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Abstract 

Maternal nutrition is critically involved in the development and health of the fetus. We evaluated maternal 

methyl-group donor intake through diet (methionine, betaine, choline, folate) and supplementation (folic acid) 

before and during pregnancy in relation to global DNA methylation and hydroxymethylation and gene 

specific (IGF2 DMR, DNMT1, LEP, RXRA) cord blood methylation. A total of 115 mother-infant pairs were 

enrolled in the MAternal Nutrition and Offspring’s Epigenome (MANOE) study. The intake of methyl-group 

donors was assessed using a food-frequency questionnaire. LC-MS/MS and pyrosequencing were used to 

measure global and gene specific methylation, respectively. Dietary intake of methyl-groups before and 

during pregnancy was associated with changes in LEP, DNMT1, and RXRA cord blood methylation. 

Statistically significant higher cord blood LEP methylation was observed when mothers started folic acid 

supplementation more than 6 months before conception compared to 3-6 months before conception (34.6 ± 

6.3% vs. 30.1 ± 3.6%, P = 0.011, LEP CpG1) or no folic acid used before conception (16.2 ± 4.4% vs. 13.9 ± 

3%, P = 0.036 for LEP CpG3 and 24.5 ± 3.5% vs. 22.2 ± 3.5%, P = 0.045 for LEP mean CpG). Taking folic 

acid supplements during the entire pregnancy resulted in statistically significantly higher cord blood RXRA 

methylation as compared to stopping supplementation in the second trimester (12.3 ± 1.9% vs. 11.1 ± 2%, P 

= 0.008 for RXRA mean CpG). To conclude, long-term folic acid use before and during pregnancy was 

associated with higher LEP and RXRA cord blood methylation, respectively. To date, pregnant women are 

advised to take a folic acid supplement of 400 µg/day from 4 weeks before until 12 weeks of pregnancy. Our 

results suggest significant epigenetic modifications when taking a folic acid supplement beyond the current 

advice. 

Key words 

methyl donors, folic acid supplementation, preconception, pregnancy, DNA methylation, LEP, RXRA, 

DNMT1, IGF2  
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Introduction 

Maternal nutrition is critically involved in the growth, development, and health of the fetus. This has been 

most clearly shown in studies from the Dutch Hunger Winter (1944 - 1945). Severe cold and wartime resulted 

in a 5-month period of extreme food shortage in the Netherlands. Long-term follow-up studies from this 

cohort found that adults who had been exposed to the famine early in gestation showed low birth weight and 

increased risk of obesity as adults.
1, 2

 This adaptive process in response to famine (nutritional insult) during a 

vulnerable period early in life is known as fetal metabolic programming.
3
 Among the underlying mechanisms 

responsible for fetal programming are epigenetic modifications, such as DNA methylation.
4
 DNA 

methylation takes place when a methyl-group (CH3) is added to the carbon-5 position of cytosine in CpG 

dinucleotides.
5
 Methylation of gene promoters and regulatory regions hinder the binding of transcription 

factors, leading to altered gene expression.
6
 The one-carbon (I-C) metabolism plays a central role in DNA 

methylation, since it determines the flux of methyl-groups towards methylation of DNA. Folate, betaine, 

choline, and methionine are the main sources of dietary methyl-group donors in the I-C metabolism. Folic 

acid is the synthetic form of folate used in supplements and for food fortification. Women who wish to 

become pregnant are advised to take a folic acid supplement of 400 µg per day starting 4 weeks before 

conception until 12 weeks of pregnancy for the prevention of neural tube defects.
7
 All methyl-group donors 

enter the I-C metabolism at different sites and are, in the end, all converted to the universal methyl-group 

donor S-adenosylmethionine (SAM).
8
 The transfer of methyl-groups from SAM to the DNA is catalyzed by 

three DNA methyltransferases (DNMTs), with DNMT1 as a maintenance DNMT that is required to maintain 

DNA methylation patterns.
5
 DNMT3A and 3B are responsible for the establishment of de novo DNA 

methylation patterns, from fertilization until implantation. During this short period, DNA methylation marks 

on the maternal and paternal genome are globally lost and gained. Later in pregnancy, during organogenesis 

and tissue differentiation, there is a progressive increase in DNA methylation. Thus, there are several critical 

windows during fetal development where dietary factors can influence the fetal epigenome.
9
 Therefore, to 

assess the effect of maternal nutrition during pregnancy on offspring DNA methylation levels, maternal 
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dietary information and supplement use should be obtained at several time points during pregnancy (early, 

mid, and late gestation), because offspring DNA methylation levels and health risk are found to be different 

depending on the time of exposure during gestation. For example, individuals who were exposed to famine 

early in gestation (Dutch Hunger Winter) showed 5.2% lower methylation levels at the insulin-like growth 

factor 2 (IGF2) differentially methylated region (DMR) as compared to non-exposed siblings. Exposure in 

late gestation, on the other hand, showed decreased glucose tolerance and no difference in IGF2 DMR 

methylation between exposed and non-exposed siblings.
2, 4

 IGF2 is a maternally imprinted gene that is 

regulated by two differentially methylated regions (DMRs) and is important for fetal growth and 

development. Since the IGF2 DMRs are only methylated on the maternal allele, this region might be 

particularly susceptible to nutritional insults and supplementation in the pre- and peri-conceptional period.
10

