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Abstract: Identification of the most significant factors for evaluating road risk level is an important 
question in road safety research, predominantly for decision-making processes. However, model 
selection for this specific purpose is the most relevant focus in current research. In this paper, we 
proposed a new methodological approach for road safety risk evaluation, which is a two-stage 
framework consisting of data envelopment analysis (DEA) in combination with artificial neural 
networks (ANNs). In the first phase, the risk level of the road segments under study was calculated 
by applying DEA, and high-risk segments were identified. Then, the ANNs technique was adopted 
in the second phase, which appears to be a valuable analytical tool for risk prediction. The practical 
application of DEA-ANN approach within the Geographical Information System (GIS) environment 
will be an efficient approach for road safety risk analysis. 

Keywords: road safety; risk evaluation; data envelopment analysis; artificial neural networks; crash 
data analysis 

 

1. Introduction 

Crash injury severity has always been a major concern in highway safety research. To model the 
relationship between crash occurrence along with severity outcomes, related traffic features, and 
contributing factors, a large number of advanced models have been proposed. Road safety research 
incorporates a broad exhibit of research territories, and the most successful of them is crash 
information investigation. There have been a lot of discussion about crash information-based safety 
analysis and other distinguishable activity attributes have been proposed, more regularly than 
crashes, as an option. In any case, investigation of crash information remains the most broadly 
received way to deal with the safety of a transportation system (e.g., expressways, arterials, crossing 
points, etc.). The traditional approach is to build up connections between crash recurrence, traffic 
flow attributes, and geometry of the roads [1]. On the one hand, the impact of the geometric design 
on the probability of a driver behavior has been very much archived in conventional safety studies. 
This course of research is useful in settling on choices in such things as installing cautioning signs on 
roadway areas, etc. On the other hand, Average Annual Daily Traffic (AADT) is a generally used 
indicator for measuring the traffic movement conditions, as it is recorded by most organizations 
around the nation/the world, is accessible to all roadway areas, and gives a measure of introduction 
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to the specific roadway segment. Crash recurrence examination in view of AADT is a total or 
aggregate approach to take a glance at the crash information where the recurrence of crashes is 
computed, by amassing the crash information over particular eras (months or years) and areas 
(particular roadway segments) [2]. 

During road safety analysis of a road, a major target is to locate those segments which are 
dangerous, and then to identify the factors influencing its safety level. This study focuses on the 
concept that crashes can be decreased by better assessment of road hazard incremental elements, and 
by recognizable proof of hazardous segments at the initial stage, and after that, assessment of very 
dangerous sections with reference to the major contributing components is conducted in the second 
stage. In doing so, a combination of Data Envelopment Analysis (DEA) with Artificial Neural 
Networks (ANNs) is applied to evaluate the performance of roads with reference to safety conditions. 
The outcome is able to help decision makers/safety engineers to build a valuable system to analyze 
risk and significant attributes. Although it is new in the road safety research field, such an integrated 
mechanism has been popular in other sectors like banks, hospitals, schools, and corporations. Some 
researchers have used a combination of DEA-ANNs to evaluate performance (efficiency/risk) of rail 
transport, power suppliers, etc. [3–5]. DEA-ANNs was also used for efficiency classification by 
different researchers for banks and corporate companies [5–7]. For analysis regarding hospitals and 
large companies, screening of training data was also evaluated by using the DEA-ANNs technique. 
In addition, DEA-ANNs was also introduced for data processing [8–13], and will be more useful 
when applied within a Geographical Information System (GIS) environment. In this study, this 
integrated concept, which is popular in other sectors, is introduced to evaluate the safety performance 
(risk evaluation) of motorways. This evaluation of risk helps decision makers to decide on economical 
investment for risky segments, along with related factors, and consequently to reduce the cost of risk 
evaluation. 

2. Literature Review 

2.1. Risk and Road Safety Analysis 

Usually, road safety performance is evaluated on the basis of ‘Risk’ which is associated with the 
number of crashes and casualties, known as the road safety outcome. In the field of road safety, the 
risk is defined as ‘the road safety outcome to the amount of exposure’ as shown in Equation (1):	 ܴ݅݇ݏ = ܴ݀ܽ ݕݐ݂݁ܽܵ ݁ݎݑݏݔܧ݁݉ܿݐݑܱ (1) 

Exposure can be measured using different parameters; while comparing the performance of 
road segments, it can be measured as vehicle miles traveled, vehicle hours traveled, volume and 
number of trips, etc., however for countries it can be passenger kilometers travelled, population and 
number of registered vehicles, etc. [14,15]. Risk assessment is necessary for road safety performance 
analysis. Although risk can be analyzed on the basis of direct calculation using outcome by exposure, 
in the case of multiple outcomes and multiple input, it is difficult to deal with the calculation. Crashes 
are random events, and their outcome can also vary, as in one crash there may be zero fatalities, or 
fifty or more fatalities. Thus, a method that can deal with multiple outputs can be beneficial in 
calculating risk for road safety performance analysis of different units. 

