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Along with the development of new materials, advanced medical imaging and surgical techniques, osseointegrated dental

implants are considered a successful and constantly evolving treatment modality for the replacement of missing teeth in patients

with complete or partial edentulism. The importance of restoring the peripheral neural feedback pathway and thus repairing the

lack of periodontal mechanoreceptors after tooth extraction has been highlighted in the literature. Nevertheless, regenerating the

nerve fibers and reconstructing the neural feedback pathways around osseointegrated implants remain a challenge. Recent

studies have provided evidence that platelet-rich plasma (PRP) therapy is a promising treatment for musculoskeletal injuries.

Because of its high biological safety, convenience and usability, PRP therapy has gradually gained popularity in the clinical field.

Although much remains to be learned, the growth factors from PRP might play key roles in peripheral nerve repair mechanisms.

This review presents known growth factors contributing to the biological efficacy of PRP and illustrates basic and (pre-)clinical

evidence regarding the use of PRP and its relevant products in peripheral nerve regeneration. In addition, the potential of local

application of PRP for structural and functional recovery of injured peripheral nerves around dental implants is discussed.
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INTRODUCTION

As one of the major advances in dental medicine in the past 50
years, dental implants have revolutionized the traditional way
of oral rehabilitation. By reestablishing physiological function
and even promoting general health, treating complete or partial
edentulous patients using dental implants is regarded as an ideal
treatment plan today.1 In addition to these generally known
benefits of replacing lost teeth with dental implants, the natural
periodontal ligament and the intimate contact between collagen
fibers and Ruffini mechanoreceptive terminals (e.g., myelinated
and unmyelinated nerve fibers) are thought to be inevitably
impaired by tooth loss.2 However, this latter assumption is
contradicted by a phenomenon, first described by Professor
P-I Brånemark, in which lower-limb amputees walking while
wearing bone-anchored prostheses are able to differentiate

between different soils.3–5 Furthermore, patients with oral
implants have reported a gradual increase in their tactile function
over time.6

This phenomenon, known in the literature as “osseoperception”,
originates from the bone in the immediate vicinity of the inserted
implants.4 In general terms, this tactile perception has been defined as
the mechanosensibility associated with osseointegrated implant reha-
bilitation, which can be transduced by various kinds of mechanor-
eceptors located in the oro-facial region, such as in the muscle, joints,
oral mucosa, periosteal tissues and skin.7 An animal study from our
group demonstrated that myelinated nerve fibers densely populated
the peri-implant mucosa and apical regions and, to a lesser extent,
were also detected in the woven bone and osteons near the implant
threads,8 indicating that the peri-implant soft tissue can play a role in
the repair and regeneration of sensory nerve endings. Recent reports
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even show that an osseointegrated implant can at least partly restore
the peripheral neural feedback pathway.9–10

Clinical evidence in favor of the osseoperception concept includes
signs of the existence of regenerated nerve fibers around implant
threads,11 recovery of tactile function12 and even activation of the
primary sensorimotor cortex while dental implants are mechanically
stimulated.13 These findings add to the evidence that peri-implant
nerve tissue possesses the inherent capacity to regenerate after tooth
extraction, albeit in most cases on a quite basic level.
In an attempt to further enhance osseoperception, novel treatment

strategies have been proposed involving reconstruction of the peri-
implant ligament,14 transplantation of Schwann cells (SCs),15 injection
of neuropeptides (e.g., calcitonin gene-related peptide-α)16 and
various implant placement and loading protocols.8 However, none
of the aforementioned principles have reached true proof-of-principle
status, and their potential clinical use remains questionable to date.
On the basis of the currently available evidence, platelet-rich plasma

(PRP), which contains growth factors that positively influence neural
cell survival, might have the potential to promote peripheral nerve
regeneration.17–18 Thus, the following review summarizes the state-of-
the-art application of PRP for recovery of injured peripheral nerves
and offers an outlook on possible future use as an emerging strategy
for osseoperception. The articles cited in the review, published up to
the 15 November 2016 and including electronic early-release publica-
tions, were acquired using three databases: MEDLINE (PubMed), Web
of Science (ISI Web of Knowledge) and OpenGrey (System for
Information on Grey Literature in Europe).