 

Another study from the Dutch Hunger Winter found a significant increase in leptin (LEP) methylation of 

adults (men only) exposed to famine in early and late gestation.
11

 LEP produces the hormone leptin, which is 

involved in food intake (inhibition) and energy expenditure, and, thus, a regulator of body weight. LEP 

promoter DNA methylation has been linked to adverse pregnancy outcomes and is plausibly involved in fetal 

metabolic programming.
12

 Another metabolic gene that can be affected by maternal nutrition is the retinoid X 

receptor alpha (RXRA) gene, which is known to be involved in insulin sensitivity, adipogenesis, and fat 

metabolism. Lower maternal carbohydrate intake in early pregnancy was associated with higher RXRA cord 

blood methylation and with greater offspring’s adiposity (fat mass and percentage fat mass) in 9-year old 

children.
13

 

Besides changes in maternal diet, several studies have shown that maternal supplement use can induce 

alterations in offspring epigenetic marks. For example, periconceptional folic acid use of 400 µg/day was 

associated with a 4.5% increase in IGF2 DMR methylation in infants (17 months old), compared to children 

who were not exposed to folic acid. 
14

 However, according to Hoyo et al.,
15

 no differences in cord blood IGF2 

methylation of infants born to women taking no, moderate (400 -- 1000 µ/day), or high doses (> 1000 µg/day) 

of folic acid before and during pregnancy were found. Maternal choline supplementation during pregnancy 
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has also been shown to modify the neonate epigenome. One study examined the effect of choline intake (480 

mg vs. 930 mg/day) in the third trimester of pregnancy on offspring DNA methylation. They found a decrease 

in placental DNA methylation of cortisol regulating genes (CRH and NR3C1) with higher maternal choline 

intake. Global DNA methylation and site-specific DNA methylation (LEP, IL10, IGF2, and GNASAS1) was, 

however, not altered by maternal supplemental choline intake.
16

 The long-term effects of these methylation 

changes, due to maternal supplementation, on offspring health remain unknown. 

In this study, we aimed to determine the effect of maternal dietary methyl-group donor intake (methionine, 

folate, choline, and betaine) and supplemental intake (folic acid) before and during each trimester of 

pregnancy on global DNA methylation and hydroxymethylation and gene specific methylation in cord blood 

in patients from the MAternal Nutrition and Offspring’s Epigenome (MANOE) cohort. Promoter regions of 

RXRA, LEP, and DNMT1, and IGF2 DMR were selected for gene specific DNA methylation analysis. 

Results 

Maternal and neonatal characteristics 

For the 115 mothers in our cohort, mean maternal age was 31 years (range: 25 - 41), mean BMI was 23.1 ± 

3.4 kg/m
2
, and mean gestational weight gain was 14.8 kg (range: 1.9 - 28.9) (table 1). Only five women 

smoked before and during the first trimester of pregnancy. Three of them continued smoking during the 

second and third trimester. The newborns, of which 55 were girls (47.8%), had a mean birth weight of 3518 ± 

405.4 g and mean gestational age of 39.6 ± 0.9 weeks. Birth weight-for-gestational age z-scores were 

calculated and a mean z-score of 0.57 ± 0.93 was obtained (range: -1.38 - 2.91). 

The mean maternal intake of dietary methyl-group donors before and during each trimester of pregnancy is 

presented in table 2. The intake of dietary methyl-group donors was stable during the course of pregnancy. 

Supplemental intake of folic acid before and during each trimester of pregnancy is presented in table 3. Folic 

acid intake was significantly higher in the first trimester of pregnancy (504.6 µg, P = 0.000), compared to the 
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intake before (371.5 µg) or during the other trimesters of pregnancy (386.9 and 3564 µg). Women are advised 

to take a folic acid supplement four weeks prior to conception. The majority of women in our study followed 

this guideline; however, 25.2% (n = 29) did not take a folic acid supplement before conception. On the other 

hand, 26.1% (n = 30) took a folic acid supplement more than 6 months prior to conception. Most women 

(43.8%) stopped the folic acid supplementation in the second trimester, but 38.3% of the women took the 

supplement during their entire pregnancy. 

Cord blood DNA methylation levels 

The 115 newborns had a mean global DNA methylation level of 6.51 ± 1.65% and a mean global DNA 

hydroxymethylation level of 0.23 ± 0.14%. The mean methylation percentage of IGF2 DMR, DNMT1, LEP, 

and RXRA was 51.39 ± 4%, 1.53 ± 0.3%, 22.91 ± 3.36%, and 11.73 ± 1.97%, respectively. 