2.2. DEA for Road Safety Analysis 

Road safety performance analysis of highways is an important task for the safety of travelers. To 
analyze the safety performance of certain attributes, a benchmarking mechanism has remained a 
basic procedure to be adopted by researchers [16–18]. With reference to the applied techniques for 
this purpose, DEA has been a popular technique with its theoretical basis in linear programming. 
Evolving the concept of DEA from research work in 1978, Charnes et al. [19] applied a linear program 
to estimate an empirical production technology frontier (bench marking) for the first time [19]. In the 
basic DEA model, the definition of the best practices relies on the assumption that inputs have to be 
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minimized and outputs have to be maximized (such as in the economics field). However, to use DEA 
for road safety risk evaluation, the target becomes the output, i.e., the number of traffic crashes, to be 
as low as possible with respect to the level of exposure to risk. Therefore, the DEA frontier based 
Decision Making Units(DMUs) or the best-performing road segments are those with minimum 
output levels given the input levels, and other segments’ risk is then measured relative to this frontier 
[20]. 

Mathematically, to use DEA for road safety evaluation, the model is shown as follows: 

 

(2) 

where yrj and xij are the rth output and ith input respectively of the jth DMU, ur is the weight given 
to output r, and vi is the weight given to input i. 

In view of the model applications for road safety analysis, road safety condition was compared 
to 21 European countries [16] and an ideal trauma management record score was also calculated by 
using DEA [21]. Furthermore, using population, passenger-kilometers, and passenger cars as inputs, 
and the number of fatalities as output, DEA was used for the evaluation of risk level of countries [22]. 
Monitoring of yearly progress in road safety was also conducted by utilizing the DEA technique [23]. 
Adding to road safety determination on a national level for 27 Brazilian states, two fundamental 
indicators accessible in Brazil: death rate (fatalities per capita) and casualty rate (fatalities per vehicle 
and fatalities per vehicle kilometer traveled) were focused upon [24]. From the literature review on 
DEA application in the field of road safety, it was confirmed that DEA is one of the established 
techniques to evaluate the risk level of road safety. 

2.3. ANNs for Road Safety Analysis 

Artificial Neural Networks is a model instrument of nonlinear statistical data that can be used 
to model a complex relationship between input and output to seek patterns. ANNs has been often 
implemented in many fields of science for prediction [25]. In road safety research, ANNs was applied 
to investigate crashes with reference to driver, vehicle, roadway, and condition attributes [26]. After 
application of ANNs, the impact of factors like seatbelt usage, light condition, and driver’s liquor 
utilization on driver’s safety was evaluated [27]. ANNs was also applied to determine the 
relationship between crash severity and the model parameters including years, highway sections, 
section length (km), AADT, the degree of horizontal curvature, the degree of vertical curvature, 
heavy vehicles (percentage), and season summer (percentage). The results shown that degree of 
vertical curvature has strong impact on number of crashes [28]. By modeling AADT, SL (Posted speed 
limit), Gradient (Average segment gradient), and Curvature (Average segment curvature) against 
road crashes, it was concluded that ANN was superior to multivariate Poisson-lognormal models 
[29]. From the literature review, we can summarize that ANNs was previously used as a crash data 
analysis model, which was a useful technique to study road-related features, geometry, and other 
contributing factors to road safety. 

2.4. DEA-ANNs Approach 

The combination of DEA and ANNs has not been applied in the road safety field, but it is 
popular in other fields like banks and corporate sectors. From the previous studies it was concluded 
that DEA is powerful for efficiency calculation, but for prediction purposes ANNs is ahead, so a 
discussion started after [30] on combining these two techniques to obtain the best possible outputs, 
i.e., efficiency calculation for ranking and prioritizing and then efficiency prediction for factor 
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analysis purpose. To validate this combination, efficiency prediction was performed for 50 companies 
[31], 19 power plants [32], 49 Indian business schools [5], 102 bank branches [7], and 45 countries [33]. 
Efficiency classification was also tested by studying 142 bank branches [34] and 23 supplier 
companies [35]. Following the similar pattern, the DEA-ANNs approach is selected in this study for 
road safety risk evaluation and analysis of factors affecting risk. 

2.5. GIS for Road Safety Analysis 

“While geometrical concept can be enriched by culture-specific devices like maps, or the terms 
of a natural language, underneath this variability lies a shared set of geometrical concepts. These 
concepts allow adults and children with no formal education, and minimal spatial language, to 
categorize geometrical forms and to use geometrical relationships to represent the surrounding 
spatial layout.” (Elizabeth S. Spelke-Harvard). GIS has gained a reputation that provides a better 
visualization of a large data set for understanding and decision making processes. GIS-provided 
maps which helped in identifying the crash concentration areas, located along the major road in the 
main urban areas [36]. During the road safety analysis of motorway (M-25), GIS provided relevant 
data on road accidents, traffic and road characteristics for 70 segments [37]. High risky sections on 
the basis of potential crash cost for expressways of Shanghai with the application of GIS has been 
clearly mapped [38]. Zonal crash frequency has also been expressed through GIS, showing 
association with several social-economic, demographic, and transportation system factors [39]. 
Through spatial analysis of high risk areas, pedestrian crashes have also been mapped in Tehran [40]. 
In Belgium, through the use of GIS and point pattern techniques, mapping road-accident black zones 
has been conducted within urban agglomerations [41]. GIS has also been used to explore the spatial 
variations in relationship between Number of Crashes and other explanatory variables of 2200 Traffic 
Analysis Zones (TAZs) in the study area, Flanders, Belgium [42,43]. GIS was used for modelling crash 
data at a small-scale level in Belgium, which permitted the identification of several areas with 
exceptionally high crash data. It endorsed more effective reallocation of resources and more efficient 
road safety management in Belgium [44]. 

