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Normal forms of Liénard type for analytic

unfoldings of nilpotent singularities

Renato Huzak

Abstract

Using the technique of gluing complex manifolds (equipped with vector
fields) developed by Loray and the theory of deformation of complex
structures developed by Kodaira and Spencer, we find normal forms of
Liénard type for analytic unfoldings of planar singularities with a non-
radial linear part. In particular, we improve normal forms of Takens
for analytic unfoldings of nilpotent singularities and normal forms of De
Maesschalck, Dumortier and Roussarie for analytic unfoldings of nilpotent
contact points in planar slow-fast systems.

1 Introduction

Liénard equations appear in virtually every area of science. They are also a
good starting point to try to solve the second part of Hilbert’s 16th problem
which is in essence to determine maximal number of limit cycles a planar poly-
nomial vector field may have if the polynomial degree of the vector field is given
(see [Sma00]). The principal goal of our paper is to give a positive answer to
the following question that naturally arises in planar slow-fast setting: Is it true
that all analytic slow-fast structures with nilpotent contact points can be under-
stood by studying only (slow-fast) Liénard equations? We point out that much
progress has been made in the study of slow-fast Liénard equations due to their
simpler slow-fast sturucture (see e.g. [DR96], [KS01], [DR01], [DPR07], [DR09],
[DMD11], [DMH14], [HDM14],. . . ). Now, taking into account our result, the
results on (slow-fast) Liénard equations become more relevant to understanding
general nilpotent contact points.

In 2006, Loray published a paper in which he found a normal form of Liénard
type for a planar analytic vector field near singularity at which its linear part
is not radial, i.e. not of the form ρx∂x + ρy∂y, in the real and complex setting
(see [Lor06], Theorem 4). Inspired by his result, we prove a similar result for
analytic families of planar vector fields.

Theorem 1. Let Xλ = f(x, y, λ)∂x + g(x, y, λ)∂y be an analytic λ-family of
vector fields defined near the origin (x, y, λ) = (0, 0, 0) of R2+p (resp. of C2+p).
If f(0, 0, 0) = g(0, 0, 0) = 0 and the order of vanishing of f(0, y, 0) at y = 0 is
one, then there exists a local analytic λ-family of coordinate changes of the form

(x, y) 7→ (φ1(x, y, λ), φ2(x, y, λ))
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bringing Xλ in an analytic λ-family of Liénard vector fields (up to multiplication
by an analytic nowhere zero function)

(y − F (x, λ))∂x +G(x, λ)∂y (1)

where F,G ∈ R{x, λ} (resp. F,G ∈ C{x, λ}) and F (0, 0) = G(0, 0) = 0.

Remark 1. In fact, the condition on the order of vanishing of f(0, y, 0) at y = 0
in Theorem 1 is equivalent to nonradiality of the linearized vector field of X0

at the origin. Indeed, given a nonradial linear part, there is a linear change of
coordinates that converts the original family Xλ into one with ∂f

∂y (0, 0, 0) 6= 0.

Conversely, ∂f
∂y (0, 0, 0) 6= 0 implies nonradiality of the linear part.

Remark 2. If we introduce the new variable Y = y−F (x, λ) and write F̃ (x, λ) =
− ∂
∂xF (x, λ), then the normal form (1) changes into the vector field

Y ∂x + (F̃ (x, λ)Y +G(x, λ))∂Y

which we will often use throughout the paper.

Theorem 1 will be proved in Section 2.
The normal form (1) in Theorem 1 is valid in a fixed neighborhood of the

origin in R2 or C2, independent of the parameter λ. If f(x, y, λ) = f(x, y, 0),
g(x, y, λ) = g(x, y, 0) for all λ ∼ 0, the normal form (1) can be found in [Lor06]
(Theorem 4). To prove Theorem 1, we use the following method explained in
[Lor06]. Given a holomorphic vector field Xλ+0 ∂

