
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Retrieving batch organisation of work insights from event logs

Peer-reviewed author version

MARTIN, Niels; SWENNEN, Marijke; DEPAIRE, Benoit; JANS, Mieke; CARIS, An &

VANHOOF, Koen (2017) Retrieving batch organisation of work insights from event

logs. In: DECISION SUPPORT SYSTEMS, 100, p. 119-128.

DOI: 10.1016/j.dss.2017.02.012

Handle: http://hdl.handle.net/1942/24049



Retrieving batch organisation of work insights from event
logs
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Abstract

Resources can organise their work in batches, i.e. perform activities on mul-

tiple cases simultaneously, concurrently or intentionally defer activity exe-

cution to handle multiple cases (quasi-) sequentially. As batching behaviour

influences process performance, efforts to gain insight on this matter are

valuable. In this respect, this paper uses event logs, data files containing pro-

cess execution information, as an information source. More specifically, this

work (i) identifies and formalises three batch processing types, (ii) presents

a resource-activity centered approach to identify batching behaviour in an

event log and (iii) introduces batch processing metrics to acquire knowledge

on batch characteristics and its influence on process execution. These con-

tributions are integrated in the Batch Organisation of Work Identification

algorithm (BOWI), which is evaluated on both artificial and real-life data.
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1. Introduction

Business processes are composed of a series of connected activities exe-

cuted by resources. Resources, such as process participants or equipment [1],

are assigned to activities and typically carry these out on multiple cases such

as files or products. Assuming that arriving cases are handled immediately5

when the resource becomes available is an undue simplification of reality.

Employees might deem it more efficient to accumulate files and treat the

entire stack later or machines can process multiple products at the same

time. This type of resource behaviour is referred to as batch processing.

While the occurrence of batch processing might be readily observable10

for passive resources such as machines, it is typically less straightforward to

determine how human resources, or active resources [1], organise their work.

The latter is especially the case for processes in which staff members have

a lot of freedom to arrange their tasks as they desire. Direct observation

of staff members‘ behaviour has limitations as it is both time-consuming15

and the Hawthorne effect can cause observed behaviour to deviate from real

behaviour when humans know they are being observed [2]. Consequently, in-

vestigating the use of more readily available information sources is valuable.

In this respect, event logs containing process execution information can be

analysed, which belongs to the process mining domain. While batch pro-20

cessing is studied widely in the operations management, operations research

literature and, to a lesser extent, the process modelling domain, limited

attention is attributed to this topic in process mining.

This paper is the first paper to systematically analyse batching behaviour

using an event log. More specifically, the key contributions of this paper are25

threefold. Firstly, three types of batch processing are distinguished and

2



formalised. Secondly, a resource-activity centered approach is presented to

identify these batch processing types from an event log. Finally, batch pro-

cessing metrics are defined to describe the identified batches and the impli-

cations of batching on process execution. These contributions are included30

in the Batch Organisation of Work Identification algorithm (BOWI). Even

though the contributions of this paper are of general interest, they are espe-

cially useful for business processes in which human resources have significant

freedom in their work organisation. As extensive observations would, for in-

stance, be required in such contexts, using the proposed technique allows35

companies to gain insight in batching behaviour from event data.

The current paper is situated at the intersection between Business Pro-

cess Management and process mining, which corresponds to one of the focal

points of this special issue. More specifically, the generated insights in batch-

ing behaviour will support process modelling activities and decision-making40

within the BPM life cycle [1]. Process modelling is facilitated as event log

analysis can provide suitable values for parameters such as the batch size.

Integrating batching behaviour will lead to more realistic process models

which can, for instance, be used for simulation purposes. Simulation mod-

els serve as a decision support tool as it enables organisations to evaluate45

policy alternatives prior to implementation [3]. Besides shouldering process

modelling, BOWI also provides direct support for decision-making. The al-

gorithm allows companies to judge the desirability of batching behaviour by

showing its influence on process performance. Consequently, a company can

determine whether batching behaviour should be encouraged or discouraged.50

Besides positioning it in the BPM life cycle, this work can also be framed

within the BPM use case extend model as it leverages resource information

in the event log, which is useful to extend a process model [4].
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The paper is structured as follows. Section 2 presents a running example

and defines the three types of batch processing. The BOWI-algorithm is55

outlined in Section 3, after which it is evaluated on both artificial and real-

life data in Section 4. Finally, related work, the algorithm’s limitations and

conclusions are presented in Sections 5, 6 and 7, respectively.

2. Preliminaries

This section presents some preliminary topics that will be used in the60

remainder of this paper. A running example is introduced in Section 2.1

and three batch processing types are distinguished in Section 2.2.

2.1. Running example

Throughout this paper, a simplified process at the emergency depart-

ment of a hospital will serve as a running example. The process model,65

annotated with all assumed parameters, is visualised in Figure 1. After a

patient registers at the reception (R), an initial triage and assessment by a

doctor follows (T). Next, a patient either (i) undergoes an X-ray examina-

tion (X) or (ii) has laboratory tests performed on his blood samples (L) and

is subjected to an MRI scan (M). When the required tests are completed,70

the patient discusses the further treatment with a medical specialist (S) af-

ter which the patient checks out (C). All time units are expressed in minutes

and patient interarrival times and activity durations are assumed to follow

an exponential and triangular distribution, respectively.

2.2. Batch processing type definition75

Batch processing is defined as a type of work organisation in which a

resource executes a particular activity on multiple cases simultaneously or
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Figure 1: Process model running example

concurrently, or intentionally defers activity execution to handle multiple

cases (quasi-) sequentially. As in [5], three batch types are distinguished:

simultaneous, concurrent and sequential batch processing. To exemplify the80

difference between these types, Figure 2 shows the activities executed for six

patients, where an activity is always executed by the same resource across

all cases.