2.6 ANN-GIS Approach 

ANNs has been introduced as a mapping tool to GIS to perform a predictive capability for joint 
operations [45]. Although GIS in combination with ANNs was popular in the fields of geoscience, 
irrigation, meteorology and Agriculture, it has been tested in the field of road safety by applying 
deep learning models using a Recurrent Neural Network (RNN) to predict the injury severity of 
traffic crashes for the North-South Expressway-Malaysia [46]. Previously this technique had been 
applied for sediment prediction in Gothenburg harbor [45], landslide susceptibility using the 
landslide occurrence factors produced with the help of a ANNs model [47], detection of flood hazards 
in the Blue Nile, White Nile, Main Nile, and River Atbara [48], macrobenthos habitat potential 
mapping regarding Macrophthalmus dilatatus, Cerithideopsilla cingulata, and Armandia lanceolate [49], 
learning the patterns of development in the region [50], tunneling performance prediction required 
in routine tunnel design works and performance in terms of stability as well as impact on 
surrounding environment [51], and deforestation maps production to determine the relationship 
between deforestation and various spatial variables such as the vicinity to roads and to expenditures, 
forest disintegration, elevation, slope, and soil type [52]. 

2.7. Research Gap 

DEA is popular as an optimization tool with its theoretical background in linear programming. 
DEA is popular with reference to benchmarking mechanism for efficiency and risk evaluation [3,6]. 
Previously, DEA was popular with its multi stage properties, but it has shortcomings with respect to 
its prediction capabilities, which reduces its application. A powerful technique, ANN, has been joined 
with DEA to fill that gap. Finally, with the predictive potential of ANNs and the optimization 
capacity of DEA performing complementary features, a prominent modeling option is envisioned 
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[3,6]. The performance of the DEA-ANNs technique in the field of road safety for decision making 
mechanisms for road safety performance analysis was evaluated. This is the first study for an 
application of the DEA-ANN approach within a GIS environment for road safety performance 
analysis, using a case study on Motorways. This will lead traffic engineers and decision makers to 
better visualize the risky sections and key factors for road safety condition improvement. 

3. Materials and Methods 

3.1. Basic Framework of the Analysis 

Road authorities have to prioritize the sites which require safety treatment, due to budget 
limitations. So in this study, a two phase framework was proposed for road safety risk evaluation, as 
shown in Figure 1. In the first phase, the number of crashes and fatalities was evaluated against 
exposure variables, with the help of DEA to calculate the risk level of road segments. In the second 
phase, that risk was predicted and evaluated with the help of ANNs. 

 

Figure 1. The Proposed Data Envelopment Analysis-Artificial Neural Networks (DEA-ANNs) 
Framework for Risk Evaluation. 
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3.2. Data Description and Selection of Variables 

The study area selected for this study was two motorways in Belgium named E-313 and E-314 
(Limburg Province Sections with a total length of 103 km). Each Motorway has segments, traffic-
related characteristics, and road network segmentation derived from the FEATHERS model [53]. In 
this study, a segment with at least one crash was considered as a decision-making unit (DMU) to 
analyze the road safety condition. According to this criterion, 67 segments are selected for these two 
motorways. The crash data used in this study consisted of a geographically coded set of crash data 
that occurred between 2010 and 2012, which was provided by the Flemish Ministry of Mobility and 
Public Works, as shown in Table 1. The first and very critical step in conducting an analysis is the 
selection of inputs and outputs variables. For this purpose in the first stage (DEA), those variables 
which were the exposure variables and could not be directly affected by a traffic engineer/decision 
maker were selected to calculate risk, while in the second stage (ANN) those variables (i.e., Horz and 
Vert Curve design, speed, and flow) which could be altered or improved by directly changing certain 
parameters, were selected. So, the target while calculating risk was to reduce the number of crashes 
(NoC) and casualties (NoAP) with the increase of average volume to capacity on each segment (V/C), 
total daily vehicle miles travelled on each segment (VMT) and total daily vehicle hours travelled on 
each segment (VHT). A traffic engineer cannot directly change V/C, VMT, or VHT; however, the 
geometric design (Horz and Vert Curve), speed (speed limit) and flow (by controlling access) so 
practically, a selection of variables was targeted according to the feasibility of the problem's solution. 
To confirm the validity of the DEA model condition, an isotonicity test [54] was conducted. An 
isotonicity test comprises the intention of all inter-correlations between inputs and outputs for 
detecting whether increasing amounts of inputs lead to greater outputs. As positive correlations were 
established, the isotonicity test was accepted and the presence of the inputs and outputs was 
reasonable. However there are no diagnostic checks for improper model specification detection in 
DEA [55]. However, a general rule of thumb, the minimum number of DMUs is higher than three 
times the number of inputs plus outputs [56]. In our study with a total of three inputs and two 
outputs, so a set of 15 data points would be optimal; we have 67 data segments. 

Table 1. Description Statistics of the Variables. 

Stage  Variables Description Mean SD Min. Max.

