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The concept of negative variance components in linear mixed-effects models, while confusing at first
sight, has received considerable attention in the literature, for well over half a century, following the
early work of [20] and [7]. Broadly, negative variance components in linear mixed models are allowable
if inferences are restricted to the implied marginal model. When a hierarchical view-point is adopted,
in the sense that outcomes are specified conditionally upon random effects, the variance-covariance
matrix of the random effects must be positive-definite (positive-semi-definite is also possible, but raises
issues of degenerate distributions). Many contemporary software packages allow for this distinction.
Less work has been done for generalized linear mixed models. Here, we study such models, with
extension to allow for overdispersion, for nonnegative outcomes (counts). Using a study of trichomes
counts on tomato plants, it is illustrated how such negative variance components play a natural role
in modeling both the correlation between repeated measures on the same experimental unit and
overdispersion.

Keywords: Combined model; Gamma distribution; Generalized linear mixed model;
Overdispersion; Poisson distribution

1. Introduction

The need for inference on variance components arises in a variety of applied fields. Ex-
isting tools to this effect encompass random-effects ANOVA models [20], linear mixed
models [27], generalized linear mixed models [16], and other models that also accom-
modate overdispersion and clustering [6]. By definition, when variance components are
interpreted as variances, they are nonnegative quantities, but the occurrence of negative
estimates is a reasonably well understood phenomenon in the context of linear models
for hierarchical data. Of course, then the interpretation as variance is dropped; rather,
such components play a role in the induced marginal model only.

In studies involving grouped data, it is common that the observations within the
same cluster are positively correlated, which implies that such observations belonging
to the same cluster are more similar to one another than observations from different
clusters. Such dependence is sometimes measured by the intraclass correlation. Occa-
sionally, though, observations within clusters may be dissimilar, e.g., when there are
competition effects. An example of negative influence in grouped data is when there is a
fixed resource and cluster members have to compete for it, leading to a negative intraclass
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correlation [12], such as when plants in the same plot compete for the same nutrients,
water and/or light. The resulting within-plot negative correlation is then captured by
negative variance-component estimates.

Note that a negative variance component (generically referring to a model parameter in
a variance-covariance matrix) should not be confused with a negative variance; the latter
does not exist. By a negative variance component, we mean here a parameter that would
be a variance should a hierarchical (also referred to as conditional) view be adopted, but
merely is a parameter in the implied marginal variance-covariance matrix (obtained by
integrating over all random effects; e.g., in a compound-symmetry model, a covariance
term), which is still positive-definite. Further, by hierarchical model we mean one where
outcomes are modeled conditional upon covariates and random effects [cf. 8, 16]. The
hierarchical view is then one where the parameters corresponding to the distribution of
the random effects retain their meaning throughout the inference process. In contrast,
a marginal view is one where the parameters should merely meaningfully describe the
distribution of the outcomes, after integrating over the random effects.

The occurrence of negative variance components in linear mixed models was reviewed
by [18]. As alluded to before, whenever inference for variance components is required,
one will have to make a choice between a hierarchical and a marginal view. Under a
marginal interpretation, the variance component can be negative as long as the resulting
marginal variance-covariance matrix of the observations is positive definite. On the other
hand, when a hierarchical view is adopted, random effects retain their interpretation and,
hence, their variances must be nonnegative. [23] focused on negative variance components
in generalized linear mixed models, specifically on binary and count outcomes. In this
paper, we also allow for overdispersion, through the use of additional, usually conjugate,
random effects. Negative variance components can then occur related to either the normal
random effects, or the conjugate random effects, or both.

In this paper, our focus is on variance components of the so-called Poisson combined
model, presented by [19] for modeling overdispersion and cluster-induced correlation in
count data through two separate sets of random effects. Assuming gamma and normal
distributions for the random effects leads to the Poisson-Gamma-Normal (PGN) model.

The marginal variance is made up of contributions from both random effects, as well
as from the mean-variance relationship of the underlying generalized linear model. The
counterpart for time-to-event data is the Weibull-Gamma-Normal (WGN) model. How-
ever, we will focus on the PGN, for brevity.

In Section 2, we review the count data case, from the simple, purely Poisson, to the
PGN. Important additional expressions related to these models are presented in Ap-
pendix A. The variance components related to the gamma and normal random effects in
the PGN are further studied in Section 3. Comments regarding estimation are provided
in Section 4. Section 5 reports on the application of the PGN model, from which negative
variance components arise.

2. Background on Poisson Models

The Poisson model is a natural choice for count data. This model is one of the prominent
members of the exponential family [14]. The latter provides an elegant and encompassing
mathematical framework within the generalized linear modeling context [14, 21].

Let Yi be Poisson distributed with mean λi, denoted by Yi ∼Poi(λi). The probability
mass function can be written as

f(yi) =
e−λiλyii
yi!

= exp{yi lnλi − λi − ln yi!}.
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The variance function equals νi(µi) = µi = λi. The logarithm is the natural link function,
leading to the classical Poisson regression model with lnλi = x′

iξ, where xi represent
the p-dimensional vector of covariate values and ξ a vector of p fixed unknown regression
coefficients.