• Sequential batch processing. Activity instances are in a sequential

batch when a resource intentionally defers the execution of this activity85

such that multiple cases can be handled (almost) immediately after

each other. Consequently, all cases included in a batch need to be

present at the activity before the resource starts processing the batch’s

first case. The latter distinguishes sequential batch processing from

mere queue handling, stressing its intentional nature. In Figure 2, the90

initial assessment by a doctor takes place in sequential batches. Given

the doctor’s busy schedule, he occupies himself with other tasks until

several patients need to undergo an initial assessment, after which they

are handled sequentially.

• Simultaneous batch processing. Activity instances are in a si-95

multaneous batch when they are executed by the same resource for

distinct cases at exactly the same time. For example: blood samples
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from several patients can be analysed in the same run, as shown in

Figure 2.

• Concurrent batch processing. Activity instances are in a concur-100

rent batch when they are executed by the same resource for distinct

cases partially overlapping in time. This indicates that the resource

can handle multiple cases at the same time, but is flexible as it is not

required that processing starts and ends at the same time for all cases.

In Figure 2, registrations and check-outs illustrate different types of105

concurrent batch processing, because, e.g., the receptionist already

starts registering the next patient while the current patient is filling

out a drug allergy form which is required to finish his registration.

The above batch processing types are largely consistent with [6], where

simultaneous and sequential batch processing correspond to the concepts110

of parallel and serial process batches, respectively. Concurrent batch pro-

cessing is not included in [6]. In operations management literature, batch

processing is commonly referred to as the intermittent production of a par-

ticular type of product [7, 8], where production volumes are situated between

a job shop setting with small volumes and mass production [7].115

3. Batch Organisation of Work Identification Algorithm

This section proposes the Batch Organisation of Work Identification Al-

gorithm (BOWI), which generates insights in batching behaviour from an

event log. A general overview is presented in Section 3.1. Afterwards, Sec-

tion 3.2-3.6 present the algorithm in more detail. In Section 3.7, the imple-120

mentation of the algorithm is briefly discussed.
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Figure 2: Conceptual representation of six cases executed in the running example process

3.1. General overview

As shown in Figure 3, BOWI’s input is an event log. This event log,

consisting of atomic events, is converted to an activity log by mapping start

events to their corresponding complete events. This activity log is restruc-125

tured in a resource-activity matrix (RAM), where each cell contains activity

instances of a particular resource-activity combination. Using the RAM as

an input, a batching matrix (BM) is created for each batch processing type.

A BM mimics the structure of the RAM , but groups activity instances that

are executed in the type of batch under consideration. This information is130

used to calculate batch processing metrics such as the batch size.

3.2. Event log requirements

BOWI requires an event log, composed of ordered events related to a par-

ticular case and activity, as input. For each event, the timestamp, executing

resource and transaction type needs to be recorded. Two transaction types135

have to be registered for BOWI: start and complete. Moreover, each start

event should have an accompanying complete event with the same resource

being associated to both events.
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Figure 3: Overview of BOWI

While Table 1 illustrates the event log structure, its key characteristics

can be formalised as follows:140

Definition 1 (Event log characteristics). Let E be the set of all events

included in event log E. Moreover, let ∀e ∈ E :

• #case(e) represents the case associated to event e

• #activity(e) represents the activity associated to event e

• #resource(e) represents the resource associated to event e145

• #time(e) represents the timestamp associated to event e

• #trans(e) represents the transaction type associated to event e

Then, in this paper, ∀e ∈ E : #case(e) 6=⊥ ∧#activity(e) 6=⊥

∧#resource(e) 6=⊥ ∧#time(e) 6=⊥ ∧#trans(e) ∈ {start, complete}, where

⊥ represents a null value. Moreover, every start event should have an ac-150

companying complete event, i.e. ∀e1 ∈ E , ∃e2 ∈ E : #case(e1) = #case(e2) ∧

#activity(e1) = #activity(e2) ∧ #resource(e1) = #resource(e2) ∧ #time(e1) ≤

#time(e2) ∧ #trans(e1) = start ∧ #trans(e2) = complete. When |e2| > 1,
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Table 1: Illustration of event log structure

case id timestamp activity transaction type resource

... ... ... ... ...

patient 22 03/01/2016 11:14:41 x-ray start nurse 2

patient 22 03/01/2016 11:22:37 x-ray complete nurse 2

patient 25 03/01/2016 11:22:37 x-ray start nurse 2

patient 34 03/01/2016 11:22:54 blood test start lab assistant 1

patient 42 03/01/2016 11:25:17 registration start receptionist 1

patient 34 03/01/2016 11:28:02 blood test complete lab assistant 1

patient 42 03/01/2016 11:31:58 registration complete receptionist 1

patient 25 03/01/2016 11:32:18 x-ray complete nurse 2

... ... ... ... ...

i.e. when more than one event satisfies the conditions outlined for e2, it is

required that |e1| = |e2|.155

3.3. Activity log creation

To retrieve batch processing insights, the atomic events in the event log

are converted to activity instances, i.e. the execution of a particular activity

by a particular resource on a particular case. To this end, each start event

is mapped on its corresponding complete event, i.e. the complete event160

that is associated to the same case, activity and resource in the event log.

When multiple start and complete events are present for a particular case,

activity and resource combination, the first occurring unmapped start event

will iteratively be mapped to the first occurring unmapped complete event.

The activity log obtained from the event log in Table 1 is shown in Table 2.165

Definition 2 (Activity log). Let L be an activity log based on event log

E. Then A is composed of a set of activity instances A . Each activ-

ity instance depicts the execution of an activity a by resource r on case

c, started at time τstart and completed at time τcomplete. An activity instance
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Table 2: Illustration of an activity log

case id activity resource τstart τcomplete

... ... ... ... ...

patient 22 x-ray nurse 2 03/01/2016 11:14:41 03/01/2016 11:22:37

patient 25 x-ray nurse 2 03/01/2016 11:22:37 03/01/2016 11:32:18

patient 34 blood test lab assistant 1 03/01/2016 11:22:54 03/01/2016 11:28:02

patient 42 registration receptionist 1 03/01/2016 11:25:17 03/01/2016 11:31:58

... ... ... ... ...

is represented by η = (c, a, r, τstart, τcomplete), where #k(η) represents the170

value of attribute k for activity instance η as suggested for events in Def-

inition 1. All activity instances i ∈ L are sorted according to τstart, i.e.