∂λ near the origin, we extend it,
in the y-direction, to a meromorphic unfolding on a (2+p)-dimensional complex
manifold C which is a tubular neighborhood of an embedded Riemann sphere
C. As we cannot construct a C-fibration at the same time, we are not allowed
to use directly Grauert-Fischer Theorem (see [FG65]) to conclude the local
triviality of the neighborhood of C. In [Lor06], the following theorem of V. I.
Savel’ev (see [Sav82]) has been used to prove that the tubular neighborhood of an
embedded Riemann sphere C is biholomorphically equivalent to a direct product
of the sphere C and the disk: 2-dimensional complex manifold with an embedded
Riemann sphere C with trivial normal bundle in the complex manifold is a trivial
C-bundle over the disc. As we deal with a higer dimensional ambient space C
surrounding an embedded sphere C, we have to use a result of Kodaira and
Spencer (see [Kod86] or [KS58]) which enables us to conclude a local triviality
of the (2 + p)-dimensional neighborhood of the embedded Riemann sphere C
from the triviality of the normal bundle of the embedded sphere. In fact, if
we assume that the normal bundle of the embedded sphere C in the complex
manifold C is trivial, then C can be considered as a complex analytic fibre
space, i.e., a complex analytic family, with one fiber being C. This is true
because the cohomology group H1(C,O) = 0 where O is the sheaf of germs of
holomorphic functions on C (see e.g. [Gri65]). Hence we may use the theory of
deformation of complex structures [Kod86] developed by Kodaira and Spencer.
It is well known (see [Kod86], Chapter 4) that the complex analytic family C is
trivial if it is trivial as a differentiable family. Since H1(C,Θ) = 0 where Θ is
the sheaf of germs of holomorphic vector fields on C (see [Bot57]), the Rigidity
Theorem of Frölicher-Nijenhuis (see [Kod86], Theorem 4.5.) implies triviality
of the differentiable family C, i.e., triviality of complex analytic family C. The
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theory of Kodaira and Spencer also implies that the global coordinates send
C to a neighborhood of {0} × C × {0} in the Cartesian product C × C × Cp
preserving λ (see Section 2). Thus the original meromorphic unfolding can be
transformed in a new meromorphic unfolding. The new meromorphic unfolding
is rational in y and the rest of the proof of Theorem 1 is very similar to the
proof of Theorem 4 in [Lor06].

Grauert-Fischer Theorem (hence without referring to the result of Kodaira-
Spencer) allows us to prove a weaker version of Theorem 1 in which multiplica-
tion of vector field by a meromorphic function is allowed.

Theorem 2. Let Xλ = f(x, y, λ)∂x + g(x, y, λ)∂y be an analytic λ-family of
vector fields defined near the origin (x, y, λ) = (0, 0, 0) of R2+p (resp. of C2+p).
Under the assumptions of Theorem 1, there exists a local analytic λ-family of
coordinate changes bringing Xλ in the form (1) where F,G ∈ R{x, λ} (resp.
F,G ∈ C{x, λ}) and F (0, 0) = G(0, 0) = 0 (up to multiplication by a meromor-
phic function).

Theorem 2 will be proved in Section 3.

Let us focus on a real analytic λ-family of planar vector fields Xλ near the
origin of R2, with λ ∈ Rp and λ ∼ 0. We suppose that X0 has a nilpotent
singularity at the origin, i.e. both eigenvalues of DX0(0, 0) are equal to 0 and
DX0(0, 0) 6≡ 0. Using the Jordan normal form theorem we may assume that
the linearized vector field of X0 at the origin has the canonical form y∂x:

Xλ = (y + p(x, y, λ))∂x + q(x, y, λ)∂y

where p and q are analytic and p(x, y, 0) and q(x, y, 0) are O(||(x, y)||2). There
exist analytic coordinates (X,Y ) = (x, y + p(x, y, λ)) in which

Xλ = y∂x + (q1(x, λ) + yq2(x, λ) + y2q3(x, y, λ))∂y (2)

where (X,Y ) is denoted by (x, y), q1, q2 and q3 are analytic functions, q1(x, 0) =
O(x2) and q2(x, 0) = O(x). A well known result is the following theorem of
Takens (see [Tak74] and [Dum]): Consider an analytic unfolding of the nilpotent
singularity, i.e., a family Xλ with X0 having a nilpotent singularity at the origin
of R2. For any n large enough Xλ is analytically conjugate (respecting the
parameter λ) to

y∂x + (F (x, λ) + yG(x, λ) + y2Q(x, y, λ))∂y, (3)

where F , G and Q are analytic functions, F (x, 0) = O(x2), G(x, 0) = O(x) and
Q = O((||(x, y)||+ ||λ||)n).

