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Samenvatting

In dit proefschrift richten we onze aandacht naar schaars gevulde multinomiale
gegevens. Wij beperken ons tot het bestuderen van schatters voor de ongekende
celkansen in een welbepaald asymptotisch kader. In de klassieke asymptotiek voor
multinomiale gegevens laat men de steekproefgrootte n oneindig groot worden ter-
wijl het aantal cellen in de tabel, en de bijhorende celkansen, ongewijzigd blijven. Dit
impliceert automatisch dat het verwacht aantal observaties in elke cel van de tabel
oneindig groot wordt, zodat zo’n asymptotisch kader niet geschikt is om schaars ge-
vulde tabellen te bestuderen. In het ‘schaars’ asymptotisch kader daarentegen, laten
we naast de steekproefgrootte ook het aantal cellen toenemen, zodat het verwacht
aantal observaties in elke cel van de tabel niet noodzakelijk oneindig groot wordt.

De meest gebruikte schatters voor de celkansen zijn de frequentieschatters, voor
multinomiale gegevens zijn dit immers de maximum likelihood schatters. Naast
deze schatters werden in de literatuur ook alternatieve schatters voor de celkansen
bestudeerd. Voorbeelden hiervan kunnen o.a. gevonden worden in Good (1963),
Fienberg, Bishop en Holland (1975, Hoofdstuk 4), Aitchison en Aitken (1976), Hall
(1981) en Bowman, Hall en Titterington (1984). Het voornaamste dat we uit deze
werken kunnen besluiten is dat, in het klassieke asymptotische kader, deze alter-
natieve schatters equivalent zijn met met de frequentieschatters (in die zin dat ze
dezelfde asymptotische verdeling hebben). In Fienberg, Bishop en Holland (1975,
p. 416) en Titterington en Bowman (1985) wordt er aan de hand van eindige steek-
proefresultaten geillustreerd dat hun schatters toch een kleinere gemiddelde som van
kwadratische afwijkingen (MSSE) kunnen hebben dan de frequentieschatters.

Fienberg, Bishop en Holland (1975, Sectie 12.3.1) bestuderen voor hun schatters
ook de MSSE in het schaars asymptotische kader. Zij tonen aan dat binnen deze
asymptotick de leidende term van de MSSE van de frequentieschatters groter is dan
die van hun schatters. Deze laatsten zijn geinspireerd op Bayesiaanse ideéen en
kunnen gebruikt worden zowel voor geordende als voor niet-geordende multinomiale
gegevens. De voorstellen van Hall (1981) en Bowman, Hall en Titterington (1984)

iii



iv Samenvatting

daarentegen zijn gebaseerd op ideéen van kernschatters. Deze methode leent infor-
matie bij de “buren” om schatters te definiéren. Hierdoor is deze techniek alleen
zinvol voor geordende multinomiale gegevens.

Hall en Titterington (1987) en Burman (1987a) bestuderen de MSSE van kern-
schatters in het schaars asymptotische kader. Bovendien tonen Hall en Titterington
(1987) aan dat er, onder bepaalde regulariteitsvoorwaarden, een optimale conver-
gentiesnelheid naar nul bestaat voor de MSSE van schatters voor de celkansen. De
frequentieschatters en de schatters van Fienberg, Bishop en Holland (1975) halen
deze optimale convergentiesnelheid niet, terwijl zowel de kernschatters van Hall en
Titterington (1987) als die van Burman (1987a) die convergentiesnelheid wel halen.
Om deze snelheid te bereiken hebben beiden echter extra voorwaarden nodig op het
gedrag van de ongekende celkansen aan de rand van de tabel. Ditzelfde probleem
is aanwezig bij de kernschattingsmethode in andere situaties, bijvoorbeeld in de re-
gressiecontext. Om deze zogenaamde randproblemen op te lossen zijn er een aantal
methoden beschikbaar. Eén ervan is door gebruik te maken van randgecorrigeerde
kernen. Dit zijn speciaal geconstrueerde kernfuncties die alleen bij het schatten in
het randgebied moeten gebruikt worden. Dong en Simonoff (1994) bestuderen deze
techniek in de context van schaarse multinomiale gegevens en tonen aan dat de
optimale convergentiesnelheid van de MSSE inderdaad bereikt wordt zonder extra
randvoorwaarden.

Een andere methode die de randproblemen van kernschatters oplost, is gebaseerd
op lokale veeltermbenaderingen. Een bandbreedteparameter bepaalt hoeveel buren
er lokaal een bijdrage kunnen leveren tot de niteindelijke schatters, en speelt een
cruciale rol in de hele procedure. In Sectie 1.2.2 geven we een beknopt overzicht
van relevante eigenschappen van de lokale veeltermbenaderingsmethode in de re-
gressiecontext en we vergelijken deze met analoge resultaten voor de klassieke kern-
schatters. Eén van de attractieve eigenschappen van de lokale veeltermbenaderings-
methode is dat het de randproblemen van de klassieke kernschatters automatisch
opvangt, d.w.z. de vorm van de schatter past zichzelf aan wanneer er in het randge-
bied geschat wordt.

Het is deze techniek van lokale veeltermbenaderingen die wij in Sectie 1.3 ge-
bruiken om onze schatters voor de celkansen in een schaarse tabel te definiéren.
Zoals hierboven vermeld, is de idee van lokale veeltermbenaderingen gebaseerd op
voldoende gladheid van de te schatten ongekende “functie”, hier de vector p =
(p1,--.,px)T van celkansen. In de schaarse asymptotiek neemt het aantal cellen in
de tabel (k) toe bij een toename van de steekproefgrootte n, d.w.z. we beschouwen
k = k(n) als functie van n. Ook de vector p is dan, via k, een functie van n. In de
schaars asymptotische studie van onze schatters vereenvoudigen wij deze structuur
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voor p door het bestaan van een onderliggende dichtheid f(-) te veronderstellen, die
de celkansen bepaalt door

p;:ff(u)du, b=tk
i%l

zodat we steeds onze veranderende vector p kunnen uitdrukken m.b.v. een vaste
functie f(-) (zie ook Santner en Duffy (1989, p. 60)). Bovendien kunnen we de
vereiste gladheid voor de vector p bekomen door gladheidsvoorwaarden te veronder-
stellen op deze onderliggende dichtheid f(-). Naast het definiéren van onze lokale
veeltermschatters voor de celkansen, bestuderen we in Sectie 1.3 reeds hun schaars
asymptotische vertekening en variantie.

In Hoofdstuk 2 onderzoeken we schaarse consistentic van zowel de frequentie-

schatters als van onze lokale veeltermschatters. Van schatters P* = (P},..., Pf)T
voor p = (p1,...,px)" wordt gezegd dat ze schaars consistent zijn als
P*
sup [— —1 jf—}[), als n — oc.
1<i<k | Pi

We illustreren eerst aan de hand van een voorbeeld in welke situatie de frequentie-
schatters niet schaars consistent zijn, en gaan vervolgens op zoek naar voldoende
voorwaarden voor schaarse consistentie van de frequentieschatters. In concrete
voorbeelden worden deze voldoende voorwaarden geinterpreteerd in termen van
schaarstegraad (d.i. hoe we & bekijken als functie van n).

Ook voor onze lokale veeltermschatters gaan we op zoek naar voldoende voor-
waarden voor schaarse consistentie, welke in dezelfde concrete voorbeelden als voor
de frequentieschatters worden vertaald naar voorwaarden op de schaarstegraad. Uit
deze studie blijkt dat onze schatters wel schaars consistent zijn in die situatie waar
de frequentieschatters het niet zijn. In een andere situatie echter, kunnen we voor de
frequentieschatters in eerste instantie een hogere schaarstegraad toelaten dan voor
de lokale veeltermschatters. Voor een specifieke familie van onderliggende dichthe-
den f(-) kunnen we het resultaat voor de lokale veeltermschatters verscherpen, zodat
toch dezelfde schaarstegraad als voor de frequentieschatters kan toegelaten worden.
In Hoofdstuk 2 wordt een inzicht gegeven omtrent schaarse consistentie, maar het
voorziet niet in een volledige karakterisatie van schaarse consistentie. De belangrijke
vraag of er een optimale convergentiesnelheid voor schaarse consistentie van schat-
ters voor celkansen bestaat, en of zo’n resultaat de bevindingen van Hoofdstuk 2
kan verklaren, blijven nog onopgelost.
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Zoals reeds vroeger vermeld, bestaat er wel een optimaliteitsresultaat voor de
convergentiesnelheid van de MSSE van schatters voor de celkansen. In Hoofdstuk 3
bespreken we dit resultaat uitvoerig en bestuderen we de MSSE van de lokale veel-
termschatters. Volledig in overeenstemming met de gekende resultaten in de re-
gressiecontext, blijkt dat de optimale convergentiesnelheid bereikt wordt wanneer
de graad van de lokale veeltermbenadering oneven wordt genomen. Bij een even
graad kunnen enkel bijkomende randvoorwaarden op de onderliggende dichtheid
f() het behalen van deze convergentiesnelheid garanderen. Aan de hand van een
kleine simulatiestudie illustreren we de asymptotische MSSE resultaten. We gaan
ook dieper in op het belangrijke bandbreedtekeuzeprobleem, waarbij we twee veel
gebruikte selectiemethoden bespreken en illustreren.

In Hoofdstuk 4 bestuderen we een centrale limietstelling voor de statistische
grootheid SSE(P*) = S (P — p:)? in het geval P~ de frequentieschatters of
de lokale veeltermschatters zijn. Voor deze laatsten moet het resultaat opgesplitst
worden volgens de snelheid waarmee de bandbreedte naar nul convergeert. We willen
vooral de nadruk leggen op het feit dat deze opsplitsing alle mogelijkheden dekt.
Dit in contrast met het analoge resultaat van Burman (1987b) voor de klassicke
kernschatters, waar de bandbreedte aan een specificke voorwaarde moet voldoen,
welke niet geldig is voor de optimale bandbreedte.

Tot nu toe zijn de lokale veeltermschatters voor de celkansen enkel besproken
voor één-dimensionale multinomiale gegevens. In Hoofdstuk 5 geven we een uit-
breiding naar meerdere dimensies. Terwijl in Hoofdstukken 1-4 de graad van de
lokale veeltermbenadering vrij mocht gekozen worden (maar bij voorkeur oneven),
beperken we ons nu tot lokale lineaire schatters. In dit hoofdstuk staat vooral de uit-
breiding van de bandbreedteparameter centraal. In één dimensie heeft een cel alleen
maar buren links en rechts waar informatie kan geleend worden, terwijl in meerdere
dimensies een cel in verschillende richtingen buren heeft. Er zijn verscheidene opties
mogelijk om de richtingen volgens welke deze buren geselecteerd worden, alsook de
hoeveelheid buren in elke richting, te beschrijven. In het eenvoudigste geval vallen
de richtingen waardoor de buren bepaald worden samen met de richtingen, bepaald
door de codrdinaatsassen waarin we het probleem bekijken, en gebruiken we in elke
richting eenzelfde aantal buren. Een eerste veralgemening bestaat erin om in de ver-
schillende richtingen een verschillend aantal buren te gebruiken. Wij beschouwen de
veralgemening waar de richtingen niet noodzakelijk samenvallen met de richtingen
bepaald door de cobrdinaatsassen. We bestuderen de asymptotische benadering van
de MSSE van de lokale lineaire schatter, en illustreren m.b.v. simulaties de winst die
bekomen wordt door de buren op zo’n algemeen mogelijke manier te kiezen. Verder
breiden we de centrale limietstelling voor lokale veeltermschatters van Hoofdstuk 4
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ook uit voor de meer-dimensionale lokale lineaire schatters.

In Hoofdstuk 6 keren we terug naar één-dimensionale tabellen. Gebaseerd op
een heuristische argument, doen we een voorstel om de gegevens zelf een geschikte
bandbreedte te laten selecteren. We willen hierbij vooral de nadruk leggen op het
feit dat we ons zo weinig mogelijk door asymptotische overwegingen willen laten
leiden. Na een eerste simulatiestudie kunnen we een positieve balans opmaken voor
ons voorstel, wat verder onderzoek naar de methode aanmoedigt.
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Chapter 1

Sparse tables and local polynomial
smoothing

1.1 Introduction

It is a widely used approach to present and record data in the form of a table.
The cells in the contingency table represent the different cross-classifications of the
recorded categorical variables. The numbers in the cells are the frequency counts
of the outcomes. These counts are considered as random variables having a certain
sampling distribution. For categorical data one usually assumes a Poisson, multi-
nomial or product multinomial sampling scheme (see Chapter 3 in Agresti (1990)
for more details). We now give some typical examples of multinomial data (one and
multi-dimensional).

Table 1.1 displays data on the number of boys among the first four children
in 3343 Swedish families having at least four children (data source: Edwards and
Fraccaro (1960)).

Number of boys J 0 1 2 3 4
Number of families | 183 789 1250 875 246

Table 1.1:  Swedish family data.

Table 1.2 contains data on the monthly salary of 147 nonsupervisory female em-
ployees holding a Bachelors (but no higher) degree who were practicing mathematics
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1 Salary n; i Salary n; 1 Salary n;
1| 951-1050 | 5 || 11 | 1951-2060 | 6 | 20 | 2851-2950 | 5
2 | 1051-1150 | 1| 12 | 2051-2150 | 9 || 21 | 2951-3050 | 4
3 | 1151-1250 | 0 |} 13 | 2151-2250 | 5 || 22 | 3051-3150 | 2
4| 1251-1350 | 5 || 14 | 2251-2350 | 12 | 23 | 3151-3250 | 1
5 | 1351-1450 | 2 || 15 | 2351-2450 | 7 || 24 | 3251-3350 | 2
6 | 1451-1550 | 10 || 16 | 2451-2550 | 3 | 25 | 3351-3450 | O
7 | 1551-1650 | 5 || 17 | 2551-2650 | 10 || 26 | 3451-3550 | 1
8 | 1651-1750 | 10 || 18 | 2651-2750 | 4 | 27 | 3551-3650 | 1
9 | 1751-1850 | 10 || 19 | 2751-2850 | 6 || 28 | 3651-3750 | 1
10 | 1851-1950 | 20
Table 1.2: Salary data.
i Days | n; || @ Days n; || i Days n;
1 0-30 | 18 || 20 571-600 | 1 | 38  1111-1140 | 0
2 31-60 | 14 | 21 601-630 | 0 || 39 | 1141-1170 | 0O
3 61-90 | 9| 22 631-660 | 0 || 40 | 1171-1200 | ©
4| 91-120 | 8| 23 661-690 | 1 | 41 | 1201-1230 | 1
5| 121-150 | 6| 24 691-720 | 0 || 42 | 1231-1260 | 0
6| 151-180 | 4| 25 721-750 | 0 || 43 | 1261-1290 | 0
7| 181-210 | 6 || 26 751-780 | 1 || 44 | 1291-1320 | 1
8 | 211-240 | 7 || 27 781-810 | 0 || 45 | 1321-1350 | 0O
9| 241-270 | 1| 28 811-840 | 0 || 46 | 1351-1380 | 1
10 | 271-300 | 6 || 29 841-870 | 0 | 47 | 1381-1410 | 0
11| 301-330 | 7 | 30 871-900 | O || 48 | 1411-1440 | 0
12 | 331-360 | 5| 31 901-930 | 1 | 49 | 1441-1470 | 0
13 | 361-390 | 5 | 32 931-960 | O || 50 | 1471-1500 | 0
14 | 391-420 | 0 || 33 961-990 | 0 || 51 | 1501-1530 | O
15 | 421-450 | 0 || 34 | 991-1020 | 0 || 52 | 1531-1560 | 0O
16 | 451-480 | 2 || 35 | 1021-1050 | O | 53 | 1561-1590 | 0
17 | 481-510 | 1 || 36 | 1051-1080 | 0 | 54 | 1591-1620 | 1
18 | 511-540 | 1 | 37 | 1081-1110 | 0 || 55 | 1621-1650 | 1
19 | 541-570 | 1 ‘f
Table 1.3: Mine explosions data.




Sparse tables and local polynomial smoothing 3

or statistics in 1981 (data source: Department of Energy (1982)). Despite the con-
tinuous nature of the response variable, these data were given in a discretized form

in the original data source.

Table 1.3 gives counts that correspond to a discretization into 35 cells of 109
time intervals between explosions in mines involving more than ten men killed in
Great-Britain from December &, 1875 to May 29, 1951 (data source: original form
Maguire, Pearson and Wynn (1952), in discretized form: Simonoff (1983)).

Table 1.4 displays the salary data of Table 1.2 in a 12 x 10 contingency table,
where the 147 respondents are now cross-classified according to their salary and the
number of years since receiving their degree (data source : Simonoff (1987)).

Table 1.5 1s a 7 x 7 cross-classification of the responses of 55 first year students,
at New York University’s Stern School of Business in 1991, to questions about the
importance of Statistics and Economics in business education. Responses were coded
on a 7-point scale ranging from “completely useless”to “absolutely crucial”(note that
no students rated Statistics “completely useless”){data source: Simonoff (1995a)).

Years since degree

Salary 0- 3 6- 9- 12- 15- 18- 24- 30- >
2 5 8 11 14 17 23 29 35 35

951-1150 | 5 | O | 1 | O 0 0 0 0 0|0
1151-1350 | 2 | 1 | 0 | O 0 0 0 2 0|0
1351-1550 | 5 | 1 | 3 | 2 0 0 1 0 0|0
1561-1750 | 5 | 5 | 2 | 1 0 1 0 1 0 (0
1751-1950 | 9 | 9 | 5 | O 2 2 1 1 1 0
1961-2150 | 3 | 5 | 2 | 1 2 0 1 0 0 1
2151-2350 | O | 1 | 4 | 3 2 1 3 0 2 1
2351-2550 | 0 | O | 4 | O 1 2 2 0 0 1
2551-2750 | 0 | O | 2 | 2 0 5 1 2 1 1
2751-2950 | 0 [ O | 1 | O 0 1 4 0 2|3
2951-3150 | 1 | O | 1 | O 1 1 1 0 1 0
3151-3750 | 0 | O | O O 0 0 5 0 0 1

Table 1.4: Salary data.
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Sex
Male

Fernale

Sex

Male

Female

Economics
1 2 3 45 6 7
1{0;j0{010|0Q| 0|0
2{0/1|0(0|0| 1|0
3(0j0|0j1{0| 0|0
Statistics 4| 0(0|3 |6 /4| 0|0
5(0/0|1|4|7( 4]0
6/1/0|0(2|6|10]1
7(0/0|0|0j0] 2|1
Table 1.5: MBA survey data.
Urban Region
Years of Schooling
Age Less than 4 47 8-10 More than 10
16-29 631571 4381454 7557356 915307
30-49 1176623 4174797 5384310 1055949
50 or over 2376214 1807879 1187537 501741
16-29 664308 2843925 9180042 1274867
30-49 3825831 4481894 6873450 1070910
50 or over 7432953 1888644 1312793 275948
Rural Region
Years of Schooling
Age Less than 4 4-7 8-10 more than 10
16-29 1719046 5266179 5718852 153669
30-49 2386652 4297528 3050642 316853
50 or over 5378665 1862132 376084 68963
16-29 2536078 4246961 5886728 232464
30-49 7181386 4653138 3089527 241507
50 or over 13089113 1071037 207498 24283

Table 1.6: Soviet Union population data.



Sparse tables and local polynomial smoothing 5

Table 1.6 gives a classification of the population in the Soviet Union in 1959
according to:

e schooling : 4 categories
® sex : 2 categories
e age : 3 categories
e region 1 2 categories

(data source: Selesnick (1970)).

The data sets presented in Tables 1.2-1.5 have in common that the total number
of observations is moderate in comparison to the total number of cells in the table.
As a result the counts are quite sparsely distributed among the cells, and even empty
cells arise. In this thesis the focus is on such sparse tables and the main objectives
are:

(i) to propose estimators for the multinomial cell probabilities
(ii) to study asymptotic properties of these estimators

(iii) to illustrate the finite sample performance based on simulations and real data
sets.

In the subsequent chapters we restrict attention to the basic problem of finding
good estimators for cell probabilities in sparse tables. Other statistical questions,
e.g. testing independence between categorical variables, are not discussed in this
thesis.

Tt is well known that frequency estimators are maximum likelihood estimators
and that they are optimal, i.c., they are unique minimum variance unbiased estima-
tors. For sparse tables, however, the visual impression of the frequency estimates
shows some roughness that we do not expect to be there. We therefore want to
smooth the observed counts. We will make an asymptotic comparison of the pro-
posed estimators to the frequency estimators.

To develop asymptotic results one should realize that sparseness requires an
appropriate description of the type of asymptotics we have in mind. The usual
asymptotic approach to handle multinomial data is to consider the number of cells
in the table as being fixed and to let the sample size n tend to infinity. In this
classical approach the expected number of counts in each cell becomes large as n
increases. Hence, this type of asymptotics leaves no room for sparse tables, since
they typically have small cell counts. A way to incorporate small cell counts in
an asymptotic study is to say that the number of cells in the table grows with the
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number of observations, i.e., we assume & = k(n) — oo as n — co. We refer to this
approach as the sparse asymptotic framework. Fienberg and Holland (1973) and
Fienberg et al. (1973, Chapter 12) introduced the idea of sparse asymptotics.

Not only in the context of sparse tables, alternatives to the frequency estimators
for the cell probabilities have been proposed. In the general context of multinomial
cell probability estimation, Good {1965) introduced the concept of smoothing. From
then on, several smoothing methods have been investigated. In the remaining part of
this section we mention some of these proposals. For a detailed survey see Simonoff
(1995a). The asymptotic discussion in the first part of the overview will be in the
usual asymptotic framework (£ fixed and n — o0).

Fienberg et al. (1975, p. 404-410) use Bayesian ideas to introduce estimators
for the cell probabilities, and they also propose pseudo Bayesian estimators. Kernel
based estimators in the context of multinomial cell probability estimation were first
proposed by Aitchison and Aitken (1976). Their estimator has the form of a weighted
average of the frequency estimators, a high weight is given to the frequency of the
cell one wants to estimate, and a low, constant weight to all other frequencies. This
has the effect of shrinking the estimators towards a uniform distribution. Brown
and Rundell (1985) have shown that a shrinkage factor exists such that the mean
sum of squared errors (MSSE) of the kernel estimator is smaller than that of the
frequency estimator. Since in the construction of the estimator only two weight
factors are used, this method applies to multinomial data where the categories are
not necessarily ordered.

For ordered tables a more sophisticated way of smoothing is possible, more spe-
cific, a smoothing approach can take the ordering into account by borrowing infor-
mation from “neighboring”cells. Hall (1981), Bowman et al. (1984) introduce kernel
smoothers that minimize the MSSE.

Within the framework of standard asymptotics it has been shown that frequency
estimators, Bayesian estimators and kernel smoothers are asymptotically equivalent,
in the sense that they have the same asymptotic distribution. In finite samples,
however, it is possible for the smoothed estimators to have better performance.
Bishop et al. (1975, p. 416) present small sample results for problems in which
(pseudo) Bayesian estimators for cell probabilities have smaller MSSE than the
frequency estimators. Titterington and Bowman (1985) performed a small Monte
Carlo study to compare different smoothing techniques for multinomial data. This
study also illustrates the benefit of smoothing the frequency counts in order to reduce
the MSSE.

In the sparse asymptotic framework one can define estimators that have better
performance than the frequency estimators. Two types of results are available in
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the sparse asymptotic setup. One type of results concerns consistency. A generic se-
quence of estimators P™ = (P}, ..., ;)7 for the cell probabilities p = (p1,...,px)"
is defined to be sparse consistent if
o,
Di

a.s,
sup — 0, as n = oo.

1<i<k

In general the frequency estimators may fail to be sparse consistent. A simple
illustration of this will be given in Chapter 2. Simonoff (1983) proves that, under
smoothness conditions on the sequence of true underlying cell probabilities, the
maximum penalized likelihood estimators are sparse consistent. For more details we
refer to Section 2.2.

A second type of results concerns asymptotic approximations for the MSSE of
the estimators. Bishop et al. (1975, p. 410-413) show that, in the sparse asymptotic
framework, their pseudo Bayesian estimator has smaller leading term for the MSSE
than the frequency estimators and than the generally accepted practice of adding
1/2 to the count in each cell. Kernel smoothing methods for ordered multinomial
data are investigated by Burman (1987a) and Hall and Titterington (1987). The
latter obtain an optimal rate of convergence to zero for the MSSE, under smoothness
conditions on the underlying cell probabilities. This optimal rate of convergence is
neither achieved by the frequency estimators, nor by the pseudo Bayesian estimators
of Bishop et al. (1975). Hall and Titterington {1987) introduce kernel smoothers for
which this optimal rate is achieved, but they require rather restrictive conditions
on the behavior of the underlying cell probabilities at the boundaries of the table.
Burman (1987a) shows that these boundary conditions can be somewhat weakened.
Dong and Simonoff (1994) show that the stringent conditions in Burman (1987a)
become superfluous if boundary corrected kernel estimators for the cell probabilities
are used.

A smoothing technique in regression that received much attention in recent years
is local polynomial smoothing. One reason for its popularity is that the local poly-
nomial estimator corrects for boundary problems in an automatic way. We will
investigate this local polynomial smoothing method in the context of the estimation
of cell probabilities for sparse tables. In Section 1.2 we first give a short discussion
on kernel smoothing in the regression context. The local polynomial estimators for
the cell probabilities of a sparse one-dimensional table are defined in Section 1.3.
Some of its basic properties are presented there as well.

The main structure of this thesis is as follows. After the introduction of our
estimators for the cell probabilities, we give in Chapter 2 a detailed discusssion
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of the sparse asymptotic consistency of frequency estimators and local polynomial
estimators. The behavior of the mean sum of squared errors of the local polynomial
cell probability estimator is studied in Chapter 3. In Chapter 4 we prove a central
limit result for the sum of squared errors for the local polynomial smoother, and
for the frequency estimator. Generalizations for the local polynomial smoothers to
multi-dimensional tables are given in Chapter 5. Finally, in Chapter 6 we propose
a method to select the bandwidth, a smoothing parameter which occurs in the
construction of the estimators.

1.2 Kernel smoothing in regression

In regression theory one is interested in determining an appropriate functional re-
lationship between the mean of a response variable ¥ and a predictor z, based on
observations (z1,Y1),...,(zn,¥3). A typical regression model is

Y. =m(z) + o(zi)e, 1=1,...,n,

where the errors ¢; are i.i.d. random variables having mean zero and variance one.

Parametric regression assumes that the functional form of the regression function
m(-) is known, e.g., the simple linear regression model with m(z) = £ + fiz.
The problem of finding m(-) then reduces to the estimation of a finite number of
parameters. The choice of the parametric model depends on the situation, and can
be based on scientific reasons or on previous experience with data sets of similar
type. If one chooses a parametric form that does not fit the data properly, the
conclusions obtained from the analysis are not reliable.

Nonparametric regression removes the restriction that the true regression func-
tion belongs to some parametric family. By making relatively weak assumptions on
the smoothness of the regression function it is possible to let the data tell what the
pattern is. Many methods for obtaining nonparametric estimators exist. Here we
will restrict attention to kernel methods.

1.2.1 Classical kernel estimators

Under the sole assumption that m(-) is a smooth curve, the points in the neighbor-
hood of « carry information about m(z). Since points close to & are more informative
it seems natural to consider a weighted average as estimator. Typically the weights
are choosen in such a way that they are higher for points closer to x. The general
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form of a locally weighted average is
m(z) = Z WnilZi s Bn) Y = Zwm-(z)Yl-, (L.1)
=1 =1

with 377 wni(z) = 1. Note that (1.1) is a linear combination of the responses Y,
we therefore say that a weighted average is a linear smoother.

The Nadaraya-Watson weights, introduced independently by Nadaraya (1964)
and Watson (1964), are given by

R K((z; — z)/h) ’
J_S;:lh*‘K((%' —z)/h)

wpi(z) =

where K(-) is a symmetric density function, called a kernel function, and h > 0 a
bandwidth controling the width of the local neighborhood. Since the magnitude of
the bandwidth determines the smoothness of the resulting estimated function rh(z),
one often uses the term smoothing parameter as well. This smoothing parameter
typically decreases with n. Finding the proper amount of smoothing is a major
problem in nonparametric smoothing. In Section 3.3 and Chapter 6 we pursue this
problem further. To simplify notation we suppress the dependence of the bandwidth
sequence on n and write i for k(n).