∀ηi, ηi+1 ∈ L : #τstart(ηi) ≤ #τstart(ηi+1).

3.4. Resource-activity matrix

As the batch organisation of work reflects how resources execute an ac-175

tivity, batching behaviour will be identified at the resource-activity level. To

this end, the activity log is restructured in a RAM , where each cell contains

activity instances associated to a particular resource-activity combination.

An excerpt of the nurse 2 - x-ray RAM cell is shown in Table 3.

Definition 3 (Resource-activity matrix). Let RAM represent the resource-180

activity matrix and let RAM(a, r) be the cell of RAM related to activity a and

resource r. Then RAM(a, r) = {η ∈ L |#activity(η) = a ∧#resource(η) = r}.

To prepare the RAM for analysis, immediate rework is removed, which

refers to the repeated execution of a particular activity by a resource on

the same case (almost) immediately after each other. Immediate rework is185

not consistent with the definition of batch processing as batching focuses

on activity execution on distinct cases. Consequently, for these instances

immediate rework is replaced by a single activity instance with τstart the
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Table 3: Illustration of RAM cell nurse 2 - x-ray

case id τstart τcomplete

... ... ...

patient 22 03/01/2016 11:14:41 03/01/2016 11:22:37

patient 25 03/01/2016 11:22:37 03/01/2016 11:32:18

patient 27 03/01/2016 11:52:03 03/01/2016 12:03:01

patient 28 03/01/2016 12:03:01 03/01/2016 12:11:51

... ... ...

start timestamp of the first immediate rework instance and τcomplete the

complete timestamp of the last immediate rework instance.190

3.5. Batching matrices

In general, a batch is a set of activity instances. To identify batches,

BOWI creates a batching matrix (BM) for each batch processing type.

The structure of these BMs mimics the RAM , i.e. each cell focuses on

one resource-activity combination. Taking a RAM cell as input, activity195

instances are grouped based on the conditions of the batch type under con-

sideration. These instance sets are recorded in the corresponding BM cell,

where instances in a singleton set could not be grouped based on the type

of batch under consideration.

Definition 4 (Batch). A batch b is a set of activity instances η ∈ L,200

for which ∀ηi, ηj ∈ b : #activity(ηi) = #activty(ηj) ∧ #resource(ηi) =

#resource(ηj), i.e. all instances in b originate from a particular cell

RAM(a, r) in the RAM .

The definitions of the three BMs can, consistent with Section 2.2, be

formalised as follows:205
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Definition 5 (Simultaneous batching matrix). Let BMsim represent the

simultaneous batching matrix and let BMsim(a, r) be the cell of BMsim re-

lated to activity a and resource r. Then BMsim(a, r) consists of a set of

batches B. When b represents a batch in B, then ∀ηi, ηj ∈ b : #τstart(ηi) =

#τstart(ηj) ∧ #τcomplete
(ηi) = #τcomplete

(ηj) (∀b ∈ B). Moreover, ∀bi, bj ∈210

B : bi ∪ bj /∈ B, i.e. any combination of batches in BMsim(a, r) does not

fulfill the aforementioned conditions.

Definition 6 (Concurrent batching matrix). Let BMconc represent the con-

current batching matrix and let BMconc(a, r) be the cell of BMconc related

to activity a and resource r. Then BMconc(a, r) consists of a set of batches215

B. When b represents a batch in B, then ∀ηi, ηi+1 ∈ b : #τstart(ηi) ≤

#τstart(ηi+1) < #τcomplete
(ηi) ∧ (#τstart(ηi) 6= #τstart(ηi+1) ∨ #τcomplete

(ηi) 6=

#τcomplete
(ηi+1)) (∀b ∈ B). Moreover, ∀bi, bj ∈ B : bi ∪ bj /∈ B, i.e. any

combination of batches in BMconc(a, r) does not fulfill the aforementioned

conditions.220

While the formalisation of the simultaneous and concurrent BM directly

follows from the definition of the respective batch type in Section 2.2, the

specification of the sequential BM is subject to more restrictions. Firstly,

the time between the complete timestamp of a case and the start timestamp

of the next should be lower than γ. This parameter can be set to a strictly225

positive value to accommodate, e.g., some set-up time required to open a

new file after the previous one is processed. However, γ should be small to

remain consistent with the idea of batch processing and no other resource

activity can be recorded while processing cases in a sequential batch.

Secondly, to integrate the distinction between sequential batch process-230

ing and regular queue handling, a function φ is introduced. This function
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returns the time at which a case arrives at the activity under consideration.

Case arrival is proxied by the completion time of the prior activity executed

on this case. Consequently, the preceding activity needs to be known. This

control-flow notion can be retrieved using domain knowledge or by applying235

a control-flow discovery algorithm on the event log. Given the large body

of research on the latter [9], the operationalisation of φ is not treated here.

Thirdly, none of the cases can be included in a simultaneous or concur-

rent batch for the activity under consideration. This way, it can be avoided

that sequences of these two batch types are treated as a sequential batch.240

Finally, if multiple cases arrive at the same time at the activity under

consideration, they can only form a sequential batch when the first case

in this batch is not processed (quasi-)immediately upon arrival. This can,

for example, be relevant when the activity preceding the activity under

consideration is executed in a simultaneous batch.245

Definition 7 (Sequential batching matrix). Let BMseq represent the se-

quential batching matrix and let BMseq(a, r) be the cell of BMseq related to

activity a and resource r. Then BMseq(a, r) consists of a set of batches B.