Theorem 1 and Remark 2 imply

Theorem 3. There is an analytic λ-family of coordinate changes bringing (2),
up to multiplication by an analytic nowhere zero function, in the form

y∂x + (q1(x, λ) + yq2(x, λ))∂y (4)

where q1 and q2 are new analytic functions, q1(x, 0) = O(x2) and q2(x, 0) =
O(x).
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Thus, at the level of analytic equivalences, the normal form (4) of Liénard
type simplifies Takens normal form (3).

Remark 3. When Xλ has a nilpotent singularity at the origin for each λ ∼ 0,
then, for any fixed λ, there exists an analytic change of coordinates bringing Xλ

locally in Liénard form (see [SŻa02]). Clearly, [SŻa02] does not imply that the
λ-family of analytic changes of coordinates is valid in a λ-uniform neighborhood
of the origin in the phase space.

In planar slow-fast systems Xε,µ (λ = (ε, µ)) a curve of singularities, called
the critical curve, appears for ε = 0 where ε is a singular perturbation param-
eter. The critical curve typically consists of normally hyperbolic singularities
(the linearized vector field at a normally hyperbolic singularity has one zero
eigenvalue with corresponding eigenvector tangent to the critical curve) and
one contact point (often called turning point). The linearized vector field at the
contact point has two zero eigenvalues and we suppose it is of nilpotent type for
µ = 0. It is shown in [DMDR11] that any analytic family of planar slow-fast
vector fields Xε,µ, locally near the nilpotent contact point for (ε, µ) ∼ (0, 0), is
analytically equivalent (preserving (ε, µ)) to the following normal form:

(y − f(x, µ))∂x + ε
(
g(x, ε, µ) +

(
y − f(x, µ)

)
h(x, y, ε, µ)

)
∂y, (5)

for analytic functions f , g and h and f(0, 0) = ∂xf(0, 0) = 0. If the ∂y-
component of (5) does not depend on y, we deal with generalized slow-fast
Liénard vector fields. A motivation to study the slow-fast Liénard vector fields
can be found in [Dum06] and [Rou07].

Our goal is to find a normal form of Liénard type for (5) in a neighborhood
of the origin in the (x, y)-plane that does not shrink to the origin when ε → 0
and µ → 0. We call the order of vanishing of f(x, 0) at x = 0, which is ≥ 2,
order of the contact point and the order of vanishing of g(x, 0, 0) at x = 0,
which is ≥ 0, the singularity order at the contact point (see [DMDR11]). If a
nilpotent contact point of (5) is of order two (or of Morse-type), the analytic
vector field (5) can locally near the origin be written as a slow-fast Liénard
vector field up to an ε-exponentially small remainder (see [DM14], Theorem
2). Furthermore, if the singularity order at the contact point is zero (i.e. the
contact point is a slow-fast jump point), then the exponentially small remainder
can be eliminated (see [DM14], Theorem 3). In [DMD16], the results obtained
in [DM14] have been generalized to nilpotent contact points of an arbitrary
order n, to so-called non-generic nilpotent contact points. More precisely, it is
possible to bring (5), locally near the non-generic contact point, in Liénard form
up to exponentially small error. For non-generic jump points (g(0, 0, 0) 6= 0),
a normal form of Liénard type has been obtained. The results in [DM14] and
[DMD16] have been proven by using Gevrey asymptotics. Without computation,
we eliminate the exponentially small remainder in the normal forms obtained
in [DM14] and [DMD16]. Moreover, we improve smoothness of local coordinate
changes and regular changes of time needed in [DM14] and [DMD16] to bring
(5) in the Liénard form in the jump case.

Theorem 4. There exists a local analytic (ε, µ)-family of coordinate changes
bringing (5), up to multiplication by an analytic nowhere zero function, in the
Liénard form

(y − f̃(x, ε, µ))∂x + εg̃(x, ε, µ)∂y
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for some analytic functions f̃ and g̃ such that the order of f̃(x, 0, 0) at x = 0
(resp. of g̃(x, 0, 0) at x = 0) is equal to the order of f(x, 0) at x = 0 (resp. of
g(x, 0, 0) at x = 0).

Theorem 4 will be proved in Section 4.

