
© 2017 The Authors Journal of the Royal Statistical Society: Series C (Applied Statistics)
Published by John Wiley & Sons Ltd on behalf of the Royal Statistical Society.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which
permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used
for commercial purposes.

0035–9254/17/67000

Appl. Statist. (2017)

Modelling time varying heterogeneity in recurrent
infection processes: an application to serological
data

Steven Abrams,

Hasselt University, Diepenbeek, Belgium

Andreas Wienke,

Martin Luther University Halle-Wittenberg, Halle, Germany

and Niel Hens

Hasselt University, Diepenbeek, and University of Antwerp, Wilrijk, Belgium

[Received March 2016. Final revision June 2017]

Summary. Frailty models are often used in survival analysis to model multivariate time-to-
event data. In infectious disease epidemiology, frailty models have been proposed to model
heterogeneity in the acquisition of infection and to accommodate association in the occurrence
of multiple types of infection. Although traditional frailty models rely on the assumption of lifelong
immunity after recovery, refinements have been made to account for reinfections with the same
pathogen. Recently, Abrams and Hens quantified the effect of misspecifying the underlying
infection process on the basic and effective reproduction number in the context of bivariate
current status data on parvovirus B19 and varicella zoster virus. Furthermore, Farrington, Unkel
and their co-workers introduced and applied time varying shared frailty models to paired bivariate
serological data. In this paper, we consider an extension of the proposed frailty methodology by
Abrams and Hens to account for age-dependence in individual heterogeneity through the use
of age-dependent shared and correlated gamma frailty models. The methodology is illustrated
by using two data applications.

Keywords: Age-dependent frailties; Basic reproduction number; Non-immunizing infections;
Serology; Shared and correlated frailty models

1. Introduction

The analysis of time-to-event data expanded rapidly since the development of the proportional
hazards model by Cox (1972) with applications in medicine, epidemiology, demography and
many other fields. Frailty models have been used in survival analysis to model dependence and
unobserved heterogeneity in multivariate time-to-event data explicitly and to address questions
that are related to the association between multiple event times (see, for example, Clayton
(1978), Hougaard (2000) and Duchateau and Janssen (2008)). The dependence between event
times usually arises since individuals in the same group (family, cluster or litter) are related,
or because multiple event times are recorded for the same subject. Multivariate frailty models
provide an extension of the univariate frailty model (Vaupel et al., 1979; Lancaster, 1979), taking
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mutual dependence of event times into account by using conditional proportional hazards given
latent frailty terms. To impose an association structure among the event times, two approaches
are often considered. First, a shared frailty model uses a common frailty term for all individuals
in the same group (cluster); see, for example, Hougaard (2000), Therneau and Grambsch (2000)
and Duchateau and Janssen (2008). Second, the correlated frailty model extends the shared
frailty model to allow for a more flexible correlation structure between the frailty terms (see, for
example, Yashin et al. (1995), Xue and Brookmeyer (1996) and Wienke et al. (2002, 2003)).

Individual heterogeneity with respect to factors that may enhance or inhibit the transmission
of infectious diseases affects the effectiveness of control strategies as has been understood for a
long time (Anderson and May, 1991). When this heterogeneity is not appropriately accounted
for, one potentially ends up with biased estimates for important epidemiological parameters.
One of the key assumptions in shared and correlated frailty models is that of age or time invari-
ant individual heterogeneity, implying that individuals have a constant ‘frailty’ level during their
entire life, which is rather restrictive. Recently, Farrington et al. (2012) introduced time varying
shared frailties for two immunizing infections. We present new methodology for infections con-
ferring temporary humoral immunity on recovery (henceforth referred to as non-immunizing
infections) taking into account the fact that individual frailties—and hence the correlations
that they induce—may vary with time. This enables us to describe and quantify heterogeneities
further and to study how these heterogeneities evolve over time. Although our novel frailty
methodology is generally applicable to recurrent event processes, we focus here on recurrent
infection processes using cross-sectional serological data. Cross-sectional serological data con-
stitute type I interval-censored data, or current status data, for which the only knowledge about
the event is whether it occurred before the observation time point or not, at least for infections
conferring lifelong humoral immunity. In the case of pathogens for which recurrent infections
during life are possible, an individual’s immunological status merely indicates whether he or
she experienced recent infection (giving rise to a humoral immunity response) and therefore
whether the individual is susceptible to infection or not at the moment of data collection. Al-
though we focus on current status data, the models that are presented here are applicable to
recurrent event time data in the presence of any type of censoring, underlining the importance of
our approach in the general survival context (not shown here). More specifically for the current
status data setting, in contrast with a general recurrent event setting entailing information on
multiple events per subject, recurrent infections are not directly observed but rather accounted
for through the specification of non-immunizing infection dynamics (a theoretical mechanistic
model). For infections in endemic equilibrium, serology can be used to infer the force of infec-
tion, even in the presence of individual heterogeneity and more complicated disease dynamics
(Farrington et al., 2001; Abrams and Hens, 2015). For a historical note on the estimation of the
force of infection from serological data, we refer to Hens et al. (2010).

In summary, the methodology that is presented in this paper adds

(a) time varying shared frailty models for recurrent event time data and
(b) time varying correlated frailties for single-event time data

to the existing frailty literature. The paper is organized as follows. In Section 2, two different data
applicationsare introduced. InSection3, timevarying frailtymodelsarederivedforcurrent status
dataallowingforrecurrentevents in thepast. InSection4, theproposedmethodology isapplied to
the data. Finally, advantages and disadvantages of our approach are summarized in Section 5.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets
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2. Motivating examples

First, the methodology is illustrated on hepatitis A virus (HAV) and hepatitis B virus (HBV)
serology, obtained from a seroepidemiological study undertaken in 1993–1994 in Flanders,
Belgium. In total, 4026 blood samples were drawn from a study group that was representative
of the Flemish population and tested for the presence of immunoglobulin G antibodies against
HAV and HBV (Beutels et al., 1997). On the basis of a prespecified cut-off level for the antibody
titres, individuals are classified as either seropositive or seronegative for each disease. In addition
to the immunological status with respect to a specific infection, age at sample collection was
registered. As the true infection times are known only to lie between 0 and the age at sampling
time for seropositive individuals or between the age at sampling time and ∞ for seronegative
individuals, we are faced with current status data.