When b represents a batch in B, then ∀ηi, ηi+1 ∈ b, the following conditions

cumulatively hold:250

• (#τstart(ηi+1)−#τcomplete
(ηi)) ∈ [0, γ], with γ ≥ 0

• @ e ∈ E : #resource(e) = #resource(ηi) ∧ #τcomplete
(ηi) ≤ #time(e) ≤

#τstart(ηi+1)

• φ(ηi) ≤ #τstart(η1) ∧ φ(ηi+1) ≤ #τstart(η1), where η1 represents the

first processed case in b and φ(ηx) is a function returning the arrival255

of case #case(ηx) at activity a
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• ηi, ηi+1 /∈ {b′ | (b′ ∈ BMsim ∨ b′ ∈ BMconc) ∧ |b′| > 1}, with |b′|

expressing the number of activity instances included in batch b′

• when φ(ηi) = φ(ηi+1) = φ(η1), then #τstart(η1) > φ(ηi)+γ, with γ ≥ 0

(∀b ∈ B). Moreover, ∀bi, bj ∈ B : bi ∪ bj /∈ B, i.e. any combination of260

batches in BMseq(a, r) does not fulfill the conditions outlined above.

An appropriate value of γ can be determined using domain knowledge.

When such knowledge is unavailable, the event log can support its specifi-

cation by studying time differences between complete and start timestamps

of subsequent non-overlapping activity instances.265

To illustrate Definitions 5-7, they are applied to all activity instances

in RAM cell nurse 2 - x-ray, depicted in Table 3. Two sequential

batches are found, causing {c22, c25} and {c27, c28} to be added to the

BMseq,nurse2−X−ray cell. In the other BMs, these instances are added as

singletons.270

The three batching matrices contain all batch identification information.

It should be noted that batch identification is independent of the complexity

of the process control-flow as it is situated on the resource-activity level.

Control-flow complexity can render the imputation of arrival events more

difficult as this requires knowledge on the prior activity for a particular case.275

Arrival times are used in Definition 7 in an effort to distinguish sequential

batching from regular queue handling.

3.6. Batch organisation of work metrics

Using the information in the batching matrices as input, batch processing

metrics are defined, which describe batching behaviour and provide insight280

in its business value. Table 4 provides an overview of the metrics, which
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Table 4: Batch organisation of work metrics

Metric Description

Frequency of batch

processing

The absolute and relative number of times that a set of BMx(a, r)

contains two or more activity instances.

Batch size Summary statistics of the number of activity instances in each set of

BMx(a, r), both including and excluding sets of size one.

Number of cases in-

cluded in a batch

The absolute and relative number of cases that appear in each set of

BMx(a, r).

Duration of activity in-

stances in a batch

Summary statistics of the difference between the duration of the ac-

tivity instances in each set of size two or more in BMx(a, r) compared

to the duration for sets of size one.

Waiting time of activ-

ity instances in a batch

Summary statistics of the difference between the waiting time of the

activity instances in each set of BMx(a, r) compared to activity in-

stances not in this set.

Overlap in concurrent

batches

Summary statistics of the amount of time that the activities in a

concurrent batch are actually concurrent.

are briefly explained in the remainder of this subsection. All metrics are

defined on the resource-activity level. However, aggregations to other levels

of analysis such as the activity level, the resource level and the level of the

complete event log can be derived.285

3.6.1. Frequency of batch processing

The batch processing frequency expresses how often a particular type of

batching takes place in an absolute sense and relative to the number of sets

in the corresponding BM cell. In Figure 2, for instance, the laboratory test

(L) is performed by the lab assistant in two simultaneous batches, which290

accounts for 100 % of the sets in the associated BMsim cell.

3.6.2. Batch size

Besides knowing how frequent a particular batch type occurs, the batch

size is another valuable metric. As BMs also include singleton sets, in-

dicating that an instance is not part of a batch of this type, batch size295
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summary statistics (such as the mean, median, standard deviation, etc.)

can be calculated both including and excluding singleton sets. In Figure 2,

two simultaneous batches of laboratory tests (L) of size two are observed.

This generates, for instance, a mean batch size of two and an associated

standard deviation of zero.300

3.6.3. Number of cases included in a batch

This metric combines insights from the prior two metrics by determining

the number of cases that are included in a particular type of batch. For

instance, 100 % of the patients receiving a blood test have this test executed

in the laboratory (L) as part of a simultaneous batch in Figure 2.305

For concurrent batch processing, an additional calculation can be per-

formed. According to Definition 6, concurrent batching requires that sub-

sequent instances have an overlap in time. However, this does not imply

that all instances in a batch overlap. Consequently, summary statistics on

the number of cases that a resource actually handles concurrently can be310

determined. The registration (R) of patient 1 in Figure 2 is for example not

overlapping in time with the registration of patients 5 and 6, while they are

still in the same concurrent batch.

3.6.4. Duration of activity instances in a batch

The effect of batching on activity duration can be determined as re-315

sources may become more efficient when they have to perform a similar task

on multiple cases. To this end, the duration of instances included in a batch

are compared to the duration for instances that are not part of a batch. A

nurse might need, e.g., 20 minutes to perform an X-ray for three patients

sequentially, while she needs 10 minutes to conduct an X-ray separately as320

she needs to get accustomed to the settings of the machine.
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3.6.5. Waiting time of activity instances in a batch

The global efficiency gain of batch processing should be weighed against

the increase in waiting time for individual cases, which is the elapsed time

between case arrival and the start of activity execution. In Figure 2, patient325

1 has to wait until t10 before triage and assessment (T) starts, even though

the patient is registered at t6 and the doctor could have assessed him at

t6. As is the case for activity duration, waiting time summary statistics are

provided for batched cases and non-batched cases.

3.6.6. Overlap in concurrent batches330

For concurrent batching, the time overlap between batched cases can

also be calculated. This enables the organisation to determine whether an

employee starts working on the next case right before he finishes the previous

one, or immediately after its start. Summary statistics are provided for

the percentage overlap in time. In Figure 2, the mean overlap between335

concurrently batched cases for the check-out (C) activity equals 62.5%.