2 Proof of Theorem 1

Let Xλ = f(x, y, λ)∂x + g(x, y, λ)∂y be an analytic λ-family of vector fileds
where (x, y, λ) ∼ (0, 0, 0) ∈ C2+p and f(0, y, 0) vanishes at the order 1 at 0.
Since ∂f

∂y (0, 0, 0) 6= 0, the Implicit Function Theorem implies existence of an

analytic function y = φ(Y, λ), φ(Y, 0) vanishing at the order 1 at 0, such that
f(0, φ(Y, λ), λ) = Y . Therefore, after a change of the y-coordinate of the form
y = φ(Y, λ), we may assume that f(0, y, λ) = y in Xλ.

Following [Lor06], we define the line l = {0} × C × {0} in C × C × Cp
and the covering l0 = {0} × {|y| < r} × {0} and l∞ = {0} × {|y| > r

2} ×
{0} where r > 0. The family Xλ is well-defined on a neighborhood of the
closure of l0 by taking r small enough. Rectification Theorem (or Cauchy-
Kovalevskaya Theorem) implies existence of a unique diffeomorphism defined
on a neighborhood of l0 ∩ l∞ in C× C× Cp and of the form

(x̄, ȳ, λ) = Ψ(x, y, λ) = (ψ1(x, y, λ), ψ2(x, y, λ), λ), Ψ(0, y, λ) = (0, y, λ)

conjugating Xλ + 0∂λ to the vector field X∞ = ȳ∂x̄ + 0∂ȳ + 0∂λ. Indeed,
f(0, y, λ) 6= 0 for y 6= 0.

The following theorem (see [FG02], Chapter IV) enables us to glue the Carte-
sian product C × C × Cp near l0 (denoted by M1) and the Cartesian product
C× C× Cp near l∞ (denoted by M2) along l0 ∩ l∞ by means of Ψ and obtain
a global complex manifold C of dimension 2 + p along l.

Theorem 5. Let C be a set that is the union of a countable collection (Cρ)ρ∈N
of subsets such that:

1. For every ρ ∈ N, there exists a bijection fρ : Cρ → Mρ, for an n-
dimensional complex manifold Mρ;

2. For every (ρ1, ρ2) ∈ N× N the subset fρ1(Cρ1 ∩ Cρ2) is open in Mρ1 , and
the map

fρ1 ◦ f−1
ρ2 : fρ2(Cρ1 ∩ Cρ2)→ fρ1(Cρ1 ∩ Cρ2)

is biholomorphic;

3. For all a ∈ Cρ1 and b ∈ Cρ2 , a 6= b, there are open neighborhoods fρ1(a) ∈
U ⊂Mρ1 and fρ2(b) ∈ V ⊂Mρ2 with f−1

ρ1 (U) ∩ f−1
ρ2 (V ) = ∅.

Then there exists a unique complex structure on C such that the subsets Cρ are
open in C and the maps fρ : Cρ →Mρ are biholomorphic. (One says that C is
obtained by gluing the complex manifolds Mρ.)

Indeed, we define a set C := C1 ∪ C2 with

C1 = {
(
x, (1 : y), λ

)∣∣ x ∼ 0, |y| < r, λ ∼ 0}
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and

C2 = {
(
x, (1 : y), λ

)∣∣ x ∼ 0, |y| > r

2
, λ ∼ 0} ∪ {

(
x, (0 : 1), λ

)∣∣ x ∼ 0, λ ∼ 0},

where (1 : y), y ∈ C, and (0 : 1) = ∞ are elements of the set C. The bijection
f1 : C1 →M1 is given by the identity function on C1. On C1 ∩C2, the bijection
f2 : C2 →M2 is given by

f2

(
x, (1 : y), λ

)
=
(
ψ1(x, y, λ), (1 : ψ2(x, y, λ)), λ

)
.

Now, it can be easily seen that all three conditions in Theorem 5 are satis-
fied. Hence, there exists a complex structure on C with the properties given in
Theorem 5.

The tangent bundle T (C) of the complex manifold C is given by the transi-
tion function JΨ̃ with respect to the open covering {C1, C2} of C where

Ψ̃(x, y, λ) :=
(
ψ1(x, y, λ),

1

ψ2(x, y, λ)
, λ
)
.

Furthermore, the holomorphic vector field Xλ+0∂λ on M1 (resp. the meromor-
phic vector field X∞ on M2) induces a holomorphic section s1 in T (C) over C1

(resp. a meromorphic section s2 in T (C) over C2) such that

s1(x, (1 : y), λ) = (f(x, y, λ), g(x, y, λ), 0)

on C1 (resp.
s2(x, (1 : y), λ) = (ψ2(x, y, λ), 0, 0)

on C1 ∩ C2). On C1 ∩ C2, we have the following compatibility condition

s2(x, (1 : y), λ) = s1(x, (1 : y), λ)
(
JΨ̃(x, y, λ)

)t
.