1st Stage 
DEA 

NoC No. of Crashes 9.58 13.12 1 74 
NoAP No. of Affected Persons (Injured and Killed) 14.36 19.55 1 105 

V/C 
Average Volume to Capacity on each 
segment 

0.4405 0.1807 0.08 0.6435 

VMT 
Total daily Vehicles Miles Travelled on each 
Segment 

1828 1388 77 5186 

VHT 
Total daily Vehicles hours Travelled on each 
Segment 

1093 879 38 3616 

2nd Stage 
ANN 

Flow 
Average annual daily traffic on each 
segment (vph) 

968.1 449.6 31.5 1483.4 

Speed 
Average Travel Speed for each segment 
(kph) 

110.99 8.23 96.89 120 

Horz_Curve 0 = Tangent, 1 = Curve -- -- 0 1 
Vert_Curve 1 = Upward, 2 = Downward, 3 = Flat -- -- 1 3 

3.3. Phase-I: Application of DEA for Risk Calculation and Ranking 

As there were two major phases of modeling, we had decide on the variables for both phases. 
The initial target was to evaluate risk with reference to the variables that were basically exposure 
variables. In the basic DEA model, the definition of the best practice relied on the assumption that 
inputs had to be minimized, and outputs have to be maximized (such as in the economics field). 
However, to use DEA for road safety risk evaluation, the target became the output, i.e., the number 
of traffic crashes, to be as low as possible with respect to the level of exposure to risk. 

There are two basic concepts in application of DEA, starting from efficiency as in Equation (3), 
and converting into calculation of risk as shown in Equation (4). 
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Efficiency: The basic concept of DEA-Efficiency calculation is as follows: ݕ݂݂ܿ݊݁݅ܿ݅ܧ	 = 	ܹ݁݅݃ℎ݀݁ݐ ݉ݑܵ ݂ ݀݁ݐℎܹ݃݅݁ݐݑݐݑܱ ݉ݑܵ ݂ ݐݑ݊ܫ = ݁ݖ݅݉݅ݔܽܯ ݁ݖ݅݉݅݊݅ܯݐݑݐݑܱ ݐݑ݊ܫ  (3) 

Risk: The basic concept of DEA-Risk calculation in connection between Equations (1) and (3): ܴ݅݇ݏ	 = 	ܹ݁݅݃ℎ݀݁ݐ	݉ݑܵ	݂	ܹ݃݅݁ݐݑݐݑܱℎ݀݁ݐ	݉ݑܵ	݂	ݐݑ݊ܫ = ݁ݖ݅݉݅݊݅ܯ ݁ݖ݅݉݅ݔܽܯݐݑݐݑܱ ݐݑ݊ܫ = ܴ݀ܽ ݁ݎݑݏݔܧ݁݉ܿݐݑܱ	ݕݐ݂݁ܽܵ  (4) 

So the equation to calculate the Risk value through DEA is as follows: ܴ݅݇ݏ	 = ܷଶ(ܰܥ) + ଵܷ ଵܸ(ܲܣܰ) (ܥ/ܸ) + ଶܸ (ܶܯܸ) + ଷܸ  (5) (ܶܪܸ)

where U1 = weights for 1st output (NoC), U2 = weights for 2nd output (NoAP); V1 = Weights for 1st 
Input (V/C), V2 = weights for 2nd Input (VMT), V3 = weights for 3rd Input (VHT). 

After calculation of Risk value, for ranking purposes, a cross-efficiency approach was one of the 
best methods to calculate A cross-risk value for ranking purposes. DEA has an attractive feature in 
that each DMU can have its own input and output weights, which leads to difficulty in making a 
comparison between DMUs. To compare DMUs, a Cross efficiency matrix (CEM) was developed as 
a DEA extension tool to assist in identifying the overall best or worst performer among all DMUs and 
rank them. Its basic idea is to apply DEA in a peer assessment instead of a self-assessment mode. 
Specifically, the CEM calculates the performance of a DMU with a concept by using not only its own 
optimal input and output weights, but also those of all other DMUs. Results can then be accumulated 
in a CEM as shown in Table 2. In the CEM, the element in the ith row and jth column signifies the risk 
scores of DMU j using the optimal weights of DMU i. The basic DEA risk is thus positioned in the 
principal diagonal. The average of each column of the CEM is calculated as a mean cross risk value 
for each DMU [20]. Since the same weighting process is applied for all the DMUs, their evaluations 
can then be made on a comparison basis, with a higher cross-risk score indicating a higher risky 
DMU. 

Table 2. A Generalized Cross-Efficiency Matrix (CEM) [20]. 

Rating DMU Rated DMU
 1 2 3 …… n 

ଵଵܧ 1 ଵଶܧ ଵଷܧ ଵܧ ……
ଶଵܧ 2 ଶଶܧ ଶଷܧ ଶܧ ……
. . . . . . 
n ܧଵ ଶܧ ଷܧ ܧ ……

Mean ܧଵതതത ଶതതതܧ ଷതതതܧ തതതܧ ……
For those DMUS, which have illogical weights in the basic DEA model, a relatively low or higher 

risk value will be calculated. Therefore, for ranking purpose, this method serves a type of sensitivity 
analysis by applying a method of a different set of weights to each DMU, with a back channel 
mechanism of self-generated weights rather than an externally imposed [20]. So the target value, 
which is a value of 1 to be considered for the best DMU, can now be changed, and after application 
of CEM it can vary, but the selection of best DMU (with the lowest Risk) will be easier.So after 
applying model (1) for calculating risk R0 in road safety field, the lowest level has been considered as 
the frontier of safety. As explained above, for ranking purposes, a cross risk procedure [20] has been 
adopted to obtain the best ranking, as shown in Table 3. 