The model imposes equality of mean and variance, although empirical research has
abundantly demonstrated that this assumption is often not met in real data scenarios.
Therefore, a number of extensions have been proposed [4, 13]. An elegant way to deal
with overdispersion, that is, when the variability is greater than predicted by the mean-
variance relationship, is through a random-effects approach: Yi|λi ∼ Poi(λi) where λi is
a random variable with E(λi) = µi and Var(λi) = σ2

i . Using iterated expectations, it
follows that

E(Yi) = E[E(Yi|λi)] = E(λi) = µi,

Var(Yi) = E[Var(Yi|λi)] + Var[E(Yi|λi)] = E(λi) + Var(λi) = µi + σ2
i .

It is common to assume a gamma distribution for λi, leading to the Poisson-Gamma
(PG-) model, also known as the negative-binomial model [9, 10].

This model can easily be extended to the case of repeated measures. For this, let us
assume a hierarchical data structure, where Yij denotes the jth outcome measured for
cluster i (i = 1, . . . , N ; j = 1, . . . , ni) and Yi is the ni-dimensional vector of all measure-
ments available for cluster i. The vector of parameters is then λi = (λi1, . . . , λini

)′, with
E(λi) = µi and Var(λi) = Σi. Then, E(Yi) = µi and Var(Yi) = Mi + Σi where Mi is a
diagonal matrix with the vector µi along the main diagonal. For example, assuming the
components of λi to be independent, a pure overdispersion model results, without correla-
tion between the repeated measures. Also, assuming λij = λi, then Var(Yi) = Mi+σ

2
i Jni,

where Jni
is an ni × ni dimensional matrix of ones. Such a structure can be seen as a

count-data version of compound symmetry in the scale of the canonical log link. In many
applications these assumptions will not apply and then more general versions, or other
sub-models thereof, can be used without any problem.

In hierarchical data modeling, the generalized linear mixed model (GLMM) [5, 16] has
become a standard tool in the context of non-Gaussian measures. For the specific case of
count data, the parameters become λij = exp(x′ijξ+z′ijbi), with bi ∼ N(0, D). Owing to
the use of the logarithmic link and the normality of the random effects, the mean vector
and variance-covariance matrix of Y i can be derived in closed form [19]. The expressions
are presented in Appendix A.

An extended version of the aforementioned models was presented by [19], in line with
[3]. These extensions accommodate correlated count data with overdispersion, simulta-
neously combining two separate sets of random effects.

Assuming normal and gamma distributions for these random effects, the so-called
combined model, that is, the Poisson-Gamma-Normal (PGN) model follows. It yields
the Poisson-Normal (P-N), the Poisson-Gamma (PG-), and the purely Poisson model
(P--) as special cases. The P-N is the standard generalized linear mixed model with
the Poisson distribution and logarithmic link function and does not contain the gamma
random effects. As mentioned in the introduction, the PG- is the negative binomial model
and P-- is the ordinary Poisson, without both gamma and normal random effects.
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The PGN model elements are:

Yij ∼ Poi(θijλij),

λij = exp(x′ijξ + z′ijbi),

bi ∼ N(0, D),

θij ∼ Gamma(αij , α
−1
ij ),

Var(θi) = Σi.

(1)

It is often assumed that the components θij of θi are independent, which is usually
reasonable because the bi components induce association between repeated measures,
while θij capture additional dispersion. However, the θij can be assumed dependent as
well. In the independence case, Σi reduces to a diagonal matrix with the variances of
the gamma random effects along the main diagonal. Note that, because of the param-
eterization of the gamma random effects, their mean is equal to 1. This avoids aliasing
with the intercept term in the linear predictor. Further, the variances in Σi take the form
(αij + 1)/αij . As a special case, the αij can be chosen to be independent of j, or even
constant across independent replications. These and the components of D play a crucial
role in what follows.

We note in passing that model assessment tools for the PGN have been studied as well
[24]. This will not be pursued further in this paper.

The PGN and its sub-models admit closed-form expressions for means, variances, and
higher-order moments. As a result, the correlations too have closed-form expressions [26].
All of these are presented in Appendix A.

3. The Case of Random Intercepts and Independent Gamma Variables

We focus on the variance components of the PGN, for the special and important case
where the random-effects structure is reduced to random intercepts only, and with a
constant mean function, thereby reducing the linear predictor to merely ξ0. We will also
assume that the gamma variables are identically and independently distributed, that is,
Σi is a diagonal matrix, with elements α along the diagonal. In such case, the components
of the mean vector, µi = E(Y i), presented in (A1) reduce to

µ = exp

(
ξ0 +

1

2
d

)
= exp(ξ0) exp

(
1

2
d

)
≡ µ0 exp

(
1

2
d

)
,

where d is the scalar version of D in case there is only one normal random effect. To
simplify notation, let ∆ ≡ exp(d/2). Now, we can rewrite the mean, variance, covariance,
and correlation expressions of the PGN, presented in Appendix A, in terms of ∆:

µ = µ0∆,

σ2 = µ0∆ + µ2
0∆2(∆2α+ ∆2 − 1),

ρ =
µ0∆(∆2 − 1)