Second, we consider serological survey data on parvovirus B19, PVB19, and varicella zoster
virus (VZV) infections in Belgium. Blood samples were collected for 3379 different individuals
between 2001 and 2003 and tested for the presence of immunoglobulin G antibodies against
PVB19 and VZV (Hens et al., 2008). A detailed description regarding symptomatology and
epidemiology of the aforementioned infections can be found in the on-line appendix A. In both
examples only the (current) immunological status of an individual is known at the individual’s
age at the time of investigation. The number and time points of former infections, if applicable,
are unknown, which distinguishes this type of data from classical recurrent event time data.
Note, however, that VZV, HAV and HBV infections are assumed to confer lifelong immunity,
and only reinfection dynamics for PVB19 are studied and accounted for in the respective data
applications.

3. Materials and methods

3.1. Notation—univariate frailty model
Time-to-event data represent the time to a defined event such as death, failure or infection. The
analysis of time-to-event data in survival analysis is often complicated by censoring. Therefore,
let T Å

j represent the true event time for individual j =1, : : : , n and consider right-censored data
.Tj, Δj/, where Tj = min.T Å

j , Cj/ represents the observation time, Cj refers to the censoring
time and Δj denotes the censoring indicator defined as

Δj =
{

1 when T Å
j �Cj,

0 when T Å
j >Cj.

Therefore, the observed event time Tj resembles the true event time T Å
j only whenever it occurs

before censoring. Generally, right-censored data are a special case of interval-censored data for
which the true event time is known only to lie in some interval. In the case of right-censored
data, the right end point of that interval corresponds to ∞. Finally, for current status (CS) data,
the observation (monitoring) time Tj equals the censoring time Cj, and Δj = 1T Æ

j �Cj indicates
whether the event of interest took place before Cj or not. In contrast with right-censored data,
the exact value of the event times is always unknown.

Various mathematical compartmental models can be found in the infectious disease literature
to describe the transmission of different pathogens in large populations. For the purpose of
this paper we consider so-called susceptible–infected–recovered (SIR) and susceptible–infected–
recovered–susceptible (SIRS) mechanistic models, for infections conferring lifelong immunity or
temporary immunity on recovery respectively. We further assume that infections are in endemic
equilibrium, the population has reached a demographic equilibrium and the number of deaths
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Fig. 1. Mathematical SIR(S) model: subject j flows from the susceptible compartment S to the infected
and infectious state I at rate λ.tj , Zj /, and from I to the recovered state R at rate η.tj /; in an SIR model, sub-
ject j remains in R for life; in an SIRS model, subject j moves to S at rate σ.tj / ( )

and births is exactly balanced, entailing a constant population of size N. In Fig. 1, a flow diagram
of an SIR model is presented. All individuals are born in compartment S. A subject j flows to
the infectious state I at a time-dependent rate λ.tj, Zj/ conditional on a subject-specific frailty
term Zj, i.e. a non-negative random variable, which is often constrained to have unit mean for
identifiability. After being infected with the pathogen under study, subject j recovers at a rate
η.tj/ and moves towards the recovered class R. In continuous time, the conditional proportion
of subjects in state S.0/ at time tj is given by

S.tj|Zj/= exp
{

−
∫ tj

0
λ.u, Zj/du

}
, .1/

which is referred to as the conditional survival function in survival analysis. We use the commonly
made assumption of proportional hazards, implying that the frailty acts multiplicatively on
a baseline hazard: λ.tj, Zj/ = Zj λ0.tj/, where λ0.tj/ is termed the baseline hazard function.
Consequently, the unconditional survival function can be derived by integrating out the frailty
terms Zj according to a specific frailty distribution with density f.·/:

S.tj/=E{S.tj|Zj/}=
∫ ∞

0
S.tj|zj/f.zj/dzj =L{Λ0.tj/}, .2/

where L.s/ denotes the Laplace transform of the random variable Zj and Λ0.tj/= ∫ tj
0 λ0.u/du

is the cumulative baseline hazard function.
A straightforward extension of the SIR model to encompass recurrent events (i.e. reinfections)

is the so-called SIRS model which is graphically depicted in Fig. 1; subjects flow from state R to
the susceptible compartment S at replenishment rateσ.tj/ (the broken arrow). In an SIRS setting,
we can derive an expression for the conditional proportion of subjects who can experience the
event at time tj, which is denoted by S.tj|Zj/, assuming that the proportion of subjects in I

is negligible compared with those in the other compartments (see appendix B in Abrams and
Hens (2015)):

S.tj|Zj/= exp
[
−

∫ tj

0
{λ.u, Zj/+σ.u/}du

]
+

∫ tj

0
σ.u/exp

[
−

∫ tj

u

{λ.v, Zj/+σ.v/}dv

]
du,

where σ.u/ refers to the time-dependent replenishment rate at which subjects become at risk
again for the event under consideration. Integrating out the random effects, the unconditional
proportion of subjects in S can be rendered as
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S.tj/= exp
{

−
∫ tj

0
σ.u/du

}
L{Λ0.tj/}+

∫ tj

0
σ.u/exp

{
−

∫ tj

u

σ.v/dv

}
L{Λ0.tj/−Λ0.u/}du:

When σ.u/=0, ∀u, the conditional proportion of subjects in S.0/ reduces to equation (2). The
approach that is undertaken in this paper is closely related to (continuous time) Markov pro-
cesses in multistate modelling. For a more detailed discussion on multistate models and Markov
processes, the reader is referred to Andersen and Keiding (2002).

