTOCORRELATION 50

Appendix A: Model (1) with separate equations for each level

To further clarify the model, Model (1) can be rewritten by expressing its four

levels explicitly:

(a) Measurement level (Level 1):

Ymsdi = β0sdi + ε(1)msdi + ε(2)msdi (9)

with β0sdi being the average affect at Signal s, on Day d for Subject i. Furthermore,

ε(1)msdi represents the serial autocorrelation, and ε(2)msdi the measurement error.

(b) Short-term within-day (or signal) level (Level 2):

β0sdi = β00di + r0sdi (10)

with β00di being the average affect on Day d for Subject i. r0sdi is a random effect

for Signal s at Day d in Subject i reflecting variation within days that is normally

distributed with r0sdi ∼ N(0, σ2
r0sdi

). As a result, σ2
r0sdi

is the short-term within day

variance.

(c) Between day level (Level 3)

β00di = β000i + r00di (11)

with β000i the average affect of Subject i. r00di is a day by subject-specific random

effect reflecting variation between days that is normally distributed with

r00di ∼ N(0, σ2
r00di

). At this level, σ2
r00di

is the long-term between day variance.

(d) Between subject level (Level 4)

β000i = β0000 + r000i (12)
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with β0000 the overall intercept and r000i a random subject-specific effect that is

normally distributed with r000i ∼ N(0, σ2
r000i

). Note that σ2
r000i

is the between

subject variance.
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Appendix B: Annotated SAS Code for different scenarios

Below, one can find the annotated SAS-code for Model (1), the scenarios

described in the paper and the model with group-specific components. We will use

numbers between parentheses (e.g., (1)) in the SAS-code and annotate the code below.

In this code, ’time’ is a variable indicating the time passed since the start of the day

(e.g., 7:30 a.m.) expressed in hours and ’passeddays’ is the number of days passed since

the start of the study. The SAS REPEATED statement requires an unique order of all

observations within the blocks denoted by the SUBJECT-statement. The variables

’phd’ and ’dayorder’ indicate the order of all observations in this statement but have,

beside their ordering role, no effect on the analysis (see the file with SAS-code provided

as supplementary material for instructions how to obtain these variables). Note that,

depending on the data at hand, serial autocorrelations for equally (e.g., AR(1)) or

unequally spaced observations can be used and that many types of serial

autocorrelation structures are available in SAS. An exemplary dataset and file with

SAS-code is provided as supplementary material.

(a) Data: different measurements nested within signals nested within days nested

within subjects (4-level model). This is Model (1).
PROC MIXED DATA=data;
CLASS id day signal phd diagnosis;
(1) MODEL affect = diagnosis /SOLUTION;
(2)(7)RANDOM intercept /SUBJECT=id TYPE=UN GROUP=diagnosis;
(3)(7)RANDOM intercept /SUBJECT=day(id) TYPE=UN GROUP=diagnosis;
(4)(7)RANDOM intercept / SUBJECT=signal(day*id) TYPE=UN GROUP=diagnosis;
(5)(6)(7) REPEATED phd / SUBJECT=day(id) TYPE=SP(EXP or GAU) (time) LOCAL GROUP=diagnosis;
RUN;

Annotations:

-Fixed Effects

(1) Inclusion of fixed effects in the model (e.g., diagnosis, time, other covariates)

-Random Effects

(2) Subject-level: between subject variance (σ2
r000i

) SUBJECT=id implies that observations
may be dependent within subjects; observations of different subjects are independent

(3) Day-level: long-term between day variance (σ2
r00di

) SUBJECT=day(id) implies that
observations may be dependent within days (or day by subject combinations);
observations of different days or subjects are independent
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(4) Signal-level: short-term within day variance (σ2
r0sdi

). SUBJECT=signal(day*id) is used
because SAS does not allow TYPE=signal(day(id)). Observations may be dependent
within signals (or signal by day by subject combinations); observations of different
signals or days or subjects are independent.

-Errors

(5) SUBJECT=day(id) TYPE=SP(EXP or GAU) (time): serial autocorrelation component
(ε(1)msdi with θ and τ2)

SUBJECT=day(id) implies that observations may be dependent within days (or day by
subject combination) with the (Exponential or Gaussian) serial autocorrelation being a
function of the time interval between observations (time = passed hours since the start
of the day). The serial correlation pertains to successive signals. Observations of
different days and/or subjects are independent.

(6) The LOCAL option adds an observational error to a time series structure: Variance of
measurement error (σ2

ε(2)msdi
)

(7) The GROUP-statement makes each of the involved variance or serial autocorrelation
component group-specific. Model (1) is estimated using this SAS code without the
GROUP statement.