PRP TREATMENT: PREPARATION AND BIOLOGICAL

CHARACTERISTICS

As a promising autogenous graft, PRP has been a focus in regenerative
medicine in recent years. Following the publications by Whitman et al.19

and Marx et al.,20 the application of PRP has gained increasing
popularity in the medical field, especially in oral and maxillofacial
surgery. In the past decade, PRP has been developed via a variety of
commercial and home-made techniques, and thus various forms of PRP
exist, including plasma rich in growth factors (PRGFs),21 cell separator

PRP,22 Choukroun’s platelet-rich fibrin,23 concentrated PRP,24 platelet-
leukocyte gel25 and simplified PRP products called concentrated growth
factors.26 In daily practice, most clinicians apply one or two specific PRP
products according to their own experience, in liquid or solid form.
To avoid confusion in the interpretation of published results, there

is a clear need to accurately describe the products that are tested and
to try to classify them accordingly (Table 1).27–29 Ehrenfest et al.
suggested that the various platelet concentrates can be classified into
four main categories, depending on the known leukocyte content
and fibrin architecture:30–32 pure platelet-rich plasma (P-PRP),
leukocyte- and platelet-rich plasma (L-PRP), pure platelet-rich fibrin
(P-PRF), and leukocyte- and platelet-rich fibrin (L-PRF). Given this
variety of preparations and applications of platelet concentrates,32

studies do not always adhere to the proposed classification, which
leads to inconsistent results and confusion in comparing the efficacy of
PRP products. Thus, the term “PRP” is used in the present review to
include all known terms, and specific names will be used only when
applicable.
In general, PRP is derived from the centrifugation of autologous

whole blood and finally forms a gel-like structure when mixed with
thrombin and calcium chloride.33 After the activation of platelets, a
cocktail of growth factors with mitogenic and chemotactic character-
istics are induced and released from the platelets’ α-granules, an
organelle critical for wound healing. Instead of the effect being limited
by the use of a single growth factor, the multiple factors together
mimic the complex situation of natural tissue repair and improve
processes such as angiogenesis, inflammation and the immune
response. There is also convincing evidence that the survival of
sensory neurons depends on multiple neurotrophic factors acting
synergistically or in a defined sequence.34 The antimicrobial potential
of PRP, owing to the leukocytes and neutrophils it contains, was also
reported in a recent systematic review of available preclinical evidence
and is one of PRP’s critical characteristics in controlling postoperative
infections at surgical sites.35

A further advantage is that all growth factors, proteins and cytokines
from PRP are autologous and non-toxic. This treatment using the
patient’s own blood could avert complex ethical issues, immunological

Table 1 Current classification of platelet concentrated materials and their key characteristics in clinic application

Classification Contents Pros Cons Preparation

Concentration of pla-

telets and leukocytes

P-PRP Platelets with low-density fibrin network after

activation, without leukocytes

Liquid solution or as gel after

activation can be injected or

placed on wound

Dissolves quickly

like a fibrin glue

Two-step centrifugation, with

anticoagulant and blood

activator

Platelets:

500×103 μL−1;

leukocytes:

0.2×103 μL−1

L-PRP Platelets with low-density fibrin network and

leukocytes

Liquid solution or as gel after

activation can be injected or

placed on wound

Dissolves quickly

like a fibrin glue

Two-step centrifugation, with

anticoagulant and blood

activator

Platelets:

500×103 μL−1;

leukocytes:

20×103 μL−1

P-PRF Platelets with high-density fibrin network and

without leukocytes

Only exist as gel after

activation

Solid gel, cannot

be injected

Two-step centrifugation, with

anticoagulant and blood

activator

Platelets:

400×103 μL−1;

leukocytes:

100-600 μL−1

L-PRF Platelets and half of the leukocytes (mainly

lymphocytes), with a high-density fibrin network

Gel without anticoagulant;

natural blood clot

Solid gel, cannot

be injected

One-step centrifugation, without

anticoagulant or blood activator

Platelets:

400×104 μL−1;

leukocytes:

60×103 μL−1

L-PRF, leukocyte- and platelet-rich fibrin; L-PRP, leukocyte- and platelet-rich plasma; P-PRF, pure and platelet-rich fibrin; P-PRP, pure and platelet-rich plasma.
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rejections or similar adverse effects known to exist with allograft or
xenograft materials. Compared to an artificially synthesized single
growth factor or most of the other biomaterials available on the
market, the clinical collection and preparation of PRP are convenient,
efficient and economic.36 In addition, the gel-like consistency of PRP
is beneficial for its application into small bone defects, and it is not
easily washed away from the surgical site.