3.2. Shared and correlated frailty models
Bivariate frailty models enable us to model the association between bivariate event times. Bivari-
ate event time data can arise either when two different events are studied in the same individual,
or when the same event occurs in two different but related subjects. Throughout the paper, we
formulate the methodology for two events affecting the same individual, albeit that the same
reasoning holds in the other case. Consider bivariate right-censored data .Tij, Δij/, i = 1, 2,
j = 1, : : : , n, such that the event-specific hazard function can be formulated as λi.tij, Zij/ =
Zij λi0.tij/, where Zij represent event- and individual-specific frailty terms that are associated
with subject j =1, : : : , n and event i =1, 2. The dependence structure is implied by the frailty
structure imposed. Two different frailty structures are often considered in the survival literature:
the shared frailty model

Z1j =Z2j ≡Zj

and the correlated frailty model

Z1j =γ1.YÅ
0j +YÅ

1j/,

Z2j =γ2.YÅ
0j +YÅ

2j/,

where γi denotes the frailty variance with respect to event i, and the additive components YÅ
lj ,

l= 0, 1, 2, are independent random variables with mean and variance equal to ωl >0. Therefore,
direct calculation of the frailty variances results in the equality γi =1=.ω0 +ωi/ ascertaining unit
frailty means. The additive decomposition of the frailty terms in the correlated frailty model
was proposed by Yashin et al. (1995) and first applied to infectious disease modelling by Hens
et al. (2009). The correlated frailty model extends the restrictive shared frailty model in the
sense that the implied correlation between the event times is allowed to differ from 1. Needless
to say, the correlated frailty model offers a more general approach to account for individual
heterogeneity. However, the implied correlation coefficient ρ is restricted because of the additive
decomposition as follows (Yashin et al., 1995):

0 � ρ � min
{√(γ1

γ2

)
,

√(γ2

γ1

)}
:

The shared frailty model is a special case of the correlated frailty model in which the event-
specific components YÅ

lj , l =1, 2, are identical, i.e. YÅ
1j =YÅ

2j. The time-dependent proportion
of individuals who are susceptible to both events under study can be derived relying on the
assumption of conditional independence of the event times given the frailties. More specifi-
cally, S.t1j, t2j|Z1j, Z2j/ = S1.t1j|Z1j/S2.t2j|Z2j/, where Si.tij|Zij/ refers to the proportion of
individuals at risk of infection i at time tij given frailty Zij for which formulae are presented in
Section 3.1. For expressions regarding S.t1j, t2j|Z1j, Z2j/ and S.t1j, t2j/, the reader is referred
to the on-line appendix C. In this paper, the gamma (frailty) distribution is considered because
of its computational and analytical convenience. The usefulness of the gamma distribution is
due to the closed form expression for the Laplace transform. Furthermore, it is well established
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that in a time invariant bivariate setting the gamma distribution implies a constant association
between two failure times of interest, and therefore it could serve as a useful starting point in
the fitting process. Independent gamma-distributed components YÅ

lj with equal scale parame-
ters result in infection-specific gamma frailties Zij. The Laplace transform corresponding to a
gamma-distributed random variable with mean 1 and variance γi is L.s/ = .1 + γis/

−1=γi , for
s>−1=γi.

3.3. Time varying frailty models
So far, it has been assumed that individual- and infection-specific frailty terms Zij do not vary
over time. However, time varying frailty models offer a way to allow individual frailty terms to
vary with time. Suppose that the hazard at time tij under the proportional hazards assumption
is λi{tij, Zij.tij/}=Zij.tij/λi0.tij/, where Zij.tij/ denotes a time varying frailty term.

3.3.1. Piecewise constant model
Paik et al. (1994) proposed a piecewise constant frailty model accommodating nested structures
in the data. Without the complexity of nesting, a piecewise constant frailty model on disjoint
intervals [t[m], t[m+1][ can be obtained as follows:

Zij.tij/=
M∑

m=1
Im.tij/ZÅ

ijm,

where Im.tij/=1 if and only if tij ∈ [t[m], t[m+1][, and Im.tij/=0 otherwise. The components ZÅ
ijm

are independent non-negative random variables with unit mean and variance γim. The time
varying frailty variance function equals γi.tij/ =ΣM

m=1Im.tij/γim. A piecewise constant shared
gamma frailty model (model TDPCSGF) is derived under the constraint ZÅ

jm = ZÅ
1jm = ZÅ

2jm,
m=1, : : : , M, and ZÅ

jm follows a gamma distribution with unit mean and variance γ·m. Although
this model for Zij.tij/ is straightforward and simple, a disadvantage is the ad hoc choice of time
intervals [t[m], t[m+1][ in which the frailties ZÅ

ijm are assumed constant. In addition, the frailty
components are assumed to be independent such that heterogeneity in subsequent time intervals
is unrelated, which seems counterintuitive. Therefore, an alternative model was introduced by
Farrington et al. (2012) and further exploited by Unkel et al. (2014) in the context of shared
frailty models for immunizing infections. The piecewise constant frailty model is used to assess
the goodness of fit of the parametric time-dependent frailty variance functions in the following
models.

3.3.2. Multiplicative model
In line with the work by Farrington et al. (2012) and Unkel et al. (2014), a bivariate frailty model
is proposed with time varying frailty terms given by

Zij.tij/=
M∏

m=1
{1+ .ZÅ

ijm −1/him.tij/}, 0�him.tij/�1,

where ZÅ
ijm, m=1, : : : , M, are independent random variables with unit mean and variance γim,

and him.·/ is a deterministic function describing the frailty evolution over time. One can easily
verify that the frailty terms Zij.tij/ have unit mean and time varying frailty variance

γi.tij/=
M∏

m=1
[{1+h2

im.tij/γim}−1]:
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Suppose that him.tij/ is a deterministic exponential decay function defined as him.tij/ =
exp{−.φimtij/2}, where the exponential decay parameter φim >0. Although we could consider a
more general decay function exp{−.φimtij/k} with any non-negative integer value k, the choice
of k=2 provided the best model fits for the multiplicative models when applied to our motivating
examples. Assuming that the frailty components ZÅ

ijm follow a gamma distribution, the follow-
ing two-component multiplicative time-dependent gamma frailty models can be considered (i.e.
taking M =2):