3.7. Implementation

BOWI is fully implemented using R1, a programming language for which

a large set of packages is available which can be used to create application-

specific functions. The key packages that are used are dplyr for data ma-340

nipulations such as sorting and data summarisations, lubridate to work with

timestamps and reshape for converting the event log to an activity log.

Algorithm 1 provides the pseudocode for BOWI’s batch identification

component. It directly follows from the formalisation introduced in this

section and shows that batches are identified from an activity log by parsing345

1https://www.r-project.org/
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it once and comparing each line in this log with the prior one. In this way,

the algorithm enriches the activity log with batch information by adding

two columns: (i) a batch number, grouping activity instances that belong

to the same batch and (ii) the batch type, indicating which of the three

batching types prevails. This is all information required to create BMs and350

calculate the metrics. Each metric is implemented as a separate function,

which makes the framework easily extendable with additional metrics.

4. Evaluation

A twofold approach is used to evaluate the algorithm: Section 4.1 focuses

on BOWI’s ability to correctly rediscover batches in artificial event logs and355

Section 4.2 discusses the application of the algorithm on real-life logs.

4.1. Artificial event logs

4.1.1. Experimental design

BOWI’s performance is evaluated by investigating its ability to redis-

cover known batches solely using an artificial event log. To this end, an ar-360

tificial log is generated based on a generalised version of the process model

in Figure 1. For each of the seven resource-activity combinations, it is

randomly determined whether no, simultaneous, sequential or concurrent

batching prevails with all options having the same probability. In the latter

three cases, an integer batch size is randomly drawn from the set {2,3,4,5}.365

Given these inputs, the event log generator autonomously determines which

cases are batched for each activity and generates a log considering 500 cases

that enter the process. The data file also indicates which cases are grouped

as a batch of a particular type. This information is only used for evaluation

purposes and is removed from the event log that is provided to BOWI.370
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Algorithm 1 Batch organisation of work identification
Input: eventLog: an event log (list of complex objects representing events), controlFlowNotion:

knowledge on the prior activity that is executed for a case to support (when required) arrival

event imputation, tolerances: time tolerances for sequential batch processing

Output: a: activity log with batching information (list of complex objects representing activity

instances)

1: eventLog ← addArrivalEvents(eventLog, controlFlowNotion)

.imputes (when required) arrival events using knowledge on the prior activity executed for

a case

2: a ← convertToActivityLog(eventLog)

.creates activity instances by mapping corresponding events

3: a ← sortActivityLog(a)

.sort rows in activity log based on variables in following order: activity, resource, start

timestamp and complete timestamp

4: a ← removeImmediateRework(a)

.removes immediate rework from activity log

5: batchNumber ← 1

.initialise value - instances in a batch will have the same batchNumber

6: a[1].batchNr ← batchNumber .initialise batchNumber value for first instance in activity log

7: firstCaseStart ← a[1].start

.initialise value representing the start timestamp of the first case of a potential batch

8: tol ← getTolerance(tolerances, a[1].activity, a[1].resource)

.determines sequential batch proc.time tolerance for particular resource-activity combination

9: n ← numberOfRows(a) .number of rows in activity log

10: for i = 2 to n do

11: currentActivity ← a[i].activity .activity of instance under analysis

12: priorActivity ← a[i− 1].activity .activity of prior instance in a

13: currentResource ← a[i].resource

14: priorResource ← a[i− 1].resource

15: currentArrival ← a[i].arrival

16: currentStart ← a[i].start

17: priorStart ← a[i− 1].start

18: currentComplete ← a[i].complete

19: priorComplete ← a[i− 1].complete

20: priorBatchType ← a[i− 1].batchType .batch type to which the prior case belongs

21: if currentActivity == priorActivity and

22: currentResource == priorResource then

23: if currentStart == priorStart and .simultaneous batch processing

24: currentComplete == priorComplete and
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25: priorBatchType is empty or simultaneous then

26: a[i].batchNumber ← batchNumber

27: a[i].batchType← simultaneous

28: if a[i− 1].batchType is empty then

29: a[i− 1].batchType← simultaneous

30: end if

31: else if currentStart ≥ priorStart and .concurrent batch processing

32: currentStart < priorComplete and

33: currentComplete 6= priorComplete and

34: priorBatchType is empty or concurrent then

35: a[i].batchNumber ← batchNumber

36: a[i].batchType← concurrent

37: if a[i− 1].batchType is empty then

38: a[i− 1].batchType← concurrent

39: end if

40: else if currentStart ≥ priorComplete and .sequential batch processing

41: currentStart ≤ priorComplete + tol and

42: currentArrival ≤ firstCaseStart and

43: !resourceActive(a, currentResource, priorComplete, currentStart) and

44: priorBatchType is empty or sequential then

45: a[i].batchNumber ← batchNumber

46: a[i].batchType← sequential

47: if a[i− 1].batchType is empty then

48: a[i− 1].batchType← sequential

49: end if

50: else .start a new batch

51: batchNumber ← batchNumber + 1

52: a[i].batchNumber ← batchNumber

53: firstCaseStart ← currentStart

54: end if

55: else .subsequent instances belong to different resource-activity combination

56: batchNumber ← batchNumber + 1

57: a[i].batchNumber ← batchNumber

58: firstCaseStart ← currentStart

59: tol ← getTolerance(tolerances, currentActivity, currentResource)

.adjust tolerance

60: end if

61: end for

62: return a .returns activity log enriched with batching information
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After executing BOWI on the event log, the algorithm’s output is com-

pared to the real batch composition. For a particular resource-activity com-

bination, a case is correctly classified by BOWI when it is (i) contained in

its correct batch in the BM of the batch type prevailing in reality and (ii)

included as a singleton in the BMs of the other two batch types. Conse-375

quently, the evaluation centers around the detection of errors, which are (i)

cases that are included in a batch of the correct type but in the wrong com-

position and (ii) cases being included in a batch of a particular type while

they are not included in such a batch in reality. Using these conditions, the

number of errors is calculated for each resource-activity combination. The380

first condition is defined rather rigorously as the composition of discovered

batches has to be completely correct. For instance: when BOWI rediscovers

a batch for all but one case, all cases in this batch are reported as errors

because they are not part of the exact same batch prevailing in reality.