Hence, the system (s1, s2) defines a (global) meromorphic section in T (C) over
C, i.e., a meromorphic vector field X on C.

Since f(0, y, λ) = y and Ψ(0, y, λ) = (0, y, λ), the transition function JΨ̃ for
the tangent bundle T (C) has the following form, along l0 ∩ l∞:

JΨ̃(0, y, 0) =

 1 0 0

∗ − 1
y2 0

0 0 Ip


where Ip is a p × p identity matrix. Therefore, the transition function for the

normal bundle of the embedded sphere l in C is given by ∂(ψ1,λ)
∂(x,λ) (0, y, 0) = Ip+1

where Ip+1 is a (p+ 1)× (p+ 1) identity matrix (see also [FG02], Chapter IV),
i.e., the normal bundle has to be trivial. As explained in Introduction, there
exist global coordinates (x, y, λ) sending C in a neighborhood of the embedded
sphere l onto the Cartesian product C× C× Cp near {0} × C× {0}, sending l
onto {x = 0, λ = 0} and preserving λ.

Remark 4. Let’s explain why the global coordinates preserve λ. We focus
on the proof of the Rigidity Theorem of Frölicher-Nijenhuis given in [Kod86].
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More precisely, the Rigidity Theorem of Frölicher-Nijenhuis follows from The-
orem 4.6. in [Kod86] if H1(C0,Θ0) = 0: “Theorem 4.6. If dimH1(Ct,Θt) is
independent of t ∈ B ⊂ Cm, and ρt = 0 identically, then the complex analytic
family (C,B, ω) is locally trivial”. ρt is the “derivative” of the complex structure
Ct with respect to t (we refer to [Kod86] for a precise definition of ρt). In our
case, C is the complex manifold od dimension (2+p) defined in this section, B is
a domain in Cp+1, 0 ∈ B, and t = (t1, . . . , tp+1) = ω(P ), P ∈ C, is a holomor-
phic map of C onto B such that Ct = ω−1(t) is a compact complex submanifold
of C and the rank of the Jacobian of ω, in terms of local complex coordinates
(z1(P ), . . . , zp+2(P )) of C, is equal to p + 1 at every point of C. Thus after
an appropriate renumbering of zi’s, we can choose the following system of local
complex coordinates of C:

(z1(P ), t1, . . . , tp+1), ω(P ) = (t1, . . . , tp+1).

See [Kod86]. In terms of these coordinates, ω is the projection

ω(z1, t1, . . . , tp+1) = (t1, . . . , tp+1),

and (t1, . . . , tp+1) as part of local coordinates on the complex manifold C do
not change under coordinate transformations. In the proof of Theorem 4.6., a
biholomorphic map Φ : C̄×∆→ ω−1(∆) is defined by virtue of the solution of
ordinary differential equations, where ∆ is a small polydisk with 0 ∈ ∆ ⊂ B and
where Φ maps C̄× t onto Ct = ω−1(t). Thus the global coordinates Φ preserve
t = (t1, . . . , tp+1). Now it suffices to prove that we can take (t2, . . . , tp+1) = λ.
Indeed, since λ is invariant under Ψ, the local coordinates of C given by the
maps f1 and f2, defined in this section, preserve λ. It is clear now that we can
take ω(x, y, λ) = (∗, λ). Note that the rank of ω is equal to p + 1 because the
normal bundle is trivial.

In other words, the complex manifold C is biholomorphically equivalent to
a trivial C-bundle over a polydisk with center 0 ∈ Cp+1. It implies that the
coefficients of the meromorphic vector field X = P1(x, y, λ)∂x + P2(x, y, λ)∂y +
0∂λ have to be rational in y (see [FG02]). Without loss of generality we may
assume that the unique and simple pole of X (given by the meromorphic vector
field X∞) is given by {y = ∞} (we can use the coordinate change Y = ay+b

cy+d

where a, b, c, d ∈ C{x, λ} and ad − bc 6≡ 0). Then we claim P1 (resp. P2) is a
polynomial in y of maximal degree 1 (resp. 3). Indeed, the change of coordinates
Y = 1

y changes X to

P1(x,
1

Y
, λ)∂x − Y 2P2(x,

1

Y
, λ)∂Y + 0∂λ.