(a) two-component time-dependent shared gamma frailty model TDSGF-2C,

Zij.tij/={1+ .ZÅ
j1 −1/hi1.tij/}ZÅ

j2,

ZÅ
j1 ≡ZÅ

1j1 =ZÅ
2j1, ZÅ

j1 ∼Γ.γ−1
·1 , γ−1

·1 /,

ZÅ
j2 ≡ZÅ

1j2 =ZÅ
2j2, ZÅ

j2 ∼Γ.γ−1
·2 , γ−1

·2 /,

γi.tij/=γ·2 +h2
i1.tij/γ·1.1+γ·2/,

ρ.t1j, t2j/= γ·2 +h11.t1j/h21.t2j/γ·1.1+γ·2/√
[{γ·2 +h2

11.t1j/γ·1.1+γ·2/}{γ·2 +h2
21.t2j/γ·1.1+γ·2/}]

;

(b) two-component time-dependent correlated gamma frailty model TDCGF-2C,

Zij.tij/={1+ .ZÅ
ij1 −1/hi1.tij/}ZÅ

ij2,

ZÅ
ij1 =γi1.YÅ

0j1 +YÅ
ij1/, YÅ

lj1 ∼Γ.ωl1, 1/,

ZÅ
ij2 =γi2.YÅ

0j2 +YÅ
ij2/, YÅ

lj2 ∼Γ.ωl2, 1/,

γi1 = .ω01 +ωi1/−1,

γi2 = .ω02 +ωi2/−1,

γi.tij/=γi2 +h2
i1.tij/γi1.1+γi2/,

ρ.t1j, t2j/= ω02γ12γ22 +h11.t1j/h21.t2j/ ω01γ11γ21.1+ω02γ12γ22/√
[{γ12 +h2

11.t1j/γ11.1+γ12/}{γ22 +h2
21.t2j/γ21.1+γ22/}]

:

These two-component models simplify to a one-component time-dependent shared gamma
frailty model TDSGF-1C and a one-component time-dependent correlated gamma frailty model
TDCGF-1C if ZÅ

j2 and ZÅ
ij2, i =1, 2, follow degenerate distributions with unit mean (γ·2 = 0

and γ12 =γ22 =0) respectively. In model TDSGF-1C, the event-specific frailty variances γi.tij/

decrease from γ·1 to 0 as tij →∞. Although the frailty variances differ for different decay rates
φir, the implied correlation ρ.t1j, t2j/ is constant and equal to 1, which is in line with the time
invariant shared frailty model. Furthermore, frailty variances in model TDSGF-2C decline from
γ·2 + γ·1.1 + γ·2/ to an asymptotic value γ·2. Note that hi2.tij/ ≡ 1 for both events at all time
points tij in the general formulation of the multiplicative model to limit the complexity of the
models. Allowing the decay parameters to be different for both events, the correlation ρ.t1j, t2j/

decreases over time. Time varying correlated frailty models with one or two components enable
a more flexible (time varying) correlation as opposed to their shared counterparts. In models
TDCGF-1C and TDCGF-2C, the time-dependent frailty variances evolve in the same way as
in TDSGF-1C and TDSGF-2C respectively. In addition, model TDCGF-1C implies a time
invariant positive correlation ρ.t1j, t2j/ which deviates from 1 if ω11 and/or ω21 differ from 0.

First assume that for the events under study individuals experience each event at most once
(SIR model) and time-dependent heterogeneity is assumed to evolve according to the most
general model (TDCGF-2C). Hence, the univariate conditional proportion of (susceptible)
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individuals at risk for event i = 1, 2 under the proportional hazards assumption is

Si{tij|Zij.tij/}= exp
{

−
∫ tij

0
Zij.u/λi0.u/du

}

= exp
(

−
∫ tij

0
[{1+ .ZÅ

ij1 −1/hi1.u/}ZÅ
ij2]λi0.u/du

)
,

where λi0.tij/ is the baseline hazard function at time tij for infection i= 1, 2. The unconditional
susceptibility probabilities are obtained by integrating out the random frailty terms Zij.tij/

according to the joint distribution of (ZÅ
ij1, ZÅ

ij2). Relying on independence of the frailty com-
ponents, we have f12.ZÅ

ij1, ZÅ
ij2/=f1.ZÅ

ij1/f2.ZÅ
ij2/, where f1.·/, f2.·/ and f12.·, ·/ represent the

marginal density functions for ZÅ
ij1 and ZÅ

ij2, and the joint density function for both random
variables respectively. Let L1 and L2 denote the Laplace transforms of the gamma-distributed
random variables ZÅ

ij1 and ZÅ
ij2 respectively. Consequently, we can write

Si.tij/=
∫ ∞

0
L1{zÅ

ij2Λ
Å
i0.tij/}exp[−zÅ

ij2{Λi0.tij/−ΛÅ
i0.tij/}]f2.zÅ

ij2/dzÅ
ij2,

where Λi0.tij/ is the cumulative baseline hazard function with respect to infection i= 1, 2, and
ΛÅ

i0.tij/=∫ tij
0 hi1.u/λi0.u/du. Again, relying on the assumption of conditional independence of

the event times given the (time varying) frailty terms, the bivariate unconditional proportion of
individuals who are susceptible to both events can be derived. These unconditional probabilities
are obtained by using a combination of analytical and numerical integration techniques (see the
on-line appendix C).