The role of growth factors from PRP on nerve regeneration
A growing body of studies has demonstrated that topical PRP
application is effective in soft-tissue healing and bone regeneration
in implant surgery.37–39 The potential of PRP in modulating soft- and
hard-tissue formation and regeneration depends on the levels of
released growth factors.40 For peripheral nerve regeneration, as
summarized in Table 2,41–52 various known cytokines and growth
factors within platelet-rich plasma, including transforming growth
factor-β (TGF-β), platelet-derived growth factor, vascular endothelial
growth factor, insulin-like growth factor and basic fibroblast growth
factor (bFGF), have been discussed as being crucial for cell prolifera-
tion and differentiation, stimulation of angiogenesis and scar control
in the process of regenerating peripheral nerve structures. Although
the mechanism by which these growth factors work together
and interact efficiently for wound healing remains incompletely
understood,53 preliminary studies have already demonstrated positive
effects from PRP acting as a pool of growth factors.

Evidence from clinical studies
When traumatic gaps of nerve structures are o3 cm long, PRP has
shown the ability to induce nerve regeneration.17 To regenerate axons
across nerve gaps longer than 3 cm, it is suggested that PRP be applied
with a bridging graft material that both supports and promotes axon
regeneration. Two case reports have suggested that a fibrin clot could
help with full functional recovery after surgical repair of a totally
transected abducens nerve.54 PRF together with a collagen tube has
been shown to induce appropriate sensory and motor recovery
across a 12-cm-long ulnar nerve gap.55 A case report demonstrated
PGRF’s therapeutic potential for the treatment of common perineal
nerve palsy associated with multiple ligament injuries of the knee.56

A report of a case in which PRGF was used for the treatment of
bisphosphonate-related osteonecrosis of the jaw showed recovered
sensitivity and partially regenerated bone in a 1-year follow-up.57 The
fact that defects around dental implants are normally not as large as
peripheral nerve defects might make the regeneration of peri-implant
nerve fibers more feasible because of the reduced need for added
biomaterials; PRP can be used alone.
Investigations in the field of functional neural recovery have

reported that PRP prompts the re-establishment of sensitivity within
2 weeks of observation for patients with peripheral neuropathy
induced by leprosy58 and improves upper-limb function by 3-month
follow-up.59 Similarly, a preliminary clinical study found that, when a
modified inferior alveolar nerve lateralization technique was per-
formed, the covering of the inferior alveolar nerve with platelet-rich
materials and a collagen membrane could result in accelerated
recovery of sensation within the first 6 months as evaluated by
subjective two-point discrimination and static light touch.60 Further-
more, this treatment method could significantly reduce the duration of
the initial discomfort. A recent split-mouth designed human study61

indicated that the use of L-PRF as a socket-filling material could
achieve not only the preservation of horizontal and vertical ridge
dimension but also the regrowth of blood vessels and nerve axons

(Figure 1) in the anterior maxillary regions at 3 months after tooth
extraction.
However, a randomized, controlled and single-blinded clinical study

found that PRP drops alone had no positive effect on the recovery of
corneal sensitivity after laser therapy, although beneficial effects
were observed in the promotion of epithelial healing.62 This
finding is probably due to the limited bioavailability of growth factors
on the intact corneal stroma when the substance is topically
administered.
It is also worth mentioning that, for ethical reasons, histological

analyses of human samples to investigate neural regeneration are rare.
In most cases, functional and morphologic evaluations, such as ankle
stance angle, walking track analysis and electrophysiologic tests, are
not only the recommended methods but also the few feasible options
for studies of peripheral nerve regeneration.63 For clinical situations in
implant dentistry, oral psychophysical studies and magnetic resonance
imaging tests5 are usually performed to evaluate and monitor the
osseoperception around implants.