Impact of dietary methyl-group donor intake before and during each trimester of pregnancy on cord blood 

DNA methylation 

We next determined the effect of maternal dietary methyl-group donor intake before and during each 

trimester of pregnancy on offspring global DNA methylation and hydroxymethylation and gene specific 

methylation. Associations between maternal dietary methyl-group donor intake and cord blood methylation 

are presented in table 4. Before pregnancy, higher intakes of betaine and methionine were associated with 

higher cord blood methylation levels of DNMT1 CpG4 (0.68% per 100 mg increase, 95% CI: 0.04 - 01.31, P 

= 0.039) and LEP CpG4 (0.43% per 100 mg increase, 95% CI: 0.01 - 0.85, P = 0.048), respectively. In the 

second trimester of pregnancy, high methyl-group donor intakes (except for methionine) were negatively 

associated with gene specific cord blood methylation (betaine with LEP CpG2; choline with DNMT1 CpG4; 

folate with LEP CpG2 and DNMT1 CpG4). In the last trimester of pregnancy, a high intake of choline and 

folate was associated with higher methylation levels of DNMT1 CpG2 (0.29% per 100 mg increase, 95% CI: 

0.1 - 0.84, P = 0.022) and lower methylation levels of RXRA CpG2 (-1.001% per 100 µg increase, 95% CI: -

1.96 - -0.04, P = 0.041), respectively. Finally, no significant associations between maternal dietary methyl-
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group donor intake before and during pregnancy and cord blood global DNA (hydroxy)methylation, IGF2 

DMR methylation (CpG1, CpG2, CpG3, and mean CpG), and birth weight were found (data not shown). In 

addition, no associations between maternal dietary methyl-group intake in the first trimester and cord blood 

methylation were found. 

Impact of folic acid intake before conception on cord blood DNA methylation 

We found statistically significant differences in cord blood LEP methylation (CpG1, CpG3, and mean CpG) 

by duration of maternal folic acid intake before conception (no folic acid use before conception/ 1 - 3 months 

prior to conception/ 3 - 6 months prior to conception /> 6 months prior to conception). The results are shown 

in figure 1. For LEP CpG1, we found a statistically significant difference between the four groups (P = 

0.029). A post-hoc test revealed that the methylation percentage was significantly higher when the mother 

used a folic acid supplement more than 6 months before conception (34.6 ± 6.3%, P = 0.011) compared to 3 

to 6 months before conception (30.1 ± 3.6%). Also LEP CpG3 (P = 0.037) and mean LEP CpG (P = 0.024) 

methylation percentages showed significant differences: significantly higher methylation levels were seen 

when women took a folic acid supplement more than 6 months prior to conception compared to no folic acid 

use [16.2 ± 4.4% vs. 13.9 ± 3% (P = 0.036) for LEP CpG3 and 24.5 ± 3.5 vs. 22.2 ± 3.5% (P = 0.045) for 

mean LEP CpG]. 

Impact of folic acid intake during pregnancy on cord blood DNA methylation 

We found statistically significant differences in cord blood RXRA methylation (CpG1, CpG2, CpG3, CpG4, 

CpG5, and mean CpG) by duration of maternal supplemental folic acid intake during pregnancy (stop folic 

acid supplement intake at the end of the first trimester; stop in the second trimester; stop at the end of the 

third trimester). The results are shown in figure 2. For all five CpGs and the mean CpG, we found statistically 

significant differences between the 3 groups (CpG1, P = 0.027; CpG2, P = 0.012; CpG3, P = 0.009; CpG4, 

P = 0.024; CpG5, P = 0.037; mean CpG, P = 0.01). Post-hoc tests revealed that RXRA methylation 

percentages---in all CpGs (except CpG5) and mean CpG---were significantly higher in mothers using a folic 
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acid supplement during the whole pregnancy compared to stopping the supplementation after the first or 

second trimester. The mean %, standard error of the mean, and P-value for CpG1, CpG2, CpG3, CpG4, and 

mean CpG were 8.1 ± 1.3% vs. 7.3 ± 1.6% (P = 0.02); 27.1 ± 4.1% vs. 24.4 ± 4.7% (P = 0.009); 8.2 ± 1.2% 

vs. 7.4 ± 1.5% (P = 0.008); 8.6 ± 1.8% vs. 7.7 ± 1.9% (P = 0.05); 12.3 ± 1.9% vs. 11.1 ± 2% (P = 0.008), 

respectively. 

Discussion 

This study supports the hypothesis that maternal methyl-group donor intake before and during pregnancy can 

induce epigenetic modifications in offspring genes related to metabolism. 

