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Abstract

Modeling people’s behavior in e.g. travel demand models is an extremely complex, multidimensional process. However, the
frequency of occurrence of day-long activity schedules obeys a ubiquitous power law distribution, commonly referred to as Zipf’s
law. 1 This paper discusses the role of aggregation within the phenomenon of Zipf’s law in activity schedules. Aggregation is
analyzed in two dimensions: activity type encoding and the aggregation of individual data in the dataset. This research employs
four datasets: the household travel survey (HTS) NHTS 2009, two six-week travel surveys (MobiDrive 1999 and Thurgau 2003)
and a 24-week set of trip data which was donated by one individual. Maximum-likelihood estimation (MLE) and the Kolmogorov-
Smirnov (KS) goodness-of-fit (GOF) statistic are used in the “PoweRlaw” R package to reliably fit a power law. To analyze the
effect of aggregation in the first dimension, the activity type encoding, five different activity encoding aggregation levels were
created in the NHTS 2009 dataset, each aggregating the activity types somewhat differently. To analyze aggregation in the second
dimension, the analysis moves from study area-wide aggregated data to subsets of the data, and finally to individual (longitudinal)
data.
c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

The transportation research community invests heavily in understanding travel behavior. Modeling people’s behav-
ior in travel demand models is an extremely complex, multidimensional process. However, as demonstrated by Ectors
et al. 1, the frequency of occurrence of day-long activity schedules obeys a remarkably simple, scale-free distribution.

This distribution has been observed in many natural and social processes and obeys a power law. It is commonly
referred to as Zipf’s law. Auerbach discovered in 1913 that city size is governed by such a power law. The American
linguist Zipf described a power law distribution in word frequency in 1949 (although it had first been noticed by
Estroup in 1916). Zipf famously investigated this distribution more in detail, revealing that the same power law
distribution holds for a large number of events in different domains, ranging from sizes of earthquakes, people’s
annual income, solar flares, to the number of citations received on papers.2,3,4
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The rank-size interpretation of Zipf’s law is most commonly mentioned (Equation 1). For example, within the
context of city sizes, the size of a city at rank ri scales with a factor 1/ri relative to the size of the largest city. The
second largest city is half the first city’s size, the third largest one-third its size etc.

f (ri) =
f (r1)

ri
(1)

where f represents frequency and r the rank. In other words, the size of a city is inversely proportional to its rank.
In its more formal form, Zipf’s law states that the probability for a city to have a size greater than S decreases as

1/S :
P(S̃ > S ) = aS −ζ (2)

where S̃ is the size of a particular city, ζ denotes the exponent (≈ 1 for Zipf’s law), a a scaling factor.5

To the authors’ best knowledge, no conclusive proof exists rejecting the existence of a natural power law mech-
anism, nor does a general agreement exist on the origin of Zipf’s law’s ubiquitousness. Additionally, many of the
observations seem to share the same exponent, which desires a universal mechanism. Yet, most researchers agree that
several mechanisms may lead to the observed power law distributions.4

Still, some research objects against Zipf’s apparent universality. In a large-scale study, 73 cities from across the
world were analyzed for conformity with Zipf’s law. Zipf’s law was rejected in more cities than expected6. A meta
study including 515 estimates from 29 studies concluded that the power law exponent is statistically different from
Zipf’s value of 1.0, actually being closer to 1.1.7

Zipf’s law has not been mentioned often within the domain of transportation sciences. Still, power law-like dis-
tributions have been proven in displacement distance, gyration radius and location visiting frequency8, as well as
in location visiting duration9 and travel time in taxi travel10. Power law distributions were also observed in bus
transport networks11 and in airport networks12. Some researchers also used these universal distributions in their
experiments. 13,14 More recently, evidence for a universal Zipf power law in activity schedules was given.1

This paper discusses the role of aggregation within the phenomenon of Zipf’s law in activity schedules. In the
remainder of this paper, first the data and basic methodology for estimating a power law fit are detailed, after which
the effect of aggregation is analyzed in two dimensions: activity type encoding and dataset aggregation level. The
conclusion section finalizes this paper.