Evidence from basic research
Although relatively few human trials have involved PRP therapy, there
is mounting evidence from in vitro and animal experiments. PRP
has been used to study the effect of stimulating neural regeneration of
the rat facial nerve,64 rat sciatic nerve,65–74 rat cavernous nerve,75–76

guinea pig facial nerve,77 rabbit sciatic nerve,78 dog anterior
cruciate ligament79 and rat spinal cord.80 These studies presented
positive results regarding functional nerve recovery,64,66–77,80 regen-
eration of axons,64–65,70–72,75–76 g-ratio (an index of optimal axonal
myelination),67 thickness of the myelin sheath,66,70,77–78 nerve
conduction velocity,78 revascularization and reinnervation,79 and axon
diameter,69,70,80 with observation periods ranging from 2 to 12 weeks
postoperatively.
In addition, two recent studies have suggested that concentrated

growth factors (CGFs) could promote not only the migration of SCs
in vitro81 but also functional recovery in a rat model of sciatic
nerve crush injury.18 By contrast, one study82 reported that platelet
gel with a collagen tube conduit did not have a beneficial effect
on rat sciatic nerve regeneration 12 weeks after microsurgical
reconstruction. However, 2 years later, the same group83 observed
that the same gel could have a positive effect on nerve repair. The
discrepancy between the studies may be due to differences in
histological processing or to excessive stimulation of collagen forma-
tion in the initial study by growth factors from the platelet gel,
including TGF-β and bFGF.
Although numerous relevant animal studies have been

carried out, only a few of these investigations clearly provided
specific platelet concentrations.67–68,72,84–86 In rat studies, the
average whole-blood platelet count has been reported to be
478.12 × 103 μL − 1, and the average platelet count of PRP was
3 221.34 × 103 μL − 1,72 whereas the effective concentration of
platelets in another investigation using rats was 1 500 × 103 plate-
lets per μL.67 Similarly, in an ovine model, restoration of motor
function at 12 weeks after peroneal nerve compression injury was
achieved using scaffolds and PRGF injections; the platelet count
was 202 × 103–349 × 103 μL − 1.86 Considering the relatively wide
range of platelet counts in these studies, it would be of importance
for future studies to evaluate in more detail the effective range of
platelet concentration, whole-blood platelet counts and, if applic-
able, their growth factor levels.
Furthermore, an in vitro study indicated that the appropriate

concentration of PRP from rats, with an average whole-blood
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platelet count of 536× 103 μL− 1 and a PRP platelet count of
3 481.75× 103 μL− 1, has the potential to stimulate proliferation and
migration of SCs, which are regarded as the primary structural and
functional cells of the peripheral nervous system.85 An in vitro
investigation noted that the addition of PRP, with a mean whole-
blood platelet count of 186.35× 103 μL− 1 and a PRP platelet count of
1 237.28× 103 μL− 1, could facilitate the potential use of human
adipose-derived stem cells in nerve regeneration.84

Thus far, most of the in vivo and in vitro results mentioned above
have supported promising future prospects for local application of
PRP, CGF or PRGF in functional axon recovery; however, the efficacy
of PRF in the regeneration of peripheral nerves is still questionable,
and the related studies are far fewer than those using PRP. As reported
by an in vivo study, PRP and PRF were both effective in the functional
recovery of a 10-mm sciatic nerve injury 90 days after surgery,
with a mean whole-blood platelet count of 460× 103 μL− 1, a PRP
platelet count of 2 623× 103 μL− 1 and a mean PRF platelet count of
35× 103 μL− 1, albeit without a significant difference between axonal
diameter and myelin thickness.68 In contrast, PRF failed to increase
functional recovery in a 5-mm sciatic nerve gap as shown by
functional, histopathologic and electrophysiologic analyses.87 Although
the PRF in these two studies was produced using the same protocol
described by Choukroun et al.,23 the effective concentrations of

activated platelets and released growth factors were not examined in
the latter study, making it almost impossible to know whether the
observed differences were due to inter-individual variation or the
preparation method.

HYPOTHESIS: PERIPHERAL NERVE REGENERATION AFTER

EXTRACTION USING PRP AND IMMEDIATE IMPLANT

PLACEMENT

After the extraction of teeth, mechanoreceptors in the periodontal
ligament are subject to immediate degeneration. A novel idea to
stimulate peripheral nerve regeneration after tooth loss would be to
add a multitude of growth factors from autologous PRP together with
an implant placement immediately after tooth extraction to overcome
degenerative neural processes. Gene transcription, neural progenitor
cells and nerve remodeling are dynamically regulated and induced in
the regeneration cycle and in response to growth factors and respective
signaling pathways, such as phosphatidylinositol-3 kinase (PI3K)-Akt
and Ras/extracellular signal-regulated kinase, that are required for
neurite survival and outgrowth.88 The whole process could not only
directly enhance the regeneration of nerve fibers but also indirectly
induce angiogenesis, myelin formation, and SC proliferation and
differentiation, and even activate potential stem cell lines in the region
of the implants.