Hence, near the simple pole {y = ∞} = {Y = 0} of X, we have the following
convergent Laurent expansions of P1 and P2:

P1(x,
1

Y
, λ) = a−1

1

Y
+ a0 + · · · ,

P2(x,
1

Y
, λ) = b−3

1

Y 3
+ b−2

1

Y 2
+ b−1

1

Y
+ b0 + · · ·

where ai, bj ∈ C{x, λ}. Since functions P1(x, y, λ) − a−1y and P2(x, y, λ) −
b−3y

3 − b−2y
2 − b−1y have no poles, they are holomorphic on (compact and
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connected) C, for each fixed x ∼ 0 and λ ∼ 0, that is, they are constants in y
(see [FG02]). Thus we have obtained

X = (a0 + a1y)∂x + (b0 + b1y + b2y
2 + b3y

3)∂y + 0∂λ.

for new ai, bj ∈ C{x, λ}.
A translation of the global coordinates allows us to assume that the co-

ordinate change from the original coordinates near the origin in C2+p to the
global coordinates sends the origin in C2+p to the origin in C×C×Cp. Hence,
the vector field X has a singularity at the origin (x, y, λ) = (0, 0, 0) (note that
f(0, 0, 0) = g(0, 0, 0) = 0). It is clear that the coordinate change preserves the
y-axis near the singularity. From this together with ∂f

∂y (0, 0, 0) 6= 0 we conclude

that a1(0, 0) 6= 0 and, after the coordinate change Y = y + a0
a1

, we may assume
that a0 ≡ 0 in the expression for X.

Using the coordinate change y = aY
Y+1 (with a to be determined), and a time

rescaling (multiplication by (Y + 1)), we arrive at the following vector field

ã1Y ∂x + (̃b0 + b̃1Y + b̃2Y
2 + b̃3Y

3)∂Y + 0∂λ (6)

where ã1, b̃j ∈ C{x, λ}, and where

b̃3 = a2b3 + ab2 + b1 +
b0
a
− a1

∂

∂x
a.

Now, Cauchy-Kovalevskaya Theorem implies existence of a function a ∈ C{x, λ}
such that a(0, 0) 6= 0 and b̃3 ≡ 0. Indeed, we have a1(0, 0) 6= 0. To remove
the quadratic term in the ∂Y -component of (6), we use the coordinate change

Ỹ = exp(−
∫ x

0
b̃2(s,λ)
ã1(s,λ)ds)Y . Hence, the vector field (6) changes into

ã1Ỹ ∂x + (̃b0 + b̃1Ỹ )∂Ỹ + 0∂λ

for new ã1, b̃j ∈ C{x, λ} and ã1(0, 0) 6= 0. After a change of the x-coordinate, we
may also assume that ã1 ≡ 1. Indeed, we use the coordinate change x = φ(x̃, λ)
where ∂

∂x̃φ(x̃, λ) = ã1(φ(x̃, λ), λ) and φ(0, λ) = 0. This proves the result in
complex setting (see Remark 2).

When Xλ = f(x, y, λ)∂x + g(x, y, λ)∂y is a real analytic family of planar

vector fields, then f(x, y, λ) = f(x, y, λ) and g(x, y, λ) = g(x, y, λ). The same is

true for the vector field X∞ = y∂x. Hence Ψ(x, y, λ) = Ψ(x, y, λ), i.e., the gluing
map Ψ commutes with the antiholomorphic involution (x, y, λ)→ (x, y, λ), due
to uniqueness of Ψ. Then Ψ induces an antiholomorphic involution η : C → C
on the complex manifold C such that X = η∗X. Indeed, we define η(p) =
c−1
i (ci(p)), i = 1, 2, where ci are local coordinates of p ∈ C. It is clear from

the property of Ψ that η is an antiholomorphic involution, independent of the
choice of local coordinates, satisfying X = η∗X.

Since the coordinate λ is invariant under Ψ, we have

η(x, y, λ) = (η1(x, y, λ), η2(x, y, λ), λ).