The major advantage of using DEA here is that it can handle multiple inputs and multiple 
outputs. Moreover, DEA has some benefits as it does not require an assumption of a functional form 
relating inputs to outputs; DMUs considered in DEA are directly compared against a peer or 
combination of peers; Inputs and outputs used in DEA can have different measurement units. In this 
study, number of crashes (NoC) and number of affected persons-injured or killed (NoAP) are 
considered as two outputs, while exposure variables—average volume to capacity on each segment  
(V/C), total daily vehicle miles travelled on each segment (VMT), and total daily vehicle hours 
travelled on each segment (VHT)were considered as three inputs. Although the segment length also 
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varied, it was not included here because it was already been involved in the backup calculation of 
VMT. 

Table 3. DEA-Based Risk Evaluation and Ranking Segments. 

DMUs Input 1 Input 2 Input 3 Output 1 Output 2 CE-RISK 
VALUE 

RANK 
Road Seg. V/C VMT VHT NoC NoAP
1 0.368518 3039.221 1541.607 74 105 91.06902 1 
29 0.139052 109.169 54.58458 6 8 71.72984 2 
19 0.603085 183.7303 118.162 12 20 69.92395 3 
2 0.384021 2494.327 1268.376 49 76 65.10151 4 
34 0.07999 82.51051 41.25526 3 6 62.90294 5 
5 0.277711 2190.904 1096.683 38 50 62.28254 6 
25 0.139052 76.73981 38.36996 3 6 58.10739 7 
26 0.236548 202.3093 101.2386 9 11 57.15026 8 
3 0.360649 2683.937 1361.267 40 61 53.2604 9 
21 0.53409 594.7792 336.9631 13 24 35.40002 10 
- - - - - - - - 
53 0.631117 4275.086 3046.694 2 3 1.47492 64 
67 0.592324 1093.968 734.8267 1 1 1.312419 65 
49 0.498964 3214.268 1780.697 1 2 1.08319 66 
66 0.574944 1714.219 1098.003 1 1 1.068806 67 

Based on Model (1), the range of risk value began at 1 and proceeded to a higher value, so a segment 
with a value of 1 was considered safest, while the road segment with the highest value was considered 
the most dangerous. Moreover, the cross risk method [20] was used to make all the DMUs comparable. 
Table 3 presents the results. As the ranking was done on a priority basis to evaluate the safety condition 
of that segment, the risk value of 91.07 was the highest value in the table and was ranked first (i.e., the 
most risky segment). The top 10 riskiest segments are shown in Table 3 to explain an idea of risky 
segment selection for improvement. 

Furthermore, risk value was normalized by applying natural log, and with the help of GIS, a 
complete spatial map of both motorways is shown in Figure 2. A straight line demonstration provides an 
insight in locating the most riskiest segment on a motorway or highway. 

 
Figure 2. Risk based Straight Line Map for Motorways (E-313&314). 
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3.4. Phase-II: Application of ANNs Model for Risk Prediction and Evaluation 

In the second phase, the dependent variable is the risk value generated by the DEA model, was 
transformed by applying natural log to have data normalized. For independent variables, speed could be 
controlled by controlling the speed limit; flow was directly related to the number of vehicles, and could 
be controlled by controlling access; horizontal curve could be removed or altered as per infrastructural 
changes, and the same was the case for vertical curve as a geometric design feature. So for the application 
of ANN, data was distributed on the basis of a K-Fold mechanism with five folds (i.e., distribution is as 53 
segments-DMUs for Training and 14 segments-DMUs for validation). 

ANNs, unlike other modeling platforms, requires some form of model validation to aid in the 
model-building process and to help prevent overfitting of the model. The basic idea behind validation 
(or cross-validation) is to hold a subset of the data out of the model-building process. This process forms 
two partitions of the data, a training set and a validation set (note that a third set, or test set, can also be 
used). The model is built using the training set, while the k-fold validation set is then used to assess how 
well the model performs, and to aid in model selection. The most mainstream decision for the quantity of 
concealed layers is used. A solitary concealed layer is typically adequate to catch even extremely complex 
connections between the indicators. The quantity of links in the shrouded layers likewise decides the 
level of multifaceted nature of the connection between the indicators that the system catches [57]. 

From one viewpoint, utilizing an excessive couple of links is not adequate to catch complex 
connections (e.g., review the unique instances of a straight relationship in direct and calculated 
relapse, in the extraordinary instance of zero links or no shrouded layer). Then again, an excessive 
number of links may prompt overfitting. A dependable guideline is, to begin with (number of indicators) 
links and reduce or increment gradually while checking for overfitting. Another approach is to start with 
the default neural model, with one layer and four nodes, and then run a much more complex model with 
two layers and several nodes, and different activation functions. If the fit statistics do not improve 
substantially with a more complex model, then a simpler model may suffice [57]. We applied a simpler 
model to check the performance of the ANNs model in our case of risk evaluation, as shown in Figure 3. 
After running the model as shown in Figure 3, we displayed the model structure. We saw input variables 
mapping to each of the activation functions in the hidden layer, and nodes in the hidden layer mapping 
to the output layer. The background mechanism in each of the nodes in the hidden layer designated 
that the Gaussian activation function was used. Model results for both the training and validation 
sets are shown in Table 4. The response variable (risk) for this model was continuous. Like other 
techniques, it was necessary to follow the validation mechanism. With the validation mechanism and 
separation of the data into two sets, unbiased results were provided. 