Second, in a mathematical SIRS model with recurrent events, the expressions become more
complicated. Under the assumption of frailty-independent event-specific replenishment rates
σi.tij/ at time tij, i=1, 2, we have

Si{tij|Zij.tij/}=Wi1.tij/ exp
(

−
∫ tij

0
[{1+ .ZÅ

ij1 −1/hi1.u/}ZÅ
ij2]λi0.u/du

)

+
∫ tij

0
σi.u/Wi2.tij, u/ exp

(
−

∫ tij

u

[{1+ .ZÅ
ij1 −1/hi1.v/}ZÅ

ij2]λi0.v/dv

)
du,

where Wi2.tij, u/ ≡ exp{− ∫ tij
u σi.v/dv} and Wi1.tij/ = Wi2.tij, 0/. Taking the expectation with

respect to the components ZÅ
ij1 and ZÅ

ij2 yields an expression for the marginal unconditional
proportions of individuals who are susceptible to each event:

Si.tij/=Wi1.tij/

∫ ∞

0
L1{zÅ

ij2Λ
Å
i0.tij/} exp{−zÅ

ij2Λ
ÅÅ
i0 .tij/}f2.zÅ

ij2/dzÅ
ij2 +

∫ tij

0
σi.u/Wi2.tij, u/

×
(∫ ∞

0
L1[zÅ

ij2{ΛÅ
i0.tij/−ΛÅ

i0.u/}] exp[−zÅ
ij2{ΛÅÅ

i0 .tij/−ΛÅÅ
i0 .u/}]f2.zÅ

ij2/dzÅ
ij2

)
du,

where ΛÅÅ
i0 .t/ = Λi0.t/−ΛÅ

i0.t/. For ease of presentation, the derivation of the joint probabilities
is presented in the on-line appendix C. Identifiability of time varying correlated frailty models,
at the cost of parametric baseline hazard and decay functions, is not pursued theoretically but
is assessed by means of simulations (see the on-line appendix D), and relying on the general
methodology of detecting parameter redundancy as proposed by Catchpole and Morgan (1997,
2001). A formal proof, and investigation of sufficient conditions for the models to be identifiable,
is considered beyond the scope of this paper.
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4. Results

In this section, the time varying frailty methodology is applied to bivariate CS data on

(a) HAV and HBV, and
(b) PVB19 and VZV,

as introduced in Section 2. In general, for the bivariate CS data .t1j, t2j, δ1j, δ2j/, the random
variable .Δij|Tij = tij/ follows a Bernoulli distribution with mean πi.tij/=E.Δij|Tij = tij/. The
individual log-likelihood contributions can be expressed in terms of joint susceptibility propor-
tions pδ1j ,δ2j

.·, ·/ as follows (Sun, 2006):

llj.θ,ψ|t1j, t2j, δ1j, δ2j/=δ1jδ2j log{p11.t1j, t2j|θ,ψ/}+ δ1j.1− δ2j/ log{p10.t1j, t2j|θ,ψ/}
+ .1− δ1j/δ2j log{p01.t1j, t2j|θ,ψ/}
+ .1− δ1j/.1− δ2j/ log{p00.t1j, t2j|θ,ψ/},

where pδ1j ,δ2j
.t1j, t2j|θ,ψ/ = Pr.Δ1j = δ1j, Δ2j = δ2j|t1j, t2j,θ,ψ/ are the multinomial proba-

bilities that are associated with the distribution of .Δ1j, Δ2j/ and depending on the model
parameters θ and ψ that are associated with the baseline hazard functions, and the joint frailty
distribution. In general, we have

pδ1j ,δ2j
.t1j, t2j|θ,ψ/= δ1jδ2j + .δ2j −2δ1jδ2j/S1.t1j, t2j|θ,ψ/+ .δ1j −2δ1jδ2j/S2.t1j, t2j|θ,ψ/

+ .1−2δ1j −2δ2j +4δ1jδ2j/S12.t1j, t2j|θ,ψ/,

where δ1j and δ2j are equal to 0 when he or she is at risk for respectively the first and second
event under consideration, and δ1j and δ2j equal 1 whenever the individual is not at risk. In both
applications, the unit of time refers to the age aij of individual j =1,: : : , n at the cross-sectional
sampling time for infection i= 1, 2. Furthermore, univariate monitoring times are present such
that a1j =a2j =aj. In infectious disease epidemiology, the hazard function is often termed the
infection hazard or force of infection and can be estimated from serological survey data. In
both applications, all available serology is included by means of a direct likelihood approach;
individuals with a missing immunological status for one of the infections under consideration
contribute to the log-likelihood as follows:

llj.θ,ψ|tij, δij/= δij log{πi.tij|θ,ψ/}+ .1− δij/ log{1−πi.tij|θ,ψ/}:

4.1. Hepatitis A and B infections
Time-dependent frailty models are fitted to the HAV and HBV serology. Gompertz infection-
specific baseline hazard functions λi0.aj/, i=1, 2, are considered here, i.e. λi0.aj/=ξi exp.νiaj/,
where ξi > 0 and −∞ < νi < ∞. In addition, both infections are presumed to confer lifelong
immunity, entailing SIR infection dynamics. For more details on the models that were fitted to
the Flemish serological survey data on HAV and HBV infections, and their names, we refer to
Table 1.

In Table 2, maximum likelihood estimates and standard error estimates for the model pa-
rameters are presented. Models are compared on the basis of the Akaike information criterion
(AIC) and Bayesian information criterion (BIC). An improvement in model fit is observed when
comparing age-invariant frailty models (SGF and CGF) with their age-dependent counterparts,
underlining the importance of accommodating time varying heterogeneity. Leaving aside the
piecewise constant model because of its different interpretation, shared frailty models with
(TDSGF-1CÅ) and without unequal frailty variances (TDSGF-1C) provide the best fit among
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Table 1. Overview of frailty models fitted to the Flemish seroprevalence data on HAV and HBV, and the
Belgian seroprevalence data on PVB19 and VZV

Model Infection process Heterogeneity ZÅ
ijm

HAV HBV

SGF Immunizing Immunizing Time invariant Shared
CGF Immunizing Immunizing Time invariant Correlated
TDSGF-1C Immunizing Immunizing One-component time dependent with φ11 =φ21 Shared
TDSGF-1CÅ Immunizing Immunizing One-component time dependent Shared
TDCGF-1C Immunizing Immunizing One-component time dependent with φ11 =φ21 Correlated
TDPCSGF Immunizing Immunizing Piecewise constant time dependent Shared