2. Description data and estimation procedure

This research employs four datasets: 1) a HTS from the US, the USA NHTS 200915 dataset, 2) a six-week travel
survey from Germany, DEU MobiDrive 199916, 3) a Swiss six-week travel survey CHE Thurgau 200317 and 4) a
24-week set of trip data which was donated by one individual. The 24-week data was collected using the Moves
smartphone application18 combined with manual verification and trip purpose enrichment. There were 163 days with
out-of-home activities. The OVG HTS19 activity encoding was used (10 classes).

Out-of-home activity schedules are constructed out of trip purpose information from these datasets. Trip purposes
are concatenated into a sequence which represents a schedule with the main out-of-home activities. From the NHTS
2009 dataset 257,586 schedules could be extracted (83,000 distinct schedules). The Mobidrive 1999 and Thurgau
2003 datasets yield, respectively, 13,244 and 8,522 schedules.

In order to evaluate the role of aggregation, first the methodology of fitting a power law distribution to the data needs
to be defined. Often, a linear regression (using least-squares) is fitted to log transformed variables, yet this method is
flawed.4,20,21 The slope estimate may exhibit systematic, large errors. Additionally, the traditional R2 cannot be used
as evidence for a power law distribution. Clauset et al. 20 proposed a method based on a MLE fitting approach with the
KS GOF as a cutoff criterion. Some cutoff xmin is needed since the power law probability distribution p(x) = Cx−α with
α ≥ 1 diverges for α → 0, resulting in an infinite area under the distribution. Under Zipf’s law, an exponent value of
2.0 (or α− 1 = 1.0 for the cumulative distribution) is expected. The cutoff parameter depicts the fact that few datasets
follow a power law distribution across their entire range; in most cases a certain fraction (e.g. the low frequency
area) deviates from the power law distribution. The R package called “PoweRlaw”22 was developed to automate the
MLE + KS estimation process. The xmin parameter is optimized by means of the KS statistic. The package also



 Wim Ectors et al. / Procedia Computer Science 109C (2017) 225–232 227
Ectors, W. et al. / Procedia Computer Science 00 (2017) 000–000 3

1 100 10000

1e
-0

6
1e

-0
4

1e
-0

2
1e

+0
0

Schedule rank

Fr
eq

ue
nc

y 
[%

]

Activity type aggregation level:
Level 0 (37 original activity types)
Level 1 (18 activity types)
Level 2a (10 activity types)
Level 2b (10 activity types)
Level 3 (3 activity types)

Fig. 1: Activity schedule distribution in the USA NHTS 2009 dataset based on five different activity encoding aggregation schemes.

supports bootstrapping procedures to evaluate parameter estimation uncertainty and to perform a hypothesis test with
null hypothesis that a power law distribution is appropriate. A 10% significance level is recommended in this test. 22

3. Aggregation in activity type encoding

To analyze the effect of aggregation in the first dimension, the activity type encoding, different activity type en-
coding aggregation levels were created in the USA NHTS 2009 dataset. Starting from the original 37 activity types,
denoted here as Level 0, four more sets of encodings were proposed, each aggregating some activity types or grouping
them somewhat differently. The approach corresponds to constructing an encoding tree and pruning the branches to
increase the aggregation level.

The first digit of the original Level 0 encoding corresponds to a higher-level group, while the second digit specifies
the activity type in more detail. This is exploited to construct other encoding schemes. The level 1 encoding was con-
structed by retaining the first digit and subsequently grouping some of the second digits. This moderate aggregation
halved the number of activity types from 37 to only 18 distinct categories. The Level 2a encoding was formed by
allocating the most appropriate category from the OVG HTS19 (which is well-known to the authors) to each NHTS
category. Only ten distinct activity type categories remain. The Level 2b encoding provides the same level of aggre-
gation (ten distinct categories), but is simply based on the first digit of the original USA NHTS 2009 encoding. The
final activity encoding scheme, Level 3, offers the highest level of aggregation into only three distinct classes. For this
scheme the original activity types were identified as either being of ’Mandatory’, ’Maintenance’ or ’Discretionary’
nature. These five activity encoding schemes were used to construct day-long activity schedules for the individuals in
the NHTS dataset.

