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Large deviations in Taylor dispersion
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We establish a link between the phenomenon of Taylor dispersion and the theory of empirical
distributions. Using this connection, we derive, upon applying the theory of large deviations, an
alternative and much more precise description of the long-time regime for Taylor dispersion.

I. INTRODUCTION

Around 1953, G. I. Taylor [1] published a series of pa-
pers in which he studies the dispersion of particles in-
jected in a Poiseuille flow through a cylindrical tube.
As the particles are carried along, their elution profile
broadens along the flow axis x into a co-moving Gaus-
sian shape, with a mean square displacement described
by an effective diffusive law, 〈[x(t) − 〈x(t)〉]2〉 = 2Kt.
He calculated the value of the ”Taylor dispersion coeffi-
cient”: K = ū2a2/(48D), a result also obtained by West-
haver in his study of electro-migration [2]. Here D is
the molecular diffusion coefficient of the suspended par-
ticles, ū the average flow velocity and a the radius of the
tube. As an application, he discusses how such a set-up
allows to estimate D, which is typically very small, by
measuring K, a method used routinely in biophysics by
now [3]. The catch is that the Gaussian regime is at-
tained for times larger than the typically very long time
a2/D for the particles to diffuse over the tube’s radius.
The dispersion of particles in a flow is one example of
a more general phenomenon, referred to as generalized
Taylor dispersion, which we briefly review below, and
which includes applications in chromatography, the sedi-
mentation of non-spherical particles, spin relaxation and
phase diffusion in limit cycles, models for kinetic theory,
random evolution, etc. [4, 5].

After pioneering work by H. Cramer and I. N. Sanov,
the mathematical theory of large deviations was pri-
marily shaped in a series of influential papers by
M. D. Donsker and S. R. S. Varadhan [6]. Recent years
have seen an ever increasing number of studies of large
deviations in statistical mechanics, see, e.g., [7–9]. The
Gaussian distribution as it appears in Taylor’s problem
corresponds to the quadratic approximation for the so-
called large deviation function (ldf). The explicit eval-
uation of the ldf for Taylor dispersion was done in [10]
and provides a more precise description of the large time
regime. But, as we will show in the present paper, the
connection between both problems runs deeper: the large
deviation description for generalized Taylor dispersion
can be mapped onto that for empirical distributions. The
empirical distribution is the probability distribution ob-
served in a sample realization of a stochastic process. It
plays a crucial role in statistics and its properties form
a cornerstone of large deviation theory proper. The con-
nection between Taylor dispersion and empirical distri-
butions allows to compare and exchange techniques and

results between both fields of research.
The paper is organized as follows. In section II we

shortly review generalized Taylor dispersion and explic-
itly establish the relation to the theory of empirical dis-
tributions. We then turn in section III to the large de-
viation analysis of Taylor dispersion in layered systems
for which the underlying stochastic process acts in a dis-
crete state space. In section IV we discuss continuous
flow fields including the Poisieulle flow studied originally
by Taylor. Finally, section V contains some concluding
remarks.

II. GENERAL THEORY

To set the scene, we start with a brief review of general-
ized Taylor dispersion. A variable x has a rate of change
u, which is driven by a stochastic process y, independent
of x:

ẋ(t) = u(y(t)). (1)

In the example described in the introduction, x is the
coordinate measured along the tube, y = r is the radial
position of the particle undergoing molecular diffusion,
and

u(r) = 2ū(1− r2

a2
) (2)

the flow profile, cf. Fig. 1a. By integrating the equation
of motion, one finds the relation between the sample po-
sition x = x(t) at time t, and the particular realisation
y(τ), τ ∈ [0, t], of the stochastic process:

x(t) =

∫ t

0

u(y(τ))dτ. (3)

We will assume that the stochastic process y is station-
ary, with stationary distribution p(y), and does not dis-
play long-time correlations. The resulting displacement x
will, for long times, be the sum of essentially uncorrelated
and identically distributed contributions, corresponding
to subsequent displacements during time intervals larger
than the correlation time of y. Hence one expects from
the central limit theorem that the distribution for x ap-
proaches a Gaussian in the long time limit:

P (x, t) ∼ 1√
4πKt

exp

{

− (x− ūt)2

4Kt

}

, (4)
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with the average speed

〈u(y)〉 =
∫

u(y)p(y)dy = ū, (5)

and the Taylor dispersion coefficient given by a Green-
Kubo formula:

K =

∞
∫

0

〈[u(y(τ)) − ū][u(y(0))− ū]〉dτ. (6)

Figure 1. a) Taylor dispersion for a parabolic flow profile
u(y). Molecular diffusion with coefficient D perpendicular to
the flow gives rise to a dispersion of particles parallel to the
flow with effective diffusion constant K. b) In a discretized
model the particles reside in N layers with drift velocities ui

and make random transitions between adjacent layers with
rates k+

i
and k−

i
.

The large deviation analysis of generalized Taylor dis-
persion builds on the well studied large deviation prop-
erties of the empirical density of the underlying stochas-
tic process [6, 11]. To make the connection explicit let
us consider the case in which the rate of change ui of
the coordinate x depends on a discrete variable i ∈ I,
rather then the continuous variable y discussed before,
cf. Fig. 1b. The equation of motion (1), is thus replaced
by ẋ(t) = ui(t). The discrete state i undergoes an inde-
pendent stationary stochastic process with steady state
distribution pi. During a realization of the stochastic pro-
cess of duration t, the system will spend relative times

qi(t) =
1

t

∫ t

0

δi,i(τ)dτ (7)

in each of the states i ∈ I. The object, q = {qi, i ∈ I},
called the empirical density and itself a random variable,
is to be distinguished from the ”genuine” distribution
p = {pi, i ∈ I}. Nevertheless, for an ergodic process q

will converge to p in the long-time limit. More precisely,
one finds for large t

P (q, t) ∼ exp{−tJ(q)}, (8)

with the ldf J(q) satisfying J(p) = 0 and J(q) > 0
for q 6= p. In other words, deviations of q from p are
exponentially suppressed in the long-time limit.
Instead of considering the sample displacement at time

t, x = x(t), we now focus on the sample velocity v =
v(t) = x(t)/t, which is clearly given by:

v =
∑

i

uiqi = u · q. (9)

This expression links the stochastic properties of v to
those of the empirical distribution q. In particular, the
large time properties of the sample speed are specified by
a large deviation principle of the form

P (v, t) ∼ exp{−tI(v)}, (10)

with the ldf I(v) linked to J(q) by the contraction prin-
ciple of large deviation theory [7]:

I(v) = inf
u·q=v 1·q=1

J(q). (11)

This property corresponds to the intuitively obvious ob-
servation that an exponentially rare sample speed v is
realised by the least unlikely, exponentially rare real-
isation of an empirical distribution q. We have ex-
plicitly included the constraint that q is normalized,
∑

i qi = 1 · q = 1. Note that the central limit approx-
imation, cf. Eq. (4), corresponds to the quadratic ap-
proximation of the ldf around its minimum,

I(v) ∼= (v − ū)2

4K
, (12)

whereas the exact large deviation function will have con-
tributions of higher order in v.
To proceed, we will assume that the stochastic pro-

cess i is Markovian, and represents an equilibrium sit-
uation. This covers most applications in generalized
Taylor dispersion. The Markov process is characterized
by a transition matrix W. Its elements are the rates
Wi,j , corresponding to the probability per unit time to
make a transition from state j to state i for i 6= j, and
Wi,i = −∑j,j 6=i Wj,i. They obey the detailed balance
property:

Wj,ipi = Wi,jpj . (13)

In this case, the ldf of the empirical distribution is known
explicitly [6]:

J(q) =
1

2

∑

i,j

(
√

Wi,jqj −
√

Wj,iqi)
2. (14)

To account for the constraints in the contraction (11)
we introduce two Lagrange multipliers λ1 and λ2. The
vector q̄ minimizing

J(q) + λ1(1 · q− 1) + λ2(u · q− v) (15)

has to fulfill the system of linear equations:

(λ1 + λ2ui)
√
q̄i −

∑

j

√

Wi,jWj,i

√

q̄j = 0 ∀i ∈ I. (16)