 

Figure 3. Risk Prediction GIS Map based on the ANNs Model. 
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In this study, as discussed earlier, original data were distributed into two parts. Out of 67 
segments, 53 as the major data set were used for the training of the ANNs setup, while the remaining 
14 were used for validation after model building. The training set was the part that estimated model 
parameters. The validation set was the part that assessed or validated the predictive ability of the 
model. In addition, the most critical validation was applied in this study. Specifically, the K-Fold 
technique was adopted, which divided the original data into K subsets. In turn, each of the K sets is 
used to validate the model fit on to the rest of the data, fitting a total of K models. The model giving 
the best validation statistic was chosen as the final model. This method was best for small data sets 
because it made efficient use of limited amounts of data [57,58].The ANN based predicted value of 
risk was mapped in the GIS environment as shown in Figure 4, showing a red line as the riskiest 
segments, while dark green segments are the safest as there zero crashes on these segments. 

Table 4. Parametric estimates of the ANNs Model. 

Parameters 
Estimates-Hidden Layer
Code H1_1 H1_2 H1_3 H1_4 

Flow  0.258908 −2.00717 0.868246 4.984629 
Speed  −1.26756 3.435496 −1.83834 2.048267 
Horz_Curve 0 2.150204 13.66468 −1.03056 1.968045 

Vert_Curve 1 2.141838 −2.07175 1.313892 0.014534 
2 −3.21511 7.986301 −3.09312 −0.53461 

Intercept  1.90514 −1.87443 0.481882 −4.76064 
 Int H1_1 H1_2 H1_3 H1_4 
NLog_Risk 2.221 −2.34861 6.612427 −1.8978 2.041027 
Cross Validation 
Sample Size Training 53 Validation 14 
R2 (Training) 0.788 R2 (Validation) 0.775 RMSE 0.624 

 

Figure 4. Geographical information system (GIS)-based ANNs-predicted risk spatial map. 

The values of R-square and Root Mean Square Error (RMSE) are the two basic validation 
indicators for testing the goodness-of-fit of the model. ANNs is a very flexible model and has a 
tendency to overfit data. When that happens, the model predicts the fitted data very well, but predicts 
future observations poorly. To mitigate overfitting, the neural platform applies a penalty on the 
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model parameters and uses an independent dataset to assess the predictive power of the model. The 
applied technique to control overfitting is the squared method. This method is applied if it is 
considered that independent variables are contributing to the predictive ability of the model. 

During the analysis, the graphical representation of data showed a better performance both in 
the case of training and validation data. The data distribution was adopted in five segments, having 
a distribution of 53 segments for training and 14 segments for validation. The plots showing the 
perfection of predictability were shown in Figure 5 for both training and validation data. The values 
of R-square were also almost similar for both major and training and validation data sets. 

(a) (b)

Figure 5. Actual By Predicted Plot (a) Training (b) Validation. 

The contribution of factors associated with risk can be analyzed by the importance of the 
variables (i.e., Flow, Speed, Vertical and Horizontal Curve).The impact of variables is one of the 
necessary targets to analyze and improve the safety performance of the roads. Traffic safety engineers 
always search for the relationships between factors and safety performance indicators (i.e., Risk). The 
relationship can be observed in Table 5, which shows that speed and flow were two major factors 
which are having a high impact on risk. 

Table 5. Factors Association with the Risk.  

Factor Main Effect Total Effect Comparison
Flow 0.224 0.908  
Speed 0.064 0.47  

Vert_Curve 0.072 0.426  
Horz_Curve 0.052 0.288  

A comprehensive analysis to overview the importance of factors provides traffic engineers to 
take a decision during road safety analysis and implementation procedure. 

3.5. Model Selection Criteria 

In order to assess the performance of the DEA-based Risk prediction models, a number of 
evaluation criteria were used to evaluate these models. These criteria were applied to measure how 
close the real values were to the values predicted using the developed models. They included Root 
Mean Square Error (RMSE) and the correlation coefficient R or R2. These are given in Equations (6) 
and (7) respectively [59]. 

	ܧܵܯܴ = 	ඩ1݊ (ݕ − ො)ଶݕ
 ୀ ଵ  (6) 
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ܴ	 = 	 ∑ ݕ) − (തݕ ොݕ) − ොത)ݕ ୀ ଵඥ∑ ݕ) − ത)ଶݕ ୀ ଵ ට∑ ොݕ) − ොത)ଶݕ ୀ ଵ  (7) 

where y is actual Risk values,  is the estimated Risk values using the proposed techniques, and n 
is the total number of observations of DMUs. 

4. Results 

In order to find the factors influencing the road safety risk, ANNs and multiple linear regression 
(MLR) were generated using the Road Traffic and Crash data obtained for European routes (E-313&E-
314) of Limburg (Belgium). Although the basic target was to implement the ANNs model, regression 
analysis was also conducted to assess the performance of ANNs. 

4.1. Performance of Model 

The main objective of the methods (ANNs and MLR) was to fit an accurate model for risk 
prediction. The adequacy of such models are typically measured either by the coefficient of 
determination of the predictions against actual values (R2) or by RMSE. Figure 6 shows the 
comparative diagram of prediction between ANNs and MLR. 