Table 2 Summary of potential cytokines and growth factors from α-granules within platelet-rich plasma

Growth factors Function Mechanisms References

Transforming growth

factor-β (TGF-β)
Stimulates endothelial chemotaxis and angiogenesis

Regulates mitogenic effects of other growth factors

(nerve growth factor, brain derived neurotrophic factor,

etc)

Induces undifferentiated mesenchymal cell

proliferation

Stimulates neurite outgrowth and regulates

differentiation of SCs

Inhibits macrophage and lymphocyte proliferation.

Secrets into the local nerves by damaged neurons,

invading macrophages and degenerated schwann cells (SCs)

during Wallerian degeneration

Activates SCs and recruit macrophages to the injury site of

distal nerve stumps

Unsicker and

Strelau41

Gordon et al.42

Sulaiman and

Dreesen43

Platelet-derived growth

factor (PDGF)

Stimulates trophic activity on neurons

Induces SCs proliferation, differentiation and myelin

formation

Mitogenetic for mesenchymal cells and osteoblasts.

Involved in the wound healing of hard and soft tissues

and for central nervous system development

Stimulates hyaluronan and glycosaminoglycans

(components of the extracellular matrix)

Acts on the factor tyrosine kinases (RTKs) and the

downstream PI3K and mitogen-activated protein (MAP)

kinase signaling pathways

Stimulates chemotaxis of neutrophils and macrophages

to the injured sites and participates in tissue re-epithelialization and/

or angiogenesis

Graham et al.44

Yamazaki et al.45

Burnouf et al.46

Hellman et al.47

Vascular endothelial

growth factor (VEGF)

Enhances angiogenesis and vessel permeability

Regulates cell proliferation and mediates antiapoptotic

effect

Stimulates mitogenesis for endothelial cells

Promotes blood vessel growth, neurogenesis and

neuroprotection

Induces injury-related angiogenesis by connecting to endothelial

transmembrane receptors identified as fms-like tyrosine

kinase (FLT-1), fetal liver tyrosine kinase receptor (FLK-1) and

neurophilin-1

Mackenzie and

Ruhrberg48

Hermann and

Zechariah49

Insulin-like growth

factor-1 (IGF-1)

Initiates the formation of bud growth

Supports the forward extension of the nerve fibers

Suppresses apoptosis in motor, sensory and

sympathetic neurons

Stimulates protein synthesis

Via the PI3K pathway, induces SCs to synthesize of two

fatty acids that initiates the process of myelination

Secreted in the vicinity of the injured nerve sites and its

receptors are mainly expressed on axon, nerve terminals,

SCs and motor neuron cell bodies, promoting early

recovery of sensation

Liang et al.50

Nagata et al.51

Basic fibroblast growth

factor (bFGF)

Contributes to embryonic development, angiogenesis and

wound healing

Facilitates neuroprotection and SCs regeneration

After peripheral nerve injury, bFGF and its high-affinity

tyrosine kinase receptor FGFR-3 are upregulated in sensory

neurons and at the lesion site of the nerve, inducing angiogenesis

and accelerates wound closure

Grothe and

Nikkhah52
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Over time, this remodeling process, which functions in a synergistic
way, might even increase the metabolic balance of regenerated tissues
during the establishment of osseoperception and promote proprio-
ceptive sensory feedback, enabling a well-coordinated masticatory
function. This might avoid overload during masticatory function and
help maintain the overall health of the temporo-mandibular joint
and neuromuscular system in patients treated with a dental implant
(for more detail see Figure 2).

IMPLICATIONS FOR FUTURE STUDIES

Most of the research on dental implants has been focused on
osseointegration and bone regeneration due to limitations in bone
availability in the upper or lower jaw prior to planned implant
treatment. Nevertheless, not only does rehabilitation with dental
implants aim to acheive primary or secondary implant stability
and osseointegration, but a functional implant resulting in well-
coordinated masticatory function is also of great importance to ensure
long-term success and patient satisfaction. Therefore, the relevance
and accomplishment of osseoperception will hopefully receive more
attention in research and daily clinical practice in the future. The
following paragraphs highlight some areas where more knowledge is
urgently needed.