Assuming the data are sorted according to the z-variable, the Gasser-Miiller
weights (Gasser and Miiller, 1979) are

wni(z) = f %K (%) du,

8i—1

where s; = 7“'{';"“ ,Tp = —00, Tns1 = +00.

Figures 1.1 and 1.2 illustrate on a tutorial example how both methods assign their
weights to each design point. These tutorial figures are taken from Seifert and Gasser
(1996). The data consist of 4 collinear observations. The Epanechnikov kernel
K(u) = 0.75(1—v?*) 1{|u] < 1} is used to construct the estimators. For both systems
of weights the kernel function is first transformed to the interval [z — h,z + k], i.e.,
use the rescaled and shifted kernel function K, ,(u) = k'K ((u — z)/h). The mid-
dle part of Figure 1.1 visualizes the construction of the Nadaraya-Watson weights.
First the transformed kernel function is evaluated at the design points in the inter-
val [z — h,z + h], i.e., compute K, »(z;) (the vertical lines in the middle part of the
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Nadaraya-Watson

05

Figure 1.1: Tutorial ezample of the Nadaraya-Watson estimator. The data are
indicated by o and the resulting estimate by A. The middle part illusirates the
construction of the weights while the bottom part shows the actual weights.

0.0




Sparse tables and local polynomial smoothing 11

Gassar-Muller

05

0.0

Figure 1.2: Tutorial example of the Gasser-Miller estimator. The data are indicated
by o and the resulting estimate by A. The middle part illustrates the construction of
the weights while the bottom part shows the actual weights.

figure), then rescale by the normalizing factor (3, K, 4(2;)) ™" (indicated by the
horizontal line). The actual weights are shown at the bottom part of the figure. The
resulting estimate at z is indicated by the triangle in the figure.

The weights of the Gasser-Miiller estimator (Figure 1.2) are obtained by integrat-
ing the transformed kernel function K s(u) between averages of subsequent design
points (the middle part of the plot). The actual weights are shown at the bottom
part of the figure. The resulting estimate at z is indicated by the triangle.

For an asymptotic investigation of the kernel type regression estimators one has
to be more specific about the nature of the design of the covariate. There is the set-
ting of a random design, where the covariate is considered to be a random variable X
with density fx(-). This design is suitable for cases where the covariates are beyond
the control of the experimenter. In other cases, the design points are prescribed by
data analysts, and are treated as fixed points. To present the asymptotic results .
for fixed designs, one often uses the following device of Sacks and Ylvisaker (1970)
(see also Miiller (1988, p. 9)). The design points are defined through a “design
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density” fx(-) in the following way,
z; = Fg'(i/n) with Fx(z)= / Fx(y)dy. (1.2)

We will consider this approach to present the asymptotic results in this section.
Denote 7anw(z) for the Nadaraya-Watson and rhga(z) for the Gasser-Miiller esti-
mator.

Theorem 1.1 (Miiller (1988 p. 29), Chu and Marron (1991))
Assume the following conditions

(i) K(-) is a symmetric kernel with support [-1,1],
K(') is bounded above 0 on [-1/2,1/2] and K(-) has bounded derivative,

(ii) h = 0,nh® = oo, as n — oo,
(iti) m"(-) is continuous at z,
(iv) o?(:) = o?,

(v) fx(z) >0, fx(-) is Lipschitz continuous and f%(-) is continuous at z.

1 1
Then, with pa(K) = [ w?K(u)du and R(K) = [ K*(u)du, we have
=1 -1

B (iw()) - m(a) = (m(a) + 2m(2) D) B (k) + o)

B (an(z)) — m(z) = m"(2) s pa(K) + ofk?)

and
2

1
Var(mnw(z)) = Var(tam(z)) = mR(K} +o (;};) .

So far we assumed implicitly that m(-) and fx(-) have unbounded domain.
Asymptotic properties of both estimators, however, change when this unbound-
edness is not satisfied. Assume w.l.o.g. that fx(-) is defined on [0,1]. For points in
the interior region, ¢ € [h,1 — A], the above theorem remains valid. For boundary
points, z € [0,h) or z € (1 — &,1], the asymptotic expressions are different. Main
reason for this is that for left (resp. right) boundary points the local neighborhood
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[z — h,z + h] around z only contains design points in [0,z + A] (resp. [z — h,1])
and the weight assignment mechanism is not able to adapt to this. The main impli-
cation is that in the boundary region the order of the bias becomes O(h), while it
is O(h?) in the interior. The theoretical result describing this phenomenon for the
Nadaraya-Watson estimator is given in Section 1.2.2, for the Gasser-Miiller estimator
see Miiller (1988).

Several proposals have been made to solve this boundary problem. Two well
known approaches are boundary corrected kernel methods and the reflection princi-
ple. Boundary corrected kernel methods modify the kernel in the estimation proce-
dure in the boundary region in order to reduce the bias. Gasser and Miiller (1979)
and Gasser, Miiller and Mammitzsch (1985) discuss this approach. The reflection
method is introduced by Schuster (1985) in the density estimation context. Artifi-
cial data are created beyond the support by reflecting the actual data points. Their
estimator is then based on this augmented data set. Hall and Wehrly (1991) discuss
a modified version in the regression context.

In the next section we will introduce local polynomial estimators. For a general
study of local polynomial estimators see Ruppert and Wand (1994) and Fan and
Gijbels (1996).

1.2.2 Local polynomial estimators

Local polynomial regression estimators are obtained by assuming, locally around z,
a polynomial regression model. Suppose the regression function m(-) has derivatives
up to a certain order p. By a Taylor approximation we then have

Ry ;o .
m(z) ~ Y .( )(z —zy =) Bi(z)(z — z),

7!

§=0 j=0

for z in a neighborhood of 2. We then use, locally, the weighted least squares method
to obtain estimators for m(z), i.e., with 8. = (Bo(z),..., B:(z))7,

min,(iamizez (YE = Z Bi(z) (=i — -"«“)J) wa().

i=1

Local regression is a natural local application of parametric fitting, so natural
that, already in the 19th century, it arose independently at different points in time
and in different countries. A nice historical review can be found in Cleveland and



14 Chapter 1

Loader (1996). References therein go back to 1870 and even work dating from 1829
is mentioned.
We consider a local polynomial regression model with kernel weights

1 T;—
Wi(z) = EK (—h—) 5

where K(-) is the kernel function and % > 0 is the bandwidth. The minimization
problem then becomes:

minél;nizei (Y,- - J:o Bi{z)(e: — $)5> 2 .151{ (x—;—m) . (1.3)

=1

Local polynomial regression using kernel weights was introduced by Stone (1977),
Cleveland (1979) and Katkovnik (1979). In the last few years the idea of local least
squares regression has received a lot of attention. Work on this include papers by
Fan (1992,1993), Fan and Gijbels (1992), Hastie and Loader (1993), Ruppert and
Wand (1994) and many others. A good textbook reference is Fan and Gijbels (1996).

Let B, = (Bo(z), ..., B,(z))T denote the minimizer of (1.3). The estimator for
m(z) then becomes h(z;p, k) = ﬁ}.(m). The other parameters 3;(z)(j = 1,...,p)
provide estimators for the derivatives of the regression function m(-) at z up to
order p. Since the polynomial approximation only applies locally, the estimation
procedure is also local and must be redone when estimating m(-) at another point.
Because of this local modeling, the degree p of the polynomial approximation can
be kept small, in contrast with the global modeling, where higher order polynomials
are required to control the bias (if possible at all, see the illustrations in Fan and
Gijbels (1996, p. 2-5)).

The solution to the minimization problem (1.3) is obtained from weighted least
squares theory. Denote Y = (V1,...,Y,)", W, = diag, <, (A7 K((z; — 2)/h)) and

1l zy—z ... (z21—2)
X, =
1l 2o~z ... (zn—2)F

the n x (p + 1) design matrix. With this notation the least squares problem (1.3)
can be rewritten as

minémize(Y - X.8.)TW.(Y - X.8,) (1.4)

3
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with solution

B = (XIW,X,) ' XIW,Y. (1.5)
The estimator for m(z) is
m(z;p, k) = Bo(z) = e (XIW. X)) I XIWLY, (16)

where ef is the (p+1) vector (1,0,...,0). From this expression it is clear that local
polynomial estimators are linear smoothers of the form (1.1). The coefficients in
the linear combination also depend on the degree p of the polynomial approxima-
tion. For p = 0 the estimator reduces to the Nadaraya-Watson estimator, i.e., the
Nadaraya-Watson estimator can be seen as a local constant approximation to the
regression function. For p = 1, a more explicit formula for (1.6) is given by

so(z, h) — s1(z, B)(zi — z) (m‘-—m
K : ;
L= nhzszmh {z,h) — s%(z, h) h Y, (L.7)

where s.(z,h) = (nh)™t i (2 — 2) K ((z: — z)/h).
It turns out that polynomials of odd degree have more desirable boundary properties
(see the theoretical results later in this section).

In Figure 1.3 the weight assignment mechanism for local linear estimators is
shown for the tutorial example used to illustrate the mechanism for the Nadaraya-
Watson and Gasser-Miiller estimators (Figures 1.1 and 1.2).

Similar to the Nadaraya-Watson estimator the local linear estimator first uses the
transformed kernel function K, (u) = 'K ((v — z)/h), i.e., compute K (z:) (the
vertical lines in the middle part of the figure). These weights are then rescaled by
(sa(z, k) — s1(z, k)(zi — 7)) / (s2(z, h)so(z, k) — s}(z, h)), not by a constant factor
as for the NadaryaWatson estimator. The actual weights are shown at the bottom
part of the figure. The resulting estimate at z is indicated by the triangle in the
figure.

We now introduce more notation which will be helpfull in the presentation of
the asymptotic properties for the local polynomial smoothers. As noted earlier,
we have to distinguish between interior points, i.c., ¢ € [h,1 — h}, and boundary
points, i.e., z € [0,k) or = € (1 — h,1]. The results, which we will describe below in
Theorems 1.2 and 1.3, are obtained by Ruppert and Wand (1994) for the random
design case, where asymptotic expressions are given for the conditional bias and
variance of the estimator. Fan and Gijbels (1996, p. 68) claim that the results
remain valid for fixed designs (for explicit results in the local linear case see Fan and
Gijbels (1991)).
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local inear

0.5

xh X x+h

0.0

Figure 1.3: Tutorial ezample of the local linear estimator. The date are indicated
by o and the resulting estimate by A. The middle part illustrates the construction of
the weights while the bottom part shows the actual weights.
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Interior points

Let p:(K) denote the i-th moment of the kernel K(-), i.e., f_11 WK (u)du. Let
N, be the (p+ 1) x (p+ 1) matrix with (7,7)-th entry pi;o(K), and let Mp(u)
be the same as IN,, but with the first column replaced by (1,u,...,u?)7. Define
Kpy(uw) = {|M,(u)|/|N,|}K(u). Then K(;(-) is a higher order kernel of order
(p+ 1) when p is odd, and of order (p + 2) when p is even. A function L(-), with
support [-1,1], is called a higher order kernel of order r if

1

4l L) = [ L(w)du =1

pg(L)=fu£L(u)du=O £=1y 557—1

=1
and

1

(L) = fu’L(u) du # 0.

=i

A higher order kernel L(-) can only be a proper kernel function when r = 2. For r >
2, L(-) must become negative somewhere in order to satisfy the moment conditions.
This implies that the function K)(-) takes negative values as soon as p > 1.

Theorem 1.2 (Ruppert and Wand (1994))
Assume z is an interior point and

(i) K(-) is a symmetric, continuous kernel with support [-1,1],
(ii} h — 0, nh — oo, as n — oo,

(iii} m®*+)(-) is continuous at z,

(iv) a*(z) > 0 and ¢*(-) is continuous at =,
(v) fx(z) > 0 and f%(-) is continuous at .

The asymptotic variance is given by

Varti(zin ) =~ L ) +o ()
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The asymptotic bias for p odd is
pt1

E(i(z;p, b)) = m(z) = mF+(z )(p+1

),#p+1(K(p)) + o(h**).
The asymptotic bias for p even is
E ((z;p, h)) — m(z) =
'] p+2
{m(p+2)(:t:) i (p_+_2)m(‘p+1)($)fx($)} h K(P)) +o(hp+2)

Tx(z) (p+2) #p+2(

provided that m®+?(.) is continuous at z.

Boundary points

We restrict attention to left boundary points, i.e., 0 < z < h. A similar analysis
is possible for right boundary points. It is convenient to treat boundary points as
¢ = ah, where 0 < o < 1. Incomplete moments of the kernel K(-) are denoted by
freo(K) = ffa u‘K(u) du. For boundary points we modify the notation for K,(-)
in the following way : let N, (@) be the (p+ 1) x (p + 1) matrix with (2, j)-th entry
pivi—20(K), and let My(u, ) be the same as N,(a), but with the first column
replaced by (1,u,...,u?)T. Define Kg)(u,@) = (|My(u,a)|/|Ny(a)|)K(u),—a <
u < 1.

Theorem 1.3 (Ruppert and Wand (1994))
Assume z is a left boundary point of the forrmn © = ah. Further assume conditions
(i)-(v) of Theorem 1.2. The asymptotic bias is

1
p+1
E(in(a; p,h)) — m(z) = m(”“’@’(_;:r)r f WK ) (u,a) du + o(h7H)

and the asymptotic variance is

Var(r(z;p, h)) = f;(z‘g%ﬁjlfé)(u,a)du-i-o(;l};).

Remark 1.1
Assume p even and m+?)(.) is continuous at x. Based on Theorems 1.2 and 1.3
we can compare the performance of the local polynomial smoothers m(z; p, k) and
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m(z; p+1, k) both at interior and boundary points. First note that for /2 (z; p, k) the
order of the bias drops from A#*? in the interior to AP*? in the boundary, while for
m(z; p+1, h) the order is kP*?, regardless of the position of z. Furthermore, for inte-
rior points, the bias of m(z; p, k) has a more complicated structure than the bias of
(z;p+ 1, k), depending on the design density. The term {f%(z)/fx(z)}m®*+)(z)
can cause m(z;p, k) to have a large bias. When |m®+1)(z)| is large, so is the bias
of the estimator. Thus, even in situations where the true regression function is a
polynomial of degree p+ 1, the estimator r(z;p, ) can have a large bias, while the
estimator f(z;p + 1, k) is unbiased (see below). Also, in highly clustered designs,
where |f5%(z)/fx(z)]| is large, the bias of (x;p, k) is large. Hence, the local poly-
nomial estimator with p even cannot adapt to highly clustered designs. This bias
problem disappears when using the local polynomial estimator with p odd.

Figure 1.4 illustrates the superior boundary behavior of the local linear esti-
mator to the Nadaraya-Watson estimator. We consider the same tutorial data set
as in Figures 1.1 and 1.3. It shows the unbiasedness of the local linear estimator
when the true regression curve is linear (for reasons of this unbiasedness we refer to
Remark 1.6).

The Gasser-Miiller estimator does not have the drawback that the asymptotic
bias depends on the design density fx(-) (see Theorem 1.1). However, the estimator
has another design problem. For random designs the variance of the Gasser-Miiller
estimator becomes 1.5 times that of the Nadaraya-Watson estimator (see Mack and
Muller (1988)).

Fan (1992) refers to the local linear estimators as being design adaptive, since
the method adapts to both fixed and random designs, and to both interior and
boundary points. From the discussion above, it is clear that this design adaptivity
property holds in general for local polynomial estimators with p odd.

The discussion on boundary problems in Remark 1.1 was completely concen-
trated on the performance of the bias. In terms of rates of convergence of the bias,
no boundary adjustment is necessary for p odd. This is seen to be a great advantage
of local linear fitting over the Nadaraya-Watson and other classical kernel estimators.
Naturally, bias correction comes with a price, that is, increased variance. The rate of
convergence of the variance does not depend on the degree p, but the constant term
causes the variance to be larger for larger p. For example, for the biweight kernel
K(u) = 2(1-4*)?1{|u| <1}, the asymptotic variance of the local linear estimator
is about 3.58 times that of the Nadaraya-Watson estimator when estimating m(-) at
0, if the same bandwidth is used for each (see e.g. Wand and Jones (1995, p. 129)).

*



20 Chapter 1

Nadaraya-Watson

05

0.0

local finear

05

00

05

Figure 1.4: Tutorial example of the Nadaraya-Watson and local linear estimators at
a boundary point. The data are indicated by o and the resulting estimates by A. The
interpretation and construction of these figures is the same as for Figures 1.1 and
1.3.
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1.3 Local polynomial estimators for sparse multi-
nomials

In the previous section we considered local polynomial smoothing in a regression
context. In this section we will apply local polynomial smoothing method to ordered
sparse multinomial data (one-dimensional). '

Let p = (p1,...,p%)T be the vector of cell probabilities we want to estimate.
Let N = (Ny,..., Ni)T be cell counts generated from the multinomial distribution
with cell probabilities p and with total sample size n = ELI N;. The frequency
estimators are denoted by P = (Py,..., Px)T. To define local polynomial estimators
for the cell probabilities we look at the data as regression type data. Let z; =
(i—1/2)/k,i =1,...,k, be fixed equidistant design points on [0,1]. The multinomial
data can be represented as (z;, Pi),i = 1,..., k.

We define the local p-th degree polynomial estimator for cell probability p; as

P, = e (X{ W X,)" XTWiP (1.8)
where ef is the (p+ 1)-vector (1,0,...,0), W; = diag, ;< (R K((z; — 2:)/h)) and

1 L1 — i s (L‘Cl—ﬂ?i)p
X: =

1 L —T; ... (:Ck—.n't.')p

the k% (p+1) design matrix, with p the order of the local polynomial approximation.

The main differences with the regression problem of Section 1.2 are that the
frequency estimators are not independent and their variance depends on the cell
probabilities p. Since we aim at the study of the local polynomial smoothers for
sparse tables we work in the sparse asymptotic framework, i.e., k = k(n) — oo as
n — oo. Therefore, the study of the sparse asymptotic properties of the estimator
is somewhat more complex if compared to classical asymptotic properties in the
regression context, where only the sample size n tends to infinity.

The idea of local polynomial smoothing is based on a smoothness assumption
of the true regression curve. Similarly, to study local polynomial smoothers in the
ordered multinomial data context, we will need some smoothness criteria for the
vector of true cell probabilities p. Since the dimension k of the table increases,
we must consider an infinite sequence of probability vectors p whose dimensions
increase without bound. We simplify this structure through the following device :
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we assume there exists a density function f(-) on [0,1] that generates the probability
vector p via the relation

p= [ f)du, i=1,..k (19)

(see also Bishop et al. (1975, p. 411) and Santner and Duffy (1989, p. 60)). Note that
in this way the sequence of probability vectors p is linked to a single function f(-).
We will refer to (1.9) as the latent density assumption. Via smoothness conditions on
this latent density f(-), it is guaranteed that the vector of cell probabilities smoothly
varies as the dimension of the table increases.

In the sequel of this section we will first rewrite the local polynomial smoother.
As already noted in the previous section, local polynomial estimators are linear
smoothers. In this section we will derive an explicit expression for the coefficients
in the linear combination. Next, we will give some technical results which will be
helpful in later chapters. Finally, we will derive the asymptotic bias and variance
expressions for the local polynomial estimator P.. The discussion on the superior
boundary behavior of the local polynomial estimator compared to the classical kernel
estimator, is delayed until Chapter 3.

Linear representation of the local polynomial smoother
The arguments to derive the explicit linear combination for the local polynomial
smoother come from Ruppert and Wand (1994). The derivation is based on standard
matrix calculus (see e.g. Searle (1982)).
If the matrix X7 W, X; is invertible, the inverse can be written as

(XTW;X;) ™" = {det (XTW:X;)} " adj (XTW, X)),

where adj(A) represents the adjoint matrix of a square matrix A. Hence, the j-th
element of the (1 x k)-vector e] (XTW; X;) - XTW, is given by

{ef (xTwix) ™ xTwi}.

1 r; —x; = B 3 n =
= EK( = ){det KEWX)} S {adi (XIWEX))),, (2 — 2:) .

=1

The term 3217 {adj (XT W X;) }1e (@i —2:)*~! can be seen as the determinant of the
(p + 1) x (p + 1)-matrix X! W,X; with the first column replaced by
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(1,2; — i, .., (z; — z:)*)7. Further note that
XTW.X; = kdiag(1,h,...,h") N, diag(1, k,..., h*),
where IN;, is the (p + 1) x (p + 1)-matrix having the (r,s) entry equal to
(Nip)rs = M rsa-2(zi) (1.10)
with
(2) = 1 r;—& EK T;—T
Mke .‘IC) = E ; 3 h 5
Combining these results yields,
1 & z;i—x
A. =y . 4 D,
Pi= b (22), (L11)
where
| M ()]
Lip(u) = —2——K(u). 1.12)
P ) |M,p| (
From (1.12) we have
I P, b T;— %
g = e . 2
Cucle) = g7 2 (257) @ (*5%)
mk,g($,‘) mk,l(:ﬂ;) e mk,p(m,-] (1.13)
k(@) Meppa(Ti) .o meap(i)
| NG |
From this relation it is immediate that
Crolzi) =1 and Cre(z) =10 for £=1,:-..p (1.14)

The fact that (1.14) is an exact (i.e., non asymptotic) relation that holds for all
design points z;, is of major relevance for the behavior of the local polynomial
estimator. We will discuss this in more detail in Remark 1.6 and in Chapter 3.
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We can think about Cj ¢(z;) as a kind of “discrete moment”of the function L; ,(-).
Furthermore, relation (1.14) states that these “moments”, up to order p, are equal
to zero. We therefore say that L; ,(-) is a discrete higher order kernel of order p+ 1.
The immediate consequence of working with a higher order kernel function L; ,(-) is
that the weights L, ,((z; — z:)/h)) can become negative as soon as p > 1. It turns
out that even for p = 1 the function L;,(-) can take negative values, but only for
design points z; in the boundary region (see Section 3.2 for more details).

Some graphical illustrations

In Section 1.2 we illustrated on a tutorial data set how local constant and local
linear estimators are constructed when estimating a function at a single point. In
this paragraph, we illustrate for a sparse multinomial data set the complete picture
of the estimated cell probabilities. As data set we consider the mine explosions
data presented in Table 1.3. Figure 1.5 shows the estimated cell probabilities based
on the local constant estimation procedure, while Figure 1.6 is for the local linear
estimators.

To construct the estimators we have chosen three different bandwidths and as
can be seen from the figures, the bandwidth has a crucial effect on the visual impres-
sion of the resultant cell probability estimates. For too small bandwidths there is
almost no difference between the local constant, local linear and frequency estimates,
since so little information is borrowed from the neighbors to compute the smoothed
estimators (e.g., with a bandwidth equal to 0.02 we use information from at most 2
neighbors). For too large bandwidths on the other hand, almost all structure that is
present in the data is smoothed away, because of the fact that too many neighbors
have an influence on the smoothed estimators (e.g., a bandwidth of 0.2 corresponds
to smoothing based on at most 22, and at least 11 neighbors). Both extreme levels
of smoothing are respectively called under- and oversmoothing. This illustration
makes clear that bandwidth selection is an important issue in the nonparametric
smoothing literature. In Section 3.3 we discuss this problem in more depth.

The figures make also clear that local constant estimators suffer from boundary
bias problems, which can be seen from the severe underestimates at the left boundary
cells. Also this topic we will discuss in more detail in Chapter 3.
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Sparse tables and local polynomial smoothing 27

Useful technical results

In this paragraph we will give two lemmas. In the first one we describe how we can
approximate summations by integrals when doing sparse asymptotics. The second
result states that the weight function L; ,(-) is bounded. Note that both results are
valid uniformly in the i-index, which will be important in Chapters 2 and 3, since
there we will investigate global measures of performance (sparse consistency and
MSSE). The rather technical proofs of both results are given in Section 1.4.

We will need the following conditions on the kernel function K(-) and the band-

width h:

(C.1) K(-) is a symmetric, continuous kernel with bounded support [-L,L],
(C.2) h—= 0, hk — o0 as n — oa.
Lemma 1.1

Let G(-) be a continuous function on a compact support. Define a; = z;/h and
B: = (1 — z;)/h. Assume (C.2), we then have, uniformly in i, fori =1,...,k,

klh,Z:G (%‘ ;r) < j G(v) dv + o(1).

Remark 1.2
For G{u) = u*K(u) the conditions of Lemma 1.1 are satisfied under (C.1) and (C.2).
Define

Bi

we(zi) = /’UtK(’U) dv. (1.15)

—a;

For g e(z;), the entries of the matrices IV; , and M; ,(-), we then have,uniformly in
the z-index,

mye(zi) = po(z:) + o(L). (1.16)

Lemma 1.2
Assume (C.1) and (C.2). If at least (p+1) weights in the matrix W; are strictly
positive, then the function L; () is bounded. This bound is uniform in the i-index.
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Remark 1.3
Since K(-) is defined on the support [-L, L], K ((z; — z;)/k) = 0 when |z; — z;| >
Lh. This implies that the number of positive weights is of the order O(kh). Hence,
under condition (C.2) the requirement of p + 1 positive weights is satisfied for &
large enough.

Remark 1.4
The weight function L;,(-) has the same support [—L, L] as K(-), and is bounded on
this support. Denote Cf, the bound of |L;,(-)|. Therefore, we have that expressions

of the form i
1 T — I T; — Iy
an () o (0 (%5))

are bounded, uniformly in the i-index, where g1(-) is a continuous function on
[-L, L], and g2(-) a continuous function on [~Cf, Cp] with g2(0) = 0.

Asymptotic bias and variance expressions for the local polynomial smoother
The main result of this section is given in the next theorem.

Theorem 1.4
Assume (C.1), (C.2) and

(C.3) f@+1(.) is continuous on [0, 1].

We then have, uniformly in the i-index

~ FE)(g,) hpH1 hp+1)
EP ~pp="—— """ ; 1.17
and i
*__f(xe)iz 2 (T — T 1
b= e & e ) P\ ) (148)
Proof

To obtain the expression for the bias, we need the following two analytical facts,
which are based on {C.3) : a Taylor expansion yields, uniformly in the j-index,

itk £=0p+1

O (z; 1
pj = / fludu= )" (,ﬁ—zdﬁﬂ(ww) (1.19)

(=1)/k ¢ even
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and, uniformly in the  and j-index,

p+1-¢£ (e+r) [ .
A=Y i_r.lﬁ)(z,-_m,-)wo(hpﬂ-f) for |z; — z;| < Lh. (1.20)

r=0

Further note that L;, ((z; — z;)/h) = 0 for |z; — z;| > Lh. Based on these facts and
using the orthogonality relation (1.14) and kh — co we obtain

k
= 1 T;— T
BE = —Np 38
khjg "’( h )p”

£=0,p+1 k p+1—£
1 1 Ty — X4 f(!+r) Z; %

= Y grrmE g o L (2 > —f—)(mi—zf)

o Gt T TR | B £ h L

£=0,p+1
h]fH-l —-£ 1
+ 3 o) +o ()

_ £=0,p+1 1O (z;) " 1f(p+1}(mt.)c () 4o pPt

e (,g + 1)528k£+1 k (p - 1)! kp+10Li A

= pi+

f(p+1} Bl Jptl
"‘*G;—;—(l‘—ﬁ“)' E Ck +1($}+0( & ).

To obtain expression (1.18) for the variance, we will use the following facts :
from (1.19) we have, uniformly in the j-index,

w12 10(3) o

Note that this relation is already valid if f(-) is bounded on [0, 1].
From (1.20) we also have, for |z; — z;| < Lk, uniformly in the ¢ and j-index,

flz;) = f(z:) + O(h) (1.22)

and L;p((z; — z)/h) =0 for |z; — x| > Lh.
Based on these facts and using Cov(P;, Py) = (p;(6;¢ — p¢)) /n we have

k k
2, 1 T — g ZT¢— I;
ar(P:) = nk2h? ZZLW ( J A )Li.p( : kL )Pj(5j£ — pe)

3=1 ¢=1
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k 3 2
1 T5 =T 5= By
= nEkih? {E L?,;n( : E )Pj - (E Liy (4'1 hA) PJ') }
=1

§=1

_f=) 1 . o (25— 1 [ o s [Tj— 1
=menin =L (T )0 ) m 2 B (U ) o)

i=1

k
. 1 9 T; —I; . . s
Since h ngl L, (T) = O(1) uniformly in the i-index (see Remark 1.4) we

obtain, uniformly in the i-index, (1.17). |

Remark 1.5
If instead of condition (C.3) we only have
(C.3) f#+1(.) is bounded on [0, 1],
the expression for the variance remains valid (assume p > 1). For the bias, only the
order remains, uniformly in the 7-index,

s hptl
ER—p€:O< 7 ) (1.23)

In Chapter 2 we will use this version of the asymptotic bias expression to present
the results on the sparse consistency of the local polynomial estimator. For the
discussion on the MSSE of the local polynomial smoother (Chapter 3) the stronger
condition (C.3) is needed.