The graph shown in Figure 6 suggests that ANNs is a better predictor than MLR. Moreover, if 
we considered the comparative assessment of model predicting capability, we see that R2 from ANNs 
(0.788) is much higher than that from MLR (0.276). Another major tester of the capability of the model 
is the RMSE; a smaller value indicating better fit. It also indicated that ANNs (0.624) has performed 
better in comparison with MLR (1.0789), as shown in Table 6. 

 

Figure 6. Comparative Analysis for Predicted Vs Actual Risk Values. 

Table 6. Comparative Analysis of ANNs Vs Multiple Linear Regression (MLR). 

Model R2 Predicted R2 (K-Fold) Validation RMSE 
Sample Size 53 14  

ANN 0.788 0.774 0.624109 
MLR 0.276 0.147 1.0789985 

Note: RMSE = Root Mean Square Error. 

4.2. Analysis of Factors 

As far as a solution to the problem is concerned, we can also analyze data on a graphical basis 
were the relationship can serve as a better understanding of our problem. After successfully applying 
the DEA-ANNs model for the road safety risk evaluation, we focused on the contributing factors 

ŷ
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used in the risk prediction. Decision makers/traffic safety engineer aim for low-cost treatments for 
problematic/risky segments. Thus from graphical analysis of the contributing factors, we saw that the 
majority of the crashes were on the curved portions of the motorways. Decision makers usually avoid 
infrastructural changes because redesigning and reconstruction is a costly procedure, so if they focus 
on the low-cost treatments, they can focus on speed and flow control. Figure 7 presents the 
relationship between the risk and the different contributing factors. The red lines represent mean 
speed levels, while the green lines represent mean flow level. We can see from Figure 7 that the risk 
level could be reduced by controlling just these two factors. 

 

Figure 7. Contributing Factor based Risk Analysis. 

4.2.1. Speed 

In the case of motorways, a high speed limit is preferred to provide for free and easy 
maneuvering, but excessive speed is a very important factor having an impact on the number of 
crashes and injuries. In high-income countries, speed is one of the major factors (probably one third) 
of fatal and serious crashes [60–62]. We observed from the data that 35 out of 67 segments (52%) were 
above the mean speed limit 110 kph. So a reduction in speed limit could help in reducing risk level. 

4.2.2. Flow 

Flow is one of the major factors related to road safety, in parallel speed, the analysis showed that 
39 out of 67 segments (58%) of the portion had above mean levels of traffic flow, i.e., 1000 vehicles. 
Traffic flow is one of the major contributing factor in road crashes [63,64]. “Based on the fluid 
mechanics theory of the traffic flow, the traffic flow parameters were specified, and the models of 
compressibility and viscosity of traffic flow were established respectively. Traffic control measures 
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such as restricting the traffic flow at the upstream and downstream of the accident section should be 
carried out to control the crashes” [65]. So controlling the flow factor for the risky segments could 
assist in reducing the risk level of those segments. 

4.2.3. Horizontal Curve 

For the road safety analysis, the horizontal alignment designed cannot be ignored, especially the 
horizontal curve [66]. From previous research , the occurrence of accidents occurring on the curve is 
higher than the tangent (straight line), and it is necessary to design a horizontal curve [66]. In this 
analysis 80% of the risky level was along with the horizontal curves, so continuous marking of road 
marking signs for horizontal curves and straightening of curves can help in reducing crashes. 

4.2.4. Vertical Curve 

Research related to geometric characteristics showed that vertical curves had a significant effect 
on road crashes, and also while estimating speeds on highways [67]. Researchers also concluded that 
roads with vertical curves and higher speed limits tended to have more severe crashes [68]. 
Sometimes, a combination of horizontal and vertical curves is dangerous for road safety. The upward 
and downward gradient of the road contributed 76% in risk segment contribution, so a change in 
level could also help in reducing the risk level of road segments. 

4.3. Safety Management and Financial Decision Making 

Road safety management system and decision making is linked with econometrics i.e., funding 
and investments. Most countries need to enhance their understanding of spending on the 
significances of road safety, both by administration and organizations, and investment in road safety 
improvement. Road safety establishments need this knowledge to prepare financial and economic 
indication on the costs and usefulness of proposed solutions in order to win public and state support 
for funding road safety programs. There are prospects for targeted road safety funds that provide 
competitive revenues [69]. Road safety consultants and specialists develop business cases for this 
investment by applying such methods (i.e., the proposed DEA-ANNs method). A step change in 
funds invested in road safety management and in safer transport systems is compulsory to 
comprehend the success of motivated road safety targets in most of the world [69]. 

“Even though the implementation and maintenance costs of motorways vary significantly 
between the countries, in some cases also due to the different tendering systems, they are usually 
high, comparing to the implementation costs of other road safety road infrastructure related 
initiatives” [70]. During Cost-benefit analysis (CBA), the “cost-effectiveness of motorways also varies 
from case to case, especially due to the different implementation costs. In most cases, though, CBA 
results reveal relatively small ratios for new motorway development comparing to respective ratios 
regarding other road safety investments, mainly due to the very high implementation costs. 
However, even these ratios are considered as adequate to support the decisions for motorway 
development or the upgrade of existing rural network into motorways and apart from the strict 
financial criteria, the significant benefits for the road users can enhance the investment’s effectiveness 
and should also be taken into account by the appropriate authorities” [70]. 

