Modeling Demand Responsive Transport using SARL and MATSim

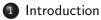
Glenn Cich^a **Luk Knapen**^a Michał Maciejewski^{b,c} Ansar-Ul-Haque Yasar^a Tom Bellemans^a Davy Janssens^a

^aHasselt University, Transportation Research Institute (IMOB), Agoralaan, 3590 Diepenbeek, Belgium

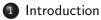
^bDivision of Transport Systems, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland

^cDepartment of Transport Systems Planning and Transport Telematics, TU Berlin, Salzufer 17-19, 10587 Berlin, Germany

17 May 2017



Luk Knapen (IMOB)


Modeling DRT using SARL and MATSim

17 May 2017 1 / 19

- 2 Modeling Demand Responsive Transportation
- Co-Simulation Protocol
 - 4 Conclusion

2 Modeling Demand Responsive Transportation

- 3 Co-Simulation Protocol
- 4 Conclusion

Introduction: Problem Context

- Public Transport widely used
- Planders, Belgium
- Basic Mobility
 - Distinction between areas
 - Amplitude and frequency
 - Distance homes and bus stops
 - $\bullet \ \rightarrow \text{expensive! (Thin Flows)}$
- Basic Accessibility
 - PT should be complemented with other transport
 - train + bus {kernel, additional (feeder), specific (local, DRT)}
- 6 Aim:
 - Can DRT substitute certain PT lines?
 - Under which subsidy condition can DRT survive?

< 🗆 🕨

2 Modeling Demand Responsive Transportation

3 Co-Simulation Protocol

Modeling DRT: Simulation

Micro-simulation

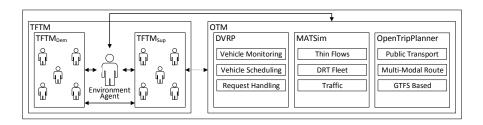
- Aggregation methods inappropriate
 - Averaging demand ignores effects of distribution
 - temporal dimensions
 - spatial dimensions
 - $\bullet\,$ Spatial and temporal variability $\rightarrow\,$ influence outcome

Solution Negotiation about trips

- Timings
- Transfers
- Labels (mobility impairment, subsidies)
-) SARL

Introduction	Modeling DRT	Co-Simulation Protocol	Conclusion
0	0000000	00	0

Modeling DRT: Software Overview


- Simulation over a long term period
- Demand: need trips
- Supply: provide trips
- Two parts:
 - Thin Flows Travel Model (TFTM):
 - negotiation between agents (demand supply)
 - SARL
 - Operational Travel Model OTM:
 - External API
 - efficient scheduling trips
 - $\mathsf{DRT} \to \mathsf{MATSim}$
 - $\bullet \ \mathsf{PT} \to \mathsf{OpenTripPlanner}$

< 🗆 🕨

Introduction	Modeling DRT	Co-Simulation Protocol	Conclusion
0	000000	00	0

Modeling DRT: Software Overview

< □ >

Modeling DRT: Thin Flows Travel Demand Model

- TFTM_{Dem}
- Oustomers in thin flows executing schedules
- Travel decisions: trip sequence feasibility
 - mode choice, service selection
 - accessibility
 - by own means (walk, bike, car, ...)
 - **2** using collective and/or public transport
 - determines potential feasible solutions (based on estimated timing)

Customer can

- $\bullet\,$ ask for $N\geq 1$ different proposals for multi-leg trips
- wait for $M \in [1, N]$ proposals before deciding which option to choose.
- require sequences of chronologically non-contiguous trips (ac
- refuse some proposals