Multiplying by
√
q̄i and summing over i yields:

I(v) = J(q̄) = −(λ1 + λ2v). (17)

So all that needs to be determined are the values of the
Lagrange multipliers λ1 and λ2. In general there will be
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several solutions. To select the proper one it is instructive
to write (16) in matrix form:

L







√
q̄1
...√
q̄N






= λ1







√
q̄1
...√
q̄N






, (18)

showing that λ1 is an eigenvalue of the symmetric N×N
matrix L with elements Li,j =

√

Wi,jWj,i − λ2uiδi,j ,
with all entries of the corresponding eigenvector positive.
Hence, by the Frobenius-Perron theorem, the largest
eigenvalue of L is the relevant solution for the Lagrange
multiplier λ1.

As a first application of the above formalism and to
demonstrate its consistency with previous work, we red-
erive the exact expression and bounds for the Taylor dis-
persion coefficient K. In order to capture the Gaussian
regime we only need the quadratic expansion of the ldf
I(v) around the most probable sample value at v = ū,
cf. Eq. (12). Starting from (14) we derive in appendix
A the general expression [12, 13]

K = −
∑

i,j

W̃−1
i,j pj (ū− ui)(ū − uj). (19)

Here W̃−1
i,j denotes the inverse of Wi,j on the subspace of

non-zero eigenvalues. It is usually difficult if not impos-
sible to evaluate this inverse exactly. As an alternative,
the variational form of (11) invites for the derivation of
bounds on K. Since v = ū corresponds to qi = pi it suf-
fices to keep the first order deviations qi ∼= pi + fi(v− ū)
in (14) before doing the contraction. In this way we show
in appendix A

K ≥ − 1

〈f |W |f〉 , (20)

where we used the scalar product 〈f |g〉 =
∑

i figi/pi and
f is any vector perpendicular to p and fulfilling 〈f |up〉 =
1. This expression is identical to the lower bound for K
derived previously in [13].

III. DISCRETE FLOW FIELDS

Turning to the large deviation properties, we first focus
on the simplest model capturing the essential ingredients
of Taylor dispersion. It consists of just two layers with
velocities u1 and u2, respectively. Because of Galilei in-
variance we may choose u2 = −u1 =: u without loss of
generality. We denote by k+ = W2,1 and k− = W1,2 the
rates of transition from layer 1 to 2 and back, respec-
tively. In this case, the exact elution profile is known
for all times, and was derived in many different settings

-5 0 5

10 -4

10 -1
(a)

2 3 4 5

10 -4

10 0
(b)

Figure 2. Logarithmic plot of the displacement distribution
P (x, t) at t = 10 for the discrete model of Fig. 1b with N = 2
layers and u2 = −u1 = .5. In a) the transition rates are sym-
metric, k+ = k

−
= 2, in b) they are biased, k+ = 10, k

−
= 1.

Shown are the exact solution (21) (black), the large deviation
result (red), the Gaussian approximation (dashed green), and
results from numerical simulations using the Gillespie algo-
rithm for 106 realisation (blue circles). The dotted vertical
line in b) markes the cut-off of the distribution at x = 5.

[14–19].

P (x, t) =
1

4π

[

∂

∂t
+(k++ k−)

]

[

2π

u
exp

(

−k+
2
(t− x

u
)− k−

2
(t+

x

u
)

)

I0

(

√

k−k+

u

√

(ut)2 − x2
)

θ(t) θ (ut− |x|)
]

.(21)

Here θ(x) denotes the Heaviside step-function and I0(x)
is the modified Bessel function of order zero. The ldf I(v)
follows directly from (11) because the two constraints
q̄1 + q̄2 = 1 and u(q̄1 − q̄2) = v already uniquely fix q̄ in
terms of u and v. Hence, the contraction becomes trivial:

I(v) =
k+
2
(1− v

u
)+

k−
2
(1+

v

u
)−
√

k+k−

√

1− v2

u2
. (22)