By Blanchard’s argument (see [Lor06]), the antiholomorphic involution η sends
a fiber to a fiber. Thus the first component η1 of η has the form η1(x, λ).
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For each fixed λ, the antiholomorphic function η1(x, λ) is a symmetry with
respect to a real analytic curve, and, after a holomorphic change of the x-
coordinate, η1(x, λ) = x. On the other hand, for each fixed (x, λ), η2(x, y, λ)
is a reflection with respect to a Möbius circle, and, after a holomorphic change
of the y-coordinate, we have η2(x, y, λ) = y. Hence η(x, y, λ) = (x, y, λ). Since
X = η∗X, the meromorphic vector field X has real coefficients. See also [Lor06],
proof of Theorem 4.

3 Proof of Theorem 2

Let Xλ = f(x, y, λ)∂x + g(x, y, λ)∂y be an analytic λ-family of vector fileds at
(x, y, λ) = (0, 0, 0) ∈ C2+p, vanishing at (0, 0, 0), with f(0, y, 0) vanishing at the
order 1 at 0. After a change of the y-coordinate of the form y = φ(x, Y, λ),
we may take f(x, y, λ) ≡ y. Indeed, the Implicit Function Theorem implies
existence of a unique analytic function y = φ(x, Y, λ) such that φ(0, 0, 0) = 0,
∂φ
∂Y (0, 0, 0) 6= 0 and f(x, φ(x, Y, λ), λ) = Y (note that ∂f

∂y (0, 0, 0) 6= 0).

As in the proof of Theorem 1, we define the line l and the covering {l0, l∞} of
l such that Xλ is well-defined on a neighborhood of the closure of l0. As a simple
consequence of the Flow-Box Theorem (or Cauchy-Kovalevskaya Theorem), we
can find a unique diffeomorphism defined on a neighborhood of l0 ∩ l∞, of the
form

Ψ(x, y, λ) = (x, ψ2(x, y, λ), λ), Ψ(0, y, λ) = (0, y, λ)

conjugating the vector field

1

y
Xλ + 0∂λ = 1∂x +

g(x, y, λ)

y
∂y + 0∂λ

to the vector field X∞ = 1∂x + 0∂y + 0∂λ. Now we glue C×C×Cp near l0 and
C× C× Cp near l∞ along l0 ∩ l∞ by means of Ψ and obtain a global complex
manifold C of dimension 2+p along l equipped with a meromorphic vector field
X. Indeed, the argument used in the proof of Theorem 1 goes over essentially
unchanged.

Since the coordinates (x, λ) are invariant under Ψ, it follows that (x, λ) define
a rational fibration (x, λ) : C → P p+1 where P p+1 is a polydisk with center
0 ∈ Cp+1. Now Grauert-Fischer Theorem implies existence of a submersion
y : C → l ' C that completes (x, λ) into a system of trivializing coordinates
(x, λ, y) : C → P p+1 × C. See also [Lor06].

Hence, as in the proof of Theorem 1, the coefficients of the meromorphic
vector field X = P1(x, y, λ)∂x + P2(x, y, λ)∂y + 0∂λ have to be rational in the
y-variable. Moreover, we may assume that a (possible) simple pole of X (given
by 1

yXλ + 0∂λ) is given by {y = 0} and that the coordinate change sends the

origin in C2+p, near which the vector field 1
yXλ+0∂λ is defined, to the origin in

C×C×Cp. Indeed, we use a change of the y-coordinate of the form Y = ay+b
cy+d

where a, b, c, d ∈ C{x, λ} and ad− bc 6≡ 0. To find the form of rational functions
P1 and P2 in the expression for X, we use the same trick as in the proof of
Theorem 1. We subtract the principal part of a convergent Laurent expansion
of P1 near the simple pole {y = 0}. What is left is a holomorphic function on
C, for each (x, λ). That has to be constant in the y-variable. Besides a simple
pole at {y = 0}, P2 may have a pole at {y = ∞} of maximal order 2. After
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subtracting the principal part of Laurent expansions of P2 near {y = 0} and
{y =∞}, we are left with constant in y. Thus the vector field X can be written
as

X =
Q1(x, y, λ)

y
∂x +

Q2(x, y, λ)

y
∂y + 0∂λ

where Q1 (resp. Q2) is a polynomial in the y-variable of maximal degree 1 (resp.
3), Q1(0, 0, 0) = Q2(0, 0, 0) = 0. Now, if we multiply the vector field X by y,
we arrive at a polynomial vector field that can be brought in the Liénard form
(1) (see the proof of Theorem 1).