The process of PRP preparation and its therapeutic concentration
Although autologous blood concentrations may offer promising
treatment options for peripheral nerve injury in the oral cavity,

few studies have focused on the effects of PRP therapy on peri-implant
sensory feedback. It is essential to realize that a large number of
variables may influence the therapeutic efficacy of PRP treatment,
which may partly explain the conflicting results in different
experiments.89

One of these important factors is the process of PRP preparation
itself, which may result in different concentrations of platelets among
patients treated and thus in broad variability of the growth factor
ratio.90 Higher concentrations of platelets in PRP may not necessarily
result in positive cell proliferation;91 instead, an optimal (not yet
defined) concentration range of PRP would help to keep those growth
factors active and functioning well for a longer time period. Hence,
it is reasonable to assume that an ideal PRP concentration—perhaps
even tailor-made for each patient treated—could maximize the
therapeutic benefits of nerve regeneration and wound healing.
Other factors contributing to the unpredictability and complexity of

the therapeutic efficacy of PRP in peripheral nerve regeneration are
differences in the method of activation (calcium chloride or throm-
bin), mode of application (injection or implantation of a PRP gel),
storage temperature (−80 °C frozen or room temperature) and
frequency of application.
A potential therapeutic level of platelet concentration for bone and

soft-tissue regeneration has been reported, namely, 1 000× 103 μL− 1

(four- to fivefold the baseline platelet numbers).92 However, less is
known about the optimized dose–response curve regarding nerve
regeneration. Cell culture experiments85 have shown that 2.5%–20%

Figure 1 Light micrograph showing the histomorphological appearance of tissue regeneration in the anterior maxilla at 3 months after extraction and

autologous L-PRF application before the placement of the dental implant. In (a) and (b), L-PRF (indicated by *) and fibrovascular tissue are surrounded by
newly generated bone tissue (NB) with empty osseous lacunae (indicated by arrowheads). (c) A group of regenerated nerve axons (indicated by arrows) in the
connective tissue next to the newly generated bone area. (d) A magnification of the selected box region in (c) shows the morphometric details of myelinated
nerve fibers. Scale bars, 100 μm (a); 50 μm (b, c); and 10 μm (d). Hematoxylin and eosin staining, courtesy of Ms Ana Castro Sarda and Ms Sanne Deprez,
Department of Oral Health Sciences, KU Leuven. BV, blood vessel; CT, connective tissue; G, gingiva; L-PRF, leukocyte- and platelet-rich fibrin;
Ob, osteoblast.
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PRP (87.5× 103–700× 103 μL− 1) from Sprague–Dawley rats could
significantly stimulate SC proliferation and migration in a
concentration-dependent manner compared to untreated controls.
However, when higher PRP concentrations (40%, 1 400× 103 μL− 1)
are used, the above-mentioned effects on SCs are suppressed. The
present study suggests that there may exist different types of dose
responses, reaction rates or complicated interactions between nerve
and bone regeneration when PRP products are used.

Timing of treatment
It has been suggested that muscle tissue could progressively transform
into irreversible fibrosis if it is not reinnervated within 1–2 years.17

Therefore, the timing of the regenerative intervention seems to be
another factor influencing the overall treatment strategy,93 after which
the target tissue may lose the ability to be reinnervated. However,
regarding the immediate and delayed implant placement protocols,
there are insufficient data exhibiting obvious differences in the
innervation of peri-implant tissues between the two protocols.5 More
recently, our group observed in a randomized split-mouth study that
immediate implant placement and an immediate loading protocol
were more likely to lead to optimized peri-implant reinnervation,8

suggesting that the timing of treatment for peri-implant reinnervation
is a crucial issue to consider when using PRP products.

Because of the short life of platelets —approximately 5–7 days—the
effect of PRP on bone repair may be active only in the early stage of
wound healing.94 As a practical example of the importance of timing
when applying PRP in oral surgery, immediately after tooth extraction,
in the initial phase of acute axon injury, application of PRP therapy
might be valuable for maximizing the neural regeneration and thus for
prevention of an excessive load of dental implants. On the other hand,
for patients who lost their teeth a long time ago, it might be more
effective to combine certain stem cells with PRP therapy in order to
maintain continuous availability of the bioactive effects.