This result can, of course, also be obtained directly from
the large-time limit of (21). In Fig. 2 we exemplarily
compare the exact solution (21), with the Gaussian ap-
proximation (12), and the large-deviation result (22). For
the latter we have determined the prefactor such that it
coincides with the exact result for v = ū. Included are
also results of numerical simulations using the Gillespie
algorithm. As expected the large-deviation expression is
superior to the Gaussian approximation for reproducing
the tails of the distribution and follows the exact result
down to rather low probabilities. Note that this is partic-
ularly striking for unbalanced transition rates as shown
in Fig. 2b.
We next turn to a discrete model with N layers and

nearest neighbour transitions, as sketched in Fig. 1b. No
explicit analytic result for I(v) is available for the case of
general N , however, using standard numerical techniques
the non-trivial solution

√

q̄(λ1, λ2) of the homogeneous
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Figure 3. Same as figure 2 for a system of N = 10 layers.
The symmetric situation a) is specified by k+ = k

−
= 45 the

asymmetric one by k+ = 80, k
−

= 40. No exact solution is
available for this case.

linear system (16) may be determined. Plugging the re-
sult into the two constraints results in two equations for
λ1 and λ2 from which I(v) is determined via (17). For the
purpose of illustration, we focus on the simple case of con-
stant upward and downward rates given by Wi+1,i = k+
and Wi−1,i = k− for all i (with however boundary rates
WN+1,N = W1,0 = 0 ), and consider the simple linear
shear flow profile

ui = −1 +
2

N

(

i− 1

2

)

. (23)

Fig. 3 demonstrates the accuracy of the large deviation
approach also for this system. As in Fig. 2 the ldf com-
pares very well with the simulation results and is clearly
superior to the Gaussian approximation. The failure of
the latter is again particularly prominent for asymmetric
transition rates k− 6= k+. This situation models a hor-
izontal layered system in which Taylor dispersion is af-
fected by sedimentation. Furthermore, the non-Gaussian
deviations become stronger when the number of layers N
increases. This can be explained by the fact that parti-
cles have more options to get stuck in slow or fast lanes.

IV. CONTINUOUS FLOW FIELDS

We now return to the case of a continuous variable y in-
stead of the discrete index i. If y(t) represents a stochas-
tic process with detailed balance we may again build on
explicit expressions for the ldf of the empirical density.
More precisely, let the dynamics of y be given by the
Stratonovich Langevin equation

∂ty(t) = −∇U(y) +
√

2D(y)ξ(t) (24)

with a deterministic drift derived from a potential U(y)
and a Gaussian noise source with zero mean and corre-
lations 〈ξi(t)ξj(t′)〉 = δi,jδ(t − t′). The large deviation
functional for the empirical density (cf. (7))

q(y) :=
1

t

∫ t

0

δ(y − y(τ))dτ (25)

is then given by [6]:

J [q(·)] =
∫

D(y) p(y)

(

∇
√

q(y)

p(y)

)2

dy, (26)

where, as before, p(y) denotes the stationary distribution
of the process (24). In appendix B we include a simple
derivation of this expression from (14) for the special case
of a biased random walk in one dimension.
Starting with (26) the contraction to I(v) is now de-

fined by the variational problem

I(v) = inf
q(·)

∫

p(y)D(y)

(

∇
√

q(y)

p(y)

)2

dy (27)

under the constraints
∫

q(y) dy = 1 and

∫

q(y)u(y) dy = v . (28)

It is convenient to minimize in q̂(y) :=
√

q(y). Intro-
ducing as before the Lagrange multipliers λ1 and λ2 the
corresponding Euler-Lagrange equation reads

0 = − 1√
p
∇
(

pD∇
( q̂√

p

)

)

+ (λ1 + λ2u) q̂ (29)

where at the boundary the normal component of

√
pD∇

( q̂√
p

)

(30)

has to vanish. Multiplying (29) by q̂, integrating over y,
and using the boundary condition (30) gives back (17).
Eqs. (29) and (30) form a Sturm-Liouville problem, its
concrete solution depends on the flow profile u(y).
Note that for D(y) independent of y, which is the case

in many physical applications, the large deviation func-
tion becomes proportional to D. For the original prob-
lem of Taylor dispersion in a Poiseuille flow (2) through a
cylindrical tube one can, by a choice of the units of time
and space, furthermore set a = 1 and ū = 1. Hence the
corresponding large deviation function I(v) divided by D
reduces to a single master function, which we proceed to
calculate below.
Starting with p(y) =const. and u(y) = 2(1− y2) (29)

acquires the form

0 = −∆q̂ +
(

λ1 + 2λ2 (1− y2)
)

q̂. (31)