1 + µ0∆(∆2α+ ∆2 − 1)
, (2)
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where µ0, ∆ and α are unknowns. Assume now that µ̃, σ̃2 and ρ̃, the mean, variance and
correlation, are given, and solve µ0, ∆ and α, where:

µ̃ = µ0∆, (3)

σ̃2 = µ0∆ + µ2
0∆2(∆2α+ ∆2 − 1), (4)

ρ̃ =
µ0∆(∆2 − 1)

1 + µ0∆(∆2α+ ∆2 − 1)
. (5)

Conditions must be imposed: σ̃2 ≥ 0 and 1 ≥ ρ̃ ≥ −1/(n − 1), the latter to ensure the

matrix be positive definite. Also, write µ̃θ̃ = σ̃2, where θ̃ is the overdispersion effect. The
solution to the system of equations (3)–(5) is:

µ0 =
µ̃2√

µ̃2 + ρ̃σ̃2
=

√
µ̃3

µ̃+ ρ̃θ̃
, (6)

α =
σ̃2 − µ̃− ρ̃σ̃2

µ̃2 + ρ̃σ̃2
=
θ̃ − (1 + ρ̃θ̃)

µ̃+ ρ̃θ̃
, (7)

∆2 = 1 +
ρ̃σ̃2

µ̃2
=
µ̃+ ρ̃θ̃

µ̃
, (8)

leading to

d = ln

(
1 +

ρ̃σ̃2

µ̃2

)
= ln

(
µ̃+ ρ̃θ̃

µ̃

)
. (9)

In the following, we will study this solution in some detail.
It should be noted that, should a hierarchical interpretation be desired, α is the shape

parameter of the gamma distribution and should be positive. In a merely marginal view, α
is free of this interpretation and can be viewed simply as an additional model parameter,
to add flexibility to the variance and correlation functions.

3.1 Variance Component Induced by the Gamma Random Effect

In this and the next section we provide additional insight into when negative variance
components and/or negative correlation occurs. This is an aid for the researcher to
interpret their findings from a particular data analysis.

First, we study the variance component related to the gamma random effect, α. If ρ̃ = 0,
that is, when there is no intraclass correlation, d = 0, because ∆2 = exp(d) = 1, which
is obvious given the normal random effect captures the association between repeated
measurements.

Turning attention to the gamma variance component where ρ̃ = 0, we have that
α = (σ̃2 − µ̃)/µ̃2 = (θ̃ − 1)/µ̃. Hence, if there is no overdispersion, that is, θ̃ = 1, then

α = 0. If there is overdispersion (σ̃2 > µ̃), θ̃ > 1 and α > 0. On the other hand, α < 0

when θ̃ < 1, that is, when underdispersion occurs (σ̃2 < µ̃).
When there is perfect positive intraclass correlation, ρ̃ = 1. In such a case, d is positive

because ∆2 = 1+σ̃2/µ̃2 = 1+ θ̃/µ̃. On the other hand, α = −µ̃/(µ̃2 + σ̃2) = −
(
µ̃+ θ̃

)−1

and its sign depends on whether µ̃+ θ̃ > 0 or µ̃+ θ̃ < 0. The latter is not possible, imply-
ing that for perfect positive correlation, α must be negative. Clearly then, a hierarchical
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interpretation is not possible, but, importantly, the model is valid from a purely marginal
point of view. This development describes a situation where negative values for α will
occur. While we concentrated on a limiting case, negative α values will occur for cor-
relations that are sufficiently large. While perfect correlations are rarely encountered in
practice, large correlations are not uncommon. It is then important to have available this
more flexible marginal model.

Another useful scenario is when there is no overdispersion (θ̃ = 1) and ρ̃ is arbitrary.
In such case ∆2 = (µ̃+ ρ̃)/µ̃, implying d = ln [(µ̃+ ρ̃)/µ̃] and α = −ρ̃(µ̃+ ρ̃). Observe
that, if there is positive intraclass correlation (ρ̃ > 0) then α must be negative, that
is, ρ̃ ≥ 0, where ρ̃ ∈ [0, 1], or ρ̃ < −µ̃, where ρ̃ ∈ [−1,−µ̃[, which can happen only for
µ̃ in the unit interval. Thus, if there is positive correlation but no overdispersion, the
overdispersion that is forced upon the model by the said positive correlation should be
compensated for; this can be done only through a negative α.

On the other hand, in the special case without overdispersion and for ρ̃ = 0, then
∆2 = 1, d = 0 and α = 0.

Observing the solution presented in (6)–(9), it is clear that α can be infinity if µ̃+ ρ̃θ̃ =

0, implying that ρ̃θ̃ = −µ̃. Then, µ0 tends to +∞ and ∆2 = 0, that is, d tends to −∞.

3.2 Variance Component Induced by the Normal Random Effect

The variance component d, associated with the normal random effects in the PGN is
nonzero if and only if ∆2 ≥ 0. Then,

1 +
ρ̃σ̃2

µ̃2
≥ 0⇐⇒ ρ̃ ≥ − µ̃

2

σ̃2
= − µ̃

θ̃
.