Note that (1.23) follows from the proof of (1.17), where the Taylor arguments
leading to (1.19) and (1.20) are replaced by Young’s form of Taylor, which yields,
for |z; — z;| < Lh,

ik £=0,p+1
S 1
= [ twd= Y Gl o (m
G=1)/k ¢ even
and
p1—£ Fle4r)o ..
f(e)(mj)= ;‘) w(fﬂj—l’e)r-i-o(hpﬂ_f)

uniformly in the ¢ and j-index.
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Remark 1.6
An important consequence of property (1.14) is that local polynomial smoothers
are exactly unbiased when f(-) is a polynomial of degree p. This can be seen from
the proof of (1.17), if we note that relations (1.19) and (1.20) reduce to, since
FE4() =0

ik £=0,p f(‘!)(x)
and
Pt p(edr) (o
19y = Y T By
r=0 :
1.4 Proofs

Proof of Lemma 1.1
By a simple substitution we obtain

53 (27%)- o
o)1 fo(5)
s [ 0o () s
15 [ le(e5)-e(52)]s

HSegem) [ o) -o(52) w0

JeL  jell; jedl (-1)/k

I/\
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where I;, II;, III; is the following partition of {1,...,k}. With C; = [(j —1)/k,j/k],
denote (C; — z;)/h = {(z — z;)/h : z € C;} and define

L={j: (Ci—=)/h C [a,b]}

I;={j :j¢&I;and (C; —z;)/h N [a,b] # 0}

HL={j : (C;—=z:)/h N [a,b] =10},
where [a, b] is the support of G(-). First note that the sum over III; has no contri-

bution to (1.24), and that for j € II; we don’t know whether (z; — z;)/h € [a,b].
Further, for j € I; we have, since G(-) is continuous on a compact support,

o(25%) -0 (45%) =

and for j € II; we certainly have

; ( ;) o (y_;_f:’) = o),

where both order bounds are uniform in the : and j-index. Since we work on an
equidistant design, we have #I; < (b—a)kh and #1I; < 2. Combine these facts into
(1.24) to end the proof. |

Proof of Lemma 1.2
From the definition of L;,(u), and the fact that K(-) is continuous on the compact
support [-L,L], it suffices to show that | M; ,(u)| is bounded uniformly in the ¢-index
for bounded » and that |IV; | is uniformly bounded away from zero. The uniform
boundedness of |M; ,(u)| for bounded u follows immediately from (1.16).

The matrices N;, are positive definite if there are at least p -+ 1 design points

with positive weights. To see this, let 2 = (21,...,2,01)7 # 0 and write
pt1 p+1
Nz = )Y mepea(ai)zz,

r=1 s=1
1 k p+1 e i r—1 2 % 5

_ F ] i~ & .

- EZ(Z(—h ) z) K( = ) (1.25)

J=1 r=1

If there are p+ 1 positive weights in the matrix W; then, for all possible z # 0, there
is at least one j for which the contribution to (1.25) is strictly positive. Therefore,
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2T N; ,z is strictly positive for all z # 0, and hence the matrix N, has a strictly
positive determinant.

Moreover, |INip| > [Nip|,1 <4 < k. This can be seen as follows. Since the
matrices N;, and N;, are symmetric and positive definite, there exists a non-
singular matrix @ such that

Ni, = QTAQ
Nl,p = QTAIQ

where A; and A; are diagonal matrices (which are also positive definite). From
(1.25), and the fact the design points are equidistant, it is clear that 2T N;,z >
2T Nypz, for i = 1,..., k. This yields that the matrix N;, — Ny, is non-negative
definite, and hence

0 S !M.p - Nl,pi = |Q|2!A! - All
We also have

0 < |Nil = 1QI°|A,
0 <Nyl = QP|Aq].

Therefore, to show |N;,| = |Niyl, it suffices to prove |A;| > |Ay|. From the fact
that the matrix IN; , — N7 , is non-negative definite we also know this for the matrix
A; — A;. Hence, the elements of A; — A, are positive. Furthermore, from the
positive definitness of the matrices A; and A,, we also know that the elements on
the diagonal of those matrices are strictly positive. Using these arguments we can
show, by induction on the dimensions of the matrices, that

0< U\ri,p = Nl,pl < INf.pl = |Nl,p’ "

So, now we know that inficicx [INip| = |[IN1p| > 0. We will show that [Ny, is
bounded away from zero when k& — oo. For the elements my(z1) of the matrix
N, we know from (1.16) that mg(z1) = pe(z1) + (1), as n — oco. It is clear that
pe(z1) = pe(0) + o(1) as n — oo,where p(0) = j:' v’k(v) dv. This yields for the
determinant of /N, ,

po(0)  pa(0) ... pp(0)
[Nyl =] : : +o(1).
| #p(0)  pp41(0) ... p2p(0)
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The determinant on the right hand side is strictly positive since the corresponding
matrix is positive definite (similar proof as for the matrix IV;,).

Hence, inficick [Nip| > 0 as n — o0, i.e., |N;,| is uniformly bounded away from
Zero. ]
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Sparse consistency rates

In this chapter we investigate sparse asymptotic consistency of the frequency es-
timators and the local polynomial smoothers. Recall from Chapter 1 that sparse

asymptotic consistency of a generic sequence of estimators P* = (Fy,..., P;)7 for
the cell probabilities p = (p1,...,px)7 is defined as
P,'- a.s,
sup |— — 1] — 0, asn — oo. (2.1)
1<i<k | Pi

In general, the frequency estimators may fail to be sparse consistent. First we
give, in Section 2.1, a simple example where the frequency estimators are not sparse
consistent. Next, we give in Theorem 2.1 sufficient conditions under which they
are sparse consistent. Since the theorem is in terms of rates of convergence, it is
possible to investigate what degree of sparseness (i.e., the rate at which k tends to
infinity) we can allow to guarantee sparse consistency. This will be illustrated in
two examples.

In Section 2.2 we study sparse consistency for local polynomial estimators for
cell probabilities. Sufficient conditions are given to guarantee sparse consistency.
In the result we obtain information on the rate of convergence, as we did for the
frequency estimators. Based on the same examples as in Section 2.1 we compare
the performance of both estimators, in terms of degree of sparseness and sparse con-
sistency rates. We show that the smoothed estimators obey the sparse consistency
property for degrees of sparseness at which the frequency estimators are not sparse
consistent.

Simonoff (1983) studies sparse consistency rates for penalized likelihood estima-
tors for cell probabilities. We will compare his results to the ones we obtain for local
polynomial smoothers. The fastest rate in Simonoff (1983), coincides with the rate

35
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we get for the local linear smoother. However, to obtain his result he needs regular-
ity conditions that are more stringent than our assumptions. A detailed comparison
is given in Section 2.2.

To prove our main results (Theorems 2.1 and 2.2) we rewrite the frequency
estimators in terms of independent zero-one random variables, and we rely on the
- Bernstein inequality.

2.1 Sparse consistency of frequency estimators

As noted in the introduction, the frequency estimators may fail to be sparse consis-
tent. To illustrate this we consider the following example.

Example 2.1

Assume k and n are related as follows, n = ck, where ¢ € INy is a constant. This
means that k and n grow at the same rate. Further assume uniform cell probabilities,
e Po= o =1uak

For 0 < £ < 1/e we have

P, :
— -1 <5}=IP{sup |I\/,-—cl<sc}
Di 1<i<k

; al F1\" nl fe\ME
:P{JV.":C,'t:l,...,k}:W(E) :E(E)
_ 270 /% exp(—n) exp ((12r)714,)

(V2mel/2 exp(—c) exp ((12c)‘19C))n/c

with 0 < 8,,0. < 1 (Stirling’s formula). Since (2.2) converges to zero as n — oo,
even in probability, (2.1) is not valid.

IP{ sup

1<i<k

(2.2)

In Theorem 2.1 we give a sufficient condition under which the frequency estima-
tors are sparse consistent. Denote

m, = inf p; and M, = sup p;.
o 15igkp‘ R 15:'2%}3'

Theorem 2.1
If

lun + Ink

Ny,

— 0, asn — oo
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a.=s.0( lnn+lnk) '
My
Proof

Let, for £=1,...,m, ¥Yne = (Ya,..., Ya)? where, fori =1,...,k,

then

P
5! i
pi

sup
1<i<k

(2.3)

Yo — 1 if the £-th observation is in cell i
“7 Y 0 otherwise.

Note that Y,¢ is a triangular array, and that, for each fixed n, Y5,,...,Y,, are

. . . = 1o
independent. In terms of these variables we can write P; = — Z Yii.
n
£=1
By using a Bonferroni type inequality we have
B —
: p">s}£k sup J’P{
Pi 1<i<k

> En} s
where Yy = (Ya — pi)/pi-
Bernstein’s inequality ( see e.g. Pollard (1984, p. 193)) states that for independent

pamelors variables 5, . .x5 $90REE5) = 0,150 <6 and. 3 VerlS) S
£=1

]P{ 2x}<28xp{@:%}

S

£=1

P{sup

1<i<k

n

Z S,

=1
for all z > 0. _
It is clear that the variables Y;; have zero mean and
~ 1 1
[Yi| < — < —
{3 My
V&r(n,):p( zp)sﬁ-
)25 My

An application of Bernstein’s inequality results in

n = .
J.'P{ ZY[;,- >En} SQexp{%}.
3

£=1
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For 0 < £ < 3 we then have
L 1
IP{ ZYE,- > En} < 2exp {fanezmn}.

£=1
AT+ 6)Inn+ k|
Iy

Now, take g, = with § > 0. For n sufficiently large we have

0 <e, <3, since

Inn+Ink
NIy,

— 0, as n = oo.

Therefore, we obtain, for NV sufficiently large,

P —

l pe‘ >£n}

Di

Yei >Enn}
=1

=2 i kexp(—(1 +é)Inn)exp(—1lnk)

n=

£ p{

a=N 1<i<k

Siksuplp{

n=N 1<i<k

This complete convergence result implies the lemma. a

Remark 2.1

In Aerts et al. (1997a) sparse consistency of frequency estimators is studied using a
natural link between P; — p; and the oscillation of an appropriate empirical process.
This approach requires more stringent conditions on the vector of cell probabilities.
Specifically, they assume that the cell probabilities are generated by a latent density
function f(-) on [0,1] through relation (1.9), which implies smoothness of the vector
of cell probabilities p. For frequency estimators this condition is superfluous.
Further note that the quantity M, does not appear in Theorem 2.1. The rate at
which m, tends to zero, together with the degree of sparseness of the table, are
the only two factors that determine the sparse consistency rate of the frequency
estimators. Compared to the result in Aerts et al. {1997a), Theorem 2.1 allows,
under weaker conditions, a slightly higher degree of sparseness and still guarantees
sparse consistency (see Example 2.3).
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As an illustration of Theorem 2.1, we now discuss for two examples the interplay
between degree of sparseness and sparse consistency. We include information on the
rate of convergence.

Example 2.2
Assume the cell probabilities satisfy
0<1i;gpi51’kf<1 it B, (2.4)

This condition on the cell probabilities is imposed by Simonoff (1983) (see also
Theorem 2.3 below). For this example the condition of Theorem 2.1 is equivalent
to k(lnk +1nn)/n — 0. Hence, it is obvious that in this example, the frequency
estimators are sparse consistent for tables with k o« n?,0 < ¢ < 1, where the notation
@, o b, means that a, and b, are of the same order, i.e.,

Gp
a — C, as n — 00,
with C a nonzero, finite constant. The sparse consistency rate for this degree of
sparseness is O(n(@=1/2(Inn)'/2).
Note that in Example 2.1 (2.4) is satisfied with 91 = 2 = 1. There we have shown
that the frequency estimators are not sparse consistent when k o< n. Therefore, the
degree of sparseness where the consistency for the frequency estimators breaks down
must be somewhere between k = n? 0 < ¢ < 1, and k oc n. When we take a closer
look at the condition guaranteeing consistency, we see that this is also fulfilled for

& — withe > 0, but not for k S suggests k o B 555 possible
(Inn)ite Inn Inn
rate for the breakdown of the sparse consistency of the frequency estimators. The

sparse consistency rate of the frequency estimators when k « with € > 0,

is O({Inn)~/%).

B
(Inn)i+e

Example 2.3

Condition (2.4) is equivalent to m, « k™' and M, « k~'. Now consider cell
probabilities where the smallest cell probability converges faster to 0 than k', Take
e.g. a vector of cell probabilities p with m, o< k7%, a > 1. For specific examples see
Example 2.5. The condition of Theorem 2.1 then becomes k*(Ink +Inn)/n — 0.

1/a
This condition is fulfilled for & Lﬂ_s) with € > 0, and the corresponding

(Inn)

rate of convergence is O((Inn)~%/2). This example shows that, for cell probabilities
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violating 0 < g1 <m<

i 1, ¢ = 1,...,k, the frequency estimators are still

sparse consistent provided that the table is not too sparse. Variations on this theme
are of course possible.

2.2 Sparse consistency of local polynomial esti-
mator

Dengte thf localfolyﬂomiai smoothers for the cell probabilities p = (p1,...,pe)T

by P = (P,...,P.)T. We have the following sparse consistency result.

Theorem 2.2

Assume that the cell probabilities are generated by an underlying latent density f(-)
on [0,1] through relation (1.9). Further assume,

(C.1) K(-) is a symmetric, continuous kernel with bounded support [-L,L],

(C.2) h =0, hk — 00 as n — oo,

(C.3'} fr1)(.) is bounded on [0,1],

and
. Inn+Ink 1 1
(i) A% = : (mnhk mﬁkz)—w.asn—;oo,
hptl
ii) B, = ;
(ii) o =0

The vector P is a sparse consistent estimator for p and the consistency rate is

i B

= 0(A, + B,).
= ( )

sup
1<i<k

Proof

B : P, - EP,
We decompose — — 1 into a stochastic part —— :

i P

and a deterministic part
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EP
. From the bias expression (1.23) for the local polynomial smoother (see

R,ernark 1.5 after Theorem 1.4), we immediately obtain

EP —p;
sp [CO TR cemsy. (2.5)
1<i<k Pi

For the stochastic component we will show

P,— BF,
sup |——
1<i<k P

= O(An)- (2.6)

Combining relations (2.5) and (2.6) yields the desired result.

by
fa~))

Z X&

=1

Ch

o~ 2 1
| Xes|] € —— sup ey

2.8
- h 1<1,5<k ( )

)ngm

Let,for £=1,....n, X0 = (Xn,...,Xu)T be the triangular array where
1 5 T;— T
L ) gy -
Xo= 5 3 i (252 W -m, (2.7
are independent. We then can write F; — E'F; as a sum of independent random
- w e
i ie, P— EP, =~ Xe;.
variables, i.e., P, = Z ¢
By using a Bonferroni type inequality we have
) -
P{ sup <k sup IP >eng,
1<i<k 1<i<k
definition and Lemma 1.2 we obtain, with C; > 0,
T; — T
()

For the variance of Xg,‘ we have

L Lo Ti— X\ P

R 2 ER )

p; k2h® .X;Lw ( h ) P

i=

with ¥ = (Y, ..., Ye)T defined in (2.3). Note that, for each fixed n, X,1,. .., Xan
=1
P
where fﬁ = Xu/p:i. It is clear that the variables }-Zg,' have mean zero. From its
5 k
Var(Xy) = o kzhz Z ( ) (ZL"’ (

IA
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For j with |z;—z;| > Lh we have L;, ((z; — z;)/h) = 0, and for j with |z;—z;| < Lh
use (1.21) and (1.22) in the proof of Theorem 1.4 to get, with C > 0,

p; h
228 i, 2.10
S i (2.10)

By using Remark 1.4 we now obtain, with C3,C3 > 0,

Cy Cs

Va.I(Xg,;) S —mnkh —mﬁkQ

(2.11)

Use (2.8), (2.11) and Bernstein’s inequality to obtain
P{ Z.i’f" = En}
=1
1 nC' nC. Cine \ 7}
<« _Fan 2 3 1 )
= Zexp{ B (mnkh T rEE T

4
= 2exp {—%Eznmnkh (C:g + %C’ls + %) } .

myk

For0<e< 3—02 we then have

Ch
1o Csh\ 7
P >en p < 2exps ——ne‘mykh { 20, + ;
2 mpk

(14+8)Inn+Ink [ 2C, Cs
N n ——
ow, take € 2 = nkh T e

Z sz‘

=1

) with § > 0. For n suffi-

?2 by (i). Therefore, we obtain, for NV sufficiently
1

ciently large we have 0 < g, <
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large,

P.-EP,

— | > €n
P

i )ﬁfg; > Enn}

£=1
<2% kexp(—(1+6)Inn)exp(—Ink)
n=1

n=N 1<i<k

‘;ilP{sup

n=N 1<i<k

SiksupIP{

=
=2Y n ¥ <L oo,

n=1

This complete convergence result implies (2.6). O

We compare our sparse consistency result for local polynomial smoothers to the
result obtained by Simonoff (1983) for maximum penalized likelihood estimators.
We first give a short discussion on maximum penalized likelihood estimators, for
more details see Tapia and Thompson (1978, Chapters 4 and 5).

Maximum penalized likelihood estimators

The maximum penalized likelihood method is a nonparametric technique to define
estimators for a density function f(-). Let Xi,...,X, represent a random sample
from the unknown density f(-). This density f(-) is considered to belong to a certain
class H of functions, where H is usually defined in terms of smoothness conditions.
An estimator f() for f(.) is defined as the function that maximizes

L= Y Inf(X) - 83(f)
=1

subject to the constraints
fOeH ffuwm=1 and  ()>0.

The term ®(f) is a nonnegative roughness penalty that becomes smaller as f(-)
becomes smoother, 3 is a smoothing parameter and the object function L is called
the penalized log likelihood. A very natural penalty is ®(f) = || f||%, with || - | a
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norm on H. Any solution to the optimization problem is called 2 maximum penalized
likelihood estimator. The maximum penalized likelihood method has been proposed
by Good and Gaskins (1971). They don’t consider f(-) to belong to a class H, and
in order to avoid the constraint f(-) > 0 in the maximization procedure they take

one ] (#5

—00

which requires f(-) > 0 implicitely.

Existence and uniqueness of the maximum penalized likelihood estimator are
obtained by de Montricher, Tapia and Thompson (1975) for different choices of the
roughness penalty ®(f), including for the proposal of Good and Gaskins (1971).

For computational considerations Scott, Tapia and Thompson (1980) introduce
a discrete version of the maximum penalized likelihood method (based on the nat-
ural penalty), by discretizing the continuous data into subsequent intervals. This
formulation of the problem is closely related to the problem of estimating cell proba-
bilities for multinomial data. Their proposal is to consider the following constrained
optimization problem (in terms of our notation)

k k
maximize = Z N;lnp; — g&* Z (pi — pir)?

i=1 i=1

subject to the Zfﬂ pi=1and p; > 0,7 = 1,...,k, where pg4; = 0. Scott et
al. (1980) established the consistency of the discrete maximum penalized likelihood
estimator if k£ oc n? with 0 < ¢ < 1/4.

Simonoff (1983) considers the following optimization problem

k k-1
maximize L= ZM Inp; — 8 Z(Inp.; — lnp“_,_l)z , (2.12)
i=1

1=1

subject to the constraint ELI p; = 1. Note that the motivation to consider the
penalty function in terms of logarithms is similar to the motivation of Good and
Gaskins (1971). Let g (ﬁf’", .., PM)T denote the solution to (2.12). Simonoff
shows that this estimator is uniquely defined, but there is no closed form expression
for ﬁM. The smoothing parameter 2 in (2.12) does not play its usual role, i.e.,
B — 0, since k is absorbed into its definition. The next theorem states that this
maximum penalized likelihood estimator is sparse consistent when k and n grow at
the same rate.
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Theorem 2.3 (Simonoff (1983, 1995a))
Let n,k,3 — oo such that k and n grow at the same rate (i.e, k o n) and
k4*(In k)**B~1 — 0 and Bk~? — 0. Assume the cell probabilities satisfy

U<%Sp¢§%<l o T e B (2.13)

Further assume the smoothness constraint

In (E%)‘ = O(k?) (2.14)

t

sup
1<i<k

and the boundary conditions

n -
In{=}|=0(k
‘H(Pz) (=)
and
Prk-1 —2
In [ — J| = O(k™*).
jn (52)] =0t
Then R
M
sup L = 0p(B~ V4 (In k)% + Bk72).
1Li<k | Pi

Taking B of the order k%/5(In k)*® results in the convergence rate

DM
sup |—— — 1| = Op(k~%(In k)*/°).
1<i<k | Pi

First note that this is a consistency, in probability, result. From the proof in
Simonoff (1983) it is easy to show that the result is in fact an almost sure result.

Remark 2.2

In order to compare our result for local polynomial smoothers (Theorem 2.2) to that
for maximum penalized likelihood estimators (Theorem 2.3), we first give a short
discussion on the assumptions of both theorems.

In Theorem 2.2 the smoothness assumption on the cell probability vector p is
stated in terms of the underlying latent density f(-). In Theorem 2.3 smoothness
is expressed in terms of consecutive cell probabilities p;_1, p:, piy1. However, this
assumption (2.14) is roughly equivalent to the existence of an underlying latent
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density f(-) on [0,1] with a bounded second derivative, which is condition (C.3') for
p = 1. To see this, note that the condition

£"(+) is bounded on [0,1] (2.15)

together with (2.13) imply smoothness condition (2.14). Indeed, use (2.13), Inz =
z—1+0((z — 1)) and a Taylor expansion of p;_1, p; and p;;; around z; to obtain

IDIE —

Di - |

% —f];(zxe) +-'/‘ fﬂ(&‘;(z))(m _ 2P dz _-[ %L{m))(m ) ds

1
oo (E) (2.16)
and

In Pi+ —

P

i f,(:f") % f M(Jﬂ: i f @{z e

+o (ki) , (2.17)

where £;_1(z), &(z) and £:44(z) are points between z and z;. Combining (2.16) and
(2.17) yields

i (p€—1p€+1) _
o)

1 i_:lf”(ai—l(x)) A2 s%‘“f”(fi-q.d:c)) 2
;; / ——Q__(w_xt) dm—}-}_/———-z-—--f(:n—m:) dz (2.18)

i—2
k

—2j @(:ﬂ —c)tde | +0 (%) .
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Using (2.13) and (2.15) we then obtain

1 (P:HP:’H )
H 3
b;

Further, if (2.15) is not valid also condition (2.14) is not satisfied. To prove this,
assume (2.13) and f"(-) continuous on (0,1), but not bounded at zero. We can
repeat the arguments leading to (2.18) and from thereon, using the continuity of
f"(-) and (2.13), we obtain

(1) LT ) o ).

Since f"(z,) — oo as k — oo and (2.13) we do not have

In (—p“1§‘+l) } = 0(k™2).

1

= 0(k™?).

sup
1<i<k

sup
1<i<k

We now formulate the boundary conditions in Theorem 2.3 in terms of latent
density assumptions. Condition (2.13) is equivalent to f(-) being bounded away from
zero (use the continuity of f(-)). Assuming (2.13) and (2.15) it becomes obvious
from (2.16) and (2.17) that the boundary conditions in Theorem 2.3 are equivalent
to f'(0) = f'(1) = 0. This last condition is typical for avoiding boundary problems.
In the study of the rate of convergence of the mean sum of squared errors of classical
kernel estimators for cell probabilities, Hall and Titterington (1987) and Burman
(1987a) also need this boundary condition (see Section 3.1 for more details).

Based on this discussion we conclude that the conditions on the latent density
f(-) in Theorem 2.2 are less restrictive than in Theorem 2.3. Moreover, we do not
need in our Theorem 2.2 the sparseness condition k o n.

Example 2.4 "
We reconsider Example 2.2, i.e., we assume the cell probabilities satisfy 0 < Lo

k
< A o 1, 2 =1,...,k For k « n% ¢ > 0, the conditions in Theorem 2.2 re-

~

&%
Py

8.

duce to An? — oo, h — 0 and Inn/(nh) — 0, and we obtain sup
1<igk

O( ln—: +h7"+1) . The best rate we can obtain with this result is by taking
n

h o (n7'In n)’Tl’f5 , and the rate becomes O ((n‘1 In n){%) . Note that this best
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rate can only be obtained when g > 1/(2p + 3), since the condition An? — oo needs
to be satisfied. This illustrates that local polynomial smoothers have a faster rate of
convergence than the frequency estimators (see Example 2.2), for tables with degree
of sparseness k x n?, 1/(2p+3) < g < 1.

For less sparse tables, i.e., ¢ < 1/(2p+3), the rate of convergence for the local poly-
nomial smoothers becomes O (A7*!), which is slower than the corresponding rate for
the frequency estimators. In Chapter 3 we will see that the benefit of smoothing,
in terms of rates of convergence of mean sum of squared errors, starts at the same
degree of sparseness.

For p = 0 (the local polynomial smoother is now the classical kernel estimator) the
convergence rate is O{n~/3(Inn)*/?), a result in correspondence with rate of con-
vergence results in nonparametric regression estimation (see e.g. Stone (1988)).
For p = 1 (the local linear smoother) we obtain O(n~%%(Inn)%%), this rate is in cor-
respondence with the rate obtained in Theorem 2.3, but under weaker assumptions
(see Remark 2.2).

Further note that the degree of sparseness we can allow in this example, k < n? for
any ¢ > 0, even includes supersparseness (i.e. k/n — co0). Compared to the findings
in Examples 2.1 and 2.2 this clearly demonstrates the beneficial effect of smoothing.

Example 2.5
We reconsider Example 2.3, where p; o< k7! for i = 1,...,k is no longer valid.
Instead, we assume m, o k™% Since, to apply the result in Theorem 2.2, also
condition (C.3') needs to be satisfied, we can only consider cell probabilities p for
which m, o k™ for @ > 2. An example of a family of latent densities generating
such p are f(u) = au*'1{0 < u <1}, a > 2.
The conditions in Theorem 2.2 reduce to h — 0, kb — oo, k>~ k7! — 0 and
Inn+Ink

SRR,
n

It readily follows that strong consistency is guaranteed if we take

ko (W) , for any £ > 0,

and h such that kh — oo and k*"1h?*! — 0. The rate becomes O ((hm)-e/?),

For h o n~%¥ the condition k*~1hP+ —s 0 is satisfied and kh — oo is equivalent
top>a-—2.
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Let us compare the degree of sparseness obtained for the local polynomial smoothers
to the one obtained for the frequency estimators (Example 2.3). We note that the
frequency estimators are guaranteed to be sparse consistent for a higher degree of
sparseness than the local polynomial smoothers. Does this mean that smoothing is
not beneficial in tables where the smallest cell probability tends to zero faster than
kE~1; or can the result of Theorem 2.2 be improved? Indeed, the next example shows
that for a specific family of densities this result can be sharpened.

Example 2.6
Consider the family of latent densities

flu)=ou* '{0<u <1}, a€ IV and o > 2.

Note that the term (m2k?)”™" in condition (i) of Theorem 2.2 is the reason for

restricting the degree of sparseness in Example 2.5. Recall from the proof of Theo-

rem 2.2 that this term originates from the approximation (2.11) for the variance of

the variables ng. In this example we will derive a more accurate approximation.
For our specific family of latent densities we have, for 0 < u < 1,

ol il
f{e)(u):mu L E:l,...,a—l

and f@(u) = 0. A Taylor expansion yields,
£=0,0~1 f(g)(l‘j]
= ¢ E:Zv:en (€ +1)12tk1
and

A
i £, )7

fO(z;) =

Note that, compared to (1.19) and (1.20), these relations are now exact (see also

Remark 1.6). Use these relations in expression (2.9) for the variance of X4, to obtain
(forpza—1)

O e T o rj—z
s 1 [1 - 1 . (zi—w
Var(Xu) = peEh {kp‘ Z (0 + 112tk (kh ;Li,p ( 3 ) X

£ even

a—1-4 (£+7) i
Z fi()(:[:j — :Ei)r) } - L.

r!
=0
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Since kp; > f(z;) and

4Ny _ (a —1)! 1 (a—1)! t4r Lt
e I o e ) Pl i B o)
we obtain
Var(Xe) < kh{eg; €+ (khz -F( )X

Il
Q
TNy
P&"
[
,—\
end
=
2
J
~
@)
P
N
)
R
v
=
o
N
a—

Use this relation instead of (2.11) in the sequel of the proof of Theorem 2.2. Theo-
rem 2.2 remains valid if we replace A2 in condition (i) by

Inn+Ink
n

k?a—Z ho:—?_

AZ =

We will now investigate which degree of sparseness this new result allows. Consider

1/a 146 ) Y=
ko {—nl—_'_;} and h x Hons © ,
(Inn)™* n

with e, & > 0. The condition A, — 0 is then equivalent to (o — 2)§ < (2a — 2)g,
while kb — oo to § > e. In order to have k*~1h**! — 0 we need p > a — 2. The
convergence rate is O ((Inn)~((2a-De=(a=2)6)/(2a))

So, through this example we have shown, for this special class of densities, that
we can allow the same degree of sparseness for the local polynomial smoothers as
for the frequency estimators, but the rate of convergence for the local polynomial
smoothers is slower.