Due to rotational symmetry the solution of this equation
will depend only on r = |y| and it is sufficient to keep
the radial part of the Laplacian. We hence have to solve

0 = ∂2
r q̂(r) +

1

r
∂r q̂(r) − (λ1 + 2λ2 (1− r2)) q̂ (32)

together with the boundary conditions

r ∂r q̂(r)|r=0 = 0 and ∂r q̂(r)|r=1 = 0. (33)
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Figure 4. a) Logarithmic plot of the displacement distribu-
tion P (x, t) at t = 200 for a Poisseuille flow (2) with a = 1
and ū = 1 and D = 0.01. Shown are the large deviation re-
sult (red), the Gaussian approximation (dashed green), and
the outcome of numerical simulations (blue circles). b) Plot
of q̄(r) for different values of v identifying regions of the tube
cross section that dominate the various values of v. The inset
displays the function I(v)/D that universally characterizes
the large deviation properties of Taylor dispersion in Pois-
seuille flow.

This eigenvalue problem was also obtained in [10] (their
Eq. (3.28)). The auxiliary function Φ(r) introduced in
this paper is hence nothing but the square root q̂(r) of
the empirical density.
The general solution of (32) may be written as

q̂(r) =C1 e
−

√

Br
2

2 M
(

A, 1,
√
Br2

)

+

C2 e
−

√

Br
2

2 U
(

A, 1,
√
Br2

)

(34)

with the Kummer functions M(a, b, z) and U(a, b, z) [20],
two constants C1 and C2 as well as

A =
1

2

(

1− i

2

λ1 + 2λ2√
2λ2

)

and B = −2λ2. (35)

The first part of (34) involving M(a, b, z) obeys the first
boundary condition, at r = 0, automatically. Because
of the behaviour of U(a, 1, z) for small z this boundary
condition cannot be fulfilled by the second part of (34)
implying C2 = 0. The second boundary condition, at
r = 1, and the two constraints (28) then form a system
of equations to determine C1, λ1, and λ2. From the latter
two I(v)/D follows using (17).
In Fig. 4a we show the ldf obtained in this way to-

gether with the Gaussian approximation and numerical
simulations. Again, the ldf compares very well with the
numerical results. In particular the asymmetry of the
distribution, which in this case is due to the circular ge-
ometry of the setup, and which is clearly beyond the
capabilities of the Gaussian approximation is accurately
reproduced. Fig. 4b displays the function q̄(r) for differ-
ent values of v that highlights which regions in the cross
section of the pipe contribute most to the respective large
deviations of the sample velocity. As intuitive small ve-
locities require long residence of the particles near the
wall whereas large values of v are realized by particles

staying most of the time near the centre of the tube.
The inset shows the universal function I(v)/D for Taylor
dispersion in Poiseuille flow. Note that both curves are
independent of t.

V. DISCUSSION

We discussed the connection between the large devi-
ation properties of Taylor dispersion and the empirical
measure of the underlying stochastic process. The large
deviation function I(v) provides an accurate long-time
characterization of particle separation in shear flows. In
particular for biased transport perpendicular to the flow
direction the Gaussian approximation was found to yield
a rather poor description only whereas the large devi-
ation function reproduces the actual distribution down
to very small probabilities. We conclude with a discus-
sion about a converse issue, namely the interest and rel-
evance of Taylor dispersion for the theory of large devia-
tions. First, results from Taylor dispersion can feedback
into the theory of empirical distributions. An example
is the exact solution for the dispersion in a general near-
est neighbour random walk [12], which can be translated
back into an exact expression for the correlations of the
empirical distribution. Second, we note that the ldf I(v),
albeit obtained via contraction from the ldf J(q), is in
fact a functional of the velocity field u. Hence, if we know
Iu(v) for a suitable chosen set of flow profiles u we can
in principle reconstruct J(q). Third, as far as experi-
ments are concerned, Taylor dispersion provides a rather
direct way to measure the empirical distribution. If the
transition matrix governing the y-dynamics can be modi-
fied experimentally, e.g., by applying appropriate biasing
fields between the states, the results of this ”tilt” will be
promptly seen in the particle dispersion along the flow.