Depending on the values of µ̃ and θ̃, this will or will not be a genuine condition. Precisely,
if µ̃ ≥ θ̃ the above condition is sufficient. On the other hand, there is an additional
restriction if µ̃ ≤ θ̃. For d to be nonnegative:

1 +
ρ̃σ̃2

µ̃2
≥ 1⇐⇒ ρ̃σ̃2

µ̃2
≥ 0

⇐⇒ ρ̃ ≥ 0,

because σ̃2, µ̃2 ≥ 0. So, nonnegative intraclass correlation (ρ̃) implies nonnegative d and
negative intraclass correlation implies negative d, in line with results that hold for the
linear mixed model.

3.3 Existence of an Extended Marginal Model

When a hierarchical model is formulated and its hierarchical interpretation is preserved,
then the implied marginal model is valid in the sense that it rests upon a valid probability
density function. When the model is marginalized and the so-obtained model is consid-
ered on its own terms (the marginal view), the question arises as to which parameter
combinations make up a valid model.

Prior to addressing this for the PGN, we examine a few pivotal standard situations.
Starting from the linear mixed model, and in particular the random-intercepts model
Yij ∼ N(x′ijξ+ bi, σ

2), with bi ∼ N(0, d), ξ the fixed effects, and xij the covariate vector
for subject i at occasion j, where i = 1, . . . , N and j = 1, . . . , ni. The induced marginal
model is multivariate normal Y i ∼ N(Xiξ, σ

2Ini
+ dJni

), with Y i the vector of Yij ,
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Xi the design matrix for subject i with rows made up by the xij , and Ini
and Jni

the
ni × ni identity and one matrices, respectively. The only condition for this model to
be valid is that Vi = σ2Ini

+ dJni
be positive-definite. This is known to be satisfied if

ρ = d/(d + σ2) ≥ −(ni − 1)−1. While this is a simple condition, it should be noticed
that there remain subtle differences between positive and negative correlation. When
the correlation is positive, a valid model is obtained regardless of the cluster sizes ni,
but for negative correlation, the above condition places a bound on the maximal cluster
size. Note that exactly the same condition applies to the marginalized beta-binomial
model [see 16, 22, 25]. For the linear mixed model with general random-effects design,
the condition on the marginal variance-covariance matrix is that Vi = ZiDZ

′
i + Σi is

positive-definite (with Zi the random-effects design, D the variance of the random-effects
vector, and Σi the residual variance-covariance matrix). It should be clear already that
the condition that D and Σi be positive-definite is easier than that Vi be positive-definite
over a relevant set of Zi and Σi. Even when Σi = σ2Ini

, there is still a dependence on
the cluster size.

While the above marginalized hierarchical models are still relatively easy to study, it
is much worse for a model like the Bahadur model, a directly specified marginal model
for multivariate binary data, because the restrictions that apply to its parameter space
(consisting of pairwise and higher-order correlations) are to this day only partially stud-
ied. Sufficient work has been done to know that the parameter space is highly restricted
[1, 2, 16].

It is therefore unrealistic to expect that one can very easily establish that a given
parameter combination for the marginalized PGN leads to a valid model. We have several
tools and arguments at our disposition, though.

First, as shown in Appendix A, not only the marginal mean, variance, covariance, and
correlations are known in explicit form, the same is true for the marginal joint probability
mass function, although it takes the form of an infinite series (see also Appendix A).
Admittedly, this probability mass function is not so easy to examine. It is more fruitful to
study the marginal cumulants or moments. The cumulants are especially simple because,
in the standard Poisson model, all cumulants are equal to the Poisson parameter. [19]
established the higher-order moments as well:

E(Y k
ij) =

k∑
`=0

S(k, `)
β`Γ(α+ `)

Γ(α)
exp

[
`x′ijξ +

1

2
`2z′ijDzij

]
,

where S(k, `) is the so-called Stirling number of the second kind. Moments of a mixed
type, i.e., involving products of various outcomes of the same subject, can be derived in
a similar fashion.

Second, and very important, it is actually not necessary to study the higher-order mo-
ments or cumulants. Rather, it is sufficient that the mean and variance of the marginal-
ized PGN exist. As soon as this is satisfied, there exists a model, though not necessarily
of PGN form in all of its moments, that is valid. This assertion is based on the work
by [15]. These authors show that generalized estimating equations, when producing a
valid marginal mean function and variance-covariance structure, can be thought of as
coming from a valid joint distribution function. Their argument is based on consider-
ing conditional higher-order moments, rather than marginal ones. Fortunately, the same
argument can be invoked here. In Sections 3.1 and 3.2, we derived sets of parameters
that are marginally valid, even though they do not correspond to a hierarchical PGN,
indicating that there is value in the marginal extension.

Third, [11] showed how the combined model, using a general random-effects structure
combined with residual marginal association, can be used to broadly and flexibly generate
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correlated count data. These authors start from a given marginal structure, and then
use normal random effects and/or multivariate gamma variables to derive a pre-specified
multivariate Poisson random variable. In case one wants to generate such variables purely
marginally, it is sufficient to work with the multivariate gamma distribution.