The aforementioned constitutes one experiment. To determine the num-385

ber of experiments, an a priori power analysis for a one-sample Wilcoxon

singed-rank test is conducted. To achieve a power value (i.e. the probability

of rejecting the null hypothesis when it is false) of 0.80 [10] and given a

family-wise significance level to 0.05 and effect size of 0.20 (the value pro-

posed by [11] for the detection of small effects), the power analysis shows390

that at least 185 event logs need to be generated. Consequently, the number

of artificial event logs is set to 200, which surpasses this lower bound.

4.1.2. Results

The application of the experimental design calculates, for each resource-

activity combination in an event log, the number of errors. These results395

are aggregated by grouping resource-activity combinations in 12 classes, ex-
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Table 5: Summary statistics on the error proportion of BOWI’s output

Event log input - Error proportion

BOWI output mean sd median min max

seq - seq 0.08 0.15 0.01 0.00 1.00

no batch - seq 0.54 0.16 0.57 0.13 0.82

all 10 other classes 0.00 0.00 0.00 0.00 0.00

pressing a combination of the real batch type in the event log (no batching,

simultaneous, concurrent or sequential batching) and BOWI’s output (si-

multaneous, concurrent or sequential BMs). For each of them, a decimal

error proportion is calculated by dividing the number of errors by the num-400

ber of cases that are included in the real batches for that class.

Table 5 reports summary statistics on the error proportions detected for

the 12 classes over all 200 event logs. With ‘seq - seq’ and ‘no batch - seq’

as an exception, all classes show that BOWI’s output is free from errors.

This confirms that BOWI can rediscover existing batches solely using the405

event log. Moreover, the algorithm does, e.g., not detect sequential batch

processing when concurrent batch processing prevails.

Regarding BOWI’s detection of sequential batch processing, errors are

detected when either sequential batch processing prevails in reality or no

batch processing takes place. For an event log in which sequential batch410

processing is introduced, BOWI does not rediscover the exact composition

of these batches for, on average, 7.62 % of batched cases, with a standard

deviation of 15.41 % point. These errors are fairly concentrated as an exact

match, i.e. an error proportion of zero is present for 243 of the 352 observa-

tions (69.03 %). For the remaining 109 observations, several explanations for415

the observed deviations can be identified. When sequential batch processing

is inserted in the event log for the first activity, no arrival proxy will be avail-

able in the resulting event log as no prior activity is present. Consequently,
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conditions related to the arrival proxy in Definition 7 cannot be checked,

leading to a less stringent definition. This can cause multiple batches of a420

particular size that are executed one after another to be included as a single

batch in BOWI’s output. The same holds when the activity under analy-

sis is preceded by an activity where simultaneous batch processing prevails

with a higher batch size than the batch size for the activity under analy-

sis. When the arriving simultaneous batch is processed immediately upon425

arrival, BOWI will detect, e.g., a batch of size four instead of two batches of

size two. Even though this will be included as an error in Table 5, BOWI’s

output is a valid representation of business intuition in this case.

When no batch processing is included for a resource-activity combination

in the event log, i.e. when all cases are expected to be included as a singleton430

in each of the BMs, the error proportion of BOWI is higher. The mean error

proportion equals 54.08 % with a standard deviation of 16.20 % point and

a median of 56.77 %. Studying the error proportion on the activity level

for the ‘no batch - seq’ situation shows that it is the highest for the start

activity. This can, once again, be attributed to the less strict definition due435

to the absence of an arrival proxy. For the other activities, errors can be

explained by the arrival of cases in, e.g., a simultaneous batch which is not

handled immediately upon arrival. Even though it is recorded as an error,

it presents a valid occurrence of sequential batch processing in a business

context. Even when cases arrive separately, sequential batch processing440

can also be detected when long queues are formed. In this case, a subset

of queueing cases fulfills the conditions of Definition 7. Despite the fact

that Definition 7 aims to distinguish between regular queue handling and

sequential batch processing, it should be noted that the definition aims to

strike a balance between accuracy and clarity. Instead of enumerating and445
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excluding all possible exceptions, leading to an incomprehensible definition,

a limited set of understandable conditions is specified.

For the sake of completeness, a one-sided one-sample Wilcoxon signed-

rank test is performed for each class in Table 5 testing the null hypothesis

that the median observed error proportion is zero against the alternative450

hypothesis that it is larger than zero. This test is used as the normality

assumption underlying the t-test is not deemed appropriate in the current

context. As anticipated, the null hypothesis is rejected for ‘seq - seq’ (V =

5995, p :< 2.2 ·10−16) and ‘no batch - seq’ (V = 53301, p :< 2.2 ·10−16), even

when a Bonferroni correction [12] is applied with a family-wise significance455

level of 5 %. For the other combinations of event log input and BOWI’s

output, no test statistics can be calculated as all observations equal zero.

4.2. Real-life event log

To demonstrate that BOWI can generate insights in batching behaviour

in a real world business context, the algorithm is applied to real-life event460

logs from two different contexts: a call center and a production company.

4.2.1. Event log of a call center

BOWI is applied to a real-life event log, based on data of a bank’s call

center made available by the Technion Service Enterprise Engineering Cen-

ter2. Incoming calls are directed to a voice response unit (VRU), where465

automated voice information guides the caller. When the VRU does not en-

able callers to service themselves, they are redirected to a queue, after which

they are connected to an agent. After converting the dataset to an event

2http://ie.technion.ac.il/Labs/Serveng
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log format, 34 resource-activity combinations are included. More specifi-

cally, the log contains the VRU - Handling by VRU combination and the470

activity Handling by agent, which is executed by 33 distinct staff members.