Appendix A: Expressions and bounds for the Taylor

dispersion coefficient K

Here we give a short account on how our results for
the large deviation function I(v) of Taylor dispersion re-
lates to results for the Taylor dispersion coefficient K
derived previously. Since K describes the Gaussian long
time regime of the process it is determined by the second
derivative of I(v) at v = ū:

1

2K
=

d2I

dv2
(ū) =

d2J

dv2
(p), (A1)

where J(q) is given by (cf. (14))

J(q) =
1

2

∑

i,j

(

√

Wi,jqj −
√

Wj,iqi

)2

, (A2)

and q̄(v) is determined by

∂J

∂qi
(q̄) = −(λ1 + λ2ui). (A3)
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Then, since I(v) = J(q̄(v)),

d2I

dv2
=

d2J(q̄)

dv2
=
∑

i,j

∂2J

∂qi∂qj
(q̄)

dq̄i
dv

dq̄j
dv

+
∑

i

∂J

∂qi
(q̄)

d2q̄i
dv2

.

(A4)
From the constraints 1 · q̄ = 1 and u · q̄ = v we find by
differentiation with resprect to v

1 · dq̄
dv

= 0, u · dq̄
dv

= 1, 1 · d
2q̄

dv2
= u · d

2q̄

d2v
= 0. (A5)

Hence, together with (A3), it follows

∑

i

∂J

∂qi
(q̄)

d2q̄i
dv2

= −
∑

i

(λ1 + λ2ui)
d2q̄i
dv2

= 0 (A6)

and the second term in (A4) vanishes. Therefore

1

2K
=
∑

i,j

∂2J

∂qi∂qj
(p)

dq̄i
dv

(ū)
dq̄j
dv

(ū). (A7)

Using the detailed balance condition Wi,jpj = Wj,ipi we
find from (A2)

∂2J

∂qi∂qj
(p) = −1

2

Wi,j

pi
= −1

2

Wj,i

pj
, (A8)

and therefore

1

K
= −

∑

i,j

Wi,j

pi

dq̄i
dv

(ū)
dq̄j
dv

(ū). (A9)

To determine dq̄i/dv at v = ū we take the derivative
of (A3) with respect to v to find

∑

j

∂2J

∂qi∂qj
(q̄)

∂q̄j
dv

= −dλ1

dv
− dλ2

dv
ui, i ∈ I. (A10)

Since J is a homogeneous function of q, J(κq) = κJ(q),
we have

J(q) =
∑

i

∂J

∂qi
qi (A11)

and, for q = q̄,

J(q̄) = −
∑

i

(λ1 + λ2ui)q̄i = −λ1 − λ2v, (A12)

reproducing (17). This implies

dJ(q̄)

dv
= −dλ1

dv
− dλ2

dv
v − λ2. (A13)

On the other hand, multiplying (A3) by ∂q̄i/∂v and sum-
ming over i gives

dJ(q̄)

dv
= −λ2(v) (A14)

such that

dλ1

dv
= −dλ2

dv
v. (A15)

Therefore

− dλ2

dv
(ū) =

1

2K
and

dλ1

dv
(ū) =

1

2K
ū. (A16)

From (A10) we hence obtain

∑

j

∂2J

∂qi∂qj
(p)

dq̄j
dv

=
ū− ui

2K
. (A17)

or, using (A8),

∑

j

Wi,j

dq̄j
dv

(ū) = pi
ū− ui

K
. (A18)

This is a system of linear inhomogeneous equations to
determine dq̄i/dv at v = ū in terms of p and u. The ma-
trix Wi,j is singular, however, by definition of ū, the r.h.s
of (A18) is orthogonal to the left eigenvector (1, 1, ..., 1)
corresponding to the zero eigenvalue and the system is
hence solvable. We denote by W̃−1

i,j the inverse of Wi,j

on the subspace orthogonal to the zero eigenvector to get

dq̄i
dv

(ū) =
1

2K

∑

k

W̃−1
i,k pk (ū − uk). (A19)