PVB19 VZV

SGF-1 Immunizing Immunizing Time invariant Shared
TDSGF-1-1C Immunizing Immunizing One-component time dependent Shared
TDSGF-1-2C Immunizing Immunizing Two-component time dependent Shared
SGF-2 Non-immunizing Immunizing Time invariant Shared
TDSGF-2-1C Non-immunizing Immunizing One-component time dependent Shared
TDSGF-2-2C Non-immunizing Immunizing Two-component time dependent Shared

all fitted multiplicative models based on their respective AIC and BIC values respectively, though
the correlated frailty model (TDCGF-1C) yields a lower value for the log-likelihood compared
with the shared models, at the cost of an additional parameter. Two-component shared frailty
models (TDSGF-2C) with either equal or unequal decay rates for both infections did not im-
prove the model fit (see the on-line appendix D). The time-dependent piecewise constant shared
gamma frailty model is considered to assess the goodness of fit of the imposed variance func-
tions or, equivalently, the exponential decay functions hi1.tij/. In model TDPCSGF, we selected
four age groups [0, 12), [12, 25), [25, 65) and older than 65 years for which independent frailty
terms are considered. Note that this model enables greater flexibility in modelling age-dependent
heterogeneity; however, the choice of the age intervals is subjective and influences the model
fit. The piecewise constant model (TDPCSGF) outperforms all other presented frailty models
on the basis of AIC, albeit that model TDSGF-1C has a smaller BIC value. We clearly see that
heterogeneity is highest at young ages. Variability decreases with time and increases again in the
last age group, albeit that a limited amount of data is available therein (large standard error). Al-
though slightly outperforming model TDSGF-1CÅ, little evidence against an exponential decay
in heterogeneity is obtained from model TDPCSGF. In spite of its improved fit, the biological
interpretation of model TDPCSGF is not straightforward and independence of the frailty com-
ponents is unrealistic. Nevertheless, fitting model TDPCSGF is useful to investigate the time
varying shape of the frailty variance. The estimated multinomial probabilities for TDSGF-1CÅ

(the full curve) and TDPCSGF (the dotted curve) are shown in Fig. 2. The TDPCSGF fit devi-
ates from the TDSGF-1CÅ fit at higher ages. In Fig. 3, age-dependent frailty variances for HAV
(Fig. 3(a)) and HBV (Fig. 3(b)) are presented, signalling a faster decrease for hepatitis B.

Estimating the correlation between infection-specific frailty terms could reflect to what ex-
tent latent processes, such as social contact behaviour of people, susceptibility to infection and
infectiousness after infection, drive the more general infection process, or could reveal transmis-
sion via similar transmission routes when the correlation is perfect. Shared frailty models are
restrictive in that they assume a perfect correlation implying common activity levels for both
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Table 2. Maximum likelihood estimates and standard errors for the model parameters with corresponding
AIC and BIC values†

Parameter Estimates for the following models:

SGF CGF TDSGF-1C, TDSGF-1C‡, TDCGF-1C, TDPCSGF
φ11 =φ21 φ11 	=φ21 φ11 =φ21

ξ1 0.012 (0.001) 0.007 (0.001) 0.077 (0.029) 0.139 (0.093) 0.151 (0.105) 0.029 (0.006)
ν1 0.036 (0.005) 0.106 (0.017) −0:012 (0.007) −0:021 (0.009) −0:022 (0.009) 0.009 (0.005)
ξ2 0.002 (4×10−4) 0.002 (4×10−4) 0.003 (0.001) 0.003 (0.001) 0.003 (0.001) 0.002 (4×10−4)
ν2 −0:003 (0.008) −0:001 (0.014) −0:009 (0.008) −0:012 (0.009) −0:008 (0.008) −0:005 (0.008)√

γ11 0.725 (0.086) 1.651 (0.176) 5.843 (0.829) 6.444 (1.013) 6.606 (1.020) 3.671 (0.606)√
γ21 0.725 (0.086) 1.608 (2.272) 5.843 (0.829) 6.444 (1.013) 5.765 (0.831) 3.671 (0.606)√
γ·2 — — — — — 2.421 (0.504)√
γ·3 — — — — — 0.012 (0.160)√
γ·4 — — — — — 8.813 (7.856)

φ11 — — 0.034 (0.005) 0.026 (0.007) 0.025 (0.007) —
φ21 — — 0.034 (0.005) 0.044 (0.011) 0.025 (0.007) —
ρ 1.000 (—) 0.497 (0.702) 1.000 (—) 1.000 (—) 0.871 (0.080) 1.000 (—)

AIC 5824.90 5794.89 5756.01 5755.52 5757.04 5749.01
BIC 5856.41 5838.99 5793.82 5799.62 5807.44 5799.42

†Minima are indicated by italics.
‡Unequal frailty variances.

infections, i.e. the propensity to make contacts that are relevant for disease transmission, with-
out accounting for unshared sources of heterogeneity, e.g. differences in susceptibility between
infections. Here, little evidence against the hypothesis of a perfect correlation is present. Esti-
mation of important epidemiological parameters such as the basic and effective reproduction
number for HAV and HBV can be done by imposing mixing patterns via the so-called ‘Who
acquires infection from whom’ approach. For more details thereon, we refer to Anderson and
May (1991) and Hens et al. (2012). In Section 4.2, we show the estimation of the reproduction
numbers for PVB19 and VZV when relying on social contact data.

4.2. Parvovirus B19 and varicella zoster virus
The baseline infection hazard λi0.aj/ with respect to infection i is modelled by means of the
time homogeneous mass action principle, which is a specific parametric hazard that is often used
in infectious disease modelling. However, our approach is generally applicable to all types of
parametric hazard, and therefore it is not mandatory for readers to grasp all the complexities of
the mechanistic model. The mass action principle relates the infection hazard to social contact
data through the specification of the so-called social contact hypothesis, assuming it to depend
on contact rates and a constant proportionality factor qi. A thorough description of the mass
action principle can be found in the on-line appendix E.