We first studied the effect of supplemental folic acid intake before conception on cord blood methylation 

(global DNA methylation and hydroxymethylation, and gene specific methylation at IGF2 DMR, LEP, 

RXRA, and DNMT1). It is recommended that women, who desire to become pregnant, use a folic acid 

supplement of 400 µg/day starting 4 weeks before conception until 12 weeks of pregnancy for the prevention 

of spina bifida.
7
 In reality, women often start the folic acid supplementation months before conception, 

exposing the fetus to high levels of circulating folic acid during early embryonic development. We found 

statistically significant differences in cord blood LEP methylation depending on the start of the folic acid 

supplementation before conception. Specifically, a higher LEP methylation was observed when folic acid 

supplementation started more than 6 months prior to conception (24.5 ± 3.5%) compared to no pre-

conceptional folic acid use (22.2 ± 3.5%). LEP is primarily expressed in white adipose tissue and its product, 

the hormone leptin, has several functions including regulation of food intake (inhibition), body weight, 

energy homeostasis, and it is expressed and secreted by the placenta during pregnancy.
17

 It has been shown 

that the LEP promoter is subject to epigenetic programming and that the expression of leptin can be 

modulated by DNA methylation.
18

 For example, in utero exposure to famine and gestational diabetes has 

been associated with offspring LEP promoter hypermethylation in blood of adults
11

 and placental LEP 

hypermethylation
19

, respectively. According to Lesseur et al.
12

, cord blood LEP methylation was higher in 

small for gestational age infants and lower in infants born to pre-pregnancy obese mothers. Modifications in 
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the profile of leptin in early life may contribute to the lower expression of appetite regulators, alter fetal 

neural development, and, in the end, alter the susceptibility to obesity and metabolic disorders in adulthood.
18

 

We also studied the effect of dietary methyl-group donor intake before conception on cord blood DNA 

methylation. Higher intake of methionine and betaine before conception were associated with higher 

methylation levels at LEP CpG4 and at DNMT1 CpG4, respectively. DNMT1 produces the enzyme DNA 

methyltransferase, which maintains DNA methylation in newly synthesized DNA strands.
5
 Animal studies

20-

22
 have shown that maternal diet can influence DNMT1 methylation/expression. For example, a choline 

deficiency in pregnant rats (hypo)methylates the regulatory CpGs within the DNMT1 gene, leading to its 

overexpression; this results in an increase of global and gene specific (IGF2) DNA methylation.
20

 

The periconceptional period may be particularly susceptible to methyl-group donor intake due to global de- 

and re-methylation of the embryonal DNA in early development (between fertilization and implantation). 

However, our and other’s results show that there are different windows of susceptibility (organogenesis and 

tissue differentiation) to epigenetic modifications by gestational methyl-group donor intake; therefore, the 

focus should not be solely on the periconceptional period.
23

 

Next, we studied the effect of supplemental folic acid intake during each trimester of pregnancy on cord 

blood DNA methylation. We found statistically significant differences in cord blood RXRA methylation 

depending on the duration of folic acid intake during pregnancy. RXRA methylation was significantly higher 

(12.3 ± 1.9%) when the mother used a folic acid supplement during the whole pregnancy compared to 

stopping the supplementation in the second trimester (11.1 ± 2%). The RXRA gene is known to be involved in 

insulin sensitivity, adipogenesis, and fat metabolism. In two independent cohorts, Godfrey et al. found that 

higher RXRA methylation in umbilical cord tissue at birth, was highly correlated with adiposity (fat mass and 

percentage fat mass) in 9-year-old children. In one of these cohorts, low maternal carbohydrate intake in early 

pregnancy was associated with higher RXRA methylation.
13

 This study showed that RXRA DNA methylation 

levels at birth could provide information about prenatal environmental influences, and later phenotype 

(adiposity). In the current cohort, folic acid supplementation during the entire pregnancy resulted in higher 
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cord blood RXRA methylation. Children from the MANOE cohort will be further followed-up in the context 

of high vitamin intake by mothers, epigenetic modifications in cord blood, and obesity/metabolic disorders in 

childhood (BMI, fat content). Although it is widely known that folate intake reduces the risk of neural tube 

defects
7
, the potential long-term consequences of an increased folate intake are largely unknown in humans. 

One study in humans found no effect of supplement use up to 12 weeks of pregnancy (current 

recommendations) on cord blood methylation. However, supplement use after 12 weeks of gestation was 

previously associated with higher methylation in the gene IGF2, and lower methylation in the PEG3 gene and 

LINE-1 total DNA methylation in cord blood.
24

 Our data suggest significant epigenetic modifications in the 

examined metabolic genes when taking a folic acid supplement beyond the current advice. 