Plugging this result into (A9) we find the well-known
expression [13]

K = −
∑

i,j

W̃−1
i,j pj (ū − ui)(ū− uj). (A20)

In addition to this exact expression for K the varia-
tional form of the contraction (11) forms a convenient
starting point to derive bounds on K. From (A20) we
see that a Galilei transformation ui → ui + u does not
change K. In the following we therefore assume for sim-
plicity ū = 0. Small deviations v from ū = 0 result from
small deviations of q̄ from p. If we parametrize these de-
viations by qi = pi(1 + εiv) and use the detailed balance
condition (13) we find

J(q̄) ∼= v2

8

∑

i,j

Wi,jpj(εi − εj)
2, (A21)

which, using (A1) and (11), yields

1

K
= inf

ε

1

2

∑

i,j

Wi,jpj(εi − εj)
2, (A22)

Here the infimum has to be taken under the constraints
∑

i εiqi = 0 and
∑

i εiqiui = 1.
As an interesting trial ansatz, we set εi = αui. Then

the first constraint is automatically satisfied while the
second implies

1

α
=
∑

i

u2
i pi = u2. (A23)
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This gives

1

K
≤ 1

2u2
2

∑

i,j

Wi,jpj(ui − uj)
2. (A24)

The equality sign is realized for a Kangaroo process de-
fined by Wi,j = pi/τ , where τ denotes the overall relaxia-
tion time. Indeed one finds in this case that the infimum
in (A22) is realized for εi = ui/u2. Hence for a Kangaroo
process with ū = 0 we get the simple result

K =
2τu2

2

∑

i,j pipj(ui − uj)2
= τu2. (A25)

Finally, using
∑

iWi,j = 0 we may rewrite (A22) in the
form

1

K
= − inf

ε

1

2

∑

i,j

Wi,jpjεiεj

= − inf
ε

1

2

∑

i,j

εipiWi,jεjpj/pi

= − inf
f
〈f |W |f〉, (A26)

where the infimum is now over all vectors f orthogonal
to the stationary distribution 〈f |p〉 = 0 and fulfilling
〈f |up〉 = 1. Here, the scalar product is defined by

〈f |g〉 =
∑

i

figi
pi

. (A27)

The bound

K ≥ − 1

〈f |W |f〉 (A28)

resulting from (A26) was already derived in [13].

Appendix B: Continuum limit of the ldf for a biased

random walk

Consider a biased nearest neighbour random walk in
one dimension with reflecting boundary conditions. The
probability Pi(t) of the walker being at site i ∈ I at time
t obeys a Master equation

∂tPi(t) =
∑

j

(

Wi,jPj(t)−Wj,iPi(t)
)

(B1)

with

Wi,j =















k+i−1 for j = i− 1
−(k+i + k−i ) for j = i

k−i+1 for j = i+ 1
0 else

(B2)

The stationary distribution pi fulfills detailed balance
k+i pi = k−i+1pi+1 automatically. Using this condition we
find from (A2)

J(q) =
∑

i

k+i−1pi−1

(
√

qi−1

pi−1
−
√

qi
pi

)2

. (B3)

The continuum limit is obtained from this expression by
introducing a small space interval η and using the re-
placements

i → y

η
, pi → ηp(y), qi → ηq(y)

∑

i

→
∫

dy

η
, J(q) → J [q(·)]

k±i → ±w(y)

2η
+

D(y)

η2
. (B4)

The probability density function P (y, t) then fulfills the
Fokker-Planck equation

∂tP (y, t) = −∂y

(

(

w(y)−∂yD(y)
)

P (y, t)
)

+∂y

(

D(y)∂yP (y, t)
)

(B5)
complemented by reflecting boundary conditions. The
large deviation functional acquires the form

J [q(·)] =
∫

p(y)D(y)

(

∂y

√

q(y)

p(y)

)2

dy (B6)

corresponding to (26).
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