All of this, taken together, provides sufficient credibility to the marginalized PGN, of
the same nature as available for other multivariate distributions, regardless of whether
or not they are marginalized versions of hierarchical models.

4. Estimation and Inference

Standard generalized linear mixed models can be fitted to data with a variety of software
tools, such as the SAS procedures GLIMMIX and NLMIXED. These and other tools offer
a variety of numerical optimization algorithms, a key component of which is the method
for integrating over the normal random effects. It has been shown [16] that Taylor-series-
expansion based methods, such as MQL and PQL, perform poorly, especially with binary
data, but that the quality of the approximation used, especially for PQL, improves with
count and time-to-event data. Further methods are based on Laplace approximations
and Gauss-Hermite quadrature. The PGN, formulated in (1), can be fitted using the
SAS procedure NLMIXED, because it allows to flexibly use program statements for the
conditional likelihood. The conditional likelihood here is understood as the likelihood
integrated over the conjugate but not over the normal random effects. Using the example
in the next section, we will assess the relative ease/complexity with which boundary
and/or negative estimates can or cannot be accommodated using the various methods.
When a negative estimate is allowed for by the user, it is still possible that it cannot be
found purely because an algorithm is used that does not allow for it (i.e., that requires
a hierarchical interpretation). For example, we will note that the Laplace approximation
allows for negative normal random-effects variance components. There is then a tradeoff
between the accuracy of a method on the one hand and its capability of extending the
parameter space of the variance components on the other.

Drawing inferences from estimated variance components is not trivial, regardless of
whether linear mixed models or extensions of the type discussed in this paper are con-
sidered. When non-negativity constraints are lifted, the so-called boundary problem is
removed and standard asymptotic inference tools can be used (likelihood ratio, score,
and Wald tests asymptotically follow χ2 distributions). In the reverse case, mixtures of
χ2’s should be used instead. Which mixtures apply in a particular cases depends on
the geometry of the null and alternative parameter space, and fortunately not on the
particular hierarchical model used [17, 28].

5. Inheritance Study of Trichomes Density in Tomato

We consider data from an experiment that was implemented at the Biology Department
of the Federal University of Lavras, Brazil, during the first semester of 2014, to study the
inheritance of some types of trichomes in tomato. Trichomes are epidermal outgrowths of
diverse structure and function on plants. The glandular ones are of particular importance.
They secrete oils, essences, enzymes, urticant substances and, for this reason, some of
them are associated with resistance to some insect-pests.

In this study, plants from populations P1, P2, F1, F2, BC1(1) and BC1(2) were evaluated.

On each plant three locations were sampled and at each of them an area of 1 mm2 was
defined. Furthermore, at each location, both front (adaxial) and back (abaxial) faces of
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Table 1. Tomatoes study. Descriptive statistics for different trichomes, con-

sidering 19 plants from P2 population.

Face Glandular Type Code x̄ s2

Abaxial Yes I G-I-ab 0 0
IV G-IV-ab 20.28 35.03
VI G-VI-ab 0 0
VII G-VII-ab 0 0

I, IV, VI and VII G-ab 20.28 35.03
No V NG-V-ab 1.93 3.21

II and III NG-II-III-ab 0.11 0.17
II, III and V NG-ab 2.04 3.18

Adaxial Yes I G-I-ad 0.04 0.04
IV G-IV-ad 7.11 30.13
VI G-VI-ad 0.09 0.22
VII G-VII-ad 0.14 0.23

I, IV, VI and VII G-ad 7.37 29.63
No V NG-V-ad 3.33 2.98

II and III NG-II-III-ad 0.19 0.55
II, III and V NG-ad 3.53 3.08

Table 2. Tomatoes study. Parameter estimates (standard errors) for the PGN, consi-
dering random intercepts, for some trichome counts. The estimation method used was

penalized quasi-likelihood (PQL).

Effect Par. G-IV-ab G-IV-ad NG-V-ab NG-V-ad
Intercept ξ0 3.01 (0.05) 1.84 (0.13) 0.55 (0.17) 1.20 (0.08)
Overdispersion α 0.01 (0.01) 0.02 (0.03) -0.05 (0.08) -0.08 (0.05)
Compound symmetry d 0.03 (0.02) 0.25 (0.10) 0.33 (0.17) 0.05 (0.04)
Correlation ρ 0.32 (0.16) 0.62 (0.14) 0.48 (0.21) 0.18 (0.17)

G-ab G-ad NG-ab NG-ad
Intercept ξ0 3.01 (0.05) 1.89 (0.12) 0.61 (0.16) 1.25 (0.08)
Overdispersion α 0.01 (0.01) 0.02 (0.03) -0.06 (0.07) -0.07 (0.05)
Compound symmetry d 0.03 (0.02) 0.22 (0.09) 0.31 (0.16) 0.04 (0.04)
Correlation ρ 0.32 (0.16) 0.60 (0.14) 0.48 (0.21) 0.16 (0.16)

the leaf were examined. On each face, trichomes of eight different types were counted. So
these count responses were measured repeatedly (in a nested sampling scheme) on each
plant.