Now suppose that Xλ is a real analytic family of vector fields. Since the
vector field X∞ = 1∂x + 0∂y + 0∂λ is also real, the gluing map Ψ, commuting
with (x, y, λ) 7→ (x, y, λ), induces an antiholomorphic involution η : C → C on
the complex manifold C such that X = η∗X. Note that the coordinates (x, λ)
are invariant under Ψ. We therefore have η(x, y, λ) = (x, η1(x, y, λ), λ) with an
antiholomorphic function η1. For each fixed (x, λ), η1 is a reflection with respect
to a Möbius circle, and we may assume that η1(x, y, λ) = y after a holomorphic
change of the y-coordinate. Thus we have η(x, y, λ) = (x, y, λ), and, as a simple
consequence of X = η∗X, coefficients of the vector field X have to be real. See
also [Lor06], proof of Theorem 1.

4 Proof of Theorem 4

Denote the slow-fast vector field (5) by Xε,µ. Following Theorem 1, there
exists an analytic (ε, µ)-family of coordinate changes (x̃, ỹ) = ψε,µ(x, y) =
(ψε,µ1 (x, y), ψε,µ2 (x, y)) with ψ0,0(0, 0) = (0, 0), and a positive analytic function
ρ(x̃, ỹ, ε, µ) such that

ρ(x̃, ỹ, ε, µ).Jψε,µ
(
(ψε,µ)−1(x̃, ỹ)

)
Xε,µ

(
(ψε,µ)−1(x̃, ỹ)

)
=

(
ỹ − f̃(x̃, ε, µ)

G̃(x̃, ε, µ)

)
(7)

for some analytic functions f̃ and G̃ such that f̃(0, 0, 0) = G̃(0, 0, 0) = 0. Since
X0,µ has the curve of singularities {y = f(x, µ)}, it follows from (7) that

ψ0,µ
2 (x, f(x, µ)) = f̃(ψ0,µ

1 (x, f(x, µ)), 0, µ) (8)

and
G̃(ψ0,µ

1 (x, f(x, µ)), 0, µ) = 0. (9)

Since f(x, 0) = O(x2), the equation (8) implies

∂ψ0,0
2

∂x
(0, 0) =

∂f̃

∂x
(0, 0, 0)

∂ψ0,0
1

∂x
(0, 0). (10)

We obtain from (10) immediately
∂ψ0,0

1

∂x (0, 0) 6= 0. Combining this with (9) we
have

G̃(x, ε, µ) = εg̃(x, ε, µ)

with an analytic function g̃.
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First we prove that f(x, 0) and f̃(x, 0, 0) have the same order at x = 0. The
expression (7) implies

ψ0,0
2 (x, 0)− f̃(ψ0,0

1 (x, 0), 0, 0) = −ρ(ψ0,0(x, 0), 0, 0)
∂ψ0,0

1

∂x
(x, 0)f(x, 0). (11)

Since ψ0,0 preserves the line {y = 0}, we obtain ψ0,0
2 (x, 0) ≡ 0. Combining this

with (11), ψ0,0
1 (0, 0) = 0,

∂ψ0,0
1

∂x (0, 0) 6= 0 and ρ > 0, we get the same order of

vanishing at x = 0. Thus f̃(x, 0, 0) = O(x2).
Next we show that the order of vanishing of g(x, 0, 0) at x = 0 is equal to

the order of vanishing of g̃(x, 0, 0) at x = 0. Clearly, as a simple consequence of
(7),

g̃(ψ0,0
1 (x, f(x, 0)), 0, 0) = ρ(ψ0,0(x, f(x, 0)), 0, 0)

∂ψ0,0
2

∂y
(x, f(x, 0))g(x, 0, 0).

(12)

Since the order of f̃(x, 0, 0) at x = 0 is at least 2, we have
∂ψ0,0

2

∂x (0, 0) = 0 (see

(10)). Hence,
∂ψ0,0

2

∂y (0, 0) 6= 0.

On the other side, if we write ρ1(x) = ψ0,0
1 (x, f(x, 0)), we obtain ρ1(0) = 0

and ρ′1(0) 6= 0. Here we used ψ0,0
1 (0, 0) = 0,

∂ψ0,0
1

∂x (0, 0) 6= 0 and f(x, 0) = O(x2).
Now the result easily follows.
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