The distributions of the resulting sets of schedules are illustrated in Figure 1. One observes that the power law
regime (the linear trend on a log-log plot) breaks down relatively quickly only in case of the most severe aggregation
of Level 3; for the other cases it seems valid for the majority of observations. In general, the more aggregation
is applied to the activity types, the less Zipf’s law seems to hold across the whole dataset. The effect seems in
practice only significant at extreme levels of aggregation. Figure 1 also shows how the sets of schedules based on
Level 2a and Level 2b (both ten distinct activity types) are nearly indistinguishable, although their activity coding is
different in some instances. Table 1 lists the power law estimates from the MLE + KS estimation procedure. With
increasing activity type aggregation also the deviation from the theoretical Zipf’s exponent increases. Still, a power
law distribution remains appropriate. The bootstrapping estimates are consistent with those based on the singular
MLE + KS procedure.
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4. Aggregation of individual data

The fact that Zipf’s law seems valid on aggregated schedules for a whole study area was already established. It is
however interesting to explore the limits of Zipf’s law when using less aggregated data. This section will analyze this
effect, moving from study area-wide aggregated data to individual longitudinal data. First a power law distribution
is fitted to fully aggregated data. Subsequently, subsets based on the day of the week (DOW) and gender were taken
from the USA NHTS 2009 dataset and a power law distribution was fitted to these subsets. Next, the six-week travel
surveys DEU Mobidrive 1999 and CHE Thurgau 2003 allow to consider individual schedules, representing the least
amount of aggregation possible. Finally, a 24-week trip history belonging to one person tests the validity of Zipf’s
law (for this particular individual) in longitudinal data.

4.1. Aggregation to study area level

Figure 2 illustrates the remarkable power law in activity schedules for a complete study area based on a single-day
HTS. A nearly identical distribution is found for the DEU Mobidrive 1999 and CHE Thurgau 2003 datasets when each
recorded day is treated independently and subsequently aggregated. Table 1 lists the estimates for these experiments.
All three datasets have exponent values very close to Zipf’s value of 2.0. It appears that aggregated schedules from
multiple individuals will consistently exhibit a power law distribution, also analysed in more detail in Ectors et al. 1

4.2. Subsets of a study area

The USA NHTS 2009 was used to analyze subsets as it is a significantly large dataset. This avoids incorrectly
rejecting a power law distribution due to insufficient data. As illustrated in Figure 3, subsets were generated based
on DOW and gender. Visually, their distributions are nearly identical. Table 1 lists the power law fit estimates.
Again, estimates close to Zipf’s law’s value of 2.0 were found. They appear consistently slightly higher than the
estimate for the full dataset. This suggests that some schedules may be more typical for a particular subset of the data,
yielding higher frequencies for the top-ranked schedules in that subset of the data. Each subset does not (necessarily)
have the same schedule at each rank. The effect is however small since e.g. there are only small differences in the
distributions of weekdays and weekends (where a different travel behavior is expected). There are however fewer
distinct schedules on Sundays. This has however no effect on the power law exponent estimate because of the xmin
cutoff value. Additionally, none rejects the null hypothesis of a power law distribution being an appropriate distribution

Table 1: Estimation results from the R package poweRlaw for activity schedule distributions.

poweRlaw estimations (MLE + KS)
Bootstrapping uncertainty
evaluation

Dataset Aggregation or subset α xmin Cum. pct rejected AM(α) SD(α) P-value
USA NHTS 2009 Level 0 (37 original activity types) 2.003 36809977 55% 2.006 0.070 0.255
USA NHTS 2009 Level 1 (18 activity types) 1.967 36837451 50% 1.972 0.065 0.166
USA NHTS 2009 Level 2a (10 activity types) 1.934 46135634 43% 1.939 0.065 0.998
USA NHTS 2009 Level 2b (10 activity types) 1.892 60781076 45% 1.899 0.071 0.741
USA NHTS 2009 Level 3 (3 activity types) 1.890 109512566 28% 1.891 0.084 0.835
USA NHTS 2009 Monday* 2.290 46616705 67% 2.270 0.359 0.831
USA NHTS 2009 Tuesday* 2.161 35581917 67% 2.182 0.236 0.820
USA NHTS 2009 Wednesday* 2.152 45646004 68% 2.172 0.267 0.679
USA NHTS 2009 Thursday* 2.088 48120314 71% 2.140 0.282 0.221
USA NHTS 2009 Friday* 2.279 34509610 72% 2.284 0.250 0.901
USA NHTS 2009 Saturday* 2.182 61045896 76% 2.176 0.288 0.134
USA NHTS 2009 Sunday* 2.091 52160661 66% 2.060 0.200 0.982
USA NHTS 2009 Women 2.104 37421218 61% 2.115 0.114 0.551
USA NHTS 2009 Men 2.157 36416801 58% 2.165 0.116 0.783
DEU Mobidrive 1999 All data aggregated 2.053 23 52% 2.002 0.133 0.714
CHE Thurgau 2003 All data aggregated 1.929 16 49% 2.009 0.113 0.317
Donated Schedules from an individual 2.454 4 59% 2.629 0.708 0.689
Note: the different scales of xmin are caused by different weight variables.
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Fig. 2: Activity schedule distribution in the USA NHTS 2009 dataset. The red full line represents the fitted power law (according to the MLE +
KS), the dotted blue line is the extrapolation of this fit.
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Fig. 3: Activity schedule distribution in subsets of the USA NHTS 2009 dataset (using the original activity encoding).