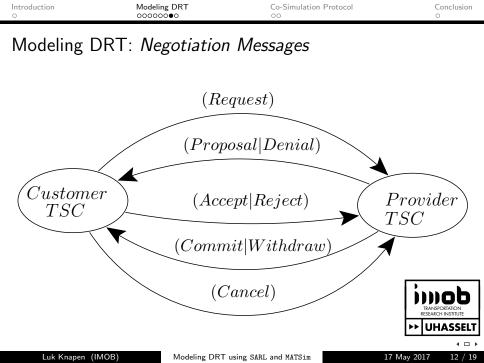
17 May 2017

9 / 19

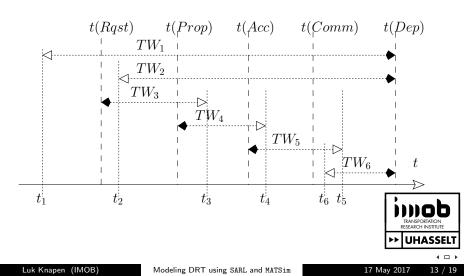
RESEARCH INSTITUTE

Modeling DRT: Thin Flows Travel Supply Model

- TFTM_{Sup}
- Ocompanies providing transport (public, private)
- S Can use OTM (MATSim, OpenTripPlanner)
- Requests to OTM are preprocessed in TFTM Sup
 - reduce time consuming OTM operations
 - $\bullet~\text{TFTM}$ model \rightarrow legal, functional constraints
 - physical accessibility (labels)
 - user qualification rules
 - $\bullet~$ OTM model \rightarrow operational constraints
 - on fleet operations (VRP, feasibility)


Modeling DRT: Operational Travel Model (OTM)

- Microscopic simulation including thin flows, DRT fleet, traffic etc. (MATSim)
- Dynamic vehicle routing (monitor and schedule vehicles, and handle incoming requests) (MATSim's DVRP).
- OynAgents
 - Plans can be changed at any moment
- Supply and demand are dynamic and stochastic
- Requests from TFTM to OTM are translated into taxi requests for MATSim's DVRP



< D >

Introduction	Modeling DRT	Co-Simulation Protocol	Conclusion
0	0000000	00	0

Modeling DRT: Negotiation Time Windows

Introduction	Modeling DRT	Co-Simulation Protocol	Conclusion
0	0000000	00	0

2 Modeling Demand Responsive Transportation

4 Conclusion

Luk Knapen (IMOB)

Co-Simulation Protocol: Synchronization

$\bullet \ \mathsf{SARL} \to \mathsf{no} \ \mathsf{notion} \ \mathsf{of} \ \mathsf{simulated} \ \mathsf{time}$

Implemented conservative synchronization (Cich, 2017, PAAMS)

- Single "Environment agent"
 - Manages time
 - Manages synchronization between TFTM and OTM
 - No agent needs to explicitly time-sync \to simulated time proceeds to moment in which at least one agent needs to do something
- Time is incremented using a constant period
- Non-monotonic time evolution mechanism is under construction
- Messages sent in period $p_i = [t_i, t_{i+1}) \rightarrow$ received in p_{i+1}

Introduction	Modeling DRT	Co-Simulation Protocol	Conclusion
0	0000000	0●	0

Co-Simulation Protocol: Simulation

- Agent generates trip request $(A \rightarrow B)$
- ② Requests are collected
- At the end of time period
 - Requests transformed into JSON
 - Sent to OTM
- OTM processes JSON objects
- OTM simulates one time period after each synchronization point
- OTM sends JSON object back to TFTM
 - replies to requests
 - unsolicited OTM events (e.g. passenger arrivals)
- Sockets provide the JSON exchange

Introduction	Modeling DRT	Co-Simulation Protocol	Conclusion
0	0000000	00	0

2 Modeling Demand Responsive Transportation

3 Co-Simulation Protocol

Luk Knapen (IMOB)

Conclusion:

- Framework to combine micro-simulators
- SARL simulation is coordinator
- MATSim and OpenTripPlanner called when needed
- Advantage: combine existing simulators
- S Proof-of-concept simulation is operational, no production results yet

Introduction	Modeling DRT	Co-Simulation Protocol	Conclusion
0	0000000	00	0

Questions?

The research reported was partially funded by the IWT 135026 Smart-PT:

Smart Adaptive Public Transport (ERA-NET Transport III Flagship Call 2013 "Future Traveling").

Luk Knapen (IMOB)