Finally, we studied the effect of dietary methyl-group donor intake during each trimester of pregnancy on 

cord blood DNA methylation. The intake of dietary methyl-group donors during pregnancy was found to be 

associated with LEP, RXRA, and DNMT1 cord blood methylation, but not with global DNA 

(hydroxy)methylation and IGF2 DMR methylation. Only negative associations between dietary methyl-group 

donor intake and cord blood methylation were found in the second trimester of pregnancy, positive 

associations were observed for the other time points. A possible explanation for this shift could be a change in 

the I-C metabolism during gestation. A higher rate of transsulfuration was previously reported in the first 

trimester of pregnancy and a higher rate of transmethylation in the third trimester.
25

 At each time point, we 

found that the intake of methyl-group donors was associated with DNMT1 methylation. One possible 

mechanism that leads to changes in LEP and RXRA methylation could be via alterations in the methylation 

and, thus, gene expression of DNMT1.
20

 In this study, positive, negative, and no associations between 

maternal methyl-group donor intake and offspring DNA methylation levels were found. It seems that there is 

no simplistic correlation between maternal methyl-group donor intake and offspring DNA methylation. Other 

studies also did not find a linear relationship; for example, undernutrition, which correlates with reduced 

methyl-group donor availability, resulted in a decrease and increase in the methylation of different site-

specific genes.
4, 11, 26-28
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There are some strengths and limitations in the present study we need to address. The strengths of the present 

study include a unique study design that allowed us to collect longitudinal maternal data (starting before 

pregnancy and during each trimester of pregnancy), and offspring global and gene specific DNA methylation 

data in cord blood. The use of a validated food-frequency questionnaire designed to assess the intake of the 

nutrients under study. In addition, at each study time point, detailed information about supplement use was 

obtained. We have detailed covariate data allowing for adjustment for potential confounding variables.  

Another advantage was the use bisulfite pyrosequencing for DNA methylation analysis in candidate genes. It 

enabled the determination of DNA methylation levels at individual CpG sites and the calculation of the 

average methylation percentage of that region. Single CpG site methylation in the promoter region of a gene 

can be involved in the regulation of transcription, especially when it lies in a relevant transcription factor 

binding site, and could be associated with diseases. From example, the loss of DNA methylation in one CpG 

site in the promoter region of TET1 was associated with air pollution and childhood asthma and could 

possibly be a potential biomarker for childhood asthma.
29

 CpG methylation patterns within the same CpG 

island in promoter regions have been shown to be highly correlated; these methylation patterns differed from 

methylation patterns elsewhere, indicating that they have a specific biological role.
30

 

The first limitation of our study is that we measured offspring methylation using cord blood, which is 

composed of different cell types, each with a different DNA methylation profile. Cord blood might not be the 

target tissue of interest for long-term metabolic outcomes, but is most often used in epidemiological studies 

because it is easy to obtain. In addition, cord blood consists primarily of infant blood
31

 and can be considered 

as a good surrogate for the newborn’s blood epigenome. Another limitation is that the Belgian food 

composition database NUBEL
32

 does not contain information about the four methyl-group donors under 

study. Databases of neighboring countries or the USDA database for choline and betaine
33

 content were used 

in the validation of the food frequency questionnaire (FFQ).
34, 35

 For folate, the Dutch NEVO food 

composition database was used
36

 and the German BLS Nutrient database for methionine.
37

 The USDA 
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database was also used for the nutrient content of folate and methionine if not found in NEVO and BSL 

databases respectively. 

To conclude, this study shows that maternal methyl-group donor intake (through diet and supplement use) 

before and during each trimester of pregnancy can influence offspring DNA methylation in genes related to 

metabolism. Especially, long-term folic acid use before or during pregnancy was associated with higher LEP 

and RXRA cord blood methylation levels. Our results suggest significant epigenetic alterations in the genes 

under study when not following the current advice for pregnant women on folic acid supplementation 

between 4 weeks before until 12 weeks pregnancy. However, the impact these methylation changes may have 

on (later) health are yet to be determined. 

Methods 

Study subjects 

We studied participants enrolled in the MAternal Nutrition and Offspring’s Epigenome (MANOE) study, an 

ongoing prospective, observational cohort study initiated in April 2012. We enrolled 150 women (34 women 

before pregnancy and 116 in the first trimester of pregnancy) between April 2012 and January 2015 at the 

Department of Obstetrics and Gynecology of the University Hospitals Leuven (Belgium). The last delivery of 

the cohort took place in September 2015. Of the 150 enrolled women, 35 mother-infant pairs were excluded 

from analysis due to either missing nutritional data (n = 2), a missing cord blood sample (n = 14), 

development of pregnancy complications [gestational diabetes (n = 8) and preeclampsia (n = 1)], pre-term 

delivery (n = 6), extreme high intake of folic acid ( 4 mg/day) (n = 2), or birth defects (n = 2). After these 

exclusions, 115 mother-infant pairs were available for statistical analysis. The recruitment process has been 

described in more detail in a previous study 
38

. 
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Maternal and Neonatal Measurements 