(b) Data: different signals nested within days nested within subjects (3-level model).

PROC MIXED DATA=data;
CLASS id day signal phd diagnosis;
(1)MODEL affect = diagnosis /SOLUTION;
(2)RANDOM intercept /SUBJECT=id TYPE=UN ;
(3)RANDOM intercept /SUBJECT=day(id) TYPE=UN;
(5)(6) REPEATED phd / SUBJECT=day(id) TYPE=SP(EXP or GAU) (time) LOCAL;
RUN;

Annotations:

-Fixed Effects

(1) Inclusion of fixed effects in the model (e.g., diagnosis, time, other covariates)

-Random Effects

(2) Subject-level: between subject variance (σ2
r00i

) SUBJECT=id implies that observations
may be dependent within subjects; observations of different subjects are independent

(3) Day-level: long-term between day variance (σ2
r0di

) SUBJECT=day(id) implies that
observations may be dependent within days (or day by subject combinations);
observations of different days or subjects are independent

-Errors

(5) SUBJECT=day(id) TYPE=SP(EXP or GAU) (time): serial autocorrelation component
(ε(1)sdi with θ and τ2) SUBJECT=day(id) implies that observations may be dependent
within days (or day by subject combination) with the (Exponential or Gaussian) serial
autocorrelation being a function of the time interval between observations (time =
passed hours since the start of the day). The serial correlation pertains to successive
signals. Observations of different days and/or subjects are independent.
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(6) The LOCAL option adds an observational error to a time series structure: Variance of
measurement error (σ2

ε(2)sdi
)

(c) Data: different measurements nested within days nested within subjects (3-level model).

PROC MIXED DATA=data;
CLASS id day signal dayorder diagnosis;
(1)MODEL affect = diagnosis /SOLUTION;
(2)RANDOM intercept /SUBJECT=id TYPE=UN ;
(3)RANDOM intercept /SUBJECT=day(id) TYPE=UN;
(5)(6) REPEATED dayorder / SUBJECT= id TYPE=SP(EXP or GAU) (passeddays) LOCAL;
RUN;

Annotations:

-Fixed Effects

(1) Inclusion of fixed effects in the model (e.g., diagnosis, time, other covariates).

-Random Effects

(2) Subject-level: between subject variance (σ2
r00i

) SUBJECT=id implies that observations
may be dependent within subjects; observations of different subjects are independent

(3) Day-level: long-term between day variance (σ2
r0di

) SUBJECT=day(id) implies that
observations may be dependent within days (or day by subject combinations);
observations of different days or subjects are independent

-Errors

(5) SUBJECT=id TYPE=SP(EXP or GAU) (passeddays): serial autocorrelation component
(ε(1)mdi with θ and τ2). Note that this SUBJECT statement is different compared with
the previous scenario! SUBJECT=id implies that observations may be dependent within
subjects with the (Exponential or Gaussian) serial autocorrelation being a function of
the time interval between observations (passeddays = passed days since the start of the
study). The serial correlation pertains to successive days (measurements are taken at
the same time within each day). Observations of different subjects are independent.

(6) The LOCAL option adds an observational error to a time series structure: Variance of
measurement error (σ2

ε(2)mdi
)

(d) Data: different days nested within subjects (2-level model).

PROC MIXED DATA=data;
CLASS id day signal dayorder diagnosis;
(1)MODEL affect = diagnosis /SOLUTION;
(2)RANDOM intercept /SUBJECT=id TYPE=UN ;
(5)(6) REPEATED dayorder / SUBJECT=id TYPE=SP(EXP or GAU) (passeddays) LOCAL;
RUN;

Annotations:

-Fixed Effects
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(1) Inclusion of fixed effects in the model (e.g., diagnosis, time, other covariates)

-Random Effects

(2) Subject-level: between subject variance (σ2
r0i

) SUBJECT=id implies that observations
may be dependent within subjects; observations of different subjects are independent

-Errors

(5) SUBJECT=id TYPE=SP(EXP or GAU) (time): serial autocorrelation component (ε(1)di
with θ and τ2) SUBJECT= id implies that observations may be dependent within
subjects with the (Exponential or Gaussian) serial autocorrelation being a function of
the time interval between observations (passeddays = passed days since the start of the
study). The serial correlation pertains to successive days. Observations of different
subjects are independent.

(6) The LOCAL option adds an observational error to a time series structure: Variance of
measurement error (σ2

ε(2)di
)