The degree of sparseness we can allow to guarantee sparse asymptotic consis-
tency depends on the structural behavior of the density. We typically have that the
degree of sparseness is a decreasing function of c. Moreover the degree of the local
polynomial needed to guarantee the sparse consistency increases with c. Based on
the examples discussed above, it is clear that a complete characterization for sparse
consistency is not yet obtained. Two important open questions are :
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“Is it possible to obtain, for a well defined class C¢(p, @) of latent densities, an
optimal sparse consistency rate?”

“Is such a result an explanation for the fact that frequency estimators behave
better than local polynomial smoothers if m, « k™%, a > 27"

For mean sum of squared error rates of convergence such an optimality result
is available (see Section 3.1). Moreover, it turns out that the local polynomial
smoothers are optimal in the sense that they achieve the optimal MSSE rate (sce
Section 3.2). Anologue results for sparse consistency would be desirable.
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Mean sum of squared errors rates

For k-cell multinomial data, where %k is large, the main interest is in the global
trend of the p;’s rather than in the individual behavior of cell probabilities. A well
established global measure of performance is the sum of squared errors SSE(P*) =
ZLI(P{‘ — p:)?, where P* = (P},...,P;)7T is an estimator for p = (p1,...,p5)7.
In this chapter we study the rate of convergence of the mean sum of squared er-
rors, MSSE(P) = E(SSE(P)), of the local polynomial smoothers P for the cell
probabilities in an ordered sparse table (one-dimensional).

In Section 3.1 we give an overview of some work presented in earlier literature
about sparse asymptotic MSSE results of classical kernel estimators. To summarize,
Hall and Titterington (1987) obtain a general theorem on the optimal rate of con-
vergence to zero of the MSSE. Ior tables with a certain degree of sparseness, the
MSSE of the frequency estimators does not achieve this rate. Further they study
kernel type estimators, for which they show that the MSSE of these estimators
achieves this optimal rate. Hall and Titterington require rather stringent conditions
on the behavior of the vector of true cell probabilities at the boundaries of the table.
Burman (1987a) shows that this optimal rate can be achieved under less restrictive
boundary conditions. In Section 3.1 we discuss these boundary conditions in more
detail.

In Section 3.2 we investigate the MSSE convergence rate for the local polynomial
estimators for the cell probabilities. It turns out that the optimal rate is achieved
without boundary conditions, when p, the degree of the local polynomial approxi-
mation, is odd.

Section 3.3 presents a small simulation study, where the local constant estimator
is compared to the local linear and the local cubic smoothers. Further, we briefly
discuss two bandwidth selection methods, that are used to illustrate the local linear

53
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smoother on real data sets.

3.1 Optimal rate of convergence for MSSE

Hall and Titterington (1987) formulate a general theorem which states that there
exists an optimal rate of convergence for the MSSE (see Theorem 3.1 below). For
the ease of reading, we present their theorem in the notation used throughout this
thesis.

They extend the vector of multinomial cell probabilities p = (p1,...,px)T to a
discrete function p(-) on Z through

p(i)z{ pe i€{l,... k} 1)

0 otherwise.

For this discrete function p(-) they assume, for some positive constant C,

and, for all j € Z,

- jp+1

sup < £ ’J ’ (3.3)
i€Z k

k

pi+3) - 3 (5)a%0

£=0

where Ap(i) = p(i + 1) — p(¢) and A* = AA*!, £ > 2. Note that (3.3) is a discrete
version of the assumption that p(-) has “derivatives”up to order p + 1.

The vector of cell probabilities p belongs to the smoothness class P,41(k, C), if,
with (3.1), assumptions (3.2) and (3.3) are satisfied.

Theorem 3.1 (Hall and Titterington, 1987)
The optimal rate of MSSE of any estimator P* for p, with p in the smoothness class
Poya(k, C), equals

O(n?) iY@y A0 < A < oo,

O HBKY) ifnerk - oo

MSSE(P*) = {
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First note that the MSSE of the frequency estimators is

i’zpi(l - p)
()

MSSE(P)

Il

i=1

and hence (1 — sup,; p:)/n < MSSE(P) < 1/n. This yields, by (3.2), that the
frequency estimators achieve the rate O(n~') and that no faster rate of convergence
can be achieved. Therefore, we interpret Theorem 3.1 as follows.

For situations, where k is such that n™V/(?7+3)k _4 o0 (i.e., the multinomial data
are not too sparse) no estimator can improve the frequency estimators, in terms of
faster rates of convergence of MSSE. For multinomial data with a higher degree of
sparseness (i.e., n=Y/(@+3k — 00) it could be possible that there exist estimators,
which have a better MSSE convergence rate than that of the frequency estimators,
but no faster rate than O(n~(3+2//(%»+3)§-1) can be achieved. Further, Hall and
Titterington (1987) show that an estimator, with optimal MSSE convergence rate
exists.

Hall and Titterington (1987) propose a kernel estimator of the form

k " a
e 1 .
HT J—t
HT _ — P,
F kh ;K“( kh ) &

where Ky, (-/(kh)) is a slight modification of a kernel function K(-). They show that
this estimator achieves the optimal MSSE convergence rate, when using a kernel K(-)
of order (p + 1). Next, they study, for smoothness class Ppi1(k, C'), the asymptotic
expansion of the MSSE of their estimator. From hereon, they assume that the cell
probabilities are generated by a latent density f(-) on [0,1] (see also (1.9)) and that
f"(-) is continuous on [0,1]. Further, they require rather strong conditions on the
boundary behavior of f(-), i.e.,

f(0)=f"(0) = f(1) = f"(1) =0 (3.4)
and
f(0) =fQ1)=o0. (3.5)

Burman(1987a) shows that, when using an estimator of Nadaraya-Watson type,
and assuming f”(:) continuous on [0,1], (3.5) is sufficient to obtain the optimal
convergence rate for MSSE.
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The boundary conditions needed for the classical kernel estimators to achieve
optimal MSSE rate are often not satisfied. Dong and Simonoff (1994} show that the
optimal rate can be attained without any boundary condition on f(:), if boundary
kernels (as developed in Gasser and Miiller (1979)) are used. In the interior region,
a kernel K(-) of order 2 is used, while in the boundary region a specially constructed
kernel, based on K{(-), is used. In order to satisfy appropriate moment conditions,
these boundary kernels take negative values at a small region of their support.
The consequence is that negative estimates for boundary cell probabilities cannot
be excluded. Furthermore, every choice of kernel function K(-) requires its own
boundary corrected version (see Table 1 in Dong and Simonoff (1994)).

Rajagopalan and Lall (1995) define a discrete kernel estimator for the cell prob-
abilities. Their estimator has the form I?"RL = E;’:IK((E' — §)/s)P;, where the
smoothing parameter s is an integer. They study the special case where the kernel
function is of the form K(u) = au® + b for |u| < 1. The coefficients @ and b of this
kernel are then chosen in such a way that the weights K((i — j)/s) satisfy appro-
priate discrete moment conditions, which make boundary conditions on the vector
of true cell probabilities superfluous. For other choices of the kernel function K(-),
the derivations to obtain the coefficients need to be redone. Rajagopalan and Lall
(1995) do not investigate the asymptotic behavior of the MSSE of their estimator.

Dong and Simonoff (1995) propose the geometric combination estimator (we only
present its simplest form, which they recommend)

-1/3

Poo(h) = (Pron) ™ (PEO(m) ™",

where PBC(R) is denoted for the boundary corrected estimator (as defined in Dong
and Simonoff (1994)) based on bandwidth k. Since P2Y(2h) can become negative
for boundary cells 7, this is also true for P (k) (due to the exponent —1/3). They

~GC
study convergence in probability of the sum of squared errors, SSE(P ), and ob-

~

tain, under the assumption that f{-) has continuous fourth derivative, SSE(P ) =
Op(n~8°k1). For a stronger MSSE rate result, they cannot rely on boundary ker-
nels (due to a technical reason). This implies that boundary conditions on f(-) are
required to achieve the optimal MSSE convergence rate.

In the next section we show that local p-th degree polynomial smoothers, with p
odd, achieve the optimal rate of convergence of the MSSE if f+1)(.) is continuous
on [0,1]. From the further discussion, it will be seen that, for p even, this optimal
rate is attained under the extra boundary condition f®+1)(0) = fr+1)(1) = 0.
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3.2 MSSE of local polynomial smoothers

In order to give a profound discussion on the local polynomial smoothers for cell
probabilities it is needed to get an insight in the behavior of the local polynomial
kernel function L;,(-). Recall from Section 1.2.2 that the notions boundary and
interior region are important. The boundary region consists of those points whose
local neighborhood partially lies outside the design region. In our problem the design
region is [0,1] and the design points are (z — 1/2)/k which yields that the set I of
interior indices and B of boundary indices are :

1={Lhk+%gig(1_m)k+%} (3.6)
and
B:{l53’<Lhk+%}u{(l—Lh)k+%<z’§k}=BLUBR. (3.1)

A key result in the analysis of local polynomial estimators is the discrete higher
order property of the function L;,(-) (see (1.14)) and its uniform boundedness (see
Lemma 1.2). These results hold both for interior and boundary indices.

For interior points z; (i.e., ¢ € I) some further properties of the weight function
L;,(-) are available.

Lemma 3.1
Assume that K(-) satisfies (C.1). For i € I we have

(i) mg(z;) = 0 for £ odd,
(ii} L;p(u) is a symmetric kernel function,
(iii)} Cre(z:) =0 for £ odd.

Proof
(i) Since z; is an interior point, the design points are equidistant and K/(-) is defined
on [—L, L], we can write

L. z\* YR

. _ i+7 — b +7 H

i = 38 () ()

j=—[Lh#]
[LA&]

SHOR0

j=—[LhA]
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where [a] denotes the integer part of a. By symmetry of K(-), (3.8) is zero for £ odd.
(ii) From the definition of L; ,(u) (see (1.12)) it is clear that, to prove (ii), it suffices
to show that | M;,(u)| is symmetric. M;,(—u) is the same as M; ,(u) but with first
column (1, —u,...,(—u)?)T instead of (1,u,...,u?)7. Since (by (i)) the elements of
the even rows of M ,(—u) are zero at the odd places (except for the first), mul-
tiplying these even rows by —1 affects only the first and the even columns. The
same argument applies for multiplying the even columns by —1. This last operation
changes the even columns back to their original values. Hence, we have performed
an even number of multiplications by —1 on the rows and columns to transform
M; ,(—u) into M ,(u). This yields |M; ,(—u)| = | M (u)].

(iii) The same argument as in the prool of (i), but now based on the symmetry of
the kernel function L;y(-), can be used to show (iii). u

Remark 3.1

Note that Lemma 3.1 only holds for interior points, not for boundary points, and
that the equidistant design is crucial to prove the result. Further, from (3.8) we can
conclude that myg¢(x;) = mye(z;), when ¢ and j are both interior indices, which also
yields

Lip(u) = Ljp(u). (3.9)

Remark 3.2

Property (iii) of Lemma 3.1 plays an important role in the boundary issue of kernel
estimation with bounded design support. Recall that the bias of the local polynomial
estimator is (see Theorem 1.4)

e (p+1) T Rl hptL
BR. = pi= " Onon o) - +0 (T) :

When p is even, Cj p11(z;) = 0 for interior points, but not for boundary points. The
consequence is that the order of the bias differs for interior and boundary points,
which will have an effect on the rate of convergence of the MSSE (see Theorem 3.2
and Remark 3.5 for more details).

Remark 3.3
The local linear estimator (i.e., p = 1) can be written as

pLt _ i mia(ei) = (B57) mia(e) o (zj - mf) P;.

mg2(Ti)meo(z:) — mj (i) h

j=1
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The factor LL(z:,7;) = (mua(:) — (252) mea(z:))/(mea(z)meo(z:) — mi (i)
reduces, by Lemma 3.1(i), to my(z:) for interior indices, but not for boundary
indices. Therefore, for interior points, the local linear estimator is the classical
Nadaraya-Watson estimator (L.e., p = 0). In general, the local linear smoother can
be seen as a particular form of a boundary corrected kernel estimator. See Section 3
in Jones (1993) (in the context of density estimation) and Dong and Simonoff (1994)
for a more detailed discussion on boundary corrected methods.

Further note that, for boundary indices ¢, the factor LL{z;, ;) can become negative
for some j, which is typical when using boundary corrected kernels.

Asymptotic results of the kernel function L;,(-) are also useful for the asymp-
totic investigation of the behavior of MSSE(P). In Section 1. 3 we have seen that,

uniformly in the i-index, mye(z:) = pe(zi) + o(1) where pe(z fﬁ' v K (v) dv
with e; = z;/h, 8; = (1 —x:)/h.
For interior points, a; > L and 8; > L, which gives py(z f % vt K

Therefore, it is immediate that for interior points
Lip(u) = Lig(u) +o(), (3.10)

with

Loy () = ""f’;;fj”ff{u)

where the (p+1) x (p+ 1)-matrix NN, has the (r, s) entry equal to p,4,—» and M, (u)
is the same as N, but with the first column replaced by (1,%,...,u?)T.

Note that the order bound in (3.10) is uniformly in the i-index and in u. Therefore,
we also have, uniformly in 2 and j,

L (m" = I") = Ly (-z’—;—z—) +o(1). (3.11)

Further, from (1.13) we obtain, uniformly in interior indices ¢,

Be B . pp

(3.12)

Ck'g(:t:;) —+ Cg =

: : : .

! Hp+e Ppt1 .- F‘%%_ ]
[N |

L
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The results for the weight function L;,(-) ((1.14), Lemma 1.2 and Lemma 3.1)
carry over to the kernel function L;)(-). Further note that L(,(-) is the Lejeune
and Sarda (1992) kernel (a kernel of order p+ 1 for p odd and order p+ 2 for p even
(see also Ruppert and Wand (1994)).

For (left) boundary points we have e; < L and f§; > L, which gives

L

pe(zs) = peles) = [ o' K (v) dv.

Therefore, for (left) boundary points we have

Bl =5 Bppaa)= Wﬂ(“) (3.13)

where the matrices M, ;)(uw) and N o) are now based on the incomplete moments
pe{e;). A similar treatment is possible for the right boundary region.

The next lemma shows how to approximate sums by integrals. The proof is
omitted, since it is similar to that of Lemma 1.1.

Lemma 3.2

Let g1(+} be a continuous function on [0,1], g2(+) a continuous function on [0,L] and

S {l,...,k} with #5° = o(k). If (C.2), we have
. 1
Y () = [w)dut o)
1ES 0
and
) L
z;
W Z 0 (E) = fgg(u] du + o(1).
icBy s
The main result of this section reads as follows.

Theorem 3.2
Assume (C.1)-(C.3).
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For p odd, we have

v [ L * (6 (w)? du
MsSE(B) =M ( / WL () ) ol
L

-

((p+1)1)?

h2p+2 1

For p even and f**2)(-) bounded, we have

e Lok i ? (Jr(p+1}(g))2_|_(f(m—z)u))2
MSSE = / /U Lipeyv)dv | da CEE

- (3.15)

(3.14)

L

i Pon iss o JHES 1
‘l‘m/ (p)(v)v+0( I )'{"0(%—1‘;).

~L

Remark 3.4

Assume p odd, for a note on p even we refer to Remark 3.5. By balancing the leading
terms in (3 14), it follows that the asymptotic optimal choice of the bandwidth is & =
Cn~Y(@+3) C a positive constant. With this optimal choice of the bandwidth, the
correspondmg rate for the MSSE becomes MSSE(P) = O (n-(p+2)/(2p+3)k-1), Since
(C.2) needs to be satisfied, this choice of the the bandwidth restricts to situations
where n~/(2P+3E 4 oo, Therefore, local polynomial fitting with p odd, yields the
optimal rate of convergence (see Theorem 3.1).

Tor local linear smoothers, denoted by f’u, with A = Cn~Y/® we have MSSE(ﬁLL) =
O(n=%%k~1). Therefore these estimators provide competitors for the boundary cor-
rected kernel estimators studied in Dong and Simonoff (1994). For local cubic
smoothers, denoted by ISLC, with h = Cn~1/® we have MSSE(?LC) = O(n-8/°k1),
such that these estimators provide alternatives for the geometric combination esti-
mators for the cell probabilities studied in Dong and Simonoff (1995).

As noted in Section 1.3, the weights L;,((z; —z;)/k) can become negative in the
interior region as soon as p > 1. The consequence is that the resulting estimators
are not guaranteed to be nonnegative. For p = 1 this problem is restricted to the
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boundary region (see Remark 3.3). Also the boundary corrected kernel method of
Dong and Simonoff (1994) suffers from this problem (see Section 3.1). The geomet-
ric combination estimator, based on the boundary corrected kernel estimator, can
result in negative estimates, but only in the boundary region. This can be seen as an
advantage of the geometric combination estimator compared to the local cubic es-
timator. But, recall from Section 3.1, that for the geometric combination estimator
boundary conditions are required in order to achieve the optimal MSSE convergence
rate.

In Remark 3.6 we suggest some estimators that are positive by construction.
Their theoretical performance has yet to be studied.

Proof of Theorem 3.2
The mean sum of squared errors can be decomposed as

MSSE =B?+ B4+ Vi+ Vs
Z(Eﬁ‘ —p)? + Z(Eﬁ‘ -+ Y Varﬁ,- + 3, VarF;
el €8 1€l iEB

(3.16)

with I and B the sets defined in (3.6) and (3.7). In Theorem 1.4 we obtained,
uniformly in the i-index, the following asymptotic expansions for the bias and the
variance of the local polynomial estimator :

S (p+1) z; pptl pPtl
EF;, —p: = f(pTg)!)Ck,pﬂ(mi)T +iu (T) (3.17)

and

5 _f@) 1§y, (23— L
VarP: = S R I o AP
= KRR ; w\ " h ) YO\
For the contribution of the interior region to the squared bias term, we obtain from
(3.12) and Lemma 3.2

1

L (04 w)
; hipt2 g 5 B2r+2 ,
B = = (]vw L) | +o( - ) (3.18)

—L
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Further, use (3.11) and Lemma 1.1, to obtain for interior indices 4

k L

ik T; — T

ﬁE:Lgp( i ):fL?P)(v)varo(l),
j=1

which, together with the expression for the variance and Lemma 3.2, yields

Vi= ( /L 13, (v) dv) o (ﬁ) : (3.19)

o

The cardinality of the boundary region is #85 < 2Lkk and, by Remark 1.4 (see

Section 1.3), we obtain
h2p+3 h2p+2
B§=O( Z ):o( Z ) (3.20)

=0 (L) =o(L). am

The result now is immediate from (3.18)-(3.21).

For p even, the term Cy p41(2;) in (3.17) is zero for interior points, but not for
boundary points (see Lemma 3.1). Therefore, we need a more accurate expansion
for the bias at interior points when p is even. Under the assumption that fP+2)(.)
is continuous, this becomes, uniformly in the ¢-index,

B f(”“)(wi) - pPt2 pPt2
= Tpro el e

hp+2
=0 (T) !

where the last order bound is already valid if f%**?)(.) is bounded. This yields

h2p+4
B}:o( 7 ) (3.23)

and

EP. —p;
(3.22)
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For the (left) boundary points the bias is

V(o 1 2
EP.—p = %)g:;;)ck,pu(w;)% +0 (%)
(3.24)
1 1 2
= {;:1)1(;}') k,p+1(mi)']?'1: +0 (hj: ) ;
Similar to the derivation of (3.12) we have, for (left) boundary points
L
Gegraltl = f M Ly (0) dv + o(1), (3.25)

—tg

: 2
with o; = z;/h. Use Lemma 3.2, with g:(a) = (j_La P L, (V) dv) , to obtain,
uniformly in the i-index,

L o I 2
k_lh Z C2, 41 (z:) =f (fv”“L(p.a)(U)dU) de +0(1).

i€By 5 %

This results, for left boundary points, in
2

(p+1) 5 2 2 2p+3 2p+5

2 f (0) p+1 h h

BBL_(_(p+1)!)/ fv Lpa(v)dv | da”—+0 (*—). (326)
0

A similar analysis is possible for right boundary points. From (3.23) and (3.26) we
get the desired result. |

Remark 3.5

For p even, the bias contribution is completely dominated by the behavior of the
latent density at the boundary points 0 and 1. Under the extra boundary condition
FEE0) = fF+1)(1) = 0 and continuity of f®+2)(.), this dominating effect of the
boundary drops out (use (3.22) and(3.26)). The MSSE has the same expression as
(3.14) but with p replaced by p-1. This is essentialy the argument used by Burman
(1987a) in the case p = 0. The use of boundary corrected kernels also circumvents
the dominating boundary bias, again in the case p = 0 this approach is followed by
Dong and Simonoff (1994). By using an odd degree local polynomial this boundary

problem is avoided in an automatic way.
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Remark 3.6

The fact that some of the components of P can become negative is an unfortunate
property of the local polynomial estimator. For local linear estimators (and bound-
ary corrected kernel estimators) this problem restricts to components of P from
the boundary region (see Remark 3.3). Further, we typically have S7% | P, # 1.
A simple suggestion might be to work with the following rescaled version of }3,—,
. 2

pr_ _PL{P >0}

t

P{F; > 0}

o
i [~
ik

The performance of this rescaled version is not investigated theoretically.

Jones and Foster (1996) propose a method to avoid negative estimates for bound-
ary corrected kernel methods in the density estimation context. Let f(-) denote the
density which one wants to estimate, f(z) the classical (nonnegative) kernel density
estimator for f(z) and f(z) a boundary corrected kernel density estimator (which
can be negative). They propose a modified boundary corrected estimator by

: z f(z)
) = f(z)ex - —1

fo(2) = F(2) P{f(x) }
which is guaranteed to be nonnegative. They investigate the theoretical performance
of the proposed estimator and show that the bias of fp(z) and f(sc) have the same
order of magnitude, if lim,_q f*(z)/f(z) # co. The asymptotic variances of fp(z)
and f(:c) are equal, to first order. They also mention that similar ideas could be
used to nonnegativise higher order kernels. It would be interesting to study this
method on local polynomial smoothers for estimating cell probabilities.

3.3 Local polynomial smoothers in action

The practical implementation of the local polynomial smoother requires the specifi-
cation of the order p of the polynomial approximation, the kernel function K (-) and
the bandwidth A.

From the results in Section 1.2 and 3.2 we know that the asymptotic performance
of local polynomial smoothers improves for higher values of p and that odd degree -
fits are preferable. On the other hand, the variance of the estimator becomes larger
for higher p (see also Remark 1.1}, and large samples may be required to see a
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substantial improvement in practical performance. Based on these facts, Wand
and Jones (1995, p. 126) suggest to use either p = 1 or p = 3. Fan and Gijbels
(1995) propose a locally adaptive order selection procedure to adjust the order of
the polynomial approximation to the local curvature of the unknown regression
fuction. In Fan and Gijbels (1996, p. 77) it is mentioned that in many applications
the choice p = 1 or p = 3 suffices, and that an order selection procedure is mainly
proposed for recovering spatially inhomogeneous curves. Based on these arguments
we decided to demonstrate the practical performance of local linear and local cubic
smoothers.

As known from kernel density and regression estimation the bandwidth A is a
crucial parameter for the practical performance of kernel-type estimators. In terms
of MSSE performance the optimal amount of smoothing is defined as the bandwidth
f that minimizes the mean sum of squared errors. Since the exact expression for
MSSE depends on the bandwidth in a complicated way we do not have a closed
form expression for the optimal bandwidth. The asymptotic approximation for
MSSE given in Theorem 3.2 has a very simple expression that allows to derive an
asymptotically optimal bandwidth. Let

ki !’”12»4-1(['(:)))
ko ((p+1))2

with, for a function g(-), pp41(g9) = fuPtg(u)du and R(g) = [ g¢*(u)du, where
integration is over the support of g(-).

We use AMSSE as notation for the first order asymptotic approximation to
MSSE. From (3.27) it is clear that using smaller bandwidths would decrease the
leading bias term, but at the same time increase the variance. This phenomenon
is known as the bias-variance trade-off of the smoothing parameter. Minimizing

AMSSE w.r.t. h gives

R(f+DY 4 % (3.27)

AMSSE =

hopt = {nqcp(K)R(f(pﬂ))ﬂ}1/(2p+3) (3.28)

where

12
Cpo(K) = f(L(P)) ((p+ 1)1 )
Ho(Lp)  2p+2
Given the degree p and the kernel function K(-), the constant C,(K) is obtained by

direct calculation, e.g. for the Epanechnikov kernel K{u) = 0.75(1 — u?)1{|u| < 1}
Ci(K) =1.719 and C3(K) = 3.243 (see Fan and Gijbels (1996, p. 67)).
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The asymptotically optimal bandwidth (3.28) also depends on the unknown
quantity R(f**1). In a simulation study this quantity is known so that Ay, can be
calculated. In real data applications further work is needed to achieve a practical
bandwidth selection rule. We will come back to this topic further in this section.

We also need to choose the kernel function K(-). For the optimal bandwidth
(3.28), AMSSE becomes

1/(2p+3)
_ R(Ly)* 22 (L) R(fPHY)

=i g1 s P p+1\(p
AMSSE = (2p + 3)k™'n" 2+ (T D2(2p + 2 ,

which depends on the kernel function K(-) through
To(K) = R(L)) " g (Lir)-

Fan et al. (1997) have shown that the Epanechnikov kernel is the optimal kernel,
in the sense that it minimizes T,(K) over all nonnegative, symmetric and Lipschitz
continuous functions.

We performed a small simulation study to verify whether the superior theoretical
performance of the local linear and local cubic estimator is noticeable for moderate-
sized sparse tables.

We considered two underlying latent densities to form the cell probabilities in
the table, namely the B(3,3)-density

felu) = 30u*(1 —u)?1{0 < u < 1}
and the exponential-like density
fe(w)=5(1-e ) Te™1{0 <u <1}

In Figures 3.1 and 3.2 we compare the SSE performance of the local constant
smoother to the local linear smoother for the latent densities fg(-) and fg(-). For
the bandwidth we use formula (3.28) with p = 1. The figures show boxplots repre-

senting the differences n(SSE(ﬁNW) - SSE(ﬁLL)), where P""" is the local constant

smoother, and ﬁLL the local linear smoother. Positive values of the difference indi-
cate that the local linear smoother is globally more accurate than the local constant
smoother. We considered tables with & = 10, 20, 50 and 100 and n such that
nlk=1, 2, 5.

Both Figures 3.1 and 3.2 clearly demonstrate the superior SSE performance of local
linear to local constant fits.
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Figure 3.1: For latent density fa(-), bozplots of n(SSE'(I’SNW) - SSE(I?‘LL)) based

on 100 simulations. Positive values of the difference indicate that the local linear
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smoother P is globally more accurate than the local constant smoother P



MSSE rates 69

K0 X =20
] [ 3
" | -
g 'S
.e -2
< c
I
c | e
e | .S
i :
2 E :
4 £ S *
% aq ‘é’ - - s} [ o
b1 7 8
2 o a s 8
: 7 o
2 3
! n =10 n =20 n =50 4 a =20 n = 40 n = 100
«= 50 = 100
-
a
fa i
£ - £fw
i s i
B H
En 3
s 5.,
+ E 3
3 B %
= -! °
? b
n = 50 no= 100 n = 250 n = 100 n = 200 N = 300

~NW ~LL
Figure 3.2: For latent density fr(-), bozplots of n(SSE(P ) — SSE(P )) based
on 100 simulations. Positive values of the difference indicate that the local linear

~LL ~N
smoother P is globally more accurate than the local constant smoother P



70 Chapter 3

Figures 3.3 and 3.4 illustrate the performance at individual cells. For k = 10 the
real cell probabilities (the solid vertical lines) are shown. For 100 simulations runs
with n = 20 we obtain f’,-(_.;), the local polynomial smoothers based on the j-th simu-
lation. The plus signs (+) represent the means P.. of the ﬁ(j)’s for p =1 (the local
linear smoothers) and the squares (M) represent these means for p = 3 (the local
cubic smoothers), + = 1,...,10. In Figure 3.3 the circles (o) represent the means
for p = 0 (the local constant smoothers). For latent density fg(-) the boundary
conditions f'(0) = f/(1) = 0 are satisfied. Therefore (based on Remark 3.5), expres-
sion (3.28) for the asymptotically optimal bandwidth with p = 1 is valid. Since this
is not the case for latent density fg{-), we dropped the local constant smoother in
Figure 3.4.