All 115 women were followed-up during pregnancy at their scheduled ultrasounds (11 - 13 weeks, 18 - 22 

weeks, and 30 - 34 weeks of gestation) and at delivery. From the women recruited before pregnancy (n = 27) 

we obtained extra measurements before conception. A food-frequency questionnaire (FFQ) was developed 

and validated to assess maternal intake of dietary methyl-group donors (methionine, folate, betaine, and 

choline) before and during each trimester of pregnancy.
34, 35

 Twenty-four FFQs were obtained before 

pregnancy, 96 FFQs at 11 - 13 weeks, 89 FFQs at 18 - 22 weeks, and 83 at 30 - 34 weeks of pregnancy. To 

assess the intake of methyl-group donors through supplement use, questions were asked about the use of 

nutritional supplements (frequency, brand/type, dosage) before and during each trimester of pregnancy. Only 

the intake of folic acid (synthetic form of folate) was registered, since there was no report on the 

supplemental intake of methionine, betaine, and choline. Furthermore, using a combination of questionnaires 

and interviews, we collected information about a range of socio-demographic factors, life style habits, and 

physical activity. Information on mothers’ smoking status before and during pregnancy was obtained at each 

consultation. Questions were asked about smoking before and in each trimester of pregnancy and the number 

of cigarettes smoked on average per day. From these data, a dichotomous variable for maternal smoking 

before and during pregnancy was derived (smoked/did not smoke). Height and pre-pregnancy weight was 

used to calculate the Body Mass Index (BMI, kg/m²). Maternal measurements have been described in more 

detail in a previous paper.
38

 

Determination of gestational age was based on the crown rump length measured between 7 and 14 weeks of 

gestation in all patients.
39

 We obtained birth weight and length from the hospital clinical record. Gender 

specific z-scores for birth weight for gestational age were generated using the INTERGROWTH-21
st
 tool.

40
 

Sample collection and DNA extraction 

At delivery, we collected umbilical cord blood in 4.5-mL tubes containing EDTA (BD Vacutainer Systems) 

via venipuncture. Umbilical cord blood samples were put in the freezer (-20°C) immediately after collection. 
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DNA from whole blood was extracted with the Salting out method
41

, the quantity and purity of DNA were 

determined by a NanoDrop spectrophotometer. Samples were stored at -80°C until analysis. 

Global DNA methylation and hydroxymethylation measurements 

Cord blood DNA of 115 infants was analyzed by fast and sensitive liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) method for the simultaneous quantification of 5-methylcytosine (5mC) and 5-

hydroxymethylcytosine (5hmC), as described previously.
42

 Briefly, isolated genomic DNA samples (10 µg) 

were hydrolyzed to individual deoxyribonucleosides by a simple one-step DNA hydrolysis procedure. For 

this, a digest mix was prepared by adding phosphodiesterase I, alkaline phosphatase and benzonase nuclease 

to Tris-HCl buffer. Extracted DNA was then hydrolyzed by adding 10 µL digest mix and incubating at 37°C 

for at least 8 h. After hydrolysis, 490 µL of acetonitrile/water was added to each sample. Global DNA 

methylation and hydroxymethylation was obtained by quantifying 5mC, 5hmC, and C using ultra-pressure 

liquid chromatography (UPLC) in combination with tandem mass spectrometry (MS-MS). Global DNA 

methylation was expressed as a percentage of 5mC over the sum of 5mC, 5hmC, and C {% Global DNA 

Methylation = [5mC / (5mC + 5hmC+ C)*100]}. Global DNA hydroxymethylation was expressed as a 

percentage of 5hmC over the sum of 5mC, 5hmC, and C {% Global DNA Hydroxymethylation = [5hmC / 

(5mC + 5hmC + C)*100]}. 

Gene specific DNA methylation measurements 

Gene and region selection 

We adopted a candidate gene approach and consulted previously published EWAS data, thus selecting 

candidate genes based on a literature study. We selected 12 genes that are known to be involved in the onset 

of obesity, genes of which the DNA methylation state is nutrient sensitive, or genes involved in DNA 

(de)methylation reactions. In a first phase, we analyzed offspring DNA methylation of the 12 selected genes 

on a subsample (n = 30). The subsample was selected based on maternal methyl-group donor intake (low vs. 
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high intake). After statistical analysis, we selected 4 genes (DNMT1, with role in maintenance of DNA 

methylation patters; LEP, with role in appetite control; RXRA, with role in insulin sensitivity, adipogenesis, 

and fat metabolism; and IGF2 DMR, with role growth) to test our hypothesis on the entire cohort. For IGF2 

DMR, DNA methylation was measured at CpGs in the DMR that regulates parental imprinting of the IGF2 

gene in early development. For the other three genes, we have selected CpGs within the promoter region, 

since epigenetic changes in these regulatory regions can influence gene expression. 

Bisulfite Conversion and PCR 

Genomic DNA (200 ng) was bisulfite converted using the EZ-96 DNA Methylation-Gold™ Kit (#D5008, 

Zymo Research). Converted DNA was eluted with 30 μL of M-elution buffer. Subsequently, 1 μL of 

converted DNA was amplified by PCR in a total volume of 25 μL containing 0.2 μM of primers and 2x 

Qiagen PyroMark PCR Master Mix (#978703, Qiagen). Primers for DNMT1, RXRA, and LEP were ordered 

from Qiagen (#PM00075761, #PM00144431, #PM00129724 PyroMark CpG Assays). 