For illustrative purposes we will use data from the P2 population, which consists of
19 plants. Let yij be the number of a trichoma type counted in the j-th location of the
i-th plant, where i = 1, 2, . . . , 19 and j = 1, 2, 3, and the choice lnλij = ξ0 + bi, where ξ0

is the overall effect and bi is the random effect that captures the plant-level variability,
assumed to be normally distributed with mean 0 and variance d.

The P2 individuals are inbreeds, that is, they have the same genotype. Under ho-
mogeneous environmental conditions, it is expected that the overall variability between
individuals with respect to a given characteristic is low and, therefore, this implies that
underdispersion may be expected. As we have seen, such underdispersion in hierarchical
data is captured by negative variance components. Indeed, while the correlation will likely
remain positive, the α parameter might become negative. Table 1 presents descriptive
statistics for the number of different trichomes in such a population.

In line with Section 4, we fitted the PGN to the tomatoes data, employing PQL,
Laplace, and adaptive Gauss-Hermite quadrature, as implemented in the SAS procedure
GLIMMIX. The results for the PQL method are displayed in Table 2. Through this
method, convergence was achieved in most cases and standard errors for both fixed
and random effects estimates were consistent. This numerical stability did not occur for
the other estimation methods considered. Results from these are presented and briefly
discussed in Appendix C. Recall that the PQL method is based on a relatively coarse
Taylor series expansion, which is a factor to be taken into consideration next to the
numerical stability.
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The estimates for intraclass correlations displayed in Table 2 were obtained from (2)
and their standard errors were calculated using the delta method [29]. Details on the
calculation are presented in Appendix B.

In all cases, positive correlations were obtained. This is somewhat expected since mea-
sures within the same plant are more similar than measures between different plants.
This leads to positive estimates for the variance component d. For the trichome NG-ad,
the correlation is not significantly different from 0 and a modest underdispersion is ob-
served, which leads to a negative estimate of α. A similar case is that of the NG-V-ad
trichome.

In line with the calculated intraclass correlations and with the results presented in
Section 3, positive correlations and no overdispersion implies negative α, given that ρ
induces extra variance, which is removed by the negative estimate of the α component.
This occurs for trichomes NG-V-ab and NG-ab.

Although the PQL method has shown the best performance among the three esti-
mation methods, it failed while fitting the PGN model for trichomes G-I-ad, G-VI-ad,
G-VII-ad, NG-II-III-ab and NG-II-III-ad. In all these cases convergence has not been
achieved. Ideally, additional methods should be developed for negative variance compo-
nent estimation, especially when interest lies in inference for such effects.

6. Concluding Remarks

Hierarchical data are common in empirical research. For the analysis of continuous data,
the linear mixed model is a flexible tool while the generalized linear mixed model is
commonly used to model non-Gaussian data. Beyond inferences on the fixed effects, such
models allow inferences about variance components. While it seems natural to interpret
the parameters in hierarchically formulated models from a purely hierarchical standpoint,
there are practically relevant situations that cannot be captured by such an hierarchical
interpretation. For example, the random-intercepts version of the linear mixed models
induces a compound-symmetry marginal model with constant, non-negative correlation.
In a context where cluster members experience correlation, however, negative correlations
are not uncommon. These can be captured by the implied marginal model but not by
the purely hierarchical formulation. In linear models, it is clear that what hierarchically
is a variance, becomes a covariance marginally, thus allowing for negative correlation.
These issues have been documented in the literature [7, 18, 20, 23].

In this work, we investigated non-Gaussian hierarchical data, where both overdisper-
sion/underdispersion and correlation occur. There are various reasons why negative vari-
ance components may be needed: the occurrence of underdispersion, the occurrence of
correlation, and the simultaneous occurrence of high correlation and low overdispersion.
We studied these situations through the Poisson-Gamma-Normal (PGN) model. This
model, developed for count data, accommodates hierarchies as well as overdispersion
in the data, through normal and gamma distributed random effects, respectively. The
variance components associated with these distributions were studied theoretically and
a real data were used for illustration purposes. Negative estimates of variance compo-
nents can occur, especially when the variability is low and there is an expected negative
intraclass correlation perhaps due to intra-specific competition. Enforcing non-negative
variance components and/or non-negative correlation, when data or design suggest that
the reverse is likely may result in misleading conclusions. This is the case already for
Gaussian data [18], but the problem exacerbates with non-Gaussian data, because of the
non-linear relationships between mean, variance, and correlation functions. Of course,
when interest is in marginal functions only, once might consider, for example, the use of
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generalized estimating equations (GEE) [8]. While these definitely have advantages, their
moment-based nature precludes the use of certain inferential tools (e.g., likelihood ratio
tests), and the estimation of certain fucntions, such as correlation and high-order associ-
ation functions. Also, the non-likelihood basis of GEE leads to additional complications
when data are incomplete.
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Appendix A. Model Elements for the Poisson-Gamma-Normal and
Poisson-Normal

The mean and variance expressions for the PGN (1) were presented by [19]. The mean
vector µi = E(Y i) has components

µij = φ exp

(
x′ijξ +

1

2
z′ijDzij

)
(A1)

and the variance-covariance matrix is given by

Var(Y i) = Mi +Mi(Pi − Jni
)Mi, (A2)

where Mi is a diagonal matrix with the vector µi along the diagonal and the (j, k)th

element of Pi equals

pi,jk = exp

(
1

2
z′ijDzik

)
σi,jk + φijφik

φijφik
exp

(
1

2
z′ikDzij

)
.