Animal models for feasibility experiments
Despite more reliable and accurate results from human clinical trials,
for ethical reasons, preclinical experiments are indispensable to the
study of PRP therapy for peripheral nerve injury and regeneration.
Appropriate animal models, chosen according to various objectives,
are likely to produce convincing and clinically relevant results. Thus, it
is important to use an animal model with characteristics comparable
to those of the ultimate treatment cohort,95–96 including common
aspects of anatomy, physiology, histology, pathology and even gene
expression. For research in implant dentistry, the animal model should
have relatively large teeth and extraction sockets that are convenient
for surgery, and it should be possible to take radiographs at the

Figure 2 Schematic regeneration model of the potential neural feedback pathways around dental implants enhanced by PRP injection. (a) In the cranio-
maxillofacial region, the extraction of teeth causes acute damage, known as Wallerian degeneration, to the peripheral axons (mainly from branches of the
trigeminal nerve). The injection of PRP into the local sites of tooth loss may help the regeneration of peri-implant nerve tissues. (b) Activated PRP initially
releases a group of growth factors (see Table 1 for a detailed explanation of their function and roles) into the peri-implant area, which could bind to
individual receptors and then activate their molecular pathways. In addition, these growth factors could work synergistically to trigger repair mechanism in a
more complex way. (c) The functioning of signaling molecules in nerve cells leads to a series of regeneration of neural structures in the region of the
implants, which could be clinically characterized by restoration of simple function around dental implants, for example, thermal and nociceptive sensation.
(d) As a consequence of nerve regrowth and reinnervation, the cortical adaptive processes of the feedback pathway are expected to exhibit improved
physiological and psychological integration of dental implants. bFGF, basic fibroblast growth factor; IGF-1, insulin-like growth factor-1; PDGF, platelet-derived
growth factor; TGF-β, transforming growth factor-β; VEGF, vascular endothelial growth factor.
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surgical site during follow-up. It is also desirable for the animal model
to be inexpensive, readily available and easy to anesthetize.
A small variety of animal models, including dogs, mini-pigs and

non-human primates, are frequently used in analyzing bone-implant
interactions owing to their similarity to human bone physiology and
pathology.97–98 Although non-human primates offer the most simi-
larity to human bone with respect to anatomy and physiology, mini-
pigs are more widely used because of less critical ethical issues and low
purchase and maintenance costs, in addition to easy handling. Unlike
pigs, dogs (the “canine model”) with stand repetitive blood sampling
during PRP preparation, and their mandibles are large enough to
receive commercial implants. Furthermore, the characteristics of
human bone have been reported to be better approximated by the
properties of dog bone in comparison to that of pigs, cows, sheep,
chicken and rats.99 Therefore, the canine model should be regarded as
the preferred animal model in experimental research using PRP.

CONCLUSIONS

Taken together, current evidence from in vitro and animal experi-
ments and preliminary clinical trials has supported the possibility that
peri-implant sensory feedback can be modified and promoted by
various growth factors released from autologous PRP. Additional
studies are needed to prove the hypothesis that combining PRP with
dental implants is an effective and safe treatment concept to convey
peripheral neural signals to the central nervous system in a functional
manner and thus improve osseoperception. To maximize the regen-
eration of injured peripheral nerves around dental implants, several
points should be considered in future studies:

1. An optimized preparation of PRP is essential for the biological
activity and clinical efficacy of growth factors within PRP. All
variables of PRP use, such as the concentration of platelets and
growth factors, method of activation, mode of application and
frequency of application, should be carefully explored and reported.

2. The exact roles and interactions of the growth factors in PRP
remain unclear, which is also the case for newer products based on
PRP, such as PRF and CGF.

3. The appropriate timing of intervention is of great importance for
optimal nerve regeneration. To maximize the structural and
functional recovery of injured nerves in combination with PRP,
it might be preferable to insert dental implants immediately after
tooth extraction following nerve injury.

4. Considering the advantages and limitations of different animal
models, the canine model should be regarded as the preferred
animal in preclinical research of PRP treatment.

5. Although not easy to accomplish from a practical perspective,
prospective clinical studies with a randomized controlled design
would be ideal for analyzing the potential risks and benefits of PRP
in promoting osseoperception.
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