Primer sequences for IGF2 DMR used in the current study were taken from the original paper.
43

 PCR 

reactions for DNMT1, RXRA, and LEP consisted of an initial hold at 95°C for 15 min followed by 45 cycles 

of 30s at 94°C, 30s at 54°C, and 30s at 72°C. PCR amplification ended with a final extension step at 72°C for 

10 min. PCR reactions for IGF2 DMR consisted of an initial hold at 5°C for 15 min followed by 5 cycles of 

30s at 94°C, 30s at 68°C, and 30s at 72°C. This was followed by 50 cycles of 30s at 94°C, 30s at 64°C, and 

30s at 72°C and ended with a final extension step at 72°C for 10 min. Primer information can be found in 

supplementary tables 1 and 2. 

Pyrosequencing 

In order to assess CpG methylation levels, 20 μL of biotinylated PCR product was immobilized to 

Streptavidin Sepharose High Performance beads (#17-5113-01, GE Healthcare) followed by annealing to 25 

μL of 0.3 μM sequencing primer at 80°C for 2 min with a subsequent 10 min cooling down period. 
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Pyrosequencing was performed using Pyro Gold reagents (#970802, Qiagen) on the PyroMark Q24 

instrument (Qiagen) following the manufacturer’s instructions. Pyrosequencing results were analyzed using 

the PyroMark analysis 2.0.7 software (Qiagen). Pyrosequencing provides information in about the 

methylation status of individual CpG sites and the average CpG methylation can be calculated. 

Statistical analysis 

First, we assessed the intake of dietary and supplemental maternal methyl-group donors before and during 

pregnancy using a multivariate regression model for longitudinal measurements with methyl-group donor 

intake as a response variable and time point as a factor (LSD post-hoc test). 

Next, we determined the effect of maternal dietary methyl-group donor intake on cord blood global DNA 

(hydroxy)methylation and gene specific methylation using linear regression models. Multivariable models 

were used to correct for possible covariates. Potential covariates were selected based on the association with 

DNA methylation and maternal nutrition: maternal age, maternal BMI, maternal smoking before and during 

each trimester of pregnancy (did not smoke /smoked), gestational weight gain. Analyses were performed 

separately per time point (pre-pregnancy, 11 - 13 weeks pregnancy, 18 - 22 weeks pregnancy, 30 - 34 weeks 

pregnancy). As high correlations were observed between methyl-group donor intakes at the different time 

points, it was less appropriate to model the intake levels jointly in a multivariable model, given that highly 

correlated variables induce multicollinearity. Proportional odds models for ordinal data were used in case the 

response variable showed less than five levels. This was the case for the methylation percentage of DNMT1 

CpG1, 2, 3, and 5. 

Finally, we assessed whether there were differences in cord blood gene specific DNA methylation (RXRA, 

IGF2 DMR, LEP, and DNMT1) depending on the duration of maternal supplemental folic acid intake before 

and during pregnancy using one-way ANOVA. Post-hoc tests [Tukey test and Games Howell test (when the 

data did not meet the homogeneity of variances assumption)] were run when an overall significant difference 

in-group means was shown. For pre-conceptional supplemental folic acid intake, women were divided into 4 
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categories: no folic acid use before conception; start folic acid use 1 - 3 months prior to conception; 3 - 6 

months prior to conception; or more than 6 months prior to conception. To test the effect of duration of 

supplemental folic acid use during pregnancy, women were divided into 3 categories: stop folic acid intake 

after the first trimester; stop after the second trimester; stop at the end of the third trimester. 

All tests were two-sided, a 5% significance level was assumed for all tests. Analyses were performed using 

SAS software (version 9.4 of the SAS System for Windows). 
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Table 1. Characteristics of the mother-infant pairs included in the statistical analysis (n = 115) 

Characteristics  
Mean 

(SD) 
Range 

Mother     

Maternal age 

(y) 

31 

(3.6) 

25 -- 

41 

BMI (kg/m
2
) 

23.1 

(3.4) 

17.9 -- 

33 

Gestational 

weight gain 

(kg) 

14.8 

(4.2) 

1.9 -- 

28.9 

Neonate     

Birth weight 

(gram) 
    

Gestational age 

(weeks) 

3518 

(405.4) 

2720 -

- 4750 

Birth weight z-

score 

39.6 

(0.9) 

37.1 -- 

41.4 

  
0.57 

(0.93) 
1.53 

  % n 

Maternal 

smoking (yes) 
    

Before 

pregnancy 
4.3 5 

First trimester 4.3 5 

Second 

trimester 
2.6 3 

Third trimester 2.6 3 
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Gender 

newborn 
    

Boy 52.2 60 

Girl 47.8 55 
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Table 2. Mean maternal intake of dietary methyl-group donors before and during pregnancy. 