The results reported in this section are based on an analysis of 169065 calls

registered in the first semester of 1999.

Within the analysis set, batching behaviour is detected for 31 resource-

activity combinations. For Handling by VRU, which is always handled by475

resource VRU, both concurrent and simultaneous batching is detected, with

respectively 26 % and 0.33 % of all calls being batched. The significant

number of calls handled concurrently is due to the VRU’s design to han-

dle multiple calls concurrently on different lines. Simultaneous batching is

present to a far lesser extent as it requires that, by coincidence, multiple480

calls arrive at exactly the same time and require the same processing time.

For 30 out of 33 agents performing Handling by agent, batching be-

haviour is detected. Concurrent batching is present, but its prevalence is

low as, on average, only 1.85 % of the calls are included in a concurrent

batch. Sequential batch processing is also discovered, but to a far lesser ex-485

tent with an average of 0.03 % of the calls belonging to a sequential batch.

When focusing on concurrent batching, Table 6 summarises some of BOWI’s

metrics for the five agents handling calls concurrently the most often.

Table 6 shows that, even for the agents for which concurrent batching

is observed the most, the proportion of batched calls is rather limited as it490

ranges between 2.05 % and 2.53 %. The mean batch size varies between 2.16

and 2.23 calls. Hence, batching is not fundamentally integrated in the oper-

ations of a call center, which could be anticipated given its characteristics.

Concurrent batching can take place when an agent already takes another

call while the caller is looking for a particular document or the agent is495

25



Table 6: BOWI metrics calculated for concurrent batching by five resources for activity

Handling by agent in the call center event log

agent frequency batch size # batched duration (mean)* time overlap

mean sd cases (rel.) batch no batch

SHARON 152 2.23 0.42 2.49 4.27 2.28 0.46

KAZAV 121 2.17 0.39 2.53 4.71 3.21 0.47

MORIAH 114 2.18 0.38 2.64 4.21 3.14 0.50

TOVA 107 2.16 0.39 2.54 4.32 2.84 0.47

STEREN 87 2.18 0.39 2.05 6.13 3.04 0.52

* expressed in minutes

awaiting input from the bank. This is supported by the fact that the mean

duration tends to be longer for batched calls than for non-batched calls.

4.2.2. Event log of a production company

BOWI is also applied to a real-life event log of a production process,

which is available at the 4TU Data Center3. It contains process execution500

data for 225 cases undergoing activities such as flat grinding and packing.

In the log, 27 distinct activities and 31 unique resources are included.

Applying BOWI shows that batch processing is detected for 29 of the 57

resource-activity combinations in the event log. More specifically, simulta-

neous, concurrent and sequential batching is present for respectively, 9, 25505

and 17 resource-activity combinations. This includes 14 resource-activity

pairs for which both concurrent and sequential batches are present and 7

resource-activity pairs for which all batch types are detected.

Using the number of cases included in a batch metric, it is concluded

that concurrent batch processing is the most prevalent. When considering510

all resource-activity combination where concurrent batch processing occurs,

on average 23.50 % of all cases is batched. For simultaneous and sequen-

3http://data.4tu.nl/repository/uuid:68726926-5ac5-4fab-b873-ee76ea412399
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tial batching, this is 15.55 % and 11.31 % respectively. Consequently, the

remainder of this discussion focuses on concurrent batching.

When concurrent batching occurs, an important part of the cases is515

batched. This indicates that batching is fundamentally integrated in the

organisation’s process. Table 7 summarises some BOWI metric values for

the five resource-activity combinations for which the highest number of con-

current batches is detected. For these resource-activity combinations, the

proportion of cases being part of a concurrent batch ranges from 28 % to520

77 %. The batch sizes are situated between 2.34 and 3.33, with standard

deviations between 0.61 and 2.11. The influence of batch processing on ac-

tivity duration outlined in literature does not hold as batched cases tend

to take longer than non-batched cases. It might be the case that batching

takes place for a particular type of product, which requires less intensive525

processing. Concerning the difference in waiting times between batched and

non-batched cases, the results are mixed depending on the resource-activity

combination. From the time overlap metric, it follows that there is a sig-

nificant overlap between concurrently handled cases. This indicates that

genuine concurrent batch processing is detected, and not sequential batch530

processing with inaccurate timestamp registration.

5. Related work

BOWI is based on a distinction between simultaneous, concurrent and

sequential batching. While [6] and [13] distinguish between the parallel and

sequential execution of activities, other references such as [14] and [15] only535

consider simultaneous batch processing. Consequently, this paper presents

a more versatile perspective on batch processing.
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Table 7: BOWI metrics calculated for concurrent batching for five resource-activity com-

binations from the production company event log

res.-act. freq. batch # batched duration waiting time time

comb.* size cases (rel.) (mean) (mean) overlap

(mean) batch no batch batch no batch

1 121 3.33 0.77 2.23 1.27 22.92 48.11 0.86

2 118 2.83 0.66 1.74 1.27 18.83 17.54 0.79

3 61 2.36 0.39 2.31 1.45 45.90 58.37 0.65

4 34 2.47 0.34 6.07 5.88 7.15 3.35 0.51

5 29 2.34 0.28 6.45 5.11 5.77 9.09 0.50

* 1: Qual. Check 1 - Final Insp. Q.C., 2: Qual. Check 1 - Turn. & Mil. Q.C ,

3: Machine 1 - Lapping, 4: Machine 4 - Turn. & Mil., 5: Machine 6 - Turn. & Mil.

Batch processing is studied in several domains, but mainly within the

field of operations management, with a key focus on topics such as order

batching [16], scheduling [17, 18] and operational excellence [19, 20]. Often,540

the trade-off between additional waiting times and reduced setup costs is

mentioned [19, 20]. This is also explicitly recognised in business process

management literature [14, 21, 22, 23].