Note that σi,jk is the (j, k)th element of Σi.
[26] presented closed-form expression for the correlation function for the general case

of the combined model and its specific cases. Considering the combined model with
arbitrary fixed- and random-effects structures, the variance, deriving from (A2) equals:

Var(Yij) = φij exp
(
x′ijξ + 1

2z
′
ijDzij

)
+ σi,jj exp(2x′ijξ + 2z′ijDzij)

+φ2
ij exp(2x′ijξ + z′ijDzij)[exp(z′ijDzij)− 1].
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Likewise, the covariance can be written as:

Cov(Yij , Yik) = φij exp

(
x′ijξ +

1

2
z′ijDzij

)
×
{(

σi,jk
φijφik

+ 1

)
exp

[
1

2
(z′ijDzik + z′ikDzij)

]
− 1

}
×φik exp

(
x′ikξ +

1

2
z′ikDzik

)
.

The correlation between two measures j and k on the same cluster (subject) i then is:

Corr(Yij , Yik) =
Cov(Yij , Yik)√

Var(Yij)Var(Yik)
.

These expressions also produce their simplified counterparts for important special cases.
For the P-N, when only normal random effects are present, the mean vector components
slightly simplify:

µij = exp

(
x′ijξ +

1

2
z′ijDzij

)
,

and the variance-covariance matrix is

Var(Y i) = Mi +Mi[exp(ZiDZ
′
i)− Jni

]Mi.

Similar logic as in the PGN leads to the correlation expression for this special case,
considering:

Var(Yij) = exp

(
x′ijξ +

1

2
z′ijDzij

)
+ exp(2x′ijξ + z′ijDzij)[exp(z′ijDzij)− 1],

and

Cov(Yij , Yik) = exp

(
x′ijξ +

1

2
z′ijDzij

)[
exp(z′ijDzik)− 1

]
exp

(
x′ikξ +

1

2
z′ikDzik

)
.

It is useful to recall that [19] derived the marginal joint distribution of the PGN, taking
the form:

P (Y i = yi) =
∑
t

 ni∏
j=1

(
yij + tj
yij

)
·
(
αj + yij + tj − 1

αj − 1

)
· (−1)tj · α−yij−tjj



× exp

 ni∑
j=1

(yij + tj)x
′
ijξ



× exp

1

2

 ni∑
j=1

(yij + tj)z
′
ij

D
 ni∑
j=1

(yij + tj)zij

 . (A3)

13

Page 13 of 16

URL: http://mc.manuscriptcentral.com/cjas

Journal of Applied Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 18, 2015 Journal of Applied Statistics Neg˙vc˙JAS˙02

In the above equation, the vector-valued index t = (t1, . . . , tni
) ranges over all non-

negative integer vectors.

Appendix B. Precision Estimation of Correlation in the
Poisson-Gamma-Normal Model

Standard errors for the intraclass correlations in the Poisson-Gamma-Normal (2) model
were obtained using the delta method. We consider ρ = ζN/ζD, apply the delta method
first to numerator and denominator, and then to the ratio. Assume W is the variance-

covariance matrix of ζ =

(
ζN
ζD

)
, then Var(ζ) ∼= T ′WT , where

T =
∂ζ

∂(ζN , ζD)
=

(
1/ζD
−ζN/ζ2

D

)
.

To estimate W , we also use the delta method. At this stage, let φ be the parameter vector
relevant for ζN and ζD and V be its variance-covariance matrix. Then, W ∼= S′V S, with

S =
∂(ζN , ζD)

∂φ
.

The S matrix is 
∂ζN
∂d

∂ζD
∂d

∂ζN
∂α

∂ζD
∂α

∂ζN
∂ξ0

∂ζD
∂ξ0

 ,

where

∂ζN
∂d

= exp

(
ξ0 +

1

2
d

){
1

2
[exp(d)− 1] + exp(d)

}
,

∂ζD
∂d

= exp

(
ξ0 +

1

2
d

){
1

2
[3 exp(d)α+ 3 exp(d)− 1]

}
,

∂ζN
∂α

= 0,

∂ζD
∂α

= exp

(
ξ0 +

3

2
d

)
,

∂ζN
∂ξ0

= exp

(
ξ0 +

1

2
d

)
[exp(d)− 1],

∂ζD
∂ξ0

= exp

(
ξ0 +

1

2
d

)
[exp(d)α+ exp(d)− 1].