0.193

o+

0.153
L]

0.113

o+ =

0.073

0.033

-0.006

L s A TR (O : s I L L L L R L
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 10.0 11.0

Figure 3.3: Comparison of the mean of the Bs for p = 0(e),1(4),3(M) for a
multinomial with cell probabilities generated from fg(-).



MSSE rates T

Figures 3.3 and 3.4 both illustrate that increasing the degree of the local poly-
nomial approximation reduces the bias, and Figure 3.3 demonstrates the superior
boundary behavior of local linear fits to local constants fits.

Tables 3.1 and 3.2 show for fg(-) the exact bias

k
~ 1 T;— T;
ER-pi=1) Ly (—— . )pj - p

=1
and the exact variance
k

& 2
P 1 T; — T Tj— s
Var(P) = Lo Z"‘EP(% )p’“(ZL“”(Jh )p")
; j=1

=1

These tables also demonstrate that higher degree fits reduce the bias but at the cost
of increasing the variance. From Table 3.1 we sce that for the boundary cells the local
constant smoother has remarkably large bias compared to the local linear smoother.
Since fg(-) satisfies the boundary condition f'(0) = f'(1) = 0, asymptotically the
local constant estimator has the same performance as the local linear smoother (see
Remark 3.5). Therefore, we expect that, for local constant smoothers, increasing
the values of k and n will lead to a less pronounced bias at the boundary. Indeed,
Table 3.2 (k = 40, n = 80) provides an illustration of this fact.

Further, note from Tables 3.1 and 3.2 that the exact squared bias and variance
contribution to MSSE are not in balance, which they should be asymptotically.
Dong and Ye (1996) note that this is typical for tables with 10 < k < 500. They
advocate that the uniform kernel function K(-) = 0.5L{|u] < 1} should be used
in order to reduce this phenomenon. Their motivation is that the uniform kernel
minimizes the asymptotic variance term (L)
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Figure 3.4: Comparison of the mean of the P:’s for 1(+),3(m) for a multinomial
with cell probabilities generated from fg(-).

REAL BIAS REAL VARIANCE
p=0 r=1 =3 p=20 p=1 r=3
0.03188 | -0.00179 | -0.00034 | 0.00051 | 0.00054 | 0.00050
0.01703 | 0.00496 | 0.00271 | 0.00059 | 0.00050 | 0.00159
-0.00372 | -0.00372 | 0.00049 | 0.00066 | 0.00066 | 0.00159
-0.01355 | -0.01355 | -0.00434 | 0.00067 | 0.00067 | 0.00094
-0.01847 | -0.01847 | -0.00960 | 0.00059 | 0.00059 | 0.00047

Table 3.1: Latent density fg(-), k = 10, n = 20. We only give the first 5 cells (then
use symmetry).
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| REAL BIAS REAL VARIANCE
p=0 p=1 p=3 | p=0 | p=1 | p=3
0.00474 | -0.00129 | -0.00019 | 0.00001 | 0.00001 | 0.00001
0.00513 | -0.00003 | 0.00004 { 0.00001 | 0.00001 | 0.00000
0.00494 | 0.00078 | 0.00020 | 0.00001 | 0.00001 | 0.00001
0.00432 | 0.00123 | 0.00029 | 0.00001 | 0.00001 | 0.00002
0.00341 | 0.00137 | 0.00031 | 0.00001 | 0.00001 | 0.00002
0.00237 | 0.00128 | 0.00028 | 0.00001 | 0.00001 | 0.00002
0.00136 | 0.00099 | 0.00021 | 0.00001 | 0.00001 | 0.00002
0.00057 | 0.00057 | 0.00010 | 0.00001 | 0.00001 | 0.00003
0.00007 | 0.00007 | -0.00005 | 0.00001 | 0.00001 | 0.00002
-0.00039 | -0.00039 | -0.00021 | 0.00002 | 0.00002 | 0.00002
-0.00081 | -0.00081 | -0.00039 | 0.00002 | 0.00002 | 0.00002
-0.00118 | -0.00118 | -0.00058 | 0.00002 | 0.00002 | 0.00002
-0.00151 | -0.00151 | -0.00077 | 0.00002 | 0.00002 | 0.00002
-0.00181 | -0.00181 | -0.00096 | 0.00002 | 0.00002 | 0.00002
-0.00206 | -0.00206 | -0.00115 | 0.00002 | 0.00002 | 0.00001
-0.00226 | -0.00226 | -0.00132 | 0.00002 | 0.00002 | 0.00001
-0.00243 | -0.00243 | -0.00147 | 0.00002 | 0.00002 | 0.00001
-0.00255 | -0.00255 | -0.00158 | 0.00002 | 0.00002 | 0.00001
-0.00264 | -0.00264 | -0.00164 | 0.00002 | 0.00002 | 0.00001
-0.00268 | -0.00268 | -0.00164 | 0.00002 | 0.00002 | 0.00001

Table 3.2: Latent density fg(-), k = 40, n = 80.

(then use symmetry).

We only give the first 20 cells
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The expression for the asymptotically optimal bandwidth given by (3.28), con-
tains f®+1)(.). Therefore, for real data applications, the optimal bandwidth needs
to be estimated. This problem received a lot of attention in the recent statistical
literature, especially within the context of density and regression estimation. Two
well known methods are cross-validation and plug-in methods. Below we describe
these methods, and further we demonstrate the methods in action on two sparse
multinomial data sets.

Least squares cross validation
A widely used bandwidth selection procedure is the least squared cross valida-
tion method (LSCV) proposed by Rudemo (1982) and Bowman (1984). The idea
of LSCV is quite general and can be used for a variety of nonparametric estima-
tion problems. We will present the main ideas in our context of smoothing sparse
multinomial data. A decomposition of MSSE is given by

k k k
MSSE = E (Zﬁf = 2Zpg-lv‘.-) + 3P
=1 =1 =1

where the last term does not depend on A. So minimization of MSSE w.r.t. h is
equivalent to minimization of

k k k
MSSE— ) pi=FE (ZP}? —ZZpﬁ) :
1=1 t=1 i=1
The right-hand side is unknown since it depends on p. An unbiased estimator of
this quantity is
k n
-~ 2 iy
CV(h) =Y P?— = ¥ By (3.29)
i=1 =1
where E-(_EJ is the estimator for the i-th cell probability p;, based on the data
with the £-th observation being deleted, and X; denote the random variables with
X¢ = ¢ if the £-th observation falls into cell :. First note that the random variable
Xe is directly related to the triangular array Y, defined in (2.3), such that, for
iﬁxed n, Xi,..., X, are independent. In terms of these variables we can write
P, =n"'Y}  1{X, = i}. Further, to see that the estimator is unbiased, it suffices
to show E(P;g(:f)) = E‘;l p: E(F;). First, from

~ T &K s
E:mZZLip(ﬂhx

m=1 j=1

)10t =3
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we obtain
PO _ -
0= i S e (52 100 =)
m#(?
and

k k
B0 = n_l)khzz 1L,,,( )R{XE—E}E{X =j}.

m=1 i=1 j=

Since X; and X,,, m # £, are independent we obtain E(ﬁ}[(:f)) =YF  nE(P).

The cross-validation bandwidth selector is defined as the minimizer of the cross-
validation function (3.29), i.e., szscv = argmin,., CV(h). For local polynomial
smoothers (3.29) can be rewritten as

k

vk = Z '_Zn—IZP n—l)khZL’p

=1 =1

which is computationally faster than its original definition (3.29).

In the density estimation context it was shown that LSCV gives asymptotically
the proper amount of smoothing in the sense that, under appropriate regularity
conditions, X

I MISE(hrscv)
M) ———— =
n—oo  MISE(hg)

(Stone (1984)), where hiscy is the minimizer of the appropriate cross-validation
function, hg = argmin,,, MISE, and MISE is an abbreviation for mean integrated
squared error. Also in the context of sparse tables Hall and Titterington (1987) have
shown that least squares cross-validation works (see their Theorem 3.2).

Studies have shown that both the theoretical and practical performance of LSCV
are somewhat disappointing. Hall and Marron (1987a) show that the bandwidth
selector ELSCV has the slow rate

h
LSCV = 1 Op('ﬂ,—l/lo),
ho

which translates into high variability of hiscy. This has been noted in Monte Carlo
simulation studies (see e.g., the survey papers Park and Marron (1990) and Jones,
Marron and Sheather (1996)).
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Plug-in bandwidth selectors
A popular family of selection methods are the so-called “plug-in” type bandwidth
selectors. The method is based on the expression (3.28) for asymptotically optimal
bandwidth, more precisely, the idea is to substitute the unknown quantity R(f**+))
by a “pilot” estimate.

A nonparametrically natural way to define an estimator for this quantity is to
consider kernel-type estimators based on a bandwidth g, the so-called pilot band-
width. Hall and Marron (1987b) and Jones and Sheather (1991) propose an estima-
tor for R(f®*1)) when f(-) has unbounded support and decreases to zero sufficiently
fast at infinity.

Ruppert, Sheather and Wand (1995) propose in the regression context the use of
local polynomial smoothers to define estimators for functionals of the form
S m(z)m®)(z) dz. The case r = s = 2, with the estimator defined through local
cubic based smoothers for the second derivative, is studied in detail. Cheng (1996,
1997) studies similar estimators in the context of binned density estimation, which
is closely related to the setting of sparse multinomials, In Remark 3.4 in Aerts et
al. (1997b) the similarities and differences between both settings are discussed in
some detail. We will restrict attention to the optimal bandwidth for the local lin-
ear smoother, i.e., take p = 1 in (3.28), and we explain the method in the density
estimation context. Denote ,, = [ f)(z)f*)(z) dz.

Direct plug-in
The unknown quantity in the optimal bandwidth expression is #25. An estimator
for this quantity is defined through local cubic smoothers for the second derivative
of f(-), based on a bandwidth g. Replacement of 03, by égg(g’) leads to the direct
plug-in rule

1/5

hppr = {n*cl{}{) (é,g(g)) 71} : (3.30)

This rule is not fully automatic yet, since it depends on the choice of the pilot
bandwidth g. A way of choosing g is to appeal to the asymptotic MSE optimal
bandwidth for estimation of #55(g). In Cheng (1997) it is shown that the bandwidth
g that minimizes AMSE is given by

_ ( 24xR(E5) T ,
A= (n924#4(K§) (3-31)
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where
) =1 it fy <0
Tl S >0
and
| M (2,3)(u)]
Ki(u) = —="— " K(u

where M(2 ?(u is the same as N3, except that the third column is replaced by
(1, u,u?,w®

The Optimal pilot bandwidth (3.31) depends on #s4, again some unknown quan-
tity involving derivatives of f(-). One could once more propose a kernel-based esti-
mator for this quantity, but this would lead to further bandwidth selection problems.

The usual strategy to overcome this problem is to estimate the unknown quantity
f24 by some “quick and simple” estimate. A widely used approach in the density
estimation context is to estimate it via the so-called normal reference rule, i.e.,
pretend as if f(-) is a normal density with standard deviation o, f(-) = ¢,(-). Next,
estimate the scale parameter from the data. Based on this estimate use f34(¢s) as
an estimator for 4.

To summarize, the algorithm looks like :
Step 1 Estimate 4 using the normal reference rule, i.e., use the estimator f54(és),
where & is a scale estimator.
Step 2 Estimate 0, using the local cubic based second derivative estimator é;;(ﬁ)
where

and y is determined by the sign of 6,4(¢s).
Step 3 The selected bandwidth is

hopr = {n—lcl(K) (922(5’)) N }1/5 .

Solve-the-equation
Solve-the-equation methods (STE) (Scott, Tapia and Thompson (1977), Sheather
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(1986), Sheather and Jones (1991)) have a close connection to the direct plug-in
approach. Also motivated by the formula for the asymptotically optimal bandwidth,
solve-the-equation rules link expressions (3.28) and (3.31) to obtain the relationship

(24X RESBE)RUON 1
Gopt(h) = ( R(E ) pa(K2)05s ) hopt' (3.32)

The solve-the-equation algorithm to select the local linear optimal bandwidth is :
(Cheng (1996))
Step 1 Estimate R{f®) and 024 by some reference rule, such as the normal refer-
ence rule, i.e., use the estimators R(qﬁ?)) and 04(¢s), where & is a scale estimator.
Step 2 Estimate 03, using the local cubic based second derivative estimator
f22(g(h)) where

o < (2RRCEEORED)
T\ R(K)pa(K3)024(05)

and x is determined by the sign of 854(¢5).
Step 3 The selected bandwidth Astg is the solution to the equation

= {ncutr) (Bt }/

Step 3 of the algorithm requires a root-finding numerical algorithm to implement
the bandwidth selector. This is usually done by searching the root based on a grid
of h-values. The direct plug-in approach does not require such a grid search.

The theoretical performance of both the direct plug-in and the solve-the-equation
bandwidth selection methods is, under some regularity conditions,

h

h opt

—1= Op(n_ﬂ),

where

_J 5/14 iffy <0
T 4/14 6, >0

(see Ruppert, Sheather and Wand (1995) and Cheng (1997) for more details). Note
that the obtained rate is a big improvement on that of LSCV.
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We illustrate local constant and local linear smoothers on two real data sets.
Figure 3.5 is for the mine explosions data, presented in Table 1.3, while Figure 3.6
is for the salary data, given in Table 1.2. In both figures LSCV is used to select the
bandwidth for the local constant and local linear smoother. Also STE is used for
the local linear smoother. The DPI bandwidth selector, not presented here, gave
virtually the same answer as STE. In Figure 3.5 the better boundary performance
of the local linear smoother compared to the classical kernel estimator is clearly
perceptible. In Figure 3.6 there seems to be no need to use a method that corrects
at the boundaries, especially since for this data the local linear smoother gives some
negative estimated cell probabilities.

At this moment it is hard to comment on the different bandwidth selectors for
the local linear estimator, since, for a real data set, we don’t know what the truth
is. For a simulation study we refer to Chapter 6, where we will compare LSCV, DPI
to a newly proposed bandwidth selection method.
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Figure 3.5: Mine ezplosions data. Top left: frequency estimates. Top right: local
constant estimates with bandwidth chosen by LSCV. Bottom left: local linear esti-
mates with bandwidth chosen by LSCV. Bottom right: local linear estimates with
bandwidth chosen by STE.
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Figure 3.6: Salary data. Top left: frequency estimates. Top right: local constant
estimates with bandwidih chosen by LSCV. Bottom left: local linear estimates with
bandwidth chosen by LSCV. Bottom right: local linear estimates with bandwidth
chosen by STE.
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Chapter 4

Central limit theorem for SSE

In Chapter 3 we have studied the rate of convergence of the MSSE for the lo-
cal polynomial smoother for the cell probabilities in sparse multinomial data (one-
dimensional case). In this chapter we obtain a central limit result for the statistic
SSE(P*) = ELi (Pr — p;)?, where we consider P* = P, the frequency estimators,
and P* = 13, the local polynomial smoothers.

The result for the frequency estimators is obtained in Section 4.1 as a special case
of a result obtained by Burman (1987b), who studies central limit theorems of various
statistics in sparse tables, These statistics also include SSE(I?’O), where B, is the local
constant smoother. To prove a central limit result on this local constant smoother,
he needs stringent boundary conditions on f(-). Moreover, for the bandwidth he
requires the condition & = o(n~%/?), while the optimal bandwidth is A = Cn~1/5 for
local constant smoothers when the boundary conditions are satisfied (see Chapter 3).

In Section 4.2, we study the asymptotic distribution of the sum of squared er-
rors of the local polynomial smoothers. We restrict attention to local polynomial
smoothers with p odd, since it is clear from Chapter 3 that in this case we will need
no boundary conditions. In addition, our result includes the optimal bandwidth
case. To proof our central limit theorem for the local polynomial smoothers we use
a result obtained by Hall (1984), who studies the asymptotic distribution of the
integrated squared error (ISE) of kernel-type density estimators.

Essentially, the proofs by Hall (1984) and Burman (1987b) are based on the same
technique. More precisely, the statistic can be written as a quadratic form, which
on its turn can be written as a martingale. Next, a martingale central limit theorem
(McLeish (1974)) is applied. Hall pays special attention to include the case of the
optimal bandwidth.

As noted in Hall (1984) (and also in Burman (1987b)) the martingale central limit

83
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technique is also suitable for the multivariate case. In Chapter 5 we will give the
central limit result for the local linear smoother for estimating the cell probabilities
in a multi-dimensional sparse table.

4.1 CLT for frequency estimators

Theorem 4.1 A
Assumen — oo, k —+ 00, 2k p? + k/n — 0%, asn — oo and p; < Cfk, i =

1,...,k. Then we have =
nVk (SSE(P) — MSSE(P)) -2+ N(0, 02).

Proof
This normality result is a special case of Theorem 3.2 in Burman (1987b). Using
his notation, with

n~l =41

Wailz) ={ 0 @i

an(z) = nvk
ta(2) = 3,
we have the following relation between his Ty, and SSE(P):
Tyn = nVkSSE(P).
1t therefore suffices to show his conditions (C1)-(C8) and his condition (2.1) with

a? = gt and
aE ..
lejz = n =
0 n#n
to obtain
Tyn — E(Tan) = nv'k (SSE(P) — MSSE(P)) — N (0, 02).
His condition (2.1) becomes

k
k
2kpr+H—)ag, 0 <ol <o

i=1
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which is valid by assumption. From the condition p; < C/k, i = 1,...,k and the
definition of C},;, his conditions (C1)-(C8) are easily shown to be satisfied. |

Remark 4.1

First note that we restrict to the case p; < C/k for simplicity. A central limit
theorem could be obtained in the more general situation, with conditions on M, =
SUPycick Pi- We do not investigate this situation, since our main interest is the
comparison of Theorem 4.1 to Theorem 4.2, the central limit theorem for the local
polynomial smoothers, for which, by boundedness of the latent density f(-), the
condition p; < C/k is satisfied.

As noted in the introduction, the results obtained by Hall (1984) and Burman
(1987b) are essentially based on the same technique (i.e., 2 martingale central limit
theorem). For the proof of Theorem 4.1 we rely on the result by Burman (1987b)
for two reasons. The first one is that checking the conditions (C1)—(C8) of Burman
(1987b) is easier than checking the conditions in Hall (1984). The second reason is
that, when applying Hall’s result, we need a stronger assumption on &, i.e., k/n — 0.
The assumption 2k E:;l p?+k/n — of, in Theorem 4.1 only requires k/n — ¢, with
¢ a constant. This difference in assumptions comes from the fact that, although Hall
(1984) and Burman (1987b) rely on the same martingale central limit theorem, the
sufficient conditions in their results differ.

4.2 CLT for local polynomial estimators

The next theorem is the main result of this chapter. Before we prove this result,
we first compare it to Theorem 4.1. The complete proof of Theorem 4.2 is rather
technical. Therefore, we first give an outline, and present the key steps in different
lemmas.

Theorem 4.2
Assume (C.1)-(C.3), p odd and nh — oo, then

d(n) (SSE(ﬁ) - MSSE(ﬁ)) 2y N(0,0%),

where
Vnk

Rl
d(n) =4 pafE nhtd A
nkvh nh?t3 50

nh¥?t3 5 o0
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and
4o} nh?t3 5 0o
o* =¥ (f, L) = 4022 1 20205 a2t 5 )
2022 nh?Pt3 50

with o% and o2 given in Lemma 4.1 and Lemma 4.2 respectively.

Remark 4.2
In terms of rates of convergence we can present Theorems 4.1 and 4.2 as follows :

e =S 1
SSE(P) — MSSE(P) = Op (nxfk)
= o 1
SSE(P) — MSSE(P) = Op (m) ,

with d(n) as in Theorem 4.2.
We now study when the local polynomial smoothers have a faster rate of convergence
than the frequency estimators, i.e., we investigate under what degree of sparseness

nVk

i " (4.1)
Consider tables where k « n? with ¢ > 0. The three different levels of smoothing
become :
Case I : nh**® — oo, i.e., the case of oversmoothing. In this situation (4.1) is
equivalent to n(!=/(2P4+2) 5 0. Therefore ¢ > 1/(2p + 3) is necessary, since also
nh*+3 5 0o needs to be satisfied. Furthermore, n(1=9/@+2)} _ 0 means that the
bandwidth % is not allowed to oversmooth too much.
Case 2 : nh®*® — ) ie., the case of optimal smoothing. Condition (4.1) is
equivalent to n'/(+3)-2 — 0, which is in this situation equivalent to ¢ > 1/(2p+3).
Case 8 : nh?*3 — 0, ie., the case of undersmoothing. Now, (4.1) reduces to
kh — oo, and, since also nA?*® — 0 needs to be satisfied, ¢ > 1/(2p + 3) is
necessary. Similar to the case of oversmoothing, the bandwidth is not allowed to
undersmooth too much (since n?Ah — oo).
So, we can conclude once more that, for sparse tables with kn=1/(2#+3}) 5 oo, the local
polynomial smoothers have a better performance than the frequency estimators.

Remark 4.3
Theorem 4.2 can be used in testing situations. Under a given hypothesis on the cell
probabilities (in terms of the latent density, e.g., f(-) is uniform), the asymptotic
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distribution of SSE{ﬁ) — MSSE(ﬁ) is completely known, and can be used to com-
pute p-values. A practical investigation of this test is not 3et studied. Further, it
would also be desirable to study a relative statistic such as E; 1 P — p:)?/p; as an
alternative to the Pearson statistic. Note that for the special case of uniform cell
probabilities, i.e., p; = k™, this statistic reduces to kSSE(P) for which Theorem 4.2
can be applied.

Outline of the Proof
We use the following decomposition :

k k k
SSE(P) = Y (P — EP) + Y (EP: — p:)* +2 Y (EP. - p))(P. - EP). (42)

=1 i=1 fuxl

In Chapter 2 we have seen that we can write f’, - Eﬁ- as a sum of independent
identically distributed random variables (see (2.7)). To summarize, this was done
through the triangular arrays Yo = (Ya,...,Y%)? and Xo = (Xa,..., Xa)%,
£=1,...,n where, fori =1,...,k,

v { 1 if the ¢-th observation is in cell 7
=

0 otherwise,

and

&_hZL& )% P;)-

Further, for a fixed n, ¥,1,..., Yu, are i.1.d., and hence also X,1,..., Xun, and

This notation for P: — EP. enables us to decompose the first term of (4.2) into

k
Z(ﬁt 2 == ni ZZX& ZZ ZXfilXeﬂ (43)

=1 £=1 i=1 1<£1<£2<n =1

The second term on the r.h.s. has a U-statistic stucture with symmetric kernel

k
Hy (X1, Xp2) = Y X1iXai- (4.4)

=1
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Since X1,..., X, are 1.1.d. with mean zero, £ (H,(X,1, X,2)[X) = 0, so that
this “U-statistic” is degenerate.
Combining (4.2) and (4.3) gives the following decomposition

SSE(P) — MSSE(P) = 21,

n— E(8Ry) (4.5)

where

I, = Zk:(EP p.)(P EP)

=1

Un = (g) SN Ho(Xutys Xos) (46)

1<t <by<n

n—n2§ H nf:-

Each term is studied separately in Lemmas 4.1-4.3 (see further), and from these

results we have
3z
I,
-or (i)

Un=Or (nk\/m)

Note that the condition nh — oo is used to obtain the last order bound.

Hence R, — E(R,) is always of smaller order than U,.

If nh?+3 & oo, I, dominates U, and the result follows from Lemma 4.1.

If nh?*3 — 0, U, dominates I, and the result follows from Lemma 4.2.

If nh?*3 5 A, the situation is more difficult since now I, and U/, have the same
order of magnitude. The result follows from Lemma 4.4. =

We will first introduce all the lemmas referred to in the outline of the proof. Next,
we prove these results, but the more technical calculations are given in Section 4.3.

Lemma 4.1
Assume (C.1)-(C.3) and p odd. We have

kg " 2 N(0,07)

h +1 1 I
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where

o= el i) = (T [ e sta) e ( / f(”“)(m)f(x)dw)

Lemma 4.2
Assume (C.1)-(C.3), p odd and nh — co. We have

nkvVhlU, =5 N(0,202)
1 o [ it
where 02 = 02(f, Liyy) = [ fHz)dz [ | [ Lipy(w)Lip(u+v)du| dv.
0 w2 |-z

Lemma 4.3
Assume (C.1)-(C.3) and p odd. We have

Ra - E(R,) = 0, (ﬁ) .

Lemma 4.4

Assume (C.1)-(C.3), p odd and nh — oco. If Var(l,) x Var(U,), i.e. nh?**3 — X,
then al, + b, is asymptotically normally distributed with mean zero and variance
a*Var(I,,) + b Var(U,).

For a =2 and b= 1 this result reduces to

nTERk (2L, + Uy) 2 N(0, 4022355 + 202257%),

To simplify the notation in the proofs we define the following shorthand notation
b = Eﬁ i — P
i (4.7) .
Dj,j, = 2 Sijs Sisa

€ = Yo — py.
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Proof of Lemma 4.1
With the shorthand notation we can write

ZZ DMl ZTM (4.8)

Eﬁl =1
Xli = Z S,;j'Egj. (4'9)
=1
For each n, the random variables Ty, = 1,...,n, are i.i.d. with mean zero and

therefore the Lyapounov condition

248
— 0

(Var(I,)}~ 52 Z E ’

for some & > 0, is sufficient to guarantee
{Var(I)} "7 I, =5 N(0,1).

We will check this Lyapounov condition for § = 2.
Since Var(l,) = n ' E(T7) we first need to find an expression for E(T%) and an
order bound for E(T2). In Section 4.3 we show

R 2(p+1) R2(p+1)
E(TY) = = oito (T) (4.10)
and
" pi(p+1)
E(T;)=0 (T) : (4.11)

These relations immediately imply that the Lyapounov condition with § = 2 is sat-
isfled. The leading term in the asymptotic expression for n~1 E(TZ) determines the
asymptotic variance of I,,. &

To prove Lemma 4.2 we will rely on Lemma 4.5 which is closely related to a
result obtained by Hall (1984).
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Lemma 4.5 / .\ -1
With U, = (2) 1§<;n H,(Xoe, X, ) the degenerate “U-statistic”defined in
bl 2>

(4.6), define
Gn(my y) = E(‘Hn(an)w)Hn(aney))' (412)
If
(E(GA (X, Xnz)) + 17" B(HA (X, Xn2))) [ (B(HA (X, Xa2)))" = 0, (4.13)

then U, is asymptotically normally distributed with mean zero and variance given
by 2n? E(H2( X1, Xn2)).

The difference between Lemma 4.5 and the result by Hall (1984, Theorem 1) is
that we have triangular arrays X1, ..., Xnn, which are i.i.d. for a fixed n, while Hall
considers i.i.d. random variables X3,...,X,. The proof of his result can be used
without any modification. The reason is based on the fact that the key tool in the
proof of Hall’s Theorem 1 is the martingale difference array structure. Although we
consider a somewhat more complicated situation, this martingale difference array
structure is still true, so that the proof by Hall remains valid. For more details, we
refer to the proof of Lemma 4.4, which is based on the same principle.