for the subsets. It appears that subsets of the data will also exhibit a power law distribution, possibly with slightly
deviating exponent values and different schedules at similar ranks, provided that the subsets are not made too small.

4.3. The individual level

A much tougher question is whether Zipf’s law is valid for activity schedules from each individual separately,
similarly to other universally distributed quantities like displacement distance, location visiting frequency etc.8 The
schedules are not fully independent in this case, but belong to one individual. To analyze this question, three datasets
are used: two six-week travel surveys (DEU Mobidrive 1999 and CHE Thurgau 2003) and the donated 24-week trip
dataset from one individual.

To analyze the six-week travel surveys, a variable (present in the original dataset) with 10 trip purpose classes is
used instead of the 23 classes originally in the survey. As the data is limited (six weeks) this will ensure the highest
possible frequencies for each schedule, so a power law might be discovered in ’only’ six weeks of data. As discussed
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before, this choice should not negatively influence the estimation results. Some individuals in the data have very few
days when trips were made, resulting in bad fits and outlier-like exponent estimates. These ’outliers’ were removed
according to a threshold of minimum number of schedules (days). This threshold was put at 21 schedules, which
is half the theoretically maximal number of schedules (6 weeks × 7 schedules per week = 42 schedules). The DEU
MobiDrive 1999 data set contains 361 individuals. After filtering out some outlier-like individuals (with less than half
of the schedules reported), 352 individuals remained.

After generating frequency tables for each individual, very low frequencies are observed. At schedule ranks greater
than 2 they are certainly lower than 5. A simple Chi-square GOF test is therefore not possible, as the assumption of
expected frequencies greater than 5 is violated. The KS GOF test seemed most appropriate. In SAS, a distribution
can be tested against a predefined distribution based on this statistic. The desired test could be achieved by imposing
the Beta distribution with some fixed parameters, leading to a power law distribution. The null hypothesis H0 is that
a power law distribution with specified α is a good fit.

If one α is imposed for all individuals, 12% (43 out of 352) have a distribution which is not significantly different
from a power law distribution, based on a significance level of 5%. Similar results are obtained using the CHE Thurgau
2003 dataset: 4% of the individuals (9 out of 230) have a distribution that is not significantly different from a power
law distribution. Curiously, when α is allowed to vary across the individuals, more cases reject H0. These results are
not supporting the theory that Zipf’s law is also valid for individuals. However, as can be seen in Figure 4a, the cases
where the H0 of a good fit is rejected seem to be not fully developed, having a large horizontal tail at the end of the
distribution.

A simulation was build to reveal how a power law distribution may be formed. The activity schedule frequency
distribution of the DEU Mobidrive 1999 data was plotted in increasing fractions of the data (after randomization).
Some examples are given in Figure 4b. One observes a rather flat distribution at first which then, over time, starts
to grow into a power law distribution starting from the left-hand side. The flat tail of the distribution reduces and
gradually moves to the right bottom side of the chart. This illustrates the fact that sufficient data is needed to obtain
sufficiently large schedule frequencies which exhibit a power law distribution.