An important transmission parameter describing the spread of an infection is the so-called
basic reproduction number. The basic reproduction number R0 is defined as the expected num-
ber of secondary cases produced by a single typical infectious individual during his or her entire
infectious period when introduced into a fully susceptible population. Furthermore, R0 rep-
resents an epidemiological threshold parameter in large populations for which a value larger
than 1 implies that an infection can invade the population, whereas the infection will become
extinct otherwise. More realistically, the effective reproduction number Re reflects the actual
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Fig. 2. Estimated multinomial probabilities p̂δ1, δ2
.�/ for models TDCGF-1C* ( ) and TDPCSGF

( ) when applied to the bivariate serological survey data on HAV and HBV infections in Flanders,
Belgium, years 1993–1994: (a) p̂00.aj /; (b) p̂10.aj /; (c) p̂01.aj /; (d) p̂11.aj /

expected number of secondary cases in a population with pre-existing immunity. The effective
reproduction number Rie related to infection i, or alternatively Ri0 when Si.aj/=1, ∀aj, can be
calculated as the leading eigenvalue of the next generation matrix (see, for example, Farrington
et al. (2013a) and the on-line appendix E). The results of fitting time varying bivariate shared
frailty models to the Belgian serology on PVB19 and VZV are presented in Table 3. In addition
to the parameter estimates and profile likelihood confidence limits, AIC and BIC values are
shown for model comparison. Table 1 presents an overview of the models that were fitted to the
Belgian serology on PVB19 and VZV.

Although the SGF-2 and TDSGF-2 frailty models cover more complex disease dynamics,
the improved fit to the data reveals that the assumption of lifelong immunity for PVB19 seems
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Table 3. Maximum likelihood estimates for the model parameters as well as for the basic and effective
reproduction numbers Ri0 and Rie (PVB19, i D1; VZV, i D2), with 95% profile likelihood confidence intervals
in square brackets and AIC and BIC values†

Model Estimate R̂i0 R̂ie AIC BIC

SGF-1 q10 0.072 [0.069, 0.075] 3.60 [3.35, 3.88] 1.268 [1.209, 1.334] 4937.14 4955.51
q20 0.200 [0.188, 0.214] 11.64 [10.59, 12.82] 1.488 [1.397, 1.591]
γ 0.152 [0.118, 0.188]

TDSGF-1-1C q10 0.072 [0.069, 0.076] 3.60 [3.22, 3.99] 1.268 [1.169, 1.375] 4939.14 4963.64
q20 0.200 [0.183, 0.221] 11.64 [9.99, 13.49] 1.488 [1.348, 1.656]
γ·1 0.152 [0.100, 0.210]
φ·1 0.000 [0.000, 0.009]

TDSGF-1-2C q10 0.066 [0.062, 0.071] 3.74 [3.15, 4.87] 1.735 [1.286, 2.894] 4912.08 4942.70
q20 0.235 [0.191, 0.299] 15.65 [11.38, 24.08] 4.957 [2.417, 11.082]
γ·1 2.918 [1.524, 5.004]
γ·2 0.233 [0.156, 0.323]
φ·1 0.316 [0.246, 0.425]

SGF-2 q10 0.071 [0.068, 0.074] 3.18 [2.97, 3.43] 1.100 [1.051, 1.157] 4869.83 4894.33
σ 0.011 [0.008, 0.015]
q20 0.173 [0.163, 0.183] 8.98 [8.22, 9.83] 1.207 [1.141, 1.282]
γ 0.032 [0.002, 0.065]

TDSGF-2-1C q10 0.065 [0.061, 0.070] 2.90 [2.64, 3.49] 1.142 [1.047, 2.565] 4862.93 4893.56
σ 0.012 [0.009, 0.016]
q20 0.158 [0.141, 0.179] 8.19 [7.15, 10.46] 1.890 [1.193, 4.225]
γ·1 1.470 [0.415, 3.498]
φ·1 0.330 [0.209, 0.530]

TDSGF-2-1C, q10 0.065 [0.060, 0.070] 2.94 [2.60, 4.97] 1.242 [1.046, 3.405] 4863.83 4900.57
unequal frailty
variances

σ 0.013 [0.009, 0.021]
q20 0.154 [0.133, 0.175] 7.98 [6.76, 11.83] 1.873 [1.160, 6.605]
γ·1 1.646 [0.459, 6.443]
φ11 0.239 [0.141, 0.648]
φ21 0.377 [0.226, 0.677]

TDSGF-2-2C q10 0.066 [0.063, 0.071] 3.30 [2.79, 4.45] 1.453 [1.083, 2.706] 4859.26 4896.01
σ 0.011 [0.007, 0.015]
q20 0.193 [0.156, 0.257] 11.27 [8.11, 18.90] 3.304 [1.473, 8.897]
γ·1 2.419 [0.839, 4.960]
γ·2 0.095 [0.017, 0.186]
φ·1 0.303 [0.226, 0.423]

TDSGF-2-2C, q10 0.066 [0.063, 0.081] 3.40 [2.78, 6.17] 1.585 [1.072, 4.107] 4860.73 4903.60
unequal frailty
variances

σ 0.012 [0.007, 0.020]
q20 0.188 [0.151, 0.251] 10.98 [7.85, 19.47] 3.257 [1.416, 10.200]
γ·1 2.554 [0.861, 5.994]
γ·2 0.095 [0.016, 0.181]
φ11 0.249 [0.160, 0.706]
φ21 0.327 [0.228, 0.486]

†The minima are indicated in italics.

questionable. Furthermore, the age-dependent frailty models that are described in this paper
tend to outperform their age invariant counterparts. This leads to the conclusion that variability
is indeed higher in the younger age groups and decreases with age until a constant frailty variance
γ2 is achieved (Fig. 4). A graphical illustration of the TDSGF-2-2C model fit can be found in
the on-line appendix C.