Proof of Lemma 4.2
In Section 4.3 we show

1 1
2 o R S

E(Hn(Xn],Xng)) = kzha‘z +O (kgh) (414:)

1
E(H:(an'l an)) = 0 (k“hﬁ) (4.15)

2 _ 1
E(G: (X, X)) = O (_k-‘?i; : (4.16)
Since h — 0 and nh — oo as n — oo these properties imply (4.13) in Lemma 4.5.
So, U, is asymptotically normal with mean zero and variance 203 /(n?k?h). [ |

Proof of Lemma 4.3
By (4.4) and (4.6) it is obvious that

B(R,) = %E(Hn(an, X))

Var(R,) = %Va,r(Hn(an, X)),
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From (4.3) and from (3.14) in Theorem 3.2 it is clear that

"U)

k k
- R(Ly)
EZ ZV&I(PJ'):%‘!—O

=1 =1
So E(H, (X, X)) = O((kk)™) and we will show
B (KXo, Xon)) = O((kh)™)
in Section 4.3. We then have

Rn — E(R,)

p (VVar(R.)
- OP(W%W).

Proof of Lemma 4.4

()

(4.17)

The proof is based on that of Theorem 1 in Hall (1984). From the technical details
below (martingale difference array structure) it becomes clear why the proof of
Theorem 1 in Hall can be used without any modification to show the validity of

Lemma 4.5. Write

- S,
f=1
and

bUn=b(2) SN Ho(Xoe, Xaue) L ST S A

1<41 <l <n 1<4 <t <n

-1
where &0 = Y Hi(Xoe, Xne), £ > 2 and £, = 0 and define
£=1

én(w,y) (H (X, E)H( X2, y))

The sequence {Tng + & 4 Zoiy Fri= 0(Ypigesos Yur)y £=1,.

nt‘“ Xnﬁg) == ZE'HJ’

=1

} is a martin-

gale difference array. In order to show asymptotic normality of Ze=1(Tn£ + b)) =
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al, + bU,, the following conditions are sufficient (McLeish (1974) or Theorem 1 in
Pollard (1984, p. 171))

Ve>0 ;2% E(Z2I(1Zu| > es,)) >0, asn = o0 (4.18)
£=1
and
AT (4.19)

where 2 = E ((eI, + bU,)?) and W2 =3, | E(Z2,| X0, ..., Xne1).

First note that £.1,...,&., are (pairwise) uncorrelated and that E(EMIT wiz) = 0,
£1,6y =1,...,n,since
E(f;[n(xnh Xn?)-ﬁn(any Xn3)) = E(ﬁn(ana XnZ)En(Xﬁs Xn4)) =0

and

E(ﬁn(any Xni)an) = E(ﬁn(ang XnZ)fnZ) = 0.

Therefore, Var(U,) = 3.5, E(2,) = (n) E(H?(X,1, X,2)) and

2
E(W?) = s = a*Var(l,) + b*Var(U,) s 82, + 82,
A sufficient condition for (4.18) is
sty E(Zy) =0, (4.20)
=1

since, by Holder’s inequality,

> E(ZA1(|1Z0e] > €30))

£=1

< ;\/Ewmuzﬂei > £s4)

€
=1

~ E(Z4)
SZ 25?1 )
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Similar to E(éne, Ths,) = 0, £1,6; = 1,...,n, also EB(£,03) =0,£=1,...,n, so
that, by Hélder’s inequality,

B(ZY) = E((u+T)?)

< B(E) + 43/ (B(E4))° B(TY) + 6y B(EL)E(TS) + B(TY).

An application of a discrete version of Hélder’s inequality (see Chow and Teicher
(1978, p. 107)) yields

s ZE(Z:,) < s, Z (&2) + d ( —4ZE (€4) ) s;4ZE(ﬁ§)
=1 £=1 =1
+6, |54 D E(Eh) [t D B(Th) + 5.0 Y E(T)
=1 =1 =1
From the proof of Hall’s Theorem 1 it is clear that condition (4.13) implies
su3 D B(éae) = 0
£=1

and in Lemma 4.2 we have shown the vailidity of (4.13). Further, in the proof of
Lemma 4.1 we have shown

s Z E(T4) =0
=1
Since 82 oc 82, oc 82, these results imply (4.20).
Condition (4.19) is implied by
s E((W2 — s2)?) = s *Var(W?2) — 0, (4.21)
which we will check. Note that

Wne = E(szlxnla ey anﬁl)
B2y X,y Xuer) + BT Xty - - - s Xnoe1) + 2E(Tnslne| Xty - -+ » Xnee1)
Une + n_lsi]_ + QE(TﬁfEanans IERE] Xn-f—])
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where v, is studied in the proof of Hall. With @n(m) = E(I}n(an,z)fnl) we have

£-1
BTttt Xty ooy Xut1) = Y, Qu(Xos,)-

fp=1

Since f: E(v) = 82, and E(Qn(Xs1)) = 0 we obtain

£=1

n n n n
2 2 4
§ Z E(wﬂ-fl wmfz) = Z Z E(vﬂ-ez vﬂ—ﬁ) i+ 25n13n2 +35u
f=146=1 b=18=1

n n min(f,f)-1 n fp-1

#IY Y B@Xu) 44Y. 30 Y B Gu(Xu)-

£1=1fp=1 £3=1 £1=1 =1 43=1
Now
B G-16-1 5
E(0nt, Gn(Xnt,) = Y > E(Ga Xry» Xours)@n(Xoty))
ri=1r,=1
and

E(Gn(Xar,> Xors)@n(Xoty)) = { S, i alf mem el

0 otherwise.
Therefore
EWY)—sh = D) E(vayvas) — sh
f1=16=1
+4) > " (min(fy, &) — 1)E(QA (X))
£ =1f=1

+4 Z Z(min(&,fﬂ == l)E(én(ana an)én(xnl))‘

f=1£=1

The term 377 _; 375 3 E(vne vng) — s, is studied in the proof of Theorem 1 in Hall
(1984), for which he obtains

33" E(vagvns,) — stz = O (n* (G (Xa, Xo2)) + 0 B(HA (X, Xa) )

fy=1£5=1
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so that
SHUBWR) —s8) = O (s3*n* B(GA( X, Xoa)) + 57 *0° B Xon, Xoa)
+ 3;4n3E(@i(an)) + 3;4n3E(§'ﬂ.(‘Xﬂla an)én(xﬂ.l))) %

Condition (4.13), and the fact that s2 o« 52, an(ﬁg(XM,an)), imply that the
first 2 terms converge to zero. For the last term note that, by Hélder’s inequality,

E(Ga( Xt Xu)Fn( X)) < v/ B X, Xo2)) B(G2(Xa)-

So, to show the validity of (4.21), it now suffices to prove 3;4n3E(C§i(an)) =0
By Holder’s inequality we have

57 B(Q2(Xu)) < \/s54m8B(G (X, X)) % 57 E(T2,)

which converges to zero, since the first part converges to zero and the second part
converges to a constant. [ |

4.3 Proofs

Proof of (4.10)
Using (4.8) and (4.9) we combine

kE ok

E(Tﬁl) = ZzbhbizE(Xlﬁlez)r

:'1 1 e';. =1

Z Z Sirjs Sizin B (E1j1€155)

21=1 ja=1

E(X1i1X1i2)

and B {El.‘ixslja) = p.fx(éﬁﬁ - pjz) to obtain
k k 2 & k 2
E(Trfl) = ij (Z b{S:'j) - (Z Pi Z b.'S;j) . (4.22)

Define the set I' = {J 2Lhk + <j<(1-2Lh)k+ 7} of “purely”interior

points. Since S;; = 0 for |z; —z;| > Lh we only have to consider those indices ¢ such
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that |z; — z;| < Lh. If j € I’ such 1 is an interior index.
From expression (3.17) for the bias of the local polynomial, the continuity of f+1)(-)
and (3.12) we obtain, uniformly in ¢ and j, with j € I',

Rt fletl) () ppt1
=y et < (7).

so that, uniformly in j € I,

k
ppt1 f(:o+1)(3; APl
D hiSii= - m‘,‘“pﬂ (+) Z Sijto ( )

i=1

Since both i and j are interior indices S;; = S (by (3.9) and symmetry of the kernel
function K(-)). Therefore we have for j € I' Zﬁl By = ZLI Sii = 1 (by (1.14)).
These facts result in

>_p; (Z b Su) (Zp; b 5,3,) -

jer JeI i=1

L2(p+1) ,ai I(L[ﬁ)) l " i 9 -
& (G ) {pr(f( i) - (Zpif( : )(wj)) }+°(__k2 )

jer Jer

Now use p; = f(z;)/k + O(k~?), uniformly in j, (see (1.21)) and Lemma 3.2 to
obtain

o) R (L)
> i (stw) (ZPijeSij) =0 EL(;_}_il;I;QX

JEI JeI' t=1

1

/f(w) (Fe(z))? dz — (/ FEIE )2 +o (hz{;:n) .(4.23)

0

Since, uniformly in i and j, p; = O(k7Y), b = O(hF’“/k) i = O((kh)™Y) (by
Lemma 1.2}, S;; = 0 when |¢ — j| > 2Lkh and #({1 ., kN\I') = O(kR), we have

ZPJ (Z by St:) (Z Pj Z beij) = (‘ki(gz) ‘ (4.24)

gl \i=l jer =
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Now (4.10) follows from (4.22)-(4.24).
Proof of (4.11)
From (4.8) and (4.9) we have

k k k k

E(TY) =YY ) bibi by by, B(Xi, Xui, X iy Xai,)

t1=11i2=143=1144=1
and

E( Xy, X145, %00, X14,) =

k k k k
E E E E Sil.:h Siz.‘iz Siaja SiijiE(Eljl 511'2'51;5351.1'4)

21=1J2=1j3=1j3=1

where g¢; is defined in (4.7). It is easy to see that

(}) h=ja=j3=]a
O(z) h=Jja=Ja# Ja
E(Eljlsljzsl:fss'lj;) &= O(kﬂ) jl &= j2 #]3 = j4 .
O(3) n#ia#is=1ia
O(g) iFja#Fia##da

(4.25)

For a fixed index j the number of indices ¢ such that Sy; # 0 is O(kk) and S;; =

O((kh)™'). Further, b; = O(hP*'k™!) uniform in the i-index (see (3.17)).

Now

it is just a matter of counting the number of indices that make a contribution to
the sum and to use (4.25) to see that (4.11) holds. Consider e.g., the situation

71 = J2 = Ja = ja, for which the contribution to E(T%) is

>

1=

k

k k kK
Z Z Z Z bél bfz bfs bi'a Sfl.’il szj] Sie.?'l Sfu'l E(E:jl)
L=l

=11p=143=1143=1

pPHIN ¢ 1 1 pAle+1)
_ 4 Sl
_O(kx(kh)x(k)x(kh)4xk)_0( 1 )

The other combinations can be treated similarly and are of order o(R*P+1E=4). W
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Proof of (4.14)
From (4.4), the fact that X,,..., X, are i.i.d. and (4.9) it is clear that

k

k
Z Xl!l Xhz))

Z E Z Z D, Dy Berjs815) E (155815, )- (4.26)

J1=1j2=1 ja=1 j4=1

E(HY(Xn1, Xa2)) =

“‘HM

Ead

It turns out that the situation j; = j; and j3 = j is the term that determines the
order of E(HZ2(Xn1, X,2)). We first discuss this situation and return to the other
terms later. Since E{e1j,€15,) = Pjy (655, — pj,) this leading term has the form

Z Z DJ]szjl — Pa )pjz (1 = Pjg)

f1=172=1
Z Z D, uPisPi + Z Z D2 .. piPi (PiPr — P —Pia),  (4.27)
71=1j2=1 d1=1j2=1

and its major contribution is the term E; 5 Eiﬂ D? . pi,pj,. From the fact that

S;; =0if i — j| > Lkh it is easy to see that also
Dj; =0 if |1 — jo| > 2LkR (4.28)

hlz
which implies that for a fixed index j; the number of indices j; such that Dj;, #0
is O(kh). From S;; = O((kh)™"), uniformly in ¢ and j, and the definition of Dy,
follows that also Dj ;, = O((kh)™"), uniformly in j; and j.

Now, uniformly in ji, p;, = f(z;)/k + O(k~3), and, uniformly in j; and j; with
|1 — jo| < 2Lkh, pj, = f(;,)/k + O(k™?), which yields

ZZD,I,zpth, Zf (2,) Z R 2t (leh) (4.29)

J1=1 ja=1 =1 J2=1

Recall that D, = Yo%, 5i;,5:4,. If we consider j; € I', with I" defined in the
proof of (4.10), the indices ¢ that have a contribution to D) ;, are interior indices,
therefore, uniformly in j; and js, (by (3.11))

k
q, Tj — T BTG 1
Djijz = (kh)g E :L(P) ( th )L(P) ( ? h )+0 (_kh)
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k
_ 1 Tj — T zj — i + (24, — T44) 1
= (kh)2 ;L(p) ( 5 )L(p) (--—-————-——h +o )

We have, uniformly in j; and j., with j; € I,

L
1 ;e 1
Dji, = 73 Lyl (w+ 25 ) du ) 40 ),
kh h kh
Zr

for which the proof is analogous to that of Lemma 1.1. Similarly, we have, uniformly
in j, € I,

2
1
3132 =tk / I:f {p)(u)L(p)(U + v) du J dv+o (kh)
2= 1 S )

Combine all this to obtain

3 F( %) Z P T (k§h> (4.30)

hel 132=1

Also for j; ¢ I, E

J2=1

= O((kk)™"), but #{1,. ...k} \ I' = O(kh), which yields

JJJ?

3 £ (wﬁ) Z . ( ) m{%)_ (4.31)

gl J2=1
Combine (4.29), (4.30) and (4.31) to obtain
ko k . 1
;; D2, 0ipi, = ma;, +o (ﬂ) : (4.32)
For the second term on the r.h.s. of (4.27) we have

k k
1 1 1
Z Z D.?:jzpﬁp_'fz (pﬁpﬁz —Pi — pjz] =0 (k x kh x (kh)2 X Eg) =0 (m) )

51=1j2=1

where the order bound is obtained by counting the number of indices that have a
contribution, based on the properties of D;,;,, and by p; = O(k™1), uniformly in 2.
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To see that the situations other than j; = j; and j3 = j4 are of lower order,
consider e.g., the situation j; # j; and j3 = ja, whose contribution to (4.27) is

k k k
Z Z Z Dy s DjyiaPin P Pin (1 — Pia)
s1=1 12=1 ja=1
1

:O(kx(kh)zx(k—é)?x%):O(%):O(Z‘%)s

where the order bound is obtained in a similar way as above. The other situations
can be treated similarly and are of order o (k*h)71). ]

Proof of (4.15)
From (4.4) it is clear that

k kK kK kK

E(Hi(xnla Xn?)) = Z Z Z Z (E(X1i1X1f2X1i3X1i4))2

i1=1 iz=143=1 iy=1
and by (4.25)

k k k k
E(X10 X1, X1 X1) = Y Y Y Y Suir Sinie Siaie Siis Blerh 156100815
J1=1j2=1j3=1js=1
k
= 3 Giusi S Seer B Blels )
s1=1
k

+const z zsﬁ i1 Sizis Siair Sigie E(E?jl €152)

h # B2

k
+ConStz ZSia.jl Sizjx Siai:e S!'-zsz(€§j1 Efjg )

h £ B2

k
+oomst Y > Y Siuii Siais Siaso Siais B(E1i1£122635,)

T # n# i
k
toonst Y D 3> "S5 Siis Sinis Sivis B(E1i1 €152€112E141)
NFE T2 F Ja £ A
Al AR AR Al g Al

121384 11121314 1126304 11121374 118273147
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where the constants are ignored in the definition of the A—terms. By (4.7),
E(H}( X1, X,2)) can be written in terms of Dj;’s. Further, based on (4.25),
Dy, = 01if |j3 — jo| > 2Lkh and D;,;, = O((kh)™'), we can see that (4.15) is valid.
Indeed, consider e.g.,

Kk k k& g Kk
Z Z Z Z (AEL!':«Q) = Z Z E(E%jl )E(Sih)D;ﬂz
f1=11p=1 =1 ig=1 i1=1ja=1
—O(kxkhxlx : )=0
N k2" (kR)Y T kih3
and
E kK ok k k
Y35 At e, = Z Z ZE(Ele)E(Ei’nglja VD% 5 Dy
f1=1f=11=14{=1 A=l j2 # 53
1 1 1 1
- 2 —_— _—_—) = _— — - _
= O(k x (kh) xk3x(kh)4) O(th) o(k“hﬁ)'
All the other terms can be treated similarly and are o((k*A3)71). [

Proof of (4.16)
From (4.12) and (4.4) it is clear that

E(Gi(an, Xnﬂ)) = E (Hn(ana Xn3)-H-n(Xn2; Xn.’i)Hn(an; Xn4)Hn (Xn27 Xn4))
kK k k k
DD DD B(Xuiy Koty Xoi, Xty Xty Xaiy Xaiy Xaiy)

$1=1i3=1 {3=1 fg =1

k k k k
2000 D B(Xuiy Xaig) B(Xaiy Xait ) B (Xaiy Xsiy ) B(Xaiy Xai,).

t1=1t=143=114=1

Now,
E(Xlil Xl"z ) =
k k k def

Z Sl'ml Sizjlph - {Z Sfi.f:pil} {z szjQPjs} = Aﬁfz - Bﬁiz’

=1 =1 J2=1
Then

k k k
Z Z Z AiligAizi4Aili2 Al’s'ﬁ

t1=1idp=1143=114=1
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k

k k k k k
Z Z Z Z Z Z Sizjz Siajl Si2j2Si4j2Sf1ja Sﬁ'?:ﬁs St'a:ia S:'.q_j4pj1pj2 Pia Pis

173=1j4=111=11=113=1 i4=1

-

>

11=1j2
k
Z Z Dj, 5 D233 Dy 53 D3y i Piy Pia Pia

Il
£
i

k

IIM”"

B>

=0 (’“4"3 (kir <) =0 ()

where the order relation follows from counting the number of indices that make a
contribution, based on the properties of D, ;,. Similarly,

k k k k
Z Z Z Z Aiyig Aigiy Aiyia Bigiy
k

k k k k k k k k 5
= Z Z Z Z Z Z Z Z Z Su.n S!a.h 12]25'4j23€1ja Si'zja Sia]'ASigjs Hpje
j 13=1

1j5=111=1t=171, =1 £=1

Z Z Dj: ja'DJEjs 'Djl Ja 'Djzjspj:l Pi2PisPis Pis

1 ja=1 f2=1js=1

o g ) -0 (&) -+ (3x)

The other combinations can be treated similarly and are of order o((k*%2)~'). W

I
Ma—
HM’*‘
M:r

Proof of (4.17)
From (4.4) and (4.9) we have

E ok
E(HY(Xu, Xu)) =Y > B(X} XT,)
f1=112=1
E 20 k 2
o §55 5 {z By } {z s}
t1=1ig=1 h=1 j2=1
kK
= Z Z Z Z Djy 12 Djsjy B(E1j1615€15€15)
71=172=1j3=1js=1
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k
+consty . > Dyjy Dinin E(e3yy215)

jx#;‘z

+CODStZ Z‘th Dy B( 51}1 E1:!2 )

h# 52

k
+const Z Z Z-Dh iz Dinia E(Eljl €14 E%jg)

n# R¥
k
+C0nStZ Z Z ZDjl.'iz DjsjaE(‘sljl €15,€1j, El:M)
h#da# i # 50
def.
L Ay + Ay + As+ Ay + As.

Now use (4.25) and count the number of indices that make a contribution, based on
the properties of D;,;,, to see that

oo )0 )

=0 ((ki) ) "((k}m)'

The other terms can be treated similarly and are o((kh)=%). |

Further,

o 11
Az_()(khx(kh) X 2



Chapter 5

Multi-dimensional tables

This chapter deals with a generalization of local polynomial estimators for cell prob-
abilities introduced in Chapter 1 to d-dimensional tables. We consider contingency
tables with k; ordered cells in the j-th dimension, j = 1,...,d. We investigate
the sparse asymptotic behavior of the mean sum of squared errors of the multi-
dimensional local linear smoothers for the cell probabilities, and show that the
MSSE converges to zero at a faster rate than for the frequency estimators. Qur
sparse asymptotic framework is of a form in which the dimension d of the table is
fixed, but in each dimension the number of cells k;, 7 = 1,...,d, tends to infinity.
Grund and Hall (1993) study kernel smoothing in multi-dimensional sparse tables,
where the number of cells in each dimension is fixed (k; = 2 in their case) and the
dimension d tends to infinity.

An important parameter in the construction of kernel-type estimators is the
bandwidth. This parameter defines the local neighborhood of a cell, and, for kernels
with compact support, only these neighbors have a contribution to the estimator of
the cell probability. There are several levels of options to parameterize this local
neighborhood in the multi-dimensional setting. The simplest multivariate kernel
estimator uses a single smoothing parameter f, as in the one-dimensional case. This
means that the amount of smoothing is the same in all directions. A simple gener-
alization is to use d different bandwidth parameters hq, ..., ks which allow different
levels of smoothing in each of the coordinate directions. A general way is to work
with a bandwidth parameter that allows for smoothing along directions different
from the coordinate axes. A general d x d bandwidth matrix permits this kind of
smoothing. The idea of a general bandwidth matrix goes back to Deheuvels (1977).
He introduces general bandwidth matrices in the context of multivariate density
estimation. Wand and Jones (1993) illustrate in the bivariate density estimation

105
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context the beneficial effect of a general bandwidth parameterization. This is our
main motivation to consider a general bandwidth matrix in the definition of our
multi-dimensional estimators for the cell probabilities.

Ruppert and Wand (1994) investigate local linear and quadratic regression esti-
mation in d dimensions. We adapt these results for local linear estimation to our
sparse table problem, which is reformulated as a fixed design multiple regression
problem, in the same way as in the one-dimensional situation.

Since in higher dimensional tables the boundary region can be quite large it
is desirable to consider estimators which do not suffer from boundary problems.
From Chapters 1 and 3 we know that local polynomial smoothers with odd degree
have this property in the one-dimensional case. We investigate in Section 5.1 the
MSSE performance of local linear smoothers for cell probabilities based on a general
d x d bandwidth matrix. For notational and technical simplicity we restrict to the
local linear smoothers. In Section 5.2 we illustrate through simulations the benefit
of working with a general d x d bandwidth matrix. In Section 5.3 we obtain for
the multi-dimensional local linear smoothers a generalization of the central limit
result given in Chapter 4. Based on the material we present in Section 5.1 and the
technique used in Chapter 2 it is also possible to show that the multi-dimensional
local linear smoothers are sparse asymptotic consistent.

5.1 Local linear estimators for the cell probabili-
ties

For one-dimensional tables we considered cell probabilities generated by an under-
lying latent density on [0,1]. Each cell ¢ in the one-dimensional table corresponded
to the interval I; = [(z — 1)/k,i/k]. Extension of this to the d-dimensional case is
straightforward. Consider the unit cube [0,1]¢, partition the [0, 1]-interval in the
£-th dimension in k; subsequent intervals Iy; of equal length with midpoints =4 =
(i — %)/kg, t =1,..., k. Link each cartesian product I, _;, = Iy % Toip X ... % g,
with the cell in the contingency table having multiple index (i1,...,%4). To avoid
the use of multiple indices we relabel, in an arbitrary but fixed manner, I, _;, as
C; with midpoint @;,where j =1,... k= Hfﬂ k.

Let pT = (p1,-.-,ps) be the vector of cell probabilities and P = EPysein v PR
the vector of frequency estimators.

Denote, for ¢ = 1,..., &k, W; the weight matrix given by

W, = diag(K gy (®1 — &), ..., Kpp(zr — ;)
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1
with Kgp(-) = WK(H_W!(-))’ where K (-) is a d-dimensional kernel function
and H a positive definite and symmetric d x d bandwidth matrix. The multi-

dimensional local polynomial smoother for the cell probabilities is defined as
P, = ef (XIW, X)) (X] W.P) (5.1)

where el is the (d + 1)-vector (1,0,...,0) and X; an appropriate design matrix.

When the design matrix is taken to be X; = (1,...,1) the resulting estimator is
the local constant smoother. As one can expect from the one-dimensional situation,
this estimator suffers from boundary bias problems. Therefore, the optimal rate for
the MSSE can only be attained under extra boundary conditions on f( cdot). Bur-
mann (1987a) studies some version of the local constant smoother with a diagonal
bandwidth matrix.

To avoid the boundary conditions, boundary corrected kernels can be used. Dong
and Simonoff (1995) consider multi-dimensional boundary corrected kernel estima-
tors based on a diagonal bandwidth matrix. Local linear smoothing is an alternative
method to avoid boundary conditions, and is such that no special boundary correc-
tion is needed, i.e., the local linear estimator adapts automatically in the boundary
region.

We obtain the local linear estimator if we take the k x (d + 1) design matrix

1 (= —a)T

1 (:ck — :Eg)T

It is clear how to define local polynomial smoothers of order p > 1. We restrict
attention to local linear estimators, for notational and technical simplicity. From
Chapter 3 it is clear that local quadratic estimators will suffer from boundary bias
problems (see also Ruppert and Wand (1994) who study, in the regression context,
local quadratic smoothers in detail). We restrict attention to local linear smoothers.

Similar as in Section 1.3 we can rewrite the local linear estimator as a usual
kernel type estimator. To see this write

1 o 1 o
T
(X‘-VV;X,»)z(O H1/2)M(0 Hlﬂ)

Eol
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with IV; the (d + 1) x (d + 1) matrix

k k
Y Ky(z; — =) Y Kg(e; — z:)(H V3 (z; — 2:))T
1 =1 =1
. - —1/2 k —1/2 -1/2 3
-21 Kpg(e; — @) H ' (x; — @) Zl K g(@; — 2:)H V(@) — o) (H V¥ (z; — @:))’
J: _:l=
The local linear estimator then becomes

1 o

-~ i
P = e N 1(0 /2

1 -
) ~XTW,P.
k
The j-the column of the (d + 1) x A-matrix

1 of 1 p
(0 H-l/ﬁ)kX"W"

is (1 (H Y*(z; — z;))") K gy (=; — @), so that

1 ] 1
BTN- -1 X—T“r
(1 . (ll H_I/E)ki i)
3

__..1.. L VAL 1 R0 4 Y o
lell/z |Ml(a‘d.]N)1 ( Hﬁlﬂ(wj _ I,’) ) K (H (fB:, a:,)) 5

where A.; denotes the first column of the matrix A.

The term (adjN;)L(1 (H~Y%(z; — 2:))7)” can be seen as the determinant of the
(d+1) x (d+1) matrix N; with the first column replaced by (1 (H~Y/?(2; —=;))")".
Combining these results yields

k
= 1 _ _
Po= gy 2 W s - )P (5:2)
| M ()|

K(w), where M;(u) is the same as IV; but with the first



Multi-dimensional tables 109

column replaced by (1 «)T. Further, it is easy to see that, for all ¢ € {1,...,k},

k
1 o
k| H /2 ZLi(H Y@ — o)) =1
=1

(5.3)

k
> Li(H (@ — @:))(2; — 2:) = 0.
=1
This illustrates that each L;(-) can be considered as a multivariate discrete kernel of
order 2, which is a multi-dimensional version of the discrete order property (1.14)
for p = 1. Similar to the one-dimensional case, this property ensures that the local
linear estimator does not suffer from boundary bias problems. The weight function
L;(+) has properties similar to the weight function in the one-dimensional case. For
details see Lemmas 5.2 and 5.3 and the remarks following these lemmas.
In order to study the MSSE for the local linear estimator we will assume that
the cell probabilities are generated by a density on [0, 1]% through the relation

p;:/f(a:)da:, i=1,...,k,
Ci

which is an immediate generalization of the latent density assumption (1.9). Further
we will assume the following conditions hold:

(C.1) f(-) has continuous second order partial derivatives on [0,1]%,
(C.2) K is continuous with compact and convex support supp(K),

(C.3) [wK(uw)du =0,i=1,....d and [uuTK(u)du = p(K)I; with py(K) =
JulK(u)du a strictly positive scalar and I; the d x d identity matriz,

(C.4) tr(H) — 0 and k¥*tr(H) — oo,

(C.5) there exists a fired constant L such that the condition number of H (the ratio
of its largest to its smallest eigenvalue) is at most L for all n,

(C.6) k; o kM2,

Remark 5.1
(i) For d = 1 and H = k?, the conditions on the bandwidth matrix H reduce to

h — 0 and kh — oo, the usual condition in the one-dimensional case.
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(ii) Consider the special bandwidth matrix H = A%l;. Condition (C.4) reduces to
h — 0 and kh? — oo, which is by (C.6), equivalent to k;h — oo, j = 1,...,d. Since
H = h*I; only has one eigenvalue, h?, condition (C.5) is satisfied.