It appears that the individuals with a good power law fit have a quite advanced evolution of their power law
distribution, whilst the individuals without a good fit seem still at the transition phase in the evolutionary process (still
having a long flat tail) as visible in Figure 4a. At small sample sizes, the power law distribution simply cannot be
accurately determined. In literature, a sample size of n � 50 is proposed as a rule of thumb.20 The mean sample
size for the Mobidrive individuals is 37.625 < 50 (this is after excluding outliers). Therefore, more than six weeks of
data are needed to consistently obtain power law distributions, allowing infrequent schedules the chance to occur at
sufficient numbers. The exact sample size most likely differs for each individual. Additionally, a person’s schedules
might not be independent which could increase the need for sufficient data (e.g. there is a higher probability to have
another home-work-home schedule after a home-work-home schedule than a home-shopping-home schedule usually
taking place during the weekend). Future research will try to correlate the stage of evolution to person characteristics.

Significantly more data than six weeks of trip data (incl. trip purpose) may be needed in order to verify the above
theory. To the author’s best knowledge, such data does not exist for a large group of individuals. However, a 24-week
dataset of trip data was donated by a punctual user of the Moves smartphone application18. This data exhibits a clear
power law, as illustrated in Figure 5. The results from running the poweRlaw algorithms on this data are tabulated
in Table 1. The estimated exponent is greater than estimated for other datasets. This could be a consequence of a
still-evolving distribution, or perhaps the exact exponent value depends on person characteristics such as the intensity
of activity participation, age or employment. The null hypothesis of a good fit cannot be rejected.

5. Conclusion

Modeling people’s behavior in e.g. travel demand models is an extremely complex, multidimensional process.
However, the frequency of occurrence of day-long activity schedules obeys a ubiquitous power law distribution, com-
monly referred to as Zipf’s law.1 This paper discussed the role of aggregation within the phenomenon of Zipf’s law
in activity schedules. Aggregation was analyzed in two dimensions: activity type encoding and the aggregation of
individual data in the dataset. Maximum likelihood estimation and the Kolmogorov-Smirnov goodness-of-fit statistic
were used to correctly fit a power law to the data. The R package “poweRlaw” was used to this end. Bootstrap-
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Fig. 5: Activity schedule distribution in the donated 24-week trip dataset. The red full line represents the fitted power law (according to the MLE
+ KS), the dotted blue line is the extrapolation of this fit.

ping procedures were used to evaluate parameter estimation uncertainty and to perform a hypothesis test with null
hypothesis that a power law distribution is appropriate. This research worked with four datasets: the NHTS 2009, two
six-week travel surveys (MobiDrive 1999 and Thurgau 2003) and a 24-week set of trip data which was donated by
one individual. The latter was collected using the Moves smartphone application18 combined with manual verification
and trip purpose enrichment.

To analyze the effect of aggregation in the first dimension, the activity type encoding, five different activity encoding
aggregation levels were created in the NHTS 2009 dataset, each aggregating the activity types somewhat differently.
The approach corresponds to constructing an encoding tree and pruning the branches to increase the aggregation level.
Except for extreme levels of activity type aggregation, the effect on the power law distribution is negligible and one
could state that Zipf’s law in activity schedules is not significantly influenced by activity type encoding aggregation.

To analyze aggregation in the second dimension, the analysis moved from study area-wide aggregated data to sub-
sets of the data, and finally individual (longitudinal) data. A power law distribution was fitted to fully aggregated
NHTS 2009 data. Subsequently, power laws were fitted to subsets based on the day of the week and gender. No
considerable effect of subsetting the data was observed, provided that the the subset is sufficiently large. The two six-
week travel surveys (Mobidrive 1999 and Thurgau 2003) allowed to analyze individual schedules. This analysis, in
which power law distributions were fitted to each individual’s data, did not support Zipf’s law. However, subsequent
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simulation and literature suggested that this is a consequence of insufficient data, i.e. the distributions seem under-
developed even though they are based on six weeks of data. Finally, a 24-week trip history belonging to one person
tested the validity of Zipf’s law (for this particular individual) in longitudinal data. A good fit was found and the null
hypothesis of a power law distribution being appropriate could not be rejected. The estimated exponent is slightly
larger than expected under Zipf’s law, but this could result from individual variation or a still-developing distribution.

Future research will try to correlate the stage of evolution of a power law activity schedule distribution to person
characteristics, as well as modeling the mechanism that leads to Zipf’s power law in activity schedules. Additionally,
more tests could be done on simulated longitudinal data or on activity schedules inferred from GPS trajectories.
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