After safety analysis, we can target a different type of solutions: low-cost solutions, relatively 
costly solutions, and costly solutions. Speed limit change is considered as a low-cost solution because 
by changing sign boards for speed limit can help in the implementation of safety related alternatives. 
Consultants sometimes even recommend to installing permanent solution of electronic speed limit 
signs which help in controlling speed limit, some may be electronically related to the flow of the road 
and speed limit, to automatically change according to requirements. Flow limit is also another 
problem on the road, and can be solved by implementing the option of controlling access. The 
controlling flow option needs to have structures (e.g., toll installation) which lead to an investment 
higher than speed controlling signs. Flow can be controlled by applying tolls on those segments 
which are under high risk, which leads towards higher investments. Infrastructural change is one of 
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the costly solutions during the safety solution process. Horizontal curve and vertical curve change 
can be backed by higher investments. Decision makers are always reluctant to change the structural 
pattern because a proper structural design change and construction is required to implement the 
decision. Sometimes, cost can increase by additional super elevation changes, in combination to 
horizontal and vertical changes. 

4.4. Advantages and Limitations of Using the DEA-ANN Method 

Since DEA offers some benefits to other approaches such “as “(1) DEA is able to handle multiple 
inputs and outputs (2) DEA does not require a functional form that relates inputs and outputs (3) 
DEA optimizes on each individual observation and compares them against the “best practice” 
observations. (3) DEA can handle inputs and outputs without knowing a price or knowing the 
weights and (4) DEA produces a single measure for every DMU that can be easily compared with 
other DMUs and also have some limitation as (1) DEA only calculates relative efficiency measures 
and (2) As a nonparametric technique statistical hypothesis test are quite difficult” [71,72]. “Neural 
networks offer a number of advantages, including requiring less formal statistical training, ability to 
implicitly detect complex nonlinear relationships between dependent and independent variables, 
ability to detect all possible interactions between predictor variables, and the availability of multiple 
training algorithms. Disadvantages include its “black box” nature, greater computational burden, 
proneness to overfitting, and the empirical nature of model development” [73]. However, overfitting 
can be controlled by the penalty method. Previously, DEA was popular with its multi-stage 
properties, but it has shortcomings with respect to its prediction capabilities, which reduces/limits its 
application. So, a powerful technique, ANNs, has been joined with DEA to fill that gap. Finally, the 
predictive potential of ANNs and the optimization capacity of DEA perform complementary 
features, thus envisioning a prominent modelling option [3,6]. 

5. Conclusions 

This study focuses on road safety risk evaluation and connection between risk recurrence with 
respect to contributing factors. To enhance the estimation accuracy, a joint technique has been 
proposed and applied to achieve the risk evaluation, i.e., a benchmarking mechanism of DEA in 
combination with a prediction model of ANNs has been introduced to the road safety field. A crash 
dataset extracted from the Flemish Road safety department is stratified by two factors: the number 
of total crashes and number of affected persons, and is utilized to exhibit the proposed model 
formation of DEA and neural network performance. Notwithstanding the over-scattered crash 
information and the high relationship between the crash frequencies of the distinctive damage 
degrees, the outcomes demonstrate that comprehensive neural systems beat the multiple linear 
regression, shows in fitting and prescient execution. It demonstrates the neural system’s prevalence 
over linear regression. 

Risk has been calculated with the help of DEA for two motorways. Calculating risk has another 
advantage if segment length or volume of traffic is high or low; if we had just analyzed on the basis 
of number of crashes, it would not be a fair way to evaluated the most problematic segments out of 
a length of highway. Thus, using maximum information to evaluate an overall risk, DEA is a better 
option. In addition, we can rank them on the basis of risk value, and we can select our priorities on 
the basis that it could lead us to better decision making. So, for selecting problematic segments, it is 
a great achievement if we are able to indicate the most dangerous (risky) segments. 

The predictability of risk values were checked with the assistance of ANNs: speed, flow, and 
horizontal and vertical curve. These are the most important factors which could be influenced by 
decision makers/transportation engineers. Selecting the contributing factors and changing the speed 
limit and flow limitation for risky segments could provide low-cost safety solutions. On the other 
hand, an infrastructural change like an amendment in the horizontal and vertical curve can cost 
much. However, this system can also help with designing better solutions as no one would prefer to 
change the structure of an entire highway (i.e., if a 100 km long highway), thus, selecting the most 
problematic section and solving the safety problem of only those segments would also provide low-
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cost decision making outcomes. Furthermore, combining ANN with GIS in a road safety analysis 
system can further encompass the functionality of the ANNs and, at the same time, increase the set 
of potential applications of GIS. The main advantage of using an ANNs system within a GIS 
environment for road safety and crash analysis includes the collection, manipulation, and analysis of 
the crash related data, which can be used effectively and resourcefully. The results of the overlay 
functions and spatial analysis performed by a GIS can be used as the input and training settings of a 
neural network, while the results of the neural network may be deployed by a GIS to produce a 
geospatial output. Each spatial input data and outcome of the neural network can be easily 
accumulated, normalized, rescaled, re-projected, and overlaid. It may accept different kinds of 
parameters (e.g., class, ordinal, continuous and categorical) as input or output values, and can handle 
deficient data [74]. The system is extremely flexible and self-adaptive, and capable of incorporating 
any improvement new data set. So, a joint approach of DEA-ANN within a GIS environment can 
provide an easy and an efficient output for decision makers for road safety data analysis and decision 
making for safety improvement. 
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