For the bandwidth matrix H = diag(h?,...,A2) condition (C.4) is equivalent to
hj = 0,7 =1,...,d and k¥%(h? 4+ ... k%) - co. Condition (C.5) implies that all
bandwidths are of the same order, such that, by (C.6), (C.4) reduces to h; — 0 and
k_,‘:h_,‘: i OO,j = 1,...,d.

(iii) Spherically symmetric kernels with support a sphere with center 0 and prod-
uct kernels based on symmetric univariate kernels on a compact support satisfy
condition (C.3). In these cases all odd order moments of K(-) vanish, that is
Lupp(K) ult, .uﬂ"K(u) du = 0 for all non-negative integers £4,. .., £ such that their
sum is odd This is an assumption which is needed to study higher-degree polyno-
mial fitting.

Before we give our main result, we first collect some technical results. Re-
mark 5.2 contains a note on the number of indices that have a contribution to
(k|H|[Y?)~ EJ L Li(H*(z; — «;))P;. Lemma 5.1 shows how to replace sums
by integrals in the multi-dimensional situation. An immediate application yields
a property of the weight function L;(-), and Lemma 5.3 says that this function is
bounded. The proofs of these results are given in Section 5.4.

Remark 5.2
Let supp (KH( - w,»)) ={y: H "y —=,) € supp(K)}.
Since the design is equidistant on [0, 1]%, we have that

(9] (kvol (KH —x;) ))
(k|H|1/2V01 (supp(K)))

Ii

#{j : =; € supp (KH( - a:.-))}

By the fact that supp(K) is bounded we obtain that for a fixed index i, O(k|H['/?)
indices j have K(H_l/z(:nj —a;)) £ 0.

Since Li(u) = (| M;(u)|/|IN;|) K (), this weight function has the same support as the
kernel function K(-). Therefore, we also have that for a fixed index ¢, O(k|H|'/?)
indices 7 have L;(H '/*(x; — ;) # 0. This means that only O(k|H |/?) indices j
have contribute to (k| H|*/?)~! z;le L{(H Y (z; — «;))P;.

Lemma 5.1
(i} Assume (C.4) - (C.6) and let G(-) be a real-valued continuous function defined
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on a compact and convex subset of IR?. Then, uniformly in the i-index,

1

RHTT 2 G(H*(z; - 2))) = “—IHIPN / G(H2(y — 2:)) dy + o(1).

[0,1]¢

(i) Assume g(-} is a real-valued continuous function defined on [0,1]%. Let S C
{1,...,k} with {1,...,k}\ S = o(k). If k — oo, then

% Zg(a:.—) e / glz)de + o(1).

HEE (01

We now define, for multi-dimensional tables, what we mean by interior and
boundary points. A cell midpoint x; is called an interior point if

supp (K(H*”z(- - .'c,-))) C [0,1]¢ and the set of interior indices is defined as
I'={1:@; is an interior point}. The cell midpoints that are not interior are called
boundary points and B = {¢ : ; is a boundary point} is the set of boundary indices.

An important remark is that the number of boundary points is of smaller order than
the number of interior points. More precisely, the number of boundary points is

#B =0 (kv/tr(H)), (5.4)

while the number of interior points is #{ = O(k). The proof of (5.4) will be given
in Section 5.4.
An application of Lemma 5.1(i) gives, for interior points, the following result.

Lemma 5.2
Assume (C2) - (C6). Let J be a d x d matrix of ones. If z; is an interior point,

then, uniformly in the i-index

(i) Li(u) = K(u) + o(1) uniformly in u

k
(ii) W ZLé (H (25 — @) )(H (2, — 2))(H V(2 — 2:))"

= pa(K)La+ o(J).
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Remark 5.3

Lemma 5.2(i) implies that in the interior region the local linear estimator is asymp-
totically equivalent to the classical kernel estimator. Further, since the result is
uniformly in % and 7, we have, uniformly in the ¢ and j-index,

) (H-I/Q(mj - w‘—)) =K (H-lf”(a:j —~ z,-)) (15 (5.5)

Lemma 5.3
Assume (C.2)-(C.6). We have that Li(-) is bounded, uniformly in the i-index.

Remark 5.4
The weight function L;(-) has the same support as K(-), and is bounded on this
support by Lemma 5.3. Denote Cf, the bound of |L;(-)|. By Remark 5.2 we have

W i!h (H—l/Z(mj - ;,,!.)) @ (Le (H—lfn(mj B mé))) - o),

uniformly in the ¢-index, where g1(-) is a continuous function with support supp(K),
and g2(-) a continuous function on [—Cp, Cy] with g.(0) = 0.

The main result of this section reads as follows.

Theorem 5.1
Assume (C.1)-(C.6). Denote by Hz(z) the (d x d) Hessian matrix of f(-) at & and
R(K) = [ K%*u)du. The asymptotic expansion for the MSSE of the local

supp(K)
linear estimator is given by

K(K)

MSSE = ”Zii‘:{) j tr2(HH, () de +

[0,1]4
. tri(H) 5 1
N\ *\nk|H[2)
Remark 5.5

The first term in the expansion for MSSE, which is the leading squared bias term,
can be written as E:'(j Yore Ciiki(H )ij(H)y (for some constants i depending
on second derivatives of f(-)). Balancing each term in this sum with the leading
variance term implies that all entries of H are of the same order of magnitude, say
H = h2C where h is a scalar bandwidth parameter and C is a d x d matrix of

1
nk|H[172
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(unknown) constants. The choice A ~ n~t+ balances the squared bias part and the
variance part in the MSSE. We therefore redefine € so that

H =n"#C.
For this choice of H,
MSSE = O(n~#4k™)

which is the optimal rate assuming the existence of second order partial derivatives of
f(-) (Burman (1987a)). A further relevant reference is Cristébal and Alcala (1996).
They study, in the regression estimation context, the decomposition H = h*C in
greater detail.

For the frequency estimators we have (see Section 3.1) MSSE(P) = O(n™').
Therefore, it is easy to see that local linear smoothing becomes beneficial, in terms
of faster MSSE convergence rate, for tables with degree of sparseness such that
kn~4+4) _ oo, This means that the higher the dimension of the table, the more
total number of cells the table needs to have, before smoothing becomes beneficial,
and the MSSE convergence rate decreases with the dimension d.

Proof of Theorem 5.1
Use the following decomposition for MSSE :

MSSE = Bi+Bp+Vi+Vs
= D (EB—p)t+ Y (BP—pi) + ) Var(B) + ) Var(B).

el €8 el i€B

First we will derive asymptotic expansions for the bias and variance of the local
linear estimator. It is clear that

k
1 .
k[H['? > L(H VA (w; — 2))p;.

j=1

EP =

By a one-term Taylor expansion on f{(-) and condition (C.1) we have, uniformly in

the j-index,
_ f(=)) 1/1 1
p; = B +O A 'E++k—2’ i (5.6)
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For ®;’s satisfying H (2, — ;) € supp(K), use Young’s form of Taylor’s theorem
and the fact that ||z; — =;||? = | HY?|]?|H Y*(2; — =,;)||* < R%r(H), where R is
the radius of the support of K, to obtain

f(=;) = f(:) + D} (m:)(x; — =) + %(%‘ — &) H (@) (25 — @) + o(tr(H))

with Dg(ax) the gradient of f(-) at 2. Now use the discrete order property (5.3) to
get

EP.-p =
k
1 .
SR [T ZL-'(H*”E(% — @) (H (2 — =) H'*3 s (i) HYAH(H (2 — 2,
tr(H) 1 1
o (52) +o (i (g+1))-
Note that

(H (2 — =) H'*H () H/(H (2 — 20)

= tr(H*Hp( ) H(H (@, — &) )(H (2 — 2:))T)

and conditions (C.4) and (C.6) imply O (% (% +...+ %)) =0 (tr(f)) Herice,
1 F]

the asymptotic expansion for the bias becomes

ER-pi=

2k k[ H[1/2

()

For x; an interior point, using Lemma 5.2(ii), (5.7) reduces to

itr {w ZL (H™ 1/2(39 = m!))(H'Ul)(zJ — =) )(H” 1/2("’1 = "‘"t)) }

EP —p: = g—l',cm(K)tr(H%f(wf)) +o0 (tr(f)) (5.8)
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and for boundary points, by Remark 5.4, the order of the bias is

EP. —p = %tr(HW’H;(de”zO(J}) =0 (“"(f )) ; (5.9)

Note that the order bounds are uniformly in the i-index.
A calculation, similar to that of Lemma 5.1(ii) yields

5= i) [ o) +o (D). (5.10)

[o,1]¢

Since #B = 0O (k—‘/tr(H)) we have from (5.9)
B = % S O (H)) = o (ingcH)) _ (5.11)

iEB

To obtain an expression for Var(P) note that for H™Y*(2; — 2;) € supp(K)
we have uniformly in the 7 and j-index

f(25) = f(®:) + O(lz; — :l)) = f(@) + O (v/ir(H)) -

. 171 1 _ tr(H)
This and (5.6) (remember that O (E (k—lz +...+ k—g)) = o( k )) lead to,

uniform in the i-index,

Var(F)

k k 2
= Wlfwfﬂ {ZLE(H_UZ(‘”;S —&))pi — (Z Li(Hil/Q(Ij - :t:,-))p;,) }

i=1

k
1 ZL?(H-UZ(ZJ' _mi))f(mi)‘f’o"‘gwt’f‘(H))

~ nk?[H| &

- { % 3 L H 2 (m; — 2L Z Y Olgx/tr(H))}

1 f ;) _1/2 ; 1
“n k2|H|1/2 J15|H|1/2 Z (H —z)) +o nk2[H[2 ) (5.12)
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For @; an interior point (5.12) reduces, by (5.5) and Lemma 5.1(i), to

Var(B) = %PJ%%B—ER(K) Lig (W) . (5.13)

This yields, by Lemma. 5.1(ii),

_ RK) 1 _ 1
Vi = rmll,@;ﬂmmo(rlﬂlm)

_ R(K) 1
= nk|H|1/2+°(nk|H|1/2)‘ (5.14)

A similar argument as the one leading to (5.11) results in

Vg (W;ﬂm) . (5.15)

Combining (5.10),(5.11),(5.14) and (5.15) yields the desired expansion for MSSE. B

5.2 Simulation study

Based on a simulation study we illustrate the benefit of working with general band-
with matrix. For two specific latent densities we consider contingency tables of size
10 x 10 with n = 250. The first one is

af{(a—1)z1 + zq — 22125) + 1}
{1 + (@ —1)(z: + 72)]2 — 4a(a — D)z 22}3/?

for 0 < z3,23 < 1 and zero otherwise. This is the bivariate Plackett density with
uniform marginals. We take e = 10. See Mardia (1970) for a further discussion on
the properties of this contingency-type distribution. The second one is a polynomial
density

(5.16)

f(mlj 32} =

flzy,ze) = L;{202%22 + 22 + 1122 41 5.17
f 1T2 1 2

for 0 < 21, z2 <1 and zero otherwise with L; a normalizing constant. See Figure 5.1
for a graphical display of the cell probabilities generated from these densities. Note



Multi-dimensional tables 117

that both densities satisfy (C.1) but not the boundary condition required in Burman
(1987a).

In Remark 5.5 we have noted that the bandwidth matrix that minimizes the
leading terms in the asymptotic expansion of MSSE is of the form H = neC
with C a d x d matrix of constants. To derive the optimal matrix C first rewrite
dld+1) d(d+1)

2 1T 2

the leading bias-squared term in Theorem 5.1. Denote W the

matrix given by

¥, = f vech{2H ;(z) — dgH s(z))vech{2H ;(z) — dgH ;(x)} d=
[o.1]¢

where H;(x) denotes the (d x d) Hessian matrix of f(-) at * and dg denotes the
diagonal matrix formed by replacing all off-diagonal entries by zeroes. For a d x d
symmetric matrix A, vech(A) is the ~d(d + 1) column vector created by stacking
the columns of A, one under the other to form a single column, but with entries
above the main diagonal omitted. For example, it d = 2

Ty 201 Ty,

T, = | 200 4w 20 |,
Uy 201 0y

O f(x ,:1: 02 f(xq,
cJ // ( : = fg;:? .’1’:2) dzldm

f/a fz1,23) 0% f (21, 22) desdlins
(9:c16:c2

where, for 2,5 = 1,2,

Iy

d f zhE? :
//( 02,0z, ) S

By direct calculations one can show that (see e.g. Wand (1992))

#34(;{) f trE(H%_f('y))d /"24(}6 )(VEC}J.H)T'I’_f(VechH)_
[o.1¢
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The optimal matrix € can then be determined by minimizing
p2(K)(vechC)T W ¢(vechC') . R(K)
4 |C[i72
in €. In general this minimization can only be performed numerically. Wand
(1992) derives the necessary formulae for Newton-Raphson. Significant simplifica-
tion can be made by taking C' = diag(C\,...,Cy). This corresponds to bandwidth
parametrization H = diag(h},...,h%). For d = 2, the expression (5.18) can be
minimized analytically, and the solution is

1/3
. ( W{'R(K) ) /
1= :
B U (T + U7 030)

(5.18)

(5.19)
LIPS
Cy=|-— Ci.
2 (‘1122) 1
If in each direction i = 1,...,d the same amount of smoothing is used (C} = ... =

Cy), i.e., H = h%I,, then the optimal constant is given by

dR(K) 2/(d+4)
= (inss,)
p3(K) 30"

where }_" is the sum over all integrals ¥;; in ¥4 not involving mixed partial deriva-
tives.

We calculated the asymptotically optimal diagonal matrix (Cp), based on for-
mula (5.19), and full matrix (Cr),based on the Newton-Raphson procedure given
in Wand (1992), for both densities. See Table 5.1 for the results.

Plackett Polynomial

g 0.0277 —0.0054 0.3652 —0.1666
I\ —o.0054 0.0277 —0.1666  0.1890

0.0233 0 0.2058 0
Cp
0 0.0233 0 0.1072

Table 5.1:  Asymptotically optimal diagonal matriz Cp and full ma-
trizr C for the Plackeit and polynomieal density given in (5.16) and
(5.17).

For the bandwidth matrices Hp = n Y3Cp and Hy = n~3Cy we obtain the
exact (non-asymptotic) MSSEp and MSSEr and their asymptotic counterparts



Multi-dimensional tables 119

AMSSEp and AMSSEg. The difference in performance can be seen by looking
at the ratios AMSSEr/AMSSEp or MSSEr/MSSEp. From the numerical results
in Table 5.2 and the discussion in Remark 5.6 the merit of a full bandwidth matrix

over a diagonal one become clear.

Plackett

Polynomial

AMSSERr x n?/3
MSSEg x n?/3
MSSE} x n?/3

AMSSEp x n?/®
MSSEp x n?/3
MSSE?, x n2/3

0.043894(0.014631 + 0.029263)
0.050140(0.003008 + 0.047132)
0.026324(0.009463 + 0.016861)

0.051263(0.017088 + 0.034175)
0.055120(0.001713 + 0.053407)
0.032745(0.011546 + 0.021200)

0.005876(0.001959 + 0.003917)
0.013723(0.000798 + 0.012924)
0.009114(0.002845 + 0.006268)

0.008035(0.002678 + 0.005357)
0.015438(0.001115 + 0.014322)
0.010926(0.004051 + 0.006875)

AMSSEr/AMSSEp 0.856262 0.731237

MSSEr/MSSEp 0.909654 0.888904

MSSE};/MSSEY 0.803915 0.834132
Table 5.2: (Within parentheses we give the contribution of the squared

bias (first term) and the variance (second term) separately.)

A further illustration is given in Figure 5.2. Based on 1000 simulation runs it
presents a boxplot of SSEr/SSEp with SSEgx (resp. SSEp) the sum of squared
errors (Ei‘:l(}”; — p;)?) obtained by using the bandwidth matrix Hp (resp. Hp) to
calculate the actual values of the Ps.

Remark 5.6

First note that for the AMSSE in Table IT the squared bias and the variance are of
the same order of magnitude (as one expects).

The exact MSSEr and MSSEp values, obtained by using the bandwidth matrix (full
and diagonal) that minimises the asymptotic expression (5.18), are slightly larger.
Moreover the squared bias and variance have different order of magnitude. However
calculating SSE based on bandwidth matrices that are optimal in an asymptotic
sense is meaningful since typical bandwidth sclectors (e.g. based on plug-in meth-
ods) are also based on the underlying asymptotics. We also computed the full
and diagonal bandwidth matrix that minimizes the exact MSSE. The corresponding
MSSE; and MSSE} are smaller than MSSEr and MSSEp; and the squared bias
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and variance contributions are again in balance. All three error ratios show the
benefit of using a full matrix over a diagonal matrix.

Remark 5.7

In the univariate setting there are several methods for choosing C from the data.
Most of them can be extended to the multivariate case in some fashion. Wand
and Jones (1994) give arguments that suggest that in the nonparametric density
estimation setting, the multivariate extension of the plug-in selector of Sheather and
Jones (1991) has good theoretical properties for moderate dimensional data. The
unknowns in (5.18) are the integrals in the W; matrix, involving second order partial
derivatives of f(-), and these can be replaced by “plug-in” estimates, depending on
a so-called pilot bandwidth matrix G. Note that Wand and Jones (1994) consider
kernel-type estimators for which it is known that boundary problems are present.
Since they implicitely make boundary assumptions on the unknown density, this is
of no concern for them in their study. In order to define boundary-aware estimators
for the unknown functionals in Wy, one should extend the ideas developed in Cheng
(1996, 1997) to the multi-dimensional setting, which first of all requires an extension
of local cubic based estimators for second derivatives. Since a plug-in bandwidth
selection rule relies on the knowledge of the asymptotically optimal choice of the
pilot bandwidth, first the theory should be investigated before proposals can be
implemented. We think, based on similar arguments as given in Wand and Jones
(1994}, that also in the sparse multinomial or binned density estimation context, the
investigation of such an extension of the univariate plug-in estimator is a challenging
open problem.
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Figure 5.1: Cell probabilities generated from the latent densities (5.16) and (5.17).
Left: Plackett density. Right: Polynomial density.
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Figure 5.2: Bozplots of SSEr/SSEp with SSEp (resp. SSEp) the sum of squared
errors obtained by using the bandwidth matriz Hp (resp. Hp). Values smaller
than 1 indicate that the usage of a full bandwidth matriz is beneficial. Left: Plackett
density. Right: Polynomial density.
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5.3 A central limit result for SSE

As noted in Hall (1984) and Chapter 4, the technique used in Chapter 4 to prove
the central limit result for SSE(P) = Ef‘:l(ﬁ, — p:)? (Theorem 4.2) can be applied
to the multi-dimensional case as well. The generalization to the multi-dimensional
local linear estimator is given in the next theorem. We present the central limit
theorem for the local linear smoothers based on bandwidth matrices H = h*C.
From Remark 5.5 we know that the asymptotically optimal bandwidth matrix has
this form. Note that this type of bandwidth matrices is still general, in the sense
that it still allows for smoothing along different directions than the coordinate axes.
The order of the amount of smoothing is now reduced into one parameter k, which
makes the asymptotic investigation slightly easier.

Theorem 5.2
Assume (C.1)~(C.6), H = h*C and nh® — oco. Then

d(n) (SSE(P) — MSSE(P)) 2> N (0,0%)

where
{nﬁ_k nhttd 5 0o
d(n) =\ padk nhttd o )
nkh??  nhttd 0
and
4ot nh*t? 4 oo
ol =o*(f,K)= 4012)\'&3 + 20;")«4% nhitd 5 )
202 nhttd o 0
with

2

(,;J%ELK) ] tr2(CHy(=)) f() de — ] ir(CHy(2))f () dz

[0,1]¢ [0,1]¢

and
2

1
Ug:@‘j f _fg(a:)dt f f K(u)K(u+v)du dv,
[0,1]4 Sozr |So.n

with supp(K) C So,r, which is a sphere in IR® with center 0 and radius R.
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Outline of the Proof:
First we repeat some notation from Chapter 4. Denote the triangular arrays Y, =
(Yor,..., Yu)T and Xpp = (Xa1,-.-, Xex)¥, £ =1,...,n where, for i = 1,..., k,

1 if the £-th observation is in cell ¢
Yy = .
0 otherwise,

and
1 k
X6 = pTT Zl Li(H*(&; — 2:))(Ye; — ;).
i=
For a fixed n, Yy1,..., Y, are 1.i.d., and hence also X,4,..., X

An important fact in Chapter 4 is that one term in the decomposition for MSSE
(vid., U;,) has a U-statistic structure with symmetric kernel

k
Ho( X1, Xo2) = ) X1:Xos, (5.20)

=1

and that the “U-statistic” is degenerate, i.e., E (H,(X,1, Xn2)| Xn1) = 0.
Also the decomposition for SSE — MSSE ((4.5) and (4.6)) remains valid in the multi-
dimensional situation.

Recall from Chapter 4 that Lemmas 4.1-4.5 contain the key results to Theo-
rem 4.2. From the proof of Lemma 4.4 it is clear that the martingale limit result
can be used in the multi-dimensional case in exactly the same way as in the one-
dimensional case. Therefore, since the remaining main steps in the proofs of the
lemmas are equations (4.10),(4.11) and (4.14)-(4.17), we have to generalize these
results to the multi-dimensional case. Note that in (4.10) and (4.14) explicit ex-
pressions for the leading terms are given; in (4.11), (4.15)-(4.17) order relations are
sufficient.

Again we use the shorthand notation given in (4.7), i.e.,

bi=EP —p;

Sy = L; (H_lfz{a!j—-’ﬂi))

7
k|H 172
k
Dy, = ; Sijy Sij

ex =Y —pi.
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Basic, but important, properties for 5;; and D;, ;, are (these are based on arguments
explained in Remark 5.2)

Si; = 0 for ”H_l/z(wj —z)|| >R
|Si5| = O((K|H[/%)™) = O((kh?)™?) for || H/*(z; — ;)| < R

and

'Djljz = 0 for ||H_1/2(251 - 312)” > 2R
|Dsi| = O((KIH|?)™Y) = O((kkY)™") for || H (=, — =5,)|| < 2R.

Further, for a fixed design point @;, the number of design points x; that satisfy
| HY?(2; — 2.)|| < 2R is of the order O(k|H|"/2).
First we will derive the generalizations of (4.10) and (4.14), which are

it )= Z—:af +o (%) (5.21)
E(H (X1, X02)) = —=0% +0 (L) . (5.22)

To prove (5.21) we start from expression (4.22). Now define the set of “purely”
interior points by I' = {z Ay ||[H ™ (y —=)|| < 2R} C [0,1]'*} with R the ra-
dius of the support of K(-). Since Si; = 0 for | H**(z; — ;)| > R we only have
to consider those indices i such that HH'I’Q(:BJ- —a)]| <R HjeI'suchiis
an interior index. Since the second derivatives of f(-) are continuous, we have by
expression (5.8) for the bias of the local linear estimator

B %m(K)tr(H?{f(%))*o(tr(I::H))

= e +o (% ).

Since 7 is an interior index we have by (5.5)

1

oo 1
o = gk (Hws=20) +o ()
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k
such that, by Lemma 5.1(i), for j € I', 3 S;; = 1 + o(1). These facts result in

ZPJ (zbslj) (Zpgzbu 13) =

Jer Jel’  i=1

) {ijtrz(cuf(mj)) = (Z pjtr(cwzm) } +o(f)-
Jer Jel

An application of Lemma 5.1(ii) and the fact that p; = f(z;)/k + o{k™!) yield

ZP:(ZbSta)z (ZPJDSU) 4,92#2(K)><

JEI' Jjer i=1
2

f f@)r(CH(2)) da — ] f(@)r(CHy(z)) de +o(h4) (5.23)

[0,1]4 [0,1]¢

Since # ({1,...,k}\I") = O(k+/tr(H)) = O(kh) it is easy to see that

> b (ij bt-s.-j)z = (Z i i b,»s,»j)2 =0 (%;) ) (5.24)

Jgl i=1 gl =1

From the last two expressions and (4.22), (5.21) follows.

To prove (5.22) we start from (4.26), for which the first term of (4.27) has the
leading contribution. Since, uniformly in ji, p;, = f(=j,)/k+0(k71), and, uniformly
in §; and j; with ”H_ll‘z(zn o a:_"?)” <2R, p;, = f(mn)/k + O( )a we have, using
the properties of D, ;,,

Z Z Djl??php-’? Z f (wﬂ Z i T 0 (Eﬁ;ﬁ) ' (5'25)

J1=142=1 J1=1 j2=1

Since Dy, = E Si;, Sij, and Si; = 0 for ||[HY*(2; — a;)|| > R we obtain that if

j1 18 a purely mter]or index (j; € I) the indices ¢ that have a contribution to Dj, j,
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are also interior indices. Therefore, by (5.5),

Dy, =

.(_E[IT}IW ZK(H—-L/?(Q;‘- —x; ))K(H_l’lz(m‘i - 352)) +eo (?l}'%li;@) ’

A similar calculation as that of Lemma 5.1(i) yields
1 s 1
Diin= s | KRG+ B2~ 23 ducto (s ) (526)
supp(K)

An application of Lemma 5.1(i) yields, for j; € I',
2

1
Z 2 kIHllfzf /K u +v) du dv+o(7klﬂl”2)

32=1 So2r | So,r

2

khdIC]1/2f fK +v)du dv+o(kid)

such that

=) 1 1
Z ] Z J1d2 k?hdo-g + L2 k2hd = (527)

Jel’ j2=1
By the basic properties for D;,;, we have 2324 2 5, = O((kh?)™1) which gives
F (z 1
P Z Dy =0l (5.28)
ngr 2=l

Combine (5.25), (5.27) and (5.28) to see that the first term of (4.27) in the multi-
dimensional case becomes

ko k 1
2
ZZDjijgpjlpb a2 kghdo-2+ (kghd) .
n=1j=1
The other terms in (4.26) are all of smaller order, which can be seen through counting

the number of indices that make a contribution to the term based on the properties
for D;

J1d2°
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The proofs of (4.11), (4.15)-(4.17) in the one-dimensional case are essentially
based on counting how many terms make a contribution to certain sums. The basic
properties of Si; and D, ;,, for which we have given the generalizations to the multi-
dimensional case at the beginning of this proof, are important. The generalizations
of (4.11), (4.15)—(4.17) to the multi-dimensional case are

hS
¢ (ﬁ)
1
E(H:(an, Xn'z)) = 0 (ké—hﬁ)
1
© (W)
1
O (k2h2d> "

As an illustration we show for E(G2(X,.1, X,.2)) how the counting method works for
the following specific term appearing in this expectation (see the proof of (4.16) for
the notation).

E(T7)

Ii

E(G (Xn] 3 Xﬂ.Z))

]

E(Hﬁ(Xm, an))

k
E :113A1214Az112Ae314

f1=1iz=1143=14¢,=1

k k k k
= z Z Z Z Djl.';'aD,:'z;'sD:.'lJ;Daz.?;php.‘.'zp,?apgg

J1=1 j2=1 ja=1 jy=1
The multi-dimensional properties of D, ;, imply
k

E ok ok
Z Z Z Z Aivig Aiziy Aiyiy Aigi,y

t1=11=1i3=11i4=1
1 1 1
— 473d -
= 0 (k% g * 15) = 0 ()

All the other order relations are obtained in a similar way. i
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5.4 Proofs

Proof of Lemma 5.1
(i) Denote HY3(C; — 2;) = {H”llz(m —-x) 1€ Cj} and define

1,.:{3' : HYNC; —w) C supp(G)}
I = {j 1§ ¢ I and H7V2(C; — =) N supp(G) %@}
Hj,:{j : HY3(C; —2) N SHPP(G)=Q}-

We have that

1l
=
=
&
Qg_____“
—_

@
e

e
2
=
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|H|1/2 (Z+Z+ Z)

Jel  jell;  jelll;

f ’G (H_lﬂ(mj - m;)) -G (H‘1/2(y - zi))‘ dy, (5.29)

First note that the sum over IIl; has no contribution to (5.29), and that for j € II;
we don’t know whether H/*(z; — ;) € supp(G). Further, for j € I; we have,
since G(-) is continuous on a compact support,

G (H " (z; - 2:)) - G (H2(y — =) = o(2),
and for j € II; we certainly have

e (H-lﬂ(z,- ~=)) -G (H iy - =:)) = O(1),
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where both order bounds are uniformly in the 7 and j-index. From Remark 5.2 we
know that #I; = O (k|H|'/?), such that

ﬁf‘ll"ﬁg Z ] IG' (H_l/z(m_f _ -”ﬂz')) —C (H—1/2(.y - :l:,‘))’ dy = o(1).
JEL G,

Now we still have to find an order bound for #1I;. The support of Ggy(- — )
can be covered by O(k|H|"/?) cells. Moreover the way we cover the d-dimensional
unit cube by our cells C; implies that the projection of the support in each direction
can be covered by a number of cells of strict order O((k|H|*2)'/4). This finding
and the fact that the support of G'gy(- — @®;) is compact and convex imply that the
number of cells needed to cover the boundary of supp(G gy (- — ®;)) is of the order
O((k|H [*/2)=1/4),

This yields that

1 -1/2 . -1/2 i = —._l
TR ; f ’G (H (=, - 2)) - G (HA(y —z))| dy=0 )
J :'GJ
By condition (C.5), |H|? o tr(H )%, such that we have, by (C.4)

L -1/2 o _ -1/2 o _
|H |1/ Z / ’G (H (=, w,)) G’(I-I (y mz))’ dy = o(1).
JEHigj
(ii) First note that, since {1,...,k} \ S = o(k) and ¢(-) bounded,

1 js
z > gz = I > 9= + (1),

€S =1

Further,

[0,1]¢ =g

k k
10— [ s@)de=Y [ (o) g(e) do.