5. Discussion

First, this paper presents an extension of traditional shared and correlated frailty models to
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Fig. 4. Age-dependent frailty variance ( ) for model TDSGF-2-2C and corresponding 95% confidence
limits (- - - - -) when applied to the bivariate serological survey data on PVB19 and VZV in Belgium, years
2001–2003

be applicable in the context of non-immunizing infections (i.e. infections conferring temporary
humoral immunity on recovery) while allowing for time varying heterogeneity in their acqui-
sition. The approach proposed combines frailty methodology for non-immunizing infections
with time varying heterogeneity, at least while assuming a shared frailty with respect to multiple
infections. The use of a time varying correlated frailty model, however, is complicated by the
non-identifiability of the unshared components in the additive decomposition of the infection-
specific frailty terms. Identifiability of the time invariant correlated gamma frailty model was
formally established for bivariate time-to-event data in the presence of covariates by Iachine
(2004), and a simulation-based assessment for CS data ensures identifiability at the cost of
parametric baseline hazards (Hens et al., 2009). Nevertheless, identifiability in the time vary-
ing setting for recurrent infections seems questionable. In addition to the aforementioned time
varying frailty models, we propose novel multiplicative time varying correlated frailty models
for infections conferring lifelong immunity. Expressions for the time-dependent correlation co-
efficients are derived for the two-component models, albeit that those can be readily generalized.

Age-dependent shared frailty models are fitted to bivariate serological data on childhood
infections PVB19 and VZV, and these models were compared with age invariant models ei-
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ther with or without accommodating potential PVB19 reinfections. The results support the
hypothesis of potential PVB19 reinfections as argued by Abrams and Hens (2015). In addition,
age-dependent shared frailty models outperform their age invariant counterparts. In general,
the age-dependent shared gamma frailty models with potential reinfection processes for PVB19
(TDSGF-2-1C and TDSGF-2-2C) were found to be the best-fitting models to the data at hand,
and estimates of the reproduction numbers for PVB19 and VZV were in line with those derived
in the presence of age invariant individual heterogeneity (Abrams and Hens, 2015). Childhood
infections are typically highly correlated within individuals in early childhood, which was ob-
served as well for PVB19 and VZV, with the correlations persisting into adulthood only for
infections having similar transmission routes (Farrington et al., 2013b). Heterogeneity in child-
hood could be explained by confounding of different transmission routes and could be due to
the nature of contacts made at young ages. At older ages, however, behaviour and environmental
factors tend to change such that transmission routes become differentiated and as social factors
such as school attendance intervene the heterogeneity drops either to 0 (for infections with dif-
ferent transmission routes) or to some constant (reflecting variability in behaviour associated
with a common route of transmission). In addition to confounding of different transmission
routes, demographic factors, such as differences in socio-economic status or ethnicity, could
explain some of the unobserved individual heterogeneity at young ages, albeit that such infor-
mation was absent in our data. In shared frailty models, frailty terms have the interpretation
of activity levels, meaning that individuals with a high social activity level are more likely to
acquire both infections. On top of that, susceptibility to infection is presumed to be equal for
both infections. For infections with different routes of transmission and/or different levels of
susceptibility, correlated frailties are more suited to describe heterogeneity as well as association
in the acquisition of both infections.

In addition, age-dependent shared and correlated frailty models are applied to bivariate sero-
logical survey data on HAV and HBV. In this application, we relied on the assumption of
lifelong immunity for both infections. Time varying frailty terms improve the model fit substan-
tially, and a decreasing frailty variance with age is observed. Although the piecewise constant
shared gamma frailty model TDPCSGF allows for varying frailty variances within different
age groups, its biological interpretation is difficult and the assumption of mutual independence
between frailty components is unrealistic. In this setting, one-component age-dependent cor-
related gamma frailty models are found to be identifiable at the cost of parametric baseline
hazards and common decay parameters for both infections. Identifiability of the frailty mod-
els is investigated on the basis of the general methodology of detecting parameter redundancy
(Catchpole and Morgan, 1997, 2001). A formal proof of identifiability in the context of immu-
nizing infections is beyond the scope of this paper. Note that the underlying transmission model
for HBV did not include a carrier state in which individuals remain infective for life. Because of
the low prevalence of HBV in Flanders, we believe that this simplification, albeit unrealistic to
some extent, does not have a large effect on the results that are presented in this paper.

The proposed time varying frailty models are based on an explicit parametric model for the
frailty variables in terms of independent gamma frailty components. This was suggested by
Farrington et al. (2012) due to empirical evidence of a decreased heterogeneity with time (age)
for several childhood infections. However, further research is required to test the hypothesis
of an increased variability in the acquisition of (childhood) infections earlier in life, especially
when these frailty models are applied to infections that mainly affect adolescents and the elderly.
Although the computationally convenient gamma frailty distribution is considered throughout
this paper, other frailty distributions could be used without additional work whenever closed
form Laplace transforms are available. Frailty distributions without a closed form Laplace
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transform could be considered as well; however, multivariate numerical integration techniques
are required to integrate out the random frailties, thereby increasing the computational burden.
A shortcoming of the multiplicative time-dependent frailty models is a time dependence of
the range of Zij.tij/ which is required to maintain Zij.tij/ > 0. Recently, Enki et al. (2014)
proposed a new family of time varying shared frailty models, based on power transformations
rather than linear models, overcoming the disadvantage of a time-dependent frailty range in the
context of immunizing infections. Further research could entail improvements in modelling time-
dependent heterogeneity for non-immunizing infections by using these frailty models, albeit that
preliminary analyses yield similar results (which are not shown) in terms of model fit. Although
copula and counting process models could be used instead of (time varying) frailty models
for the analysis of bivariate survival data, these approaches are not pursued in this paper. The
connection between frailty and copula models has been studied by, for example, Goethals et al.
(2008). For more information about the counting process approach, we refer to Aalen et al.
(2008).
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