Within the process modelling and execution domain, [13] specify the

concept of batch activities and identify specification parameters such as the545

batch size. While [13] focus on a single batch activity, [23] extend these con-

cepts to batch regions. The latter are a series of model constructs such as

activities that handle cases in a batch. Recently, batch processing is studied

for activities in different processes by means of object life cycles [24]. As

[13], [23] and [24] primarily focus on the activity level, they do not explic-550

itly take into account that the organisation of work for a particular activity

can differ among resources. BOWI includes this perspective by considering

the resource-activity level as the key level of analysis. This is consistent

with [21] given that batching strategies can differ among resources. While
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[13], [23] and [24] focus on process modelling and the specification of exe-555

cution semantics, [14] focus on performance evaluation of batch activities.

Solely considering the simultaneous batch processing case, cost functions

are defined for both service and waiting costs and an analytical solution is

proposed making use of queuing theory. In this way, the benefits of intro-

ducing simultaneous batch processing can be quantified and a recommended560

batch size can be calculated. However, the suggested approach focuses on

a single activity which, moreover, must fulfill the conditions of a particu-

lar queuing model [14]. As follows from the above discussion, related work

tends to focus on modelling batch processing at design time. However, [22]

suggest an approach to dynamically adjust the batch activity configuration565

parameters depending on, e.g., the planned maintenance of a machine. This

more flexible perspective on batching is also included in [24], where a set of

cases that might be batched is solely suggested to the resource.

Besides [15] and [25] as notable exceptions, no research attention is de-

voted to batch processing within the process mining field. This is consistent570

with [3], where the retrieval of batch processing insights from event logs is

marked as a research gap. [15] consider the problem of mining the process

control-flow when the process contains activities where simultaneous batch

processing occurs. For these activities, the authors assume that, for a par-

ticular batch, events are only logged for one of the cases in this batch. This575

is similar to [21], where batched cases are temporarily merged and decom-

posed afterwards. In contrast, BOWI assumes that events are recorded for

all individual cases in a batch. When this is not the case, the work presented

in [15] forms a valuable starting point for the simultaneous batch processing

case. In [15], a method is developed that aims to add the missing events of580

batched cases, after which, e.g., existing control-flow discovery algorithms
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can be applied. This complemented log can also be used to apply BOWI.

[25] proposes a method to identify batch processing in which all resource

actions, i.e. executions of activities, are placed on a timeline and grouped

in so called chunks. A new chunk is started when the elapsed time between585

the end of an action and the start of the following action exceeds one hour.

When a period such as a working day is composed of multiple chunks, [25]

states that batch processing occurs. This paper extends the work of [25] in

several ways. Firstly, in contrast to [25], BOWI does not make abstraction

from the difference between activities, reflecting the fact that some activities590

might be more eligible for batch processing. Secondly, the arbitrary delay

of one hour between periods of activity is replaced by a formal definition of

several types of batch processing. Finally, BOWI complements the work of

[25] by distinguishing between batch processing and regular queue handling.

6. Limitations595

Despite BOWI’s ability to mine and describe batching behavior from an

event log, some limitations need to be recognised. Firstly, the log should

contain both start and complete events and resource information, which is

often not the case in existing real-life event logs. Moreover, the level of detail

at which timestamps and resources are recorded determines the granularity600

at which batching behaviour is identified. When, e.g., only resource classes

are recorded, no distinction can be made between specific resources.

Secondly, BOWI does not explicitly consider the issue of noise in time-

stamp registration. Hence, it relies on accurate event registration for each

case, which can require that a process is backed by a system which automat-605

ically logs resource action instead of relying on manual intervention to log
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events. Nevertheless, some features of BOWI should be highlighted related

to inaccurate timestamp registration. For sequential batching, a time toler-

ance that is allowed between consecutive instances in a sequential batch can

be specified. When the start and complete timestamps of cases in a simul-610

taneous batch are not identical, BOWI will label it as a concurrent batch.

However, the value of the time overlap metric will show a high overlap,

indicating that it might be an inaccurately recorded simultaneous batch.

Thirdly, the creation of an activity log requires mapping corresponding

start and complete events. When a case passes a resource-activity com-615

bination multiple times, each start event is mapped to the first occurring

unmapped complete event. When this mapping does not correspond to re-

ality, it will influence batch detection as the activity log is its key input.

Finally, a case’s arrival time at an activity is needed to distinguish se-

quential batching from regular queue handling. When this information is620

not included in the event log, it can be proxied by the completion time

of the prior activity. However, this requires control-flow insights, i.e. the

prior activity needs to be known, which is not trivial for complex processes.

However, the absence of such a proxy does not impede BOWI from being

applied, but renders the conditions to detect sequential batching less strict.625

7. Conclusion

This paper focuses on the retrieval of batch processing insights from an

event log. To this end, three types of batching are identified and formalised,

i.e. simultaneous, concurrent and sequential batching. Using these defini-

tions, the Batch Organisation of Work Identification algorithm (BOWI) is630

developed to identify batches and calculate metrics summarising batching
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behaviour. The algorithm is evaluated on artificial event logs, showing that

it can rediscover batches under most circumstances. Moreover, BOWI is

applied to real-life event logs from a call center and production context.

Future extensions of BOWI can generate even more versatile batch pro-635

cessing insights from an event log. Firstly, the effect of noise on BOWI’s

performance can be studied in order to make the algorithm more resilient

to noise. Secondly, BOWI’s scope can be broadened by considering multiple

consecutive activities instead of only a single activity, which is mentioned

in [15] and [21] and is consistent with the batch regions notion in [23]. Fi-640

nally, insights in batch logic by modelling the reasoning behind batching is

an additional analysis dimension. Batching logic can be modelled by mining

batch activation rules, which can merely depend on the number of queueing

cases or can be contingent on, e.g., the time of day or case attributes.
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