By continuity of g(-) on [0,1]¢, and since, for € C, ||2; — | < k™!, we have,
uniformly in  and =;,

g(=:) — g(=) = o(1),
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which yields

P Zg(m, ] () de = o(1).

€S [0,1)4

Proof of Lemma 5.2
(i) An application of Lemma 5.1(i) on each of the submatrices of N; and M;(u)
results, uniformly in the i-index, in

ij/z ZK (H ™3 (@; - 2) =5 Hlm f K(H ' (y — =) dy + o(1)
[,1)

L
g Do K (e = 2 H o —2)

= |H1|1,2 f K(H "y — 2)H*(y — =) dy + o(1)

[0,1]¢

Y > K, — ) H e )~ )

= i?lllﬁ f K(H™ Y (y — 2,))H "y —x)(H*(y — :))" dy + o(J).

[o,1]¢

Since for interior points supp(K gy (-—:)) C [0,1]%, the actual region for the integrals
is supp(K gg (- — :)). Now use the coordinate transformation z = H 'y - 2)
and (C.3) to obtain

N_=(1+o(1) 07 + o(17)
' 0+0(1) pa(K)Ls+ ofJ)
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and

T T
M(u}z(l 07 + o(17) )
u pa(K) i+ o(J)

Therefore, for all  and uniform in the ¢-index, |IV;| = | M;(%)| + o(1) which proves
the result.

(ii) By (i) we have L;(u) = K(u) + o(1), uniformly in ¢ and u, and hence we also
have,

k|15;|1/2 Z L{H Y (z; — ) (H " *(=; — @) (H 2 (z; — =.))T
= pa(K) Ly + o(J).
@
Proof of (5.4)

The boundary region is defined as
B ={i:supp(K g (- — =) £ [0,1]}
with
supp(Kgr(-— =) = {y: H 'y — =) € supp(K)}
= {y:(y— =) € H' supp(K)}.

Since the kernel function K(-) satisfies (C.2) and (C.3) we know supp(K) C Sor,
a sphere with center 0 and radius R. Then H'*supp(K) C &g, an ellipsoid with
center 0, with the direction of the axis according to the eigenvectors of the matrix
H*Y? and the length of the axis O(Amax), Where Apax is the largest eigenvalue of
H'?, On his turn the ellipsoid &oir C Com, a cube with center 0, axis along the
coordinate axis with length O(Amax) = O(1/tr(H)). All these relations imply

BcC{i: x:+Com¢[0,1]%).
Now it is easy to see that

#{i : @i+ Copm ¢ [0,1]%} = O(ky/tr(H))
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which proves (5.4). |

Proof of Lemma 5.3
From the definition of L;(u), and the fact that K(-) is continuous on a compact sup-
port, it suffices to show that | M;(«)| is bounded uniform in the i-index for bounded
w and that |IN;| is uniformly bounded away from zero. The uniform boundedness of
| M;(w)| for bounded u follows immediately from Remark 5.2 and the boundedness
of K(-).

We will now show that under conditions (C.4)-(C.6) the matrices IV are positive
definite. To see this, let 27 = (2; 2]) # (0 0T) be a 1 x (d + 1)-vector. By direct
calculation we have

zTMz =
k11-11r|1/z ; ((21 27 ) ( H“W(; 2 )) K(H(z; — 2)).  (5.30)

For each z # 0, the function

o) = (21 20) ( : )
w

can only be zero on a (d — 1)-hyperplane in IR?. Therefore, as soon as we have d+1
indices 7 such that the points H~'/%(; — ;) do not span a (d — 1)-hyperplane and
such that K(H V%(z; — @,)) # 0, there is at least one index j that has a positive
contribution to (5.30). Since K(-) has a d-dimensional support and by Remark 5.2
and conditions (C.4)-(C.6) we easily find d+1 such indices j, when k is large enough.

Therefore, zT N;z is strictly positive for all z # 0, and hence the matrix IV; has
a strictly positive determinant.

To show that the bound is uniformly in the i-index, we can use similar arguments
as in the proof of Lemma 1.2. £
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Chapter 6

Exact double smoothing
bandwidth selection

The goal of this chapter is to develop a heuristic method for selecting the bandwidth
in local polynomial smoothing of ordered multinomial data. In our proposal we do
not restrict to a global bandwidth, but we allow the use of local and partially local
bandwidths. To explain the ideas behind our selector, we follow the recommenda-
tions of Hall, Marron and Titterington (1995) and focus on partial local smoothing,
over subsets of cells, rather than “purely” local smoothing where a different band-
width is chosen for each cell. In order to have good finite sample performance, we
want to rely on asymptotic theory as less as possible. Therefore, we aim to work with
finite sample estimates of risk measures. Qur resultant approach can be thought of
as being a non-asymptotic version of the double smoothing idea used, for example,
by Miiller (1985), Staniswalis (1989) and Hardle, Hall and Marron (1992).

In Section 6.1 we explain the ideas behind our proposal, and present the algo-
rithm. In Section 6.2 we illustrate our method on a real data set. We also present
a simulation study, in which we compare the performance of our newly proposed
bandwidth selector to some existing bandwidth selectors.

6.1 Bandwidth selection strategy
The local polynomial estimator for the cell probabilities defined in Chapter 1 depends
on the bandwidth A. Since in this chapter the bandwidth is of major interest, we

stress this dependence by writing P, i(h) instead of B.. In matrix notation the vector
of local polynomial smoothers can be written as P(h) S, P, where S, is the k x k

135



136 Chapter 6

matrix, with (Sy)i; = S;; defined in Chapter 4.
For a subset A of the set of indices {1,...,k} we let ﬁA(h) denote the vector of

estimates for the cell probabilities with index in A. We may write I?’A(h) = IAI?'(h)
where I is an appropriate #A x k matrix of zeros and ones, e.g., for A = {2,3,4}

01000 0
I,=1 00100 0
00010 0

Also, let 8% = IS}, so that fsA(h) = S£P,ie., S is the submatrix of Sy, which
contains those rows of S with index in the set A.

Let A={Ay,...,A,} be a partition of the set of all indices {1,...,k}. The idea
of partially local bandwidth selection is to determine r bandwidths h41, ..., kér,
all of which are optimal for their corresponding set A;. Trivial partitions are A =
{{1,...,k}}, the case of a global bandwidth, and A = {{1},...,{k}}, the case of
purely local bandwidths. All other partitions of {1,...,k} are examples of partially
local bandwidths.

We focus on selecting the bandwidth for estimating p* = I4p, for some fixed
set A. The performance of the estimator P A(h) is measured by the mean sum of
squared errors over A

MSSE,4 (h gE( (h) — p‘)-

With respect to this risk measure, the optimal bandwidth is

hd = a.l'gIIllﬂ{MSSEA h,p)}-

We want to propose a suitable estimator for this unknown optimal bandwidth &Z.
In matrix notation we can write,

MSSE4(h, p) = (S — La)pl” — n7"||Sipl* + n7 tr{ S} diag(p)(S1)"}  (6.1)

where ||v|| = (vTv)'/? denotes the norm of the vector v and diag(p) the k x k matrix
with py,...,pr on the diagonal. See Section 6.3 for the proof. The expression (6.1)
depends on the unknown vector of cell probabilities p, but it gives an idea how to
define an estimator for it. A double smoothing bandwidth selection strategy involves
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replacing the unknown p in (6.1) by a “pilot” estimate S,4P where g* is another
bandwidth, which we will refer to as the pilot bandwidth. Through the estimator
MSSE(h, §,4P) for (6.1) we then define an estimator for h{ as

k4, = argmin MSSEa (h, S, P).

A>0

The main problem now becomes how to choose the pilot bandwidth g#. The
recent literature has seen a good deal of theory on the choice of the pilot bandwidth
in double smoothing strategies, particularly in the density estimation context. See,
for example, Jones, Marron and Park (1991), Hall, Marron and Park (1992), Hérdle,
Hall and Marron (1992) and Park and Marron (1992). In each case, attention has
focused on the asymptotic distribution of the relative error (h;A — h$)/hE, with
the choice of ¢4 aimed at optimising the rate of convergence to a limiting normal
distribution.

We want to follow another approach to select the pilot bandwidth, since we have
the feeling that the asymptotic theory masks boundary effects. To illustrate where
our feeling is based on, we present Figure 6.1. To construct this figure we consider
a contingency table with 100 cells, where the cell probabilities are generated by
latent density fm(u) = 35(1 — e ®)7'e™™1{0 < uw < 1}. This function (divided
by 5) is shown by the dotted curve. For the partition of {1,...,100} we consider
subsets A; of size 5, ¢ = 1,...,20. The circles on the figure correspond to the
exact mean sum of squared errors optimal bandwidths (with formula (6.1)). In
the interior, as one moves from the right to the left in Figure 6.1 it is seen that
the optimal bandwidth decreases. This is consistent with the asymptotic idea that
the curvature is increasing and therefore a smaller bandwidth is optimal. However,
near the boundary itself, the optimal amount of smoothing increases — reflecting
the fact that near the boundary the variance of a local linear estimator increases.
This indicates that the asymptotic approximation in the boundary region is not as
accurate as in the interior region. It also indicates that one may wish to allow the
bandwidth to vary across the cells since a bandwidth chosen for good performance
in the interior is not necessarily good for estimation close to the boundary, despite
the automatic boundary adjustments of local lines.

A natural alternative for selecting g is to use “exact” risk ideas as a guideline.
One can define the optimal g4 to be the one minimising the mean squared distance
between E;A and h

g = argmin E(fsz — R = argminMSE(ﬁjA)

g1>0 g4>0
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Figure 6.1: Optimal bandwidths with respect to mean summed squared error over
subsets of cells of size 5 for a table with 100 cells and cell probabilities generated by
fa(-).
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and use this to guide the choice of g#. Unfortunately A4, — h# does not have an
explicit form which makes its MSE intractable. A way around this is to use the
approximation

hA, — ¢ ~ —MSSEY (h, §,4P)/MSSE} (k3 p) (6.2)

where MSSEE;](h,'p) = (8'/8h*)MSSE4 (h, p), which is based on a Taylor expansion
of MSSET(h, p) about A#. This, in turn, leads to the following approximation to
g
G = argminE ((~MSSE} (f, 5,P)/MSSE}; (¢, p))*)
g>0

argmin La(g, hd)
g>0

where

Lalg, k) = E ((MSSEi’(h,sgﬁ))z) .

The advantage of working with §& is that L (g, k) admits the following approx-
imation (see Section 6.3) :

La(g,h) =~ ((1 - n’l)pTD::'hp +nt {dia.gona.l(Djh)}Tp)2
+ 4n"tr (S diag(p)(S$)T) [(1 —n " )p" Dsyp
+n7t (dia.gona.l(th))Tp] + Va.r(?TD;hﬁ) (6.3)

where

Dy, = ST{SIT (1 — L) + (83 — Ln)" Si'}S,,

(8i4);; = (8/0h)(St)i; and diagonal(D}},) denotes the column vector containing
the diagonal entries of the k x k matrix DJ;.

Not surprisingly La(g, /) depends on the unknown probability vector p and,
in particular, g4 depends on h{ — the quantity that we are aiming to estimate in
the first place. One could again replace p by a pilot estimate based on yet another
bandwidth, but this would lead to further bandwidth selection problems. A strategy
to overcome this problem, and to make the approach workable in practice, is to use
some initial estimate for p. In our simulations (see Section 6.2) we used the Bayesian
regression spline smoother of Smith and Kohn (1996) as initial estimator.
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We refer to our bandwidth selection method as exact double smoothing (EDS)
since the idea is based on “exact” (i.e., non-asymptotic) expressions at both smooth-
ing stages. A full description of the algorithm is :

Step 1 Find ﬁi:u.it, an initial estimate for p.
Step 2 Set up a partition A = {A;,..., A} of the cell indices {1,...,k}.

Step 3 For each A € A:
(i) Find hfl, = argmin,, o MSSEa(h, Pix).

(ii) Find §* = argmin .o L,;(g,:iz;iit), where Py is used as p in (6.3).
(iii) Estimate p by 1391.

(iv) The selected bandwidth for subset A is A4 = argmin MSSE, (A, ﬁjA).
B>0

Step 4 If » > 1 then fit a natural cubic spline to the pairs
(1,1n(h%)), (k, In(R42)), .. ., (k—q, In(A#A1)), (k, In(A4r))

where &; is the mean of the indices in A;. The values of the exponentiation of the
spline are then used to give bandwidths for each of the k cells.

The final step overcomes the problem of non-smooth pictures at the change-over
from one interval in the partition to the next. The spline is fit to the logarithms of
the k4 and then exponentiated to ensure that the final bandwidths are positive.

6.2 Practical performance

In this section we demonstrate the performance of the EDS selection method for
local linear smoothing of multinomial data. Figure 6.2 shows the results of applying
the method to the mine data described in Section 1.1. The estimated bandwidth
function is shown in Figure 6.2a, and is based on applying EDS to 5 partitions of
size 11. Note that the method chooses smaller bandwidths near the boundaries,
presumably because of the higher amount of curvature there. The resulting esti-
mator is shown in Figure 6.2b. A comparison with Figure 3.5 shows that there is
little difference between the two estimates in this case, so it appears that a global
bandwidth may be sufficient for these data.
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Figure 6.2: (a) Estimated bandwidih function using the evact double smoothing al-
gorithm and (b) resulting probabilily estimates for the mine data.
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We conducted a simulation study to compare the global version of our bandwidth
selector to existing selection rules. In first instance we considered cross-validatory
(CV) rules. Recall from Section 3.3 that the least-squares cross-validation method
is based on a “leave-one-out” estimator. We implemented two versions for CV. The
first one is based on treating (z1, P1),..., (s, Pk) as an ordinary regression-type
data set. Leaving an observation out corresponds in this case to leaving out a cell
(z:, P;). The second version uses the fact that we are dealing with multinomial data.
This version of cross-validation is described previously in Section 3.3. Leaving an
observation out means working with (N1 /(n—1),..., (Ni=1)/(r—1),..., Ni/(rn—1)).
The two versions are denoted by CVy and CVyy respectively.

We also included the direct plug-in (DPI) bandwidth selector of Ruppert, Sheather
and Wand (1995) in the simulation study. This selection method is developed for
the use of local polynomial smoothing and uses the double smoothing strategy. At
both smoothing stages, the choice of the bandwidth is guided by asymptotic consid-
erations. The main idea behind this method is pointed out in Section 3.3. There is
a difference between the algorithm presented in Section 3.3 and this DPI-bandwidth
selector. Step 1 of the algorithm in Section 3.3 uses a normal reference rule to esti-
mate 34, a quantity based on second and fourth derivatives of the unknown function
f(+). This is a usual strategy in the density estimation context, but there is an alter-
native to this step in the regression estimation context, for which the DPI-selector
of Ruppert, Sheather and Wand (1995) is designed. An alternative to Step 1 is to
use a parametric fit at the “quick and simple” estimation step. Ruppert, Sheather
and Wand (1995) propose to use a so-called “blocked” quartic fit, where the number
of blocks are chosen according to a Mallow’s (), criterium. In the regression context,
also the variability of the data plays a role in the asymptotically optimal bandwidth,
such that the direct plug-in algorithm in that context is somewhat more elaborate
(see Ruppert, Sheather and Wand (1995) for details). Note that we used the DPI
method as if our multinomial problem is an ordinary regression problem.

Our intention with this simulation study is to start a first investigation of the
EDS bandwidth selector. Therefore we only include two existing popular bandwidth
selection methods in the simulation study. One being the cross-validatory rule, for
which it is known that its behavior is somewhat disappointing, and secondly a
high-level sophisticated bandwidth selector, which has in the existing literature the
reputation of being quite reliable. We have chosen for the DPI bandwidth selector
of Ruppert, Sheather and Wand (1993) because of practical considerations.

To generate the cell probabilities we considered the following latent densities :

(i) the exponential-like density fr(u) = 5(1 — e ) e ®1{0 < u <1}
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(ii) the Beta(0.5,0.5) density
(iii) the uniform density on [0,1].

Sparse tables are generated with number of cells £ = 50 and sample sizes n = 50,
n = 100, n = 250. The number of replications in each simulation was 500. The
normal density truncated on [—4,4] was used as kernel.

The difficulties related to the first two latent densities are the very high bound-
ary probabilities. Because of these high boundary probabilities, we believe that
for the beta latent density the setting with k = n = 50 is too difficult to get rea-
sonable answers, such that we have not started simulations in this setting. The
reason to include the uniform density is that the optimal bandwidth is infinity, i.e.,
ordinary least squares performs better than local linear regression. All bandwidth
selection strategies, except DPI, used in the simulations need a minimization step.
This is done by using grid search on a logarithmically-equally-spaced grid around
ho. In view of the last setting also bandwidth zero, i.e., frequency estimators, and
bandwidth infinity, i.e., least squares regression, are appended to the grid.

A graphical summary of the results is given in Figure 6.3. The plots show kernel
density estimates of In(h) —In(h,y:) for each rule. The solid line represents the EDS-
selector, the long dashed line the DPI-selector, the dotted line the CVpyn and the
short dashed line the CVig-selector. Figure 6.3a-c are the results for the different
sparseness settings for the exponential latent density, and Figure 6.3d shows the
result for the beta latent density when n = 5k.

Numerical results of the final cell probability estimators are shown in Tables 6.1-
6.4. Averages, medians and standard deviations of each of the sum of squared
errors (SSE) are given. We also include the results of the Bayesian regression spline
smoother (BR) which is used as the initial estimator in Step 1 of the EDS algorithm.

In order to present a kind of classification of the different estimators, on basis
of SSE performance, we performed paired Wilcoxon tests. For each simulation run
we retained the SSE value for each of the 5 estimation procedures considered in
the simulation study. A paired Wilcoxon test is then performed on the 500 paired
SSE values from 2 estimation procedures, to determine whether the median SSE’s
were significantly different. Estimators shared the same SSE ranking when the test
showed no difference at the 0.5% level (which is an adjusted Bonferroni significance
level). The results of these tests are presented in Table 6.4.
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Figure 6.3: Kernel density estimates of log(h) — log(hep:) for EDS-selector (solid
line), DPI-selector (long dashed line), CViyg-selector (dotted line) and CVi-
selector (short dashed line). (a)-(c) Ezponential latent density. (d) Beta latent
density.



Exact double smoothing bandwidth selection

n =30

n = 100

n = 250

SS5Egps
SSEcv,.
SSEcv,_.,
SSEpp1

SSEgr

2.136e-3* (2.483e-3)°
1.364e-3°

2.713e-3 (3.523e-3)
1.644e-3

2.615e-3 (3.296e-3)
1.498e-3

2.286e-3 (3.008e-3)
1.337e-3

3.194e-3 (3.908e-3)
1.908e-3

1.159¢-3 (1.130e-3)
0.846e-3

1.522e-3 (1.637e-3)
1.022¢-3

1.536e-3 (1.626e-3)
0.977e-3

1.2¢-3 (1.294e-3)
0.794e-3

1.716e-3 (1.843e-3)
1.053¢-3

5.342e-4 (4.721e-4)
3.906e-4
7.244e-4 (6.829e-4)
5.112¢-4
6.938e-4 (6.851e-4)
0.467e-3
5.571e-4 (4.98e-4)
4.162e-4
7.116e-4 (7.615e-4)
4.633e-4

Table 6.1: Numerical summary of the simulation study for the exponential latent

density. Average* (standard deviation)®, and median® of SSE for each strategy.

Table 6.2: Numerical summary of the simulation study for the beta latent density.

n = 250

n =100
SSEeps

3.934e-3¢
SSEcv,.,

4.780e-3
SSEcv,..

3.950e-3
SSEpp1

3.409e-3
SSEggr

4.169e-3

4.298¢-3* (1.827e-3)P
5.143¢-3 (2.166e-3)
4.396e-3 (2.017e-3)
3.75¢-3 (1.637e-3)

4.515¢-3 (2.152¢-3)

2.065e-3

2.406e-3

2.055e-3

2.05e-3

1.597e-3

2.212¢-3 (0.851e-3)
2.723¢-3 (1.218e-3)
2.22%¢-3 (0.862e-3)
2.15e-3 (0.722e-3)

1.85¢-3 (1.076e-3)

Average® (standard deviation)®, and median® of SSE for each strategy.
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It is clear from both Figure 6.3 and the tables that EDS exhibits good overall
performance and offers significant improvement over the cross-validatory rules. From
Figure 6.3 and Table 6.4 we conclude that the bandwidth selectors DPI and EDS
have comparable behavior for the exponential latent density. For the uniform case
DPI seems to perform rather poorly. Note that EDS is sometimes bettered by its
initial estimator BR. Since EDS behaves rather constant over the three different
latent density settings, while BR performs rather inconstant, this does not concern

us too much.

n = 50

n =100

n = 250

SSEEps
SSECVNS
SSEcv,,

SSEppr

SSEgr

3.979e-4* (5.857e-4)®
1.722e-4°

4.111e-4 (5.836e-4)
1.829e-4

4.870e-4 (1.796e-4)
1.829e-4

1.608e-3 (1.404e-3)
1.235e-3

0.609¢-3 (1.3¢-3)
0.137¢-3

2.118c-4 (3.008¢-4)
1.055e-4

2.19e-4 (3.011e-4)
1.161e-4

2.188¢-4 (3.01e-4)
1.152e-4

8.712e-4 (6.759e-4)
6.988e-4

2.43%-4 (4.638e-4)
0.625e-4

8.319¢-5 (1.100e-4)
4.126e-5

8.616e-5 (1.094e-4)
4.605¢-5

8.609¢-5 (1.093¢-4)
4.605e-5

3.334e-4 (2.46¢-4)
2.822¢-4

7.389¢-5 (1.392e-4)
1.701e-5

Table 6.3: Numerical summary of the simulation study for the uniform latent den-

sity. Average® (standard deviation)®, and median® of SSE for each strategy.
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Uniform n=k EDS BR CVmn CVig DPI
n=2k BR EDS CVieg CVpm DPI
n=5k BR EDS CVmnu CV,g; DPI

Exponential n=%k EDS DPI CVmm CVg BR
n=2k DPI EDS CVpm CV,; BR
n=5 EDS DPI BR  CVpm CVie

Beta n=2k DPI EDS CVmm BR CVum
n=5k BR DPI EDS CVini  CVimm

Table 6.4: The rankings based on paired Wilcozon tests. The best performer is ranked
at the left. When there is no significant difference between different methods they

are underlined.
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Remark 6.1
The presented simulation study is only a first step in the investigation of the pro-
posed bandwidth selection method EDS. Many questions about this method are still
untouched, both practical and theoretical questions. The good overall performance
in this simulation study encourages to do further research on the global version of
EDS. For the partially local version of EDS, we encountered different kind of practi-
cal problems, which we do not have solved at this moment. The major problem we
encountered is related to the possibility of negative estimated cell probabilities for
the local linear estimators. This makes that the MSSE expressions used in Step 3(iv)
of the algorithm become meaningless. Although the rescaled estimators, proposed
in Remark 3.6, give an intuitive idea how to overcome this problem, the first results
we got (only a limited number of simulations) were not too positive, in the sense
that the partially local EDS method performed no better than the global version of
EDS.

So, further investigation, and possibly a slight adaptation of the proposed EDS
method, are necessary, before a more complete judgement of the method can be
made.

6.3 Proofs

Proof of (6.1)
First note that there is a 1-1 relation between A and {1,...,#A}, vid,,

forie A ANaec{l,...,#A} with
(Sa)ii = (St)ai 7 =1,...,k.
We then can write, for i € A

k
EP; —p;, = Z(Sh)e'jpj — p:

i=1
k

= D (Si—B)upi
=1
k

= Z(sf — I4)ap;
1=1

= ((S7 - L)p),
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and
-~ 1 k *
Var(F;) = —Z Su)ipi — = (Z(Sh),_,,p;,)
= 72 SA a_;pj' (S ) )
= LSSt dinalp) (S0 - L (2p1)°
= (St diag(@)(SD)), ~ - (SEp))".
Hence,

Y (2P~ p) = (84 - Lel?

€A

Y Var(P) = n7lr (S diag(p)(S5)")) — n7YIS7pI
€A

Proof of (6.3)

In (6.1) the first term is the squared bias contribution and the second and the
third term the variance contribution. The second term, which originates from the
covariances among the P’s, is, for sparse tables, of lower order than the third, which
is the leading term of the variances of the p;’s. In the derivation for the L-function,
this term will be omitted. Also we will only replace the p in the squared bias part
of MSSE, by S,P. This is based on the fact that estimation of the variance has
a lower order effect on the performance of a double smoothing bandwidth selector.
Thus, we work with the approximation

MSSEa(h, S,P) ~ ||(S5 — 14)S,P|* + n~tr { S5 diag(p)(S7)"} .
Taking the derivative of MSSE4(k, S, P) with respect to A leads to

MSSEY (h, §,P) = P’ D4 P + c(h)
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where Djh is given in Section 6.1 and c(h) = 2n'tr{S}* diag(p)(S7)T}. This
results in

E{MSSE} (1, S,P} = Var(P"D4P)+ (E(P" DS P))
+2¢(h)E(P" DA4P) + c(h).

The last term does not involve g and hence can be left out in the minimization
procedure. It is easy to see that

E(P D WP)=(1—-n""p TDﬁ‘hp + n'l{diagonal(Djh)}Tp,
which leads to (6.3).

Before (6.3) can be implemented an explicit expression for Var(P D, P) needs
to be given. This will be done for a general symmetric k& x k matrix D Since the
covariances between the P;’s are of lower order than the variances we will assume
that the counts NV; are independent in obtaining an approximate expression for
Va.r(P D}, P). Thus, N; = nP;, i = 1,...,k, will be taken to be independent
Bmomlal( n, p;) binomial random varisbles,

We will use the tensor notation and results of McCullagh (1987). Let d;; denote
the (i,7) entry of D. Generalized cumulants will be denoted using partitioned
superscript notation. For example,

k" = cum(N;, N;) = cov(N;, N;) and  £%* = cum(N;, N;N;).

It is clear that
E ok k

Var( NTDN Z Z Z Z i Bigin K Pl

11=112=113=114=1
A fundamental identity for generalized cumulants (see McCullagh (1987, p. 58))
states that

giiziais s + Kl izt NIL PR + K2 gt . PRIPUTE + PUBC
4 i iz i 4 K ts iaie 4 PRI R g P PURSY & KP2
This implies that, because of the assumed mutual independence of the N;’s and the
s P

symmetry of D,
k

Var(NTDN Z 4‘21'91 e 4 Z Z 1113 ezzz ‘1 !2 i

=1 t1=11i2=1

+2 E E d?”_ 11,t1 Kimiz +4 § § § v '2‘3 .'ih K‘!s 5'2 '2

t1=11=1 i1=1ip=113=1
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Expressions for the first four cumulants of a multinomial distribution are given by,

1

K = npi

k% = n(p—p})

& = n(p; — 3p} +287) = ny(p):

kW95 = n(p; — Tp? + 12p3 — 6p}) = nr(p):.

This results in

Var(P' DP) = n~*(diagonal(D) © diagonal( D) (p)
+ 4n~?pT D{diagonal(D) ® ¥(p)} + 2n"*tr(DV DV) + 4n"'pT DV Dp

where V = diag(p — p © p) and ©® means elementwise multiplication. |
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