Methyl-

group 

donor 

Before 

pregnancy 

Mean 

(SE) n = 

24 

First 

trimester 

(11 - 

13w) 

Mean 

(SE) n = 

96 

Second 

trimester 

(18 - 

22w) 

Mean 

(SE) n = 

85 

Third 

trimester 

(30 - 

34w) 

Mean 

(SE) n = 

83 

Methionine 

(mg) 

1665.9 

(468.2) 

1662.8 

(476.4) 

1609.4 

(450.8) 

1625.9 

(481.8) 

Folate (μg) 
271.4 

(89.4) 

275.4 

(89.5) 

263.2 

(92.3) 

273.4 

(102.6) 

Choline 

(mg) 

285.9 

(73.7) 

278.9 

(74.2) 

271.4 

(74.8) 

273 

(84.8) 

Betaine 

(mg) 

172.1 

(63.7) 

167.9 

(59.5) 

168.9 

(61.6) 

171.4 

(62.5) 

Multivariate regression model for longitudinal measurements 
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Table 3. Supplemental folic acid intake before and during pregnancy (n = 115). 

  
Mean 

(SE) 
Range 

Mean 

daily 

intake of 

folic acid 

(µg) 

    

Before 

pregnancy 

371.5 

(21.5) 

0 -- 

1000 

First 

trimester 

(11 - 13 

weeks) 

504.6 

(14.1)* 

171 -- 

1000 

Second 

trimester 

(18 - 22 

weeks) 

386.9 

(24.2) 

0 -- 

1000 

Third 

trimester 

(30 - 34 

weeks) 

354 

(26.3) 

0 -- 

1100 

  % N 

Start folic 

acid use 

before 

pregnancy 

    

No 25.2 29 

1 - 3 

months 
28.7 33 

      

4 - 6 

months 
20 23 

> 6 

months 
26.1 30 

Folic acid 

use 

during 

pregnancy 
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No 0 0 

First 

trimester 
18.3 21 

Until 

second 

trimester 

43.5 50 

Whole 

pregnancy 
38.3 44 

*Significant higher folic acid intake in the first trimester of pregnancy (multivariate regression model for 

longitudinal measurements)  
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Table 4. Associations between maternal dietary methyl-group donor intake (before and during pregnancy) 

and offspring gene-specific (LEP, DNMT1, RXRA) methylation measured in cord blood. Significant results 

are presented in bold. 

Time point Before pregnancy n = 24 

β (95% CI) P-value 

Second trimester n = 89 β 

(95% CI) P-value 

Third trimester n = 83 β 

(95% CI) P-value 

 Gene 

Nutrient 

LEP DNMT1  LEP  DNMT1  RXRA DNMT1 

CpG4 CpG4 CpG2 CpG4  CpG2 CpG2 

Betaine -0.13 0.675  -0.575  -0.25 0.35 0.97 

(-

3.45;3.19) 

(0.04;1.31) (-1.16;0.01) (-0.58;0.09) (-1.24;1.94) (0.26;3.67) 

0.94 0.039 0.05 0.15 0.66 0.96 

Choline 1.48 0.13 -0.47 -0.301 -0.935 0.291  

(-

1.48;4.45) 

(-0.52;0.78) (-0.95;0.02)  (-0.57;-

0.03) 

(-2.08;0.21) (0.1;0.84) 

0.31 0.68 0.058 0.031 0.11 0.022 

Folate -0.33 0.21 -0.507  -0.226  -1.001  0.48 

(-

2.75;2.09) 

(-0.3;0.72) (-0.89;-

0.13) 

(-0.45;-

0.01) 

(-1.96;-

0.04) 

(0.22;1.06) 

0.78 0.4 0.009 0.045 0.041 0.07 

Methionin

e 

0.427  0.04 -0.06 -0.04 -0.15 0.87 

(0.01;0.85) (-0.06;0.14) (-0.14;0.02) (-

0.08;0.009) 

(-0.35;0.06) (0.74;1.04) 

0.048 0.37 0.15 0.12 0.16 0.12 
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β-estimate is an absolute change in percentage of gene specific methylation; slope >(<) 0 means positive 

(negative) association; CI: confidence interval. Only the statistically significant associations are shown in this 

table. 
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Figure 1. Cord blood LEP methylation by duration of maternal supplemental folic acid intake before 

conception. Bars represent the mean methylation values and standard errors of the mean of the 115 

newborns. The results are based on the duration (4 categories) of maternal supplemental folic acid intake 

before conception. The overall P-values (one-way ANOVA) and significant P-values with mean differences 

from post-hoc tests are shown. 
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Figure 2. Cord blood RXRA methylation by duration of supplemental folic acid intake during 

pregnancy. The bars represent the mean methylation values and standard errors of the mean of 115 

newborns. The results are based on the duration (3 categories) of maternal folic acid supplement intake during 

pregnancy. The overall P-values (one-way ANOVA) and significant P-values with mean differences from 

post-hoc tests are shown. MD, mean difference 