The correlation expression depend on estimates of fixed and random effects, that is, d,
α and ξ0, and the V matrix should contain all their variances and covariances. However,
the SAS procedure GLIMMIX provides a variance-covariance matrix for the random
effects and another variance-covariance matrix for the fixed effects, separately. Then, the
covariances between random and fixed estimates in the V matrix were set to zero, which
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Table C1. Tomatoes study. Parameter estimates (standard errors) for the PGN, considering
random intercepts, for some trichome counts. The estimation method used was Laplace.

Effect Par. G-IV-ab G-IV-ad NG-V-ab NG-V-ad
Intercept ξ0 3.00 (0.05) 1.82 (0.13) 0.66 (0) 1.19 (0)
Overdispersion α 0.01 (0.01) 0.02 (0.03) -0.05 (.) -0.08 (.)
Compound symmetry d 0.02 (0.02) 0.24 (0.10) 0.33 (.) 0.05 (.)

G-ab G-ad NG-ab NG-ad
Intercept ξ0 3.00 (0.05) 1.87 (0.12) 0.56 (0.32) 1.26 (0.07)
Overdispersion α 0.01 (0.01) 0.02 (0.03) 1.89×10−7 (0.01) 0.00 (0.07)
Compound symmetry d 0.02 (0.02) 0.21 (0.09) 0.28 (0.28) -0.11 (.)

Table C2. Tomatoes study. Parameter estimates (standard errors) for the PGN, considering
random intercepts, for some trichome counts. The estimation method used was adaptive Gauss-

Hermite quadrature.

Effect Par. G-IV-ab G-IV-ad NG-V-ab NG-V-ad
Intercept ξ0 3.00 (0.05) 1.82 (0.13) 0.50 (0.17) 1.19 (0.08)
Overdispersion α 0.01 (0.01) 0.02 (0.03) 1.28×10−7 (.) 9.72×10−8 (.)
Compound symmetry d 0.02 (0.02) 0.24 (0.10) 0.30 (0.17) 0.02 (0.04)

G-ab G-ad NG-ab NG-ad
Intercept ξ0 3.00 (0.05) 1.87 (0.12) 0.56 (0.17) 1.25 (0.08)
Overdispersion α 0.01 (0.01) 0.02 (0.03) 8.67×10−8 (.) 1.52×10−7 (.)
Compound symmetry d 0.02 (0.02) 0.21 (0.09) 0.27 (0.16) 0.01 (0.03)

are not very different from the true values.
When there are covariate effects, additional parameters, say ξ, need to be considered

in the method. In such case and due to the linearity in the linear predictor of GLMs, the
derivatives will be the same as those with respect to ξ0, but depending on the covariate
values.

Appendix C. Results from Other Estimation Methods in the
Poisson-Gamma-Normal Model

In Tables C1 and C2 the estimates for the PGN, considering Laplace and adaptive Gauss-
Hermite quadrature as estimation methods, are displayed. When compared to the PQL
results, both methods showed poor performance for this application.

In some cases, the Laplace method failed to estimate the random effects and their
standard errors. Specifically for trichomes NG-V-ab and NG-V-ad, the convergence was
achieved, but the covariance matrix is the zero matrix. For trichome NG-ad, the conver-
gence was also achieved, but the estimated G matrix is not positive definite.

In a simulation study, [23] investigated the performance of the PQL and Laplace meth-
ods in the face of negative variance components for binary clustered data, by means of
generalized linear mixed models. In their study, Laplace approximations were more ac-
curate than PQL and convergence was easier to reach, different from what we noticed in
this application for count data and using the PGN.

Although quadrature methods are generally considered the most accurate ones, they
adopt a hierarchical perspective and cannot be used when negative variance components
are allowed. Confirming this, the method failed in all situations where negative variance
components are expected.

Appendix D. SAS code

The Poisson-Gamma-Normal model can be fitted using the SAS procedure NLMIXED
[19]. It allows the user to implement his own likelihood, using the so-called general like-
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lihood. However, such procedure makes use of adaptive Gaussian quadrature as approxi-
mation method of the integral over the random effects. This method adopts a hierarchical
perspective and does not allow for negative estimates of the variance components.

Alternatively, we have used the SAS procedure GLIMMIX and the built-in negative
binomial likelihood. The normal random effects are included using the RANDOM state-
ment, which leads to the PGN model. The nobound option requests the removal of
boundary constraints on covariance and scale parameters, allowing variance components
estimates to be negative. Note that this option can not be used for adaptive quadrature
estimation.

proc glimmix data=tricp2 method=laplace nobound ASYCOV;

TITLE ‘Laplace PGN model: NG_V_ad - P2’;

CLASS plant;

MODEL NG_V_ad =/ s link=log dist=NB COVB;

RANDOM int / subject=plant;

run;

proc glimmix data=tricp2 method=rspl nobound ASYCOV;

TITLE ‘PQL PGN model: NG_V_ad - P2’;

CLASS plant;

MODEL NG_V_ad =/ s link=log dist=NB COVB;

RANDOM int / subject=plant;

run;

proc glimmix data=tricp2 method=quad;

TITLE ‘QUAD PGN model: NG_V_ad - P2’;

CLASS plant;

MODEL NG_V_ad =/ s link=log dist=NB COVB;

RANDOM int / subject